[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Transforms / InstCombine / InstCombineCasts.cpp
blob1a569d2638f3a5882d4ad0f64990b8f30404fa3f
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/DIBuilder.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 using namespace llvm;
22 using namespace PatternMatch;
24 #define DEBUG_TYPE "instcombine"
26 /// Analyze 'Val', seeing if it is a simple linear expression.
27 /// If so, decompose it, returning some value X, such that Val is
28 /// X*Scale+Offset.
29 ///
30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
31 uint64_t &Offset) {
32 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
33 Offset = CI->getZExtValue();
34 Scale = 0;
35 return ConstantInt::get(Val->getType(), 0);
38 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
39 // Cannot look past anything that might overflow.
40 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
41 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
42 Scale = 1;
43 Offset = 0;
44 return Val;
47 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
48 if (I->getOpcode() == Instruction::Shl) {
49 // This is a value scaled by '1 << the shift amt'.
50 Scale = UINT64_C(1) << RHS->getZExtValue();
51 Offset = 0;
52 return I->getOperand(0);
55 if (I->getOpcode() == Instruction::Mul) {
56 // This value is scaled by 'RHS'.
57 Scale = RHS->getZExtValue();
58 Offset = 0;
59 return I->getOperand(0);
62 if (I->getOpcode() == Instruction::Add) {
63 // We have X+C. Check to see if we really have (X*C2)+C1,
64 // where C1 is divisible by C2.
65 unsigned SubScale;
66 Value *SubVal =
67 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
68 Offset += RHS->getZExtValue();
69 Scale = SubScale;
70 return SubVal;
75 // Otherwise, we can't look past this.
76 Scale = 1;
77 Offset = 0;
78 return Val;
81 /// If we find a cast of an allocation instruction, try to eliminate the cast by
82 /// moving the type information into the alloc.
83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
84 AllocaInst &AI) {
85 PointerType *PTy = cast<PointerType>(CI.getType());
87 BuilderTy AllocaBuilder(Builder);
88 AllocaBuilder.SetInsertPoint(&AI);
90 // Get the type really allocated and the type casted to.
91 Type *AllocElTy = AI.getAllocatedType();
92 Type *CastElTy = PTy->getElementType();
93 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
96 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
97 if (CastElTyAlign < AllocElTyAlign) return nullptr;
99 // If the allocation has multiple uses, only promote it if we are strictly
100 // increasing the alignment of the resultant allocation. If we keep it the
101 // same, we open the door to infinite loops of various kinds.
102 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
105 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
106 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108 // If the allocation has multiple uses, only promote it if we're not
109 // shrinking the amount of memory being allocated.
110 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
111 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
112 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114 // See if we can satisfy the modulus by pulling a scale out of the array
115 // size argument.
116 unsigned ArraySizeScale;
117 uint64_t ArrayOffset;
118 Value *NumElements = // See if the array size is a decomposable linear expr.
119 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121 // If we can now satisfy the modulus, by using a non-1 scale, we really can
122 // do the xform.
123 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
124 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
126 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
127 Value *Amt = nullptr;
128 if (Scale == 1) {
129 Amt = NumElements;
130 } else {
131 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
132 // Insert before the alloca, not before the cast.
133 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
136 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
137 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
138 Offset, true);
139 Amt = AllocaBuilder.CreateAdd(Amt, Off);
142 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
143 New->setAlignment(AI.getAlignment());
144 New->takeName(&AI);
145 New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147 // If the allocation has multiple real uses, insert a cast and change all
148 // things that used it to use the new cast. This will also hack on CI, but it
149 // will die soon.
150 if (!AI.hasOneUse()) {
151 // New is the allocation instruction, pointer typed. AI is the original
152 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
153 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
154 replaceInstUsesWith(AI, NewCast);
156 return replaceInstUsesWith(CI, New);
159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
160 /// true for, actually insert the code to evaluate the expression.
161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
162 bool isSigned) {
163 if (Constant *C = dyn_cast<Constant>(V)) {
164 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
165 // If we got a constantexpr back, try to simplify it with DL info.
166 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
167 C = FoldedC;
168 return C;
171 // Otherwise, it must be an instruction.
172 Instruction *I = cast<Instruction>(V);
173 Instruction *Res = nullptr;
174 unsigned Opc = I->getOpcode();
175 switch (Opc) {
176 case Instruction::Add:
177 case Instruction::Sub:
178 case Instruction::Mul:
179 case Instruction::And:
180 case Instruction::Or:
181 case Instruction::Xor:
182 case Instruction::AShr:
183 case Instruction::LShr:
184 case Instruction::Shl:
185 case Instruction::UDiv:
186 case Instruction::URem: {
187 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
188 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
189 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
190 break;
192 case Instruction::Trunc:
193 case Instruction::ZExt:
194 case Instruction::SExt:
195 // If the source type of the cast is the type we're trying for then we can
196 // just return the source. There's no need to insert it because it is not
197 // new.
198 if (I->getOperand(0)->getType() == Ty)
199 return I->getOperand(0);
201 // Otherwise, must be the same type of cast, so just reinsert a new one.
202 // This also handles the case of zext(trunc(x)) -> zext(x).
203 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
204 Opc == Instruction::SExt);
205 break;
206 case Instruction::Select: {
207 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
208 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
209 Res = SelectInst::Create(I->getOperand(0), True, False);
210 break;
212 case Instruction::PHI: {
213 PHINode *OPN = cast<PHINode>(I);
214 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
215 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
216 Value *V =
217 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
218 NPN->addIncoming(V, OPN->getIncomingBlock(i));
220 Res = NPN;
221 break;
223 default:
224 // TODO: Can handle more cases here.
225 llvm_unreachable("Unreachable!");
228 Res->takeName(I);
229 return InsertNewInstWith(Res, *I);
232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
233 const CastInst *CI2) {
234 Type *SrcTy = CI1->getSrcTy();
235 Type *MidTy = CI1->getDestTy();
236 Type *DstTy = CI2->getDestTy();
238 Instruction::CastOps firstOp = CI1->getOpcode();
239 Instruction::CastOps secondOp = CI2->getOpcode();
240 Type *SrcIntPtrTy =
241 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
242 Type *MidIntPtrTy =
243 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
244 Type *DstIntPtrTy =
245 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
246 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
247 DstTy, SrcIntPtrTy, MidIntPtrTy,
248 DstIntPtrTy);
250 // We don't want to form an inttoptr or ptrtoint that converts to an integer
251 // type that differs from the pointer size.
252 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
253 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
254 Res = 0;
256 return Instruction::CastOps(Res);
259 /// Implement the transforms common to all CastInst visitors.
260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
261 Value *Src = CI.getOperand(0);
263 // Try to eliminate a cast of a cast.
264 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
265 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
266 // The first cast (CSrc) is eliminable so we need to fix up or replace
267 // the second cast (CI). CSrc will then have a good chance of being dead.
268 auto *Ty = CI.getType();
269 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
270 // Point debug users of the dying cast to the new one.
271 if (CSrc->hasOneUse())
272 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
273 return Res;
277 if (auto *Sel = dyn_cast<SelectInst>(Src)) {
278 // We are casting a select. Try to fold the cast into the select, but only
279 // if the select does not have a compare instruction with matching operand
280 // types. Creating a select with operands that are different sizes than its
281 // condition may inhibit other folds and lead to worse codegen.
282 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
283 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
284 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
285 replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
286 return NV;
290 // If we are casting a PHI, then fold the cast into the PHI.
291 if (auto *PN = dyn_cast<PHINode>(Src)) {
292 // Don't do this if it would create a PHI node with an illegal type from a
293 // legal type.
294 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
295 shouldChangeType(CI.getType(), Src->getType()))
296 if (Instruction *NV = foldOpIntoPhi(CI, PN))
297 return NV;
300 return nullptr;
303 /// Constants and extensions/truncates from the destination type are always
304 /// free to be evaluated in that type. This is a helper for canEvaluate*.
305 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
306 if (isa<Constant>(V))
307 return true;
308 Value *X;
309 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
310 X->getType() == Ty)
311 return true;
313 return false;
316 /// Filter out values that we can not evaluate in the destination type for free.
317 /// This is a helper for canEvaluate*.
318 static bool canNotEvaluateInType(Value *V, Type *Ty) {
319 assert(!isa<Constant>(V) && "Constant should already be handled.");
320 if (!isa<Instruction>(V))
321 return true;
322 // We don't extend or shrink something that has multiple uses -- doing so
323 // would require duplicating the instruction which isn't profitable.
324 if (!V->hasOneUse())
325 return true;
327 return false;
330 /// Return true if we can evaluate the specified expression tree as type Ty
331 /// instead of its larger type, and arrive with the same value.
332 /// This is used by code that tries to eliminate truncates.
334 /// Ty will always be a type smaller than V. We should return true if trunc(V)
335 /// can be computed by computing V in the smaller type. If V is an instruction,
336 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
337 /// makes sense if x and y can be efficiently truncated.
339 /// This function works on both vectors and scalars.
341 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
342 Instruction *CxtI) {
343 if (canAlwaysEvaluateInType(V, Ty))
344 return true;
345 if (canNotEvaluateInType(V, Ty))
346 return false;
348 auto *I = cast<Instruction>(V);
349 Type *OrigTy = V->getType();
350 switch (I->getOpcode()) {
351 case Instruction::Add:
352 case Instruction::Sub:
353 case Instruction::Mul:
354 case Instruction::And:
355 case Instruction::Or:
356 case Instruction::Xor:
357 // These operators can all arbitrarily be extended or truncated.
358 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
359 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
361 case Instruction::UDiv:
362 case Instruction::URem: {
363 // UDiv and URem can be truncated if all the truncated bits are zero.
364 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
365 uint32_t BitWidth = Ty->getScalarSizeInBits();
366 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
367 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
368 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
369 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
370 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
371 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
373 break;
375 case Instruction::Shl: {
376 // If we are truncating the result of this SHL, and if it's a shift of a
377 // constant amount, we can always perform a SHL in a smaller type.
378 const APInt *Amt;
379 if (match(I->getOperand(1), m_APInt(Amt))) {
380 uint32_t BitWidth = Ty->getScalarSizeInBits();
381 if (Amt->getLimitedValue(BitWidth) < BitWidth)
382 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
384 break;
386 case Instruction::LShr: {
387 // If this is a truncate of a logical shr, we can truncate it to a smaller
388 // lshr iff we know that the bits we would otherwise be shifting in are
389 // already zeros.
390 const APInt *Amt;
391 if (match(I->getOperand(1), m_APInt(Amt))) {
392 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
393 uint32_t BitWidth = Ty->getScalarSizeInBits();
394 if (Amt->getLimitedValue(BitWidth) < BitWidth &&
395 IC.MaskedValueIsZero(I->getOperand(0),
396 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
397 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
400 break;
402 case Instruction::AShr: {
403 // If this is a truncate of an arithmetic shr, we can truncate it to a
404 // smaller ashr iff we know that all the bits from the sign bit of the
405 // original type and the sign bit of the truncate type are similar.
406 // TODO: It is enough to check that the bits we would be shifting in are
407 // similar to sign bit of the truncate type.
408 const APInt *Amt;
409 if (match(I->getOperand(1), m_APInt(Amt))) {
410 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
411 uint32_t BitWidth = Ty->getScalarSizeInBits();
412 if (Amt->getLimitedValue(BitWidth) < BitWidth &&
413 OrigBitWidth - BitWidth <
414 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
415 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
417 break;
419 case Instruction::Trunc:
420 // trunc(trunc(x)) -> trunc(x)
421 return true;
422 case Instruction::ZExt:
423 case Instruction::SExt:
424 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
425 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
426 return true;
427 case Instruction::Select: {
428 SelectInst *SI = cast<SelectInst>(I);
429 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
430 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
432 case Instruction::PHI: {
433 // We can change a phi if we can change all operands. Note that we never
434 // get into trouble with cyclic PHIs here because we only consider
435 // instructions with a single use.
436 PHINode *PN = cast<PHINode>(I);
437 for (Value *IncValue : PN->incoming_values())
438 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
439 return false;
440 return true;
442 default:
443 // TODO: Can handle more cases here.
444 break;
447 return false;
450 /// Given a vector that is bitcast to an integer, optionally logically
451 /// right-shifted, and truncated, convert it to an extractelement.
452 /// Example (big endian):
453 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
454 /// --->
455 /// extractelement <4 x i32> %X, 1
456 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
457 Value *TruncOp = Trunc.getOperand(0);
458 Type *DestType = Trunc.getType();
459 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
460 return nullptr;
462 Value *VecInput = nullptr;
463 ConstantInt *ShiftVal = nullptr;
464 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
465 m_LShr(m_BitCast(m_Value(VecInput)),
466 m_ConstantInt(ShiftVal)))) ||
467 !isa<VectorType>(VecInput->getType()))
468 return nullptr;
470 VectorType *VecType = cast<VectorType>(VecInput->getType());
471 unsigned VecWidth = VecType->getPrimitiveSizeInBits();
472 unsigned DestWidth = DestType->getPrimitiveSizeInBits();
473 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
475 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
476 return nullptr;
478 // If the element type of the vector doesn't match the result type,
479 // bitcast it to a vector type that we can extract from.
480 unsigned NumVecElts = VecWidth / DestWidth;
481 if (VecType->getElementType() != DestType) {
482 VecType = VectorType::get(DestType, NumVecElts);
483 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
486 unsigned Elt = ShiftAmount / DestWidth;
487 if (IC.getDataLayout().isBigEndian())
488 Elt = NumVecElts - 1 - Elt;
490 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
493 /// Rotate left/right may occur in a wider type than necessary because of type
494 /// promotion rules. Try to narrow the inputs and convert to funnel shift.
495 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
496 assert((isa<VectorType>(Trunc.getSrcTy()) ||
497 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
498 "Don't narrow to an illegal scalar type");
500 // Bail out on strange types. It is possible to handle some of these patterns
501 // even with non-power-of-2 sizes, but it is not a likely scenario.
502 Type *DestTy = Trunc.getType();
503 unsigned NarrowWidth = DestTy->getScalarSizeInBits();
504 if (!isPowerOf2_32(NarrowWidth))
505 return nullptr;
507 // First, find an or'd pair of opposite shifts with the same shifted operand:
508 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
509 Value *Or0, *Or1;
510 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
511 return nullptr;
513 Value *ShVal, *ShAmt0, *ShAmt1;
514 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
515 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
516 return nullptr;
518 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
519 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
520 if (ShiftOpcode0 == ShiftOpcode1)
521 return nullptr;
523 // Match the shift amount operands for a rotate pattern. This always matches
524 // a subtraction on the R operand.
525 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
526 // The shift amounts may add up to the narrow bit width:
527 // (shl ShVal, L) | (lshr ShVal, Width - L)
528 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
529 return L;
531 // The shift amount may be masked with negation:
532 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
533 Value *X;
534 unsigned Mask = Width - 1;
535 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
536 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
537 return X;
539 // Same as above, but the shift amount may be extended after masking:
540 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
541 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
542 return X;
544 return nullptr;
547 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
548 bool SubIsOnLHS = false;
549 if (!ShAmt) {
550 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
551 SubIsOnLHS = true;
553 if (!ShAmt)
554 return nullptr;
556 // The shifted value must have high zeros in the wide type. Typically, this
557 // will be a zext, but it could also be the result of an 'and' or 'shift'.
558 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
559 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
560 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
561 return nullptr;
563 // We have an unnecessarily wide rotate!
564 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
565 // Narrow the inputs and convert to funnel shift intrinsic:
566 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
567 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
568 Value *X = Builder.CreateTrunc(ShVal, DestTy);
569 bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
570 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
571 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
572 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
573 return IntrinsicInst::Create(F, { X, X, NarrowShAmt });
576 /// Try to narrow the width of math or bitwise logic instructions by pulling a
577 /// truncate ahead of binary operators.
578 /// TODO: Transforms for truncated shifts should be moved into here.
579 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
580 Type *SrcTy = Trunc.getSrcTy();
581 Type *DestTy = Trunc.getType();
582 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
583 return nullptr;
585 BinaryOperator *BinOp;
586 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
587 return nullptr;
589 Value *BinOp0 = BinOp->getOperand(0);
590 Value *BinOp1 = BinOp->getOperand(1);
591 switch (BinOp->getOpcode()) {
592 case Instruction::And:
593 case Instruction::Or:
594 case Instruction::Xor:
595 case Instruction::Add:
596 case Instruction::Sub:
597 case Instruction::Mul: {
598 Constant *C;
599 if (match(BinOp0, m_Constant(C))) {
600 // trunc (binop C, X) --> binop (trunc C', X)
601 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
602 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
603 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
605 if (match(BinOp1, m_Constant(C))) {
606 // trunc (binop X, C) --> binop (trunc X, C')
607 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
608 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
609 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
611 Value *X;
612 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
613 // trunc (binop (ext X), Y) --> binop X, (trunc Y)
614 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
615 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
617 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
618 // trunc (binop Y, (ext X)) --> binop (trunc Y), X
619 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
620 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
622 break;
625 default: break;
628 if (Instruction *NarrowOr = narrowRotate(Trunc))
629 return NarrowOr;
631 return nullptr;
634 /// Try to narrow the width of a splat shuffle. This could be generalized to any
635 /// shuffle with a constant operand, but we limit the transform to avoid
636 /// creating a shuffle type that targets may not be able to lower effectively.
637 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
638 InstCombiner::BuilderTy &Builder) {
639 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
640 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
641 Shuf->getMask()->getSplatValue() &&
642 Shuf->getType() == Shuf->getOperand(0)->getType()) {
643 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
644 Constant *NarrowUndef = UndefValue::get(Trunc.getType());
645 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
646 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
649 return nullptr;
652 /// Try to narrow the width of an insert element. This could be generalized for
653 /// any vector constant, but we limit the transform to insertion into undef to
654 /// avoid potential backend problems from unsupported insertion widths. This
655 /// could also be extended to handle the case of inserting a scalar constant
656 /// into a vector variable.
657 static Instruction *shrinkInsertElt(CastInst &Trunc,
658 InstCombiner::BuilderTy &Builder) {
659 Instruction::CastOps Opcode = Trunc.getOpcode();
660 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
661 "Unexpected instruction for shrinking");
663 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
664 if (!InsElt || !InsElt->hasOneUse())
665 return nullptr;
667 Type *DestTy = Trunc.getType();
668 Type *DestScalarTy = DestTy->getScalarType();
669 Value *VecOp = InsElt->getOperand(0);
670 Value *ScalarOp = InsElt->getOperand(1);
671 Value *Index = InsElt->getOperand(2);
673 if (isa<UndefValue>(VecOp)) {
674 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
675 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
676 UndefValue *NarrowUndef = UndefValue::get(DestTy);
677 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
678 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
681 return nullptr;
684 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
685 if (Instruction *Result = commonCastTransforms(CI))
686 return Result;
688 Value *Src = CI.getOperand(0);
689 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
691 // Attempt to truncate the entire input expression tree to the destination
692 // type. Only do this if the dest type is a simple type, don't convert the
693 // expression tree to something weird like i93 unless the source is also
694 // strange.
695 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
696 canEvaluateTruncated(Src, DestTy, *this, &CI)) {
698 // If this cast is a truncate, evaluting in a different type always
699 // eliminates the cast, so it is always a win.
700 LLVM_DEBUG(
701 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
702 " to avoid cast: "
703 << CI << '\n');
704 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
705 assert(Res->getType() == DestTy);
706 return replaceInstUsesWith(CI, Res);
709 // Test if the trunc is the user of a select which is part of a
710 // minimum or maximum operation. If so, don't do any more simplification.
711 // Even simplifying demanded bits can break the canonical form of a
712 // min/max.
713 Value *LHS, *RHS;
714 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
715 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
716 return nullptr;
718 // See if we can simplify any instructions used by the input whose sole
719 // purpose is to compute bits we don't care about.
720 if (SimplifyDemandedInstructionBits(CI))
721 return &CI;
723 if (DestTy->getScalarSizeInBits() == 1) {
724 Value *Zero = Constant::getNullValue(Src->getType());
725 if (DestTy->isIntegerTy()) {
726 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
727 // TODO: We canonicalize to more instructions here because we are probably
728 // lacking equivalent analysis for trunc relative to icmp. There may also
729 // be codegen concerns. If those trunc limitations were removed, we could
730 // remove this transform.
731 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
732 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
735 // For vectors, we do not canonicalize all truncs to icmp, so optimize
736 // patterns that would be covered within visitICmpInst.
737 Value *X;
738 const APInt *C;
739 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
740 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
741 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C);
742 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
743 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
745 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)),
746 m_Deferred(X))))) {
747 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
748 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1;
749 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
750 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
754 // FIXME: Maybe combine the next two transforms to handle the no cast case
755 // more efficiently. Support vector types. Cleanup code by using m_OneUse.
757 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
758 Value *A = nullptr; ConstantInt *Cst = nullptr;
759 if (Src->hasOneUse() &&
760 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
761 // We have three types to worry about here, the type of A, the source of
762 // the truncate (MidSize), and the destination of the truncate. We know that
763 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
764 // between ASize and ResultSize.
765 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
767 // If the shift amount is larger than the size of A, then the result is
768 // known to be zero because all the input bits got shifted out.
769 if (Cst->getZExtValue() >= ASize)
770 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
772 // Since we're doing an lshr and a zero extend, and know that the shift
773 // amount is smaller than ASize, it is always safe to do the shift in A's
774 // type, then zero extend or truncate to the result.
775 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
776 Shift->takeName(Src);
777 return CastInst::CreateIntegerCast(Shift, DestTy, false);
780 // FIXME: We should canonicalize to zext/trunc and remove this transform.
781 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
782 // conversion.
783 // It works because bits coming from sign extension have the same value as
784 // the sign bit of the original value; performing ashr instead of lshr
785 // generates bits of the same value as the sign bit.
786 if (Src->hasOneUse() &&
787 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
788 Value *SExt = cast<Instruction>(Src)->getOperand(0);
789 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
790 const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
791 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
792 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
793 unsigned ShiftAmt = Cst->getZExtValue();
795 // This optimization can be only performed when zero bits generated by
796 // the original lshr aren't pulled into the value after truncation, so we
797 // can only shift by values no larger than the number of extension bits.
798 // FIXME: Instead of bailing when the shift is too large, use and to clear
799 // the extra bits.
800 if (ShiftAmt <= MaxAmt) {
801 if (CISize == ASize)
802 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
803 std::min(ShiftAmt, ASize - 1)));
804 if (SExt->hasOneUse()) {
805 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
806 Shift->takeName(Src);
807 return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
812 if (Instruction *I = narrowBinOp(CI))
813 return I;
815 if (Instruction *I = shrinkSplatShuffle(CI, Builder))
816 return I;
818 if (Instruction *I = shrinkInsertElt(CI, Builder))
819 return I;
821 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
822 shouldChangeType(SrcTy, DestTy)) {
823 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
824 // dest type is native and cst < dest size.
825 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
826 !match(A, m_Shr(m_Value(), m_Constant()))) {
827 // Skip shifts of shift by constants. It undoes a combine in
828 // FoldShiftByConstant and is the extend in reg pattern.
829 const unsigned DestSize = DestTy->getScalarSizeInBits();
830 if (Cst->getValue().ult(DestSize)) {
831 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
833 return BinaryOperator::Create(
834 Instruction::Shl, NewTrunc,
835 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
840 if (Instruction *I = foldVecTruncToExtElt(CI, *this))
841 return I;
843 return nullptr;
846 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
847 bool DoTransform) {
848 // If we are just checking for a icmp eq of a single bit and zext'ing it
849 // to an integer, then shift the bit to the appropriate place and then
850 // cast to integer to avoid the comparison.
851 const APInt *Op1CV;
852 if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
854 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
855 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
856 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
857 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
858 if (!DoTransform) return ICI;
860 Value *In = ICI->getOperand(0);
861 Value *Sh = ConstantInt::get(In->getType(),
862 In->getType()->getScalarSizeInBits() - 1);
863 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
864 if (In->getType() != CI.getType())
865 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
867 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
868 Constant *One = ConstantInt::get(In->getType(), 1);
869 In = Builder.CreateXor(In, One, In->getName() + ".not");
872 return replaceInstUsesWith(CI, In);
875 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
876 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
877 // zext (X == 1) to i32 --> X iff X has only the low bit set.
878 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
879 // zext (X != 0) to i32 --> X iff X has only the low bit set.
880 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
881 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
882 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
883 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
884 // This only works for EQ and NE
885 ICI->isEquality()) {
886 // If Op1C some other power of two, convert:
887 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
889 APInt KnownZeroMask(~Known.Zero);
890 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
891 if (!DoTransform) return ICI;
893 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
894 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
895 // (X&4) == 2 --> false
896 // (X&4) != 2 --> true
897 Constant *Res = ConstantInt::get(CI.getType(), isNE);
898 return replaceInstUsesWith(CI, Res);
901 uint32_t ShAmt = KnownZeroMask.logBase2();
902 Value *In = ICI->getOperand(0);
903 if (ShAmt) {
904 // Perform a logical shr by shiftamt.
905 // Insert the shift to put the result in the low bit.
906 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
907 In->getName() + ".lobit");
910 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
911 Constant *One = ConstantInt::get(In->getType(), 1);
912 In = Builder.CreateXor(In, One);
915 if (CI.getType() == In->getType())
916 return replaceInstUsesWith(CI, In);
918 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
919 return replaceInstUsesWith(CI, IntCast);
924 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
925 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
926 // may lead to additional simplifications.
927 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
928 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
929 Value *LHS = ICI->getOperand(0);
930 Value *RHS = ICI->getOperand(1);
932 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
933 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
935 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
936 APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
937 APInt UnknownBit = ~KnownBits;
938 if (UnknownBit.countPopulation() == 1) {
939 if (!DoTransform) return ICI;
941 Value *Result = Builder.CreateXor(LHS, RHS);
943 // Mask off any bits that are set and won't be shifted away.
944 if (KnownLHS.One.uge(UnknownBit))
945 Result = Builder.CreateAnd(Result,
946 ConstantInt::get(ITy, UnknownBit));
948 // Shift the bit we're testing down to the lsb.
949 Result = Builder.CreateLShr(
950 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
952 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
953 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
954 Result->takeName(ICI);
955 return replaceInstUsesWith(CI, Result);
961 return nullptr;
964 /// Determine if the specified value can be computed in the specified wider type
965 /// and produce the same low bits. If not, return false.
967 /// If this function returns true, it can also return a non-zero number of bits
968 /// (in BitsToClear) which indicates that the value it computes is correct for
969 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
970 /// out. For example, to promote something like:
972 /// %B = trunc i64 %A to i32
973 /// %C = lshr i32 %B, 8
974 /// %E = zext i32 %C to i64
976 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
977 /// set to 8 to indicate that the promoted value needs to have bits 24-31
978 /// cleared in addition to bits 32-63. Since an 'and' will be generated to
979 /// clear the top bits anyway, doing this has no extra cost.
981 /// This function works on both vectors and scalars.
982 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
983 InstCombiner &IC, Instruction *CxtI) {
984 BitsToClear = 0;
985 if (canAlwaysEvaluateInType(V, Ty))
986 return true;
987 if (canNotEvaluateInType(V, Ty))
988 return false;
990 auto *I = cast<Instruction>(V);
991 unsigned Tmp;
992 switch (I->getOpcode()) {
993 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
994 case Instruction::SExt: // zext(sext(x)) -> sext(x).
995 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
996 return true;
997 case Instruction::And:
998 case Instruction::Or:
999 case Instruction::Xor:
1000 case Instruction::Add:
1001 case Instruction::Sub:
1002 case Instruction::Mul:
1003 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1004 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1005 return false;
1006 // These can all be promoted if neither operand has 'bits to clear'.
1007 if (BitsToClear == 0 && Tmp == 0)
1008 return true;
1010 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1011 // other side, BitsToClear is ok.
1012 if (Tmp == 0 && I->isBitwiseLogicOp()) {
1013 // We use MaskedValueIsZero here for generality, but the case we care
1014 // about the most is constant RHS.
1015 unsigned VSize = V->getType()->getScalarSizeInBits();
1016 if (IC.MaskedValueIsZero(I->getOperand(1),
1017 APInt::getHighBitsSet(VSize, BitsToClear),
1018 0, CxtI)) {
1019 // If this is an And instruction and all of the BitsToClear are
1020 // known to be zero we can reset BitsToClear.
1021 if (I->getOpcode() == Instruction::And)
1022 BitsToClear = 0;
1023 return true;
1027 // Otherwise, we don't know how to analyze this BitsToClear case yet.
1028 return false;
1030 case Instruction::Shl: {
1031 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
1032 // upper bits we can reduce BitsToClear by the shift amount.
1033 const APInt *Amt;
1034 if (match(I->getOperand(1), m_APInt(Amt))) {
1035 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1036 return false;
1037 uint64_t ShiftAmt = Amt->getZExtValue();
1038 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1039 return true;
1041 return false;
1043 case Instruction::LShr: {
1044 // We can promote lshr(x, cst) if we can promote x. This requires the
1045 // ultimate 'and' to clear out the high zero bits we're clearing out though.
1046 const APInt *Amt;
1047 if (match(I->getOperand(1), m_APInt(Amt))) {
1048 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1049 return false;
1050 BitsToClear += Amt->getZExtValue();
1051 if (BitsToClear > V->getType()->getScalarSizeInBits())
1052 BitsToClear = V->getType()->getScalarSizeInBits();
1053 return true;
1055 // Cannot promote variable LSHR.
1056 return false;
1058 case Instruction::Select:
1059 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1060 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1061 // TODO: If important, we could handle the case when the BitsToClear are
1062 // known zero in the disagreeing side.
1063 Tmp != BitsToClear)
1064 return false;
1065 return true;
1067 case Instruction::PHI: {
1068 // We can change a phi if we can change all operands. Note that we never
1069 // get into trouble with cyclic PHIs here because we only consider
1070 // instructions with a single use.
1071 PHINode *PN = cast<PHINode>(I);
1072 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1073 return false;
1074 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1075 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1076 // TODO: If important, we could handle the case when the BitsToClear
1077 // are known zero in the disagreeing input.
1078 Tmp != BitsToClear)
1079 return false;
1080 return true;
1082 default:
1083 // TODO: Can handle more cases here.
1084 return false;
1088 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1089 // If this zero extend is only used by a truncate, let the truncate be
1090 // eliminated before we try to optimize this zext.
1091 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1092 return nullptr;
1094 // If one of the common conversion will work, do it.
1095 if (Instruction *Result = commonCastTransforms(CI))
1096 return Result;
1098 Value *Src = CI.getOperand(0);
1099 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1101 // Try to extend the entire expression tree to the wide destination type.
1102 unsigned BitsToClear;
1103 if (shouldChangeType(SrcTy, DestTy) &&
1104 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1105 assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1106 "Can't clear more bits than in SrcTy");
1108 // Okay, we can transform this! Insert the new expression now.
1109 LLVM_DEBUG(
1110 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1111 " to avoid zero extend: "
1112 << CI << '\n');
1113 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1114 assert(Res->getType() == DestTy);
1116 // Preserve debug values referring to Src if the zext is its last use.
1117 if (auto *SrcOp = dyn_cast<Instruction>(Src))
1118 if (SrcOp->hasOneUse())
1119 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1121 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1122 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1124 // If the high bits are already filled with zeros, just replace this
1125 // cast with the result.
1126 if (MaskedValueIsZero(Res,
1127 APInt::getHighBitsSet(DestBitSize,
1128 DestBitSize-SrcBitsKept),
1129 0, &CI))
1130 return replaceInstUsesWith(CI, Res);
1132 // We need to emit an AND to clear the high bits.
1133 Constant *C = ConstantInt::get(Res->getType(),
1134 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1135 return BinaryOperator::CreateAnd(Res, C);
1138 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1139 // types and if the sizes are just right we can convert this into a logical
1140 // 'and' which will be much cheaper than the pair of casts.
1141 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
1142 // TODO: Subsume this into EvaluateInDifferentType.
1144 // Get the sizes of the types involved. We know that the intermediate type
1145 // will be smaller than A or C, but don't know the relation between A and C.
1146 Value *A = CSrc->getOperand(0);
1147 unsigned SrcSize = A->getType()->getScalarSizeInBits();
1148 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1149 unsigned DstSize = CI.getType()->getScalarSizeInBits();
1150 // If we're actually extending zero bits, then if
1151 // SrcSize < DstSize: zext(a & mask)
1152 // SrcSize == DstSize: a & mask
1153 // SrcSize > DstSize: trunc(a) & mask
1154 if (SrcSize < DstSize) {
1155 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1156 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1157 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1158 return new ZExtInst(And, CI.getType());
1161 if (SrcSize == DstSize) {
1162 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1163 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1164 AndValue));
1166 if (SrcSize > DstSize) {
1167 Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1168 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1169 return BinaryOperator::CreateAnd(Trunc,
1170 ConstantInt::get(Trunc->getType(),
1171 AndValue));
1175 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1176 return transformZExtICmp(ICI, CI);
1178 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1179 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1180 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1181 // of the (zext icmp) can be eliminated. If so, immediately perform the
1182 // according elimination.
1183 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1184 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1185 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1186 (transformZExtICmp(LHS, CI, false) ||
1187 transformZExtICmp(RHS, CI, false))) {
1188 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1189 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1190 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1191 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1193 // Perform the elimination.
1194 if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1195 transformZExtICmp(LHS, *LZExt);
1196 if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1197 transformZExtICmp(RHS, *RZExt);
1199 return Or;
1203 // zext(trunc(X) & C) -> (X & zext(C)).
1204 Constant *C;
1205 Value *X;
1206 if (SrcI &&
1207 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1208 X->getType() == CI.getType())
1209 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1211 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1212 Value *And;
1213 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1214 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1215 X->getType() == CI.getType()) {
1216 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1217 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1220 return nullptr;
1223 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1224 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1225 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1226 ICmpInst::Predicate Pred = ICI->getPredicate();
1228 // Don't bother if Op1 isn't of vector or integer type.
1229 if (!Op1->getType()->isIntOrIntVectorTy())
1230 return nullptr;
1232 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1233 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1234 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
1235 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
1236 Value *Sh = ConstantInt::get(Op0->getType(),
1237 Op0->getType()->getScalarSizeInBits() - 1);
1238 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1239 if (In->getType() != CI.getType())
1240 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1242 if (Pred == ICmpInst::ICMP_SGT)
1243 In = Builder.CreateNot(In, In->getName() + ".not");
1244 return replaceInstUsesWith(CI, In);
1247 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1248 // If we know that only one bit of the LHS of the icmp can be set and we
1249 // have an equality comparison with zero or a power of 2, we can transform
1250 // the icmp and sext into bitwise/integer operations.
1251 if (ICI->hasOneUse() &&
1252 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1253 KnownBits Known = computeKnownBits(Op0, 0, &CI);
1255 APInt KnownZeroMask(~Known.Zero);
1256 if (KnownZeroMask.isPowerOf2()) {
1257 Value *In = ICI->getOperand(0);
1259 // If the icmp tests for a known zero bit we can constant fold it.
1260 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1261 Value *V = Pred == ICmpInst::ICMP_NE ?
1262 ConstantInt::getAllOnesValue(CI.getType()) :
1263 ConstantInt::getNullValue(CI.getType());
1264 return replaceInstUsesWith(CI, V);
1267 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1268 // sext ((x & 2^n) == 0) -> (x >> n) - 1
1269 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1270 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1271 // Perform a right shift to place the desired bit in the LSB.
1272 if (ShiftAmt)
1273 In = Builder.CreateLShr(In,
1274 ConstantInt::get(In->getType(), ShiftAmt));
1276 // At this point "In" is either 1 or 0. Subtract 1 to turn
1277 // {1, 0} -> {0, -1}.
1278 In = Builder.CreateAdd(In,
1279 ConstantInt::getAllOnesValue(In->getType()),
1280 "sext");
1281 } else {
1282 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
1283 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1284 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1285 // Perform a left shift to place the desired bit in the MSB.
1286 if (ShiftAmt)
1287 In = Builder.CreateShl(In,
1288 ConstantInt::get(In->getType(), ShiftAmt));
1290 // Distribute the bit over the whole bit width.
1291 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1292 KnownZeroMask.getBitWidth() - 1), "sext");
1295 if (CI.getType() == In->getType())
1296 return replaceInstUsesWith(CI, In);
1297 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1302 return nullptr;
1305 /// Return true if we can take the specified value and return it as type Ty
1306 /// without inserting any new casts and without changing the value of the common
1307 /// low bits. This is used by code that tries to promote integer operations to
1308 /// a wider types will allow us to eliminate the extension.
1310 /// This function works on both vectors and scalars.
1312 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1313 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1314 "Can't sign extend type to a smaller type");
1315 if (canAlwaysEvaluateInType(V, Ty))
1316 return true;
1317 if (canNotEvaluateInType(V, Ty))
1318 return false;
1320 auto *I = cast<Instruction>(V);
1321 switch (I->getOpcode()) {
1322 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1323 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1324 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1325 return true;
1326 case Instruction::And:
1327 case Instruction::Or:
1328 case Instruction::Xor:
1329 case Instruction::Add:
1330 case Instruction::Sub:
1331 case Instruction::Mul:
1332 // These operators can all arbitrarily be extended if their inputs can.
1333 return canEvaluateSExtd(I->getOperand(0), Ty) &&
1334 canEvaluateSExtd(I->getOperand(1), Ty);
1336 //case Instruction::Shl: TODO
1337 //case Instruction::LShr: TODO
1339 case Instruction::Select:
1340 return canEvaluateSExtd(I->getOperand(1), Ty) &&
1341 canEvaluateSExtd(I->getOperand(2), Ty);
1343 case Instruction::PHI: {
1344 // We can change a phi if we can change all operands. Note that we never
1345 // get into trouble with cyclic PHIs here because we only consider
1346 // instructions with a single use.
1347 PHINode *PN = cast<PHINode>(I);
1348 for (Value *IncValue : PN->incoming_values())
1349 if (!canEvaluateSExtd(IncValue, Ty)) return false;
1350 return true;
1352 default:
1353 // TODO: Can handle more cases here.
1354 break;
1357 return false;
1360 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1361 // If this sign extend is only used by a truncate, let the truncate be
1362 // eliminated before we try to optimize this sext.
1363 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1364 return nullptr;
1366 if (Instruction *I = commonCastTransforms(CI))
1367 return I;
1369 Value *Src = CI.getOperand(0);
1370 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1372 // If we know that the value being extended is positive, we can use a zext
1373 // instead.
1374 KnownBits Known = computeKnownBits(Src, 0, &CI);
1375 if (Known.isNonNegative())
1376 return CastInst::Create(Instruction::ZExt, Src, DestTy);
1378 // Try to extend the entire expression tree to the wide destination type.
1379 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1380 // Okay, we can transform this! Insert the new expression now.
1381 LLVM_DEBUG(
1382 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1383 " to avoid sign extend: "
1384 << CI << '\n');
1385 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1386 assert(Res->getType() == DestTy);
1388 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1389 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1391 // If the high bits are already filled with sign bit, just replace this
1392 // cast with the result.
1393 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1394 return replaceInstUsesWith(CI, Res);
1396 // We need to emit a shl + ashr to do the sign extend.
1397 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1398 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1399 ShAmt);
1402 // If the input is a trunc from the destination type, then turn sext(trunc(x))
1403 // into shifts.
1404 Value *X;
1405 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1406 // sext(trunc(X)) --> ashr(shl(X, C), C)
1407 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1408 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1409 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1410 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1413 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1414 return transformSExtICmp(ICI, CI);
1416 // If the input is a shl/ashr pair of a same constant, then this is a sign
1417 // extension from a smaller value. If we could trust arbitrary bitwidth
1418 // integers, we could turn this into a truncate to the smaller bit and then
1419 // use a sext for the whole extension. Since we don't, look deeper and check
1420 // for a truncate. If the source and dest are the same type, eliminate the
1421 // trunc and extend and just do shifts. For example, turn:
1422 // %a = trunc i32 %i to i8
1423 // %b = shl i8 %a, 6
1424 // %c = ashr i8 %b, 6
1425 // %d = sext i8 %c to i32
1426 // into:
1427 // %a = shl i32 %i, 30
1428 // %d = ashr i32 %a, 30
1429 Value *A = nullptr;
1430 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1431 ConstantInt *BA = nullptr, *CA = nullptr;
1432 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1433 m_ConstantInt(CA))) &&
1434 BA == CA && A->getType() == CI.getType()) {
1435 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1436 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1437 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1438 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1439 A = Builder.CreateShl(A, ShAmtV, CI.getName());
1440 return BinaryOperator::CreateAShr(A, ShAmtV);
1443 return nullptr;
1447 /// Return a Constant* for the specified floating-point constant if it fits
1448 /// in the specified FP type without changing its value.
1449 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1450 bool losesInfo;
1451 APFloat F = CFP->getValueAPF();
1452 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1453 return !losesInfo;
1456 static Type *shrinkFPConstant(ConstantFP *CFP) {
1457 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1458 return nullptr; // No constant folding of this.
1459 // See if the value can be truncated to half and then reextended.
1460 if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1461 return Type::getHalfTy(CFP->getContext());
1462 // See if the value can be truncated to float and then reextended.
1463 if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1464 return Type::getFloatTy(CFP->getContext());
1465 if (CFP->getType()->isDoubleTy())
1466 return nullptr; // Won't shrink.
1467 if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1468 return Type::getDoubleTy(CFP->getContext());
1469 // Don't try to shrink to various long double types.
1470 return nullptr;
1473 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1474 // type we can safely truncate all elements to.
1475 // TODO: Make these support undef elements.
1476 static Type *shrinkFPConstantVector(Value *V) {
1477 auto *CV = dyn_cast<Constant>(V);
1478 if (!CV || !CV->getType()->isVectorTy())
1479 return nullptr;
1481 Type *MinType = nullptr;
1483 unsigned NumElts = CV->getType()->getVectorNumElements();
1484 for (unsigned i = 0; i != NumElts; ++i) {
1485 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1486 if (!CFP)
1487 return nullptr;
1489 Type *T = shrinkFPConstant(CFP);
1490 if (!T)
1491 return nullptr;
1493 // If we haven't found a type yet or this type has a larger mantissa than
1494 // our previous type, this is our new minimal type.
1495 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1496 MinType = T;
1499 // Make a vector type from the minimal type.
1500 return VectorType::get(MinType, NumElts);
1503 /// Find the minimum FP type we can safely truncate to.
1504 static Type *getMinimumFPType(Value *V) {
1505 if (auto *FPExt = dyn_cast<FPExtInst>(V))
1506 return FPExt->getOperand(0)->getType();
1508 // If this value is a constant, return the constant in the smallest FP type
1509 // that can accurately represent it. This allows us to turn
1510 // (float)((double)X+2.0) into x+2.0f.
1511 if (auto *CFP = dyn_cast<ConstantFP>(V))
1512 if (Type *T = shrinkFPConstant(CFP))
1513 return T;
1515 // Try to shrink a vector of FP constants.
1516 if (Type *T = shrinkFPConstantVector(V))
1517 return T;
1519 return V->getType();
1522 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
1523 if (Instruction *I = commonCastTransforms(FPT))
1524 return I;
1526 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1527 // simplify this expression to avoid one or more of the trunc/extend
1528 // operations if we can do so without changing the numerical results.
1530 // The exact manner in which the widths of the operands interact to limit
1531 // what we can and cannot do safely varies from operation to operation, and
1532 // is explained below in the various case statements.
1533 Type *Ty = FPT.getType();
1534 BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1535 if (OpI && OpI->hasOneUse()) {
1536 Type *LHSMinType = getMinimumFPType(OpI->getOperand(0));
1537 Type *RHSMinType = getMinimumFPType(OpI->getOperand(1));
1538 unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1539 unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1540 unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1541 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1542 unsigned DstWidth = Ty->getFPMantissaWidth();
1543 switch (OpI->getOpcode()) {
1544 default: break;
1545 case Instruction::FAdd:
1546 case Instruction::FSub:
1547 // For addition and subtraction, the infinitely precise result can
1548 // essentially be arbitrarily wide; proving that double rounding
1549 // will not occur because the result of OpI is exact (as we will for
1550 // FMul, for example) is hopeless. However, we *can* nonetheless
1551 // frequently know that double rounding cannot occur (or that it is
1552 // innocuous) by taking advantage of the specific structure of
1553 // infinitely-precise results that admit double rounding.
1555 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1556 // to represent both sources, we can guarantee that the double
1557 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1558 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1559 // for proof of this fact).
1561 // Note: Figueroa does not consider the case where DstFormat !=
1562 // SrcFormat. It's possible (likely even!) that this analysis
1563 // could be tightened for those cases, but they are rare (the main
1564 // case of interest here is (float)((double)float + float)).
1565 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1566 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1567 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1568 Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS);
1569 RI->copyFastMathFlags(OpI);
1570 return RI;
1572 break;
1573 case Instruction::FMul:
1574 // For multiplication, the infinitely precise result has at most
1575 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1576 // that such a value can be exactly represented, then no double
1577 // rounding can possibly occur; we can safely perform the operation
1578 // in the destination format if it can represent both sources.
1579 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1580 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1581 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1582 return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI);
1584 break;
1585 case Instruction::FDiv:
1586 // For division, we use again use the bound from Figueroa's
1587 // dissertation. I am entirely certain that this bound can be
1588 // tightened in the unbalanced operand case by an analysis based on
1589 // the diophantine rational approximation bound, but the well-known
1590 // condition used here is a good conservative first pass.
1591 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1592 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1593 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1594 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1595 return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI);
1597 break;
1598 case Instruction::FRem: {
1599 // Remainder is straightforward. Remainder is always exact, so the
1600 // type of OpI doesn't enter into things at all. We simply evaluate
1601 // in whichever source type is larger, then convert to the
1602 // destination type.
1603 if (SrcWidth == OpWidth)
1604 break;
1605 Value *LHS, *RHS;
1606 if (LHSWidth == SrcWidth) {
1607 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType);
1608 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType);
1609 } else {
1610 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType);
1611 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType);
1614 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI);
1615 return CastInst::CreateFPCast(ExactResult, Ty);
1620 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1621 Value *X;
1622 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1623 if (Op && Op->hasOneUse()) {
1624 if (match(Op, m_FNeg(m_Value(X)))) {
1625 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1627 // FIXME: Once we're sure that unary FNeg optimizations are on par with
1628 // binary FNeg, this should always return a unary operator.
1629 if (isa<BinaryOperator>(Op))
1630 return BinaryOperator::CreateFNegFMF(InnerTrunc, Op);
1631 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1635 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1636 switch (II->getIntrinsicID()) {
1637 default: break;
1638 case Intrinsic::ceil:
1639 case Intrinsic::fabs:
1640 case Intrinsic::floor:
1641 case Intrinsic::nearbyint:
1642 case Intrinsic::rint:
1643 case Intrinsic::round:
1644 case Intrinsic::trunc: {
1645 Value *Src = II->getArgOperand(0);
1646 if (!Src->hasOneUse())
1647 break;
1649 // Except for fabs, this transformation requires the input of the unary FP
1650 // operation to be itself an fpext from the type to which we're
1651 // truncating.
1652 if (II->getIntrinsicID() != Intrinsic::fabs) {
1653 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1654 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1655 break;
1658 // Do unary FP operation on smaller type.
1659 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1660 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1661 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1662 II->getIntrinsicID(), Ty);
1663 SmallVector<OperandBundleDef, 1> OpBundles;
1664 II->getOperandBundlesAsDefs(OpBundles);
1665 CallInst *NewCI =
1666 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1667 NewCI->copyFastMathFlags(II);
1668 return NewCI;
1673 if (Instruction *I = shrinkInsertElt(FPT, Builder))
1674 return I;
1676 return nullptr;
1679 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1680 return commonCastTransforms(CI);
1683 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1684 // This is safe if the intermediate type has enough bits in its mantissa to
1685 // accurately represent all values of X. For example, this won't work with
1686 // i64 -> float -> i64.
1687 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1688 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1689 return nullptr;
1690 Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1692 Value *SrcI = OpI->getOperand(0);
1693 Type *FITy = FI.getType();
1694 Type *OpITy = OpI->getType();
1695 Type *SrcTy = SrcI->getType();
1696 bool IsInputSigned = isa<SIToFPInst>(OpI);
1697 bool IsOutputSigned = isa<FPToSIInst>(FI);
1699 // We can safely assume the conversion won't overflow the output range,
1700 // because (for example) (uint8_t)18293.f is undefined behavior.
1702 // Since we can assume the conversion won't overflow, our decision as to
1703 // whether the input will fit in the float should depend on the minimum
1704 // of the input range and output range.
1706 // This means this is also safe for a signed input and unsigned output, since
1707 // a negative input would lead to undefined behavior.
1708 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1709 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1710 int ActualSize = std::min(InputSize, OutputSize);
1712 if (ActualSize <= OpITy->getFPMantissaWidth()) {
1713 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1714 if (IsInputSigned && IsOutputSigned)
1715 return new SExtInst(SrcI, FITy);
1716 return new ZExtInst(SrcI, FITy);
1718 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1719 return new TruncInst(SrcI, FITy);
1720 if (SrcTy == FITy)
1721 return replaceInstUsesWith(FI, SrcI);
1722 return new BitCastInst(SrcI, FITy);
1724 return nullptr;
1727 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1728 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1729 if (!OpI)
1730 return commonCastTransforms(FI);
1732 if (Instruction *I = FoldItoFPtoI(FI))
1733 return I;
1735 return commonCastTransforms(FI);
1738 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1739 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1740 if (!OpI)
1741 return commonCastTransforms(FI);
1743 if (Instruction *I = FoldItoFPtoI(FI))
1744 return I;
1746 return commonCastTransforms(FI);
1749 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1750 return commonCastTransforms(CI);
1753 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1754 return commonCastTransforms(CI);
1757 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1758 // If the source integer type is not the intptr_t type for this target, do a
1759 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1760 // cast to be exposed to other transforms.
1761 unsigned AS = CI.getAddressSpace();
1762 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1763 DL.getPointerSizeInBits(AS)) {
1764 Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1765 if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1766 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1768 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1769 return new IntToPtrInst(P, CI.getType());
1772 if (Instruction *I = commonCastTransforms(CI))
1773 return I;
1775 return nullptr;
1778 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
1779 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1780 Value *Src = CI.getOperand(0);
1782 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1783 // If casting the result of a getelementptr instruction with no offset, turn
1784 // this into a cast of the original pointer!
1785 if (GEP->hasAllZeroIndices() &&
1786 // If CI is an addrspacecast and GEP changes the poiner type, merging
1787 // GEP into CI would undo canonicalizing addrspacecast with different
1788 // pointer types, causing infinite loops.
1789 (!isa<AddrSpaceCastInst>(CI) ||
1790 GEP->getType() == GEP->getPointerOperandType())) {
1791 // Changing the cast operand is usually not a good idea but it is safe
1792 // here because the pointer operand is being replaced with another
1793 // pointer operand so the opcode doesn't need to change.
1794 Worklist.Add(GEP);
1795 CI.setOperand(0, GEP->getOperand(0));
1796 return &CI;
1800 return commonCastTransforms(CI);
1803 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1804 // If the destination integer type is not the intptr_t type for this target,
1805 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1806 // to be exposed to other transforms.
1808 Type *Ty = CI.getType();
1809 unsigned AS = CI.getPointerAddressSpace();
1811 if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
1812 return commonPointerCastTransforms(CI);
1814 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1815 if (Ty->isVectorTy()) // Handle vectors of pointers.
1816 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1818 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1819 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1822 /// This input value (which is known to have vector type) is being zero extended
1823 /// or truncated to the specified vector type.
1824 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1826 /// The source and destination vector types may have different element types.
1827 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1828 InstCombiner &IC) {
1829 // We can only do this optimization if the output is a multiple of the input
1830 // element size, or the input is a multiple of the output element size.
1831 // Convert the input type to have the same element type as the output.
1832 VectorType *SrcTy = cast<VectorType>(InVal->getType());
1834 if (SrcTy->getElementType() != DestTy->getElementType()) {
1835 // The input types don't need to be identical, but for now they must be the
1836 // same size. There is no specific reason we couldn't handle things like
1837 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1838 // there yet.
1839 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1840 DestTy->getElementType()->getPrimitiveSizeInBits())
1841 return nullptr;
1843 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1844 InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1847 // Now that the element types match, get the shuffle mask and RHS of the
1848 // shuffle to use, which depends on whether we're increasing or decreasing the
1849 // size of the input.
1850 SmallVector<uint32_t, 16> ShuffleMask;
1851 Value *V2;
1853 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1854 // If we're shrinking the number of elements, just shuffle in the low
1855 // elements from the input and use undef as the second shuffle input.
1856 V2 = UndefValue::get(SrcTy);
1857 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1858 ShuffleMask.push_back(i);
1860 } else {
1861 // If we're increasing the number of elements, shuffle in all of the
1862 // elements from InVal and fill the rest of the result elements with zeros
1863 // from a constant zero.
1864 V2 = Constant::getNullValue(SrcTy);
1865 unsigned SrcElts = SrcTy->getNumElements();
1866 for (unsigned i = 0, e = SrcElts; i != e; ++i)
1867 ShuffleMask.push_back(i);
1869 // The excess elements reference the first element of the zero input.
1870 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1871 ShuffleMask.push_back(SrcElts);
1874 return new ShuffleVectorInst(InVal, V2,
1875 ConstantDataVector::get(V2->getContext(),
1876 ShuffleMask));
1879 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1880 return Value % Ty->getPrimitiveSizeInBits() == 0;
1883 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1884 return Value / Ty->getPrimitiveSizeInBits();
1887 /// V is a value which is inserted into a vector of VecEltTy.
1888 /// Look through the value to see if we can decompose it into
1889 /// insertions into the vector. See the example in the comment for
1890 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1891 /// The type of V is always a non-zero multiple of VecEltTy's size.
1892 /// Shift is the number of bits between the lsb of V and the lsb of
1893 /// the vector.
1895 /// This returns false if the pattern can't be matched or true if it can,
1896 /// filling in Elements with the elements found here.
1897 static bool collectInsertionElements(Value *V, unsigned Shift,
1898 SmallVectorImpl<Value *> &Elements,
1899 Type *VecEltTy, bool isBigEndian) {
1900 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1901 "Shift should be a multiple of the element type size");
1903 // Undef values never contribute useful bits to the result.
1904 if (isa<UndefValue>(V)) return true;
1906 // If we got down to a value of the right type, we win, try inserting into the
1907 // right element.
1908 if (V->getType() == VecEltTy) {
1909 // Inserting null doesn't actually insert any elements.
1910 if (Constant *C = dyn_cast<Constant>(V))
1911 if (C->isNullValue())
1912 return true;
1914 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1915 if (isBigEndian)
1916 ElementIndex = Elements.size() - ElementIndex - 1;
1918 // Fail if multiple elements are inserted into this slot.
1919 if (Elements[ElementIndex])
1920 return false;
1922 Elements[ElementIndex] = V;
1923 return true;
1926 if (Constant *C = dyn_cast<Constant>(V)) {
1927 // Figure out the # elements this provides, and bitcast it or slice it up
1928 // as required.
1929 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1930 VecEltTy);
1931 // If the constant is the size of a vector element, we just need to bitcast
1932 // it to the right type so it gets properly inserted.
1933 if (NumElts == 1)
1934 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1935 Shift, Elements, VecEltTy, isBigEndian);
1937 // Okay, this is a constant that covers multiple elements. Slice it up into
1938 // pieces and insert each element-sized piece into the vector.
1939 if (!isa<IntegerType>(C->getType()))
1940 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1941 C->getType()->getPrimitiveSizeInBits()));
1942 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1943 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1945 for (unsigned i = 0; i != NumElts; ++i) {
1946 unsigned ShiftI = Shift+i*ElementSize;
1947 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1948 ShiftI));
1949 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1950 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1951 isBigEndian))
1952 return false;
1954 return true;
1957 if (!V->hasOneUse()) return false;
1959 Instruction *I = dyn_cast<Instruction>(V);
1960 if (!I) return false;
1961 switch (I->getOpcode()) {
1962 default: return false; // Unhandled case.
1963 case Instruction::BitCast:
1964 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1965 isBigEndian);
1966 case Instruction::ZExt:
1967 if (!isMultipleOfTypeSize(
1968 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1969 VecEltTy))
1970 return false;
1971 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1972 isBigEndian);
1973 case Instruction::Or:
1974 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1975 isBigEndian) &&
1976 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1977 isBigEndian);
1978 case Instruction::Shl: {
1979 // Must be shifting by a constant that is a multiple of the element size.
1980 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1981 if (!CI) return false;
1982 Shift += CI->getZExtValue();
1983 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1984 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1985 isBigEndian);
1992 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1993 /// assemble the elements of the vector manually.
1994 /// Try to rip the code out and replace it with insertelements. This is to
1995 /// optimize code like this:
1997 /// %tmp37 = bitcast float %inc to i32
1998 /// %tmp38 = zext i32 %tmp37 to i64
1999 /// %tmp31 = bitcast float %inc5 to i32
2000 /// %tmp32 = zext i32 %tmp31 to i64
2001 /// %tmp33 = shl i64 %tmp32, 32
2002 /// %ins35 = or i64 %tmp33, %tmp38
2003 /// %tmp43 = bitcast i64 %ins35 to <2 x float>
2005 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2006 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2007 InstCombiner &IC) {
2008 VectorType *DestVecTy = cast<VectorType>(CI.getType());
2009 Value *IntInput = CI.getOperand(0);
2011 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2012 if (!collectInsertionElements(IntInput, 0, Elements,
2013 DestVecTy->getElementType(),
2014 IC.getDataLayout().isBigEndian()))
2015 return nullptr;
2017 // If we succeeded, we know that all of the element are specified by Elements
2018 // or are zero if Elements has a null entry. Recast this as a set of
2019 // insertions.
2020 Value *Result = Constant::getNullValue(CI.getType());
2021 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2022 if (!Elements[i]) continue; // Unset element.
2024 Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2025 IC.Builder.getInt32(i));
2028 return Result;
2031 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2032 /// vector followed by extract element. The backend tends to handle bitcasts of
2033 /// vectors better than bitcasts of scalars because vector registers are
2034 /// usually not type-specific like scalar integer or scalar floating-point.
2035 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2036 InstCombiner &IC) {
2037 // TODO: Create and use a pattern matcher for ExtractElementInst.
2038 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2039 if (!ExtElt || !ExtElt->hasOneUse())
2040 return nullptr;
2042 // The bitcast must be to a vectorizable type, otherwise we can't make a new
2043 // type to extract from.
2044 Type *DestType = BitCast.getType();
2045 if (!VectorType::isValidElementType(DestType))
2046 return nullptr;
2048 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2049 auto *NewVecType = VectorType::get(DestType, NumElts);
2050 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2051 NewVecType, "bc");
2052 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2055 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2056 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2057 InstCombiner::BuilderTy &Builder) {
2058 Type *DestTy = BitCast.getType();
2059 BinaryOperator *BO;
2060 if (!DestTy->isIntOrIntVectorTy() ||
2061 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2062 !BO->isBitwiseLogicOp())
2063 return nullptr;
2065 // FIXME: This transform is restricted to vector types to avoid backend
2066 // problems caused by creating potentially illegal operations. If a fix-up is
2067 // added to handle that situation, we can remove this check.
2068 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2069 return nullptr;
2071 Value *X;
2072 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2073 X->getType() == DestTy && !isa<Constant>(X)) {
2074 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2075 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2076 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2079 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2080 X->getType() == DestTy && !isa<Constant>(X)) {
2081 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2082 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2083 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2086 // Canonicalize vector bitcasts to come before vector bitwise logic with a
2087 // constant. This eases recognition of special constants for later ops.
2088 // Example:
2089 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2090 Constant *C;
2091 if (match(BO->getOperand(1), m_Constant(C))) {
2092 // bitcast (logic X, C) --> logic (bitcast X, C')
2093 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2094 Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2095 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2098 return nullptr;
2101 /// Change the type of a select if we can eliminate a bitcast.
2102 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2103 InstCombiner::BuilderTy &Builder) {
2104 Value *Cond, *TVal, *FVal;
2105 if (!match(BitCast.getOperand(0),
2106 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2107 return nullptr;
2109 // A vector select must maintain the same number of elements in its operands.
2110 Type *CondTy = Cond->getType();
2111 Type *DestTy = BitCast.getType();
2112 if (CondTy->isVectorTy()) {
2113 if (!DestTy->isVectorTy())
2114 return nullptr;
2115 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2116 return nullptr;
2119 // FIXME: This transform is restricted from changing the select between
2120 // scalars and vectors to avoid backend problems caused by creating
2121 // potentially illegal operations. If a fix-up is added to handle that
2122 // situation, we can remove this check.
2123 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2124 return nullptr;
2126 auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2127 Value *X;
2128 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2129 !isa<Constant>(X)) {
2130 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2131 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2132 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2135 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2136 !isa<Constant>(X)) {
2137 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2138 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2139 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2142 return nullptr;
2145 /// Check if all users of CI are StoreInsts.
2146 static bool hasStoreUsersOnly(CastInst &CI) {
2147 for (User *U : CI.users()) {
2148 if (!isa<StoreInst>(U))
2149 return false;
2151 return true;
2154 /// This function handles following case
2156 /// A -> B cast
2157 /// PHI
2158 /// B -> A cast
2160 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2161 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2162 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2163 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2164 if (hasStoreUsersOnly(CI))
2165 return nullptr;
2167 Value *Src = CI.getOperand(0);
2168 Type *SrcTy = Src->getType(); // Type B
2169 Type *DestTy = CI.getType(); // Type A
2171 SmallVector<PHINode *, 4> PhiWorklist;
2172 SmallSetVector<PHINode *, 4> OldPhiNodes;
2174 // Find all of the A->B casts and PHI nodes.
2175 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2176 // OldPhiNodes is used to track all known PHI nodes, before adding a new
2177 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2178 PhiWorklist.push_back(PN);
2179 OldPhiNodes.insert(PN);
2180 while (!PhiWorklist.empty()) {
2181 auto *OldPN = PhiWorklist.pop_back_val();
2182 for (Value *IncValue : OldPN->incoming_values()) {
2183 if (isa<Constant>(IncValue))
2184 continue;
2186 if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2187 // If there is a sequence of one or more load instructions, each loaded
2188 // value is used as address of later load instruction, bitcast is
2189 // necessary to change the value type, don't optimize it. For
2190 // simplicity we give up if the load address comes from another load.
2191 Value *Addr = LI->getOperand(0);
2192 if (Addr == &CI || isa<LoadInst>(Addr))
2193 return nullptr;
2194 if (LI->hasOneUse() && LI->isSimple())
2195 continue;
2196 // If a LoadInst has more than one use, changing the type of loaded
2197 // value may create another bitcast.
2198 return nullptr;
2201 if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2202 if (OldPhiNodes.insert(PNode))
2203 PhiWorklist.push_back(PNode);
2204 continue;
2207 auto *BCI = dyn_cast<BitCastInst>(IncValue);
2208 // We can't handle other instructions.
2209 if (!BCI)
2210 return nullptr;
2212 // Verify it's a A->B cast.
2213 Type *TyA = BCI->getOperand(0)->getType();
2214 Type *TyB = BCI->getType();
2215 if (TyA != DestTy || TyB != SrcTy)
2216 return nullptr;
2220 // For each old PHI node, create a corresponding new PHI node with a type A.
2221 SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2222 for (auto *OldPN : OldPhiNodes) {
2223 Builder.SetInsertPoint(OldPN);
2224 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2225 NewPNodes[OldPN] = NewPN;
2228 // Fill in the operands of new PHI nodes.
2229 for (auto *OldPN : OldPhiNodes) {
2230 PHINode *NewPN = NewPNodes[OldPN];
2231 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2232 Value *V = OldPN->getOperand(j);
2233 Value *NewV = nullptr;
2234 if (auto *C = dyn_cast<Constant>(V)) {
2235 NewV = ConstantExpr::getBitCast(C, DestTy);
2236 } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2237 Builder.SetInsertPoint(LI->getNextNode());
2238 NewV = Builder.CreateBitCast(LI, DestTy);
2239 Worklist.Add(LI);
2240 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2241 NewV = BCI->getOperand(0);
2242 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2243 NewV = NewPNodes[PrevPN];
2245 assert(NewV);
2246 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2250 // Traverse all accumulated PHI nodes and process its users,
2251 // which are Stores and BitcCasts. Without this processing
2252 // NewPHI nodes could be replicated and could lead to extra
2253 // moves generated after DeSSA.
2254 // If there is a store with type B, change it to type A.
2257 // Replace users of BitCast B->A with NewPHI. These will help
2258 // later to get rid off a closure formed by OldPHI nodes.
2259 Instruction *RetVal = nullptr;
2260 for (auto *OldPN : OldPhiNodes) {
2261 PHINode *NewPN = NewPNodes[OldPN];
2262 for (User *V : OldPN->users()) {
2263 if (auto *SI = dyn_cast<StoreInst>(V)) {
2264 if (SI->isSimple() && SI->getOperand(0) == OldPN) {
2265 Builder.SetInsertPoint(SI);
2266 auto *NewBC =
2267 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2268 SI->setOperand(0, NewBC);
2269 Worklist.Add(SI);
2270 assert(hasStoreUsersOnly(*NewBC));
2273 else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2274 // Verify it's a B->A cast.
2275 Type *TyB = BCI->getOperand(0)->getType();
2276 Type *TyA = BCI->getType();
2277 if (TyA == DestTy && TyB == SrcTy) {
2278 Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2279 if (BCI == &CI)
2280 RetVal = I;
2286 return RetVal;
2289 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2290 // If the operands are integer typed then apply the integer transforms,
2291 // otherwise just apply the common ones.
2292 Value *Src = CI.getOperand(0);
2293 Type *SrcTy = Src->getType();
2294 Type *DestTy = CI.getType();
2296 // Get rid of casts from one type to the same type. These are useless and can
2297 // be replaced by the operand.
2298 if (DestTy == Src->getType())
2299 return replaceInstUsesWith(CI, Src);
2301 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2302 PointerType *SrcPTy = cast<PointerType>(SrcTy);
2303 Type *DstElTy = DstPTy->getElementType();
2304 Type *SrcElTy = SrcPTy->getElementType();
2306 // Casting pointers between the same type, but with different address spaces
2307 // is an addrspace cast rather than a bitcast.
2308 if ((DstElTy == SrcElTy) &&
2309 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2310 return new AddrSpaceCastInst(Src, DestTy);
2312 // If we are casting a alloca to a pointer to a type of the same
2313 // size, rewrite the allocation instruction to allocate the "right" type.
2314 // There is no need to modify malloc calls because it is their bitcast that
2315 // needs to be cleaned up.
2316 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2317 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2318 return V;
2320 // When the type pointed to is not sized the cast cannot be
2321 // turned into a gep.
2322 Type *PointeeType =
2323 cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2324 if (!PointeeType->isSized())
2325 return nullptr;
2327 // If the source and destination are pointers, and this cast is equivalent
2328 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
2329 // This can enhance SROA and other transforms that want type-safe pointers.
2330 unsigned NumZeros = 0;
2331 while (SrcElTy != DstElTy &&
2332 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2333 SrcElTy->getNumContainedTypes() /* not "{}" */) {
2334 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2335 ++NumZeros;
2338 // If we found a path from the src to dest, create the getelementptr now.
2339 if (SrcElTy == DstElTy) {
2340 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2341 return GetElementPtrInst::CreateInBounds(SrcPTy->getElementType(), Src,
2342 Idxs);
2346 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2347 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2348 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2349 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2350 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2351 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2354 if (isa<IntegerType>(SrcTy)) {
2355 // If this is a cast from an integer to vector, check to see if the input
2356 // is a trunc or zext of a bitcast from vector. If so, we can replace all
2357 // the casts with a shuffle and (potentially) a bitcast.
2358 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2359 CastInst *SrcCast = cast<CastInst>(Src);
2360 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2361 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2362 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2363 cast<VectorType>(DestTy), *this))
2364 return I;
2367 // If the input is an 'or' instruction, we may be doing shifts and ors to
2368 // assemble the elements of the vector manually. Try to rip the code out
2369 // and replace it with insertelements.
2370 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2371 return replaceInstUsesWith(CI, V);
2375 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2376 if (SrcVTy->getNumElements() == 1) {
2377 // If our destination is not a vector, then make this a straight
2378 // scalar-scalar cast.
2379 if (!DestTy->isVectorTy()) {
2380 Value *Elem =
2381 Builder.CreateExtractElement(Src,
2382 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2383 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2386 // Otherwise, see if our source is an insert. If so, then use the scalar
2387 // component directly:
2388 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2389 if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2390 return new BitCastInst(InsElt->getOperand(1), DestTy);
2394 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2395 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
2396 // a bitcast to a vector with the same # elts.
2397 Value *ShufOp0 = Shuf->getOperand(0);
2398 Value *ShufOp1 = Shuf->getOperand(1);
2399 unsigned NumShufElts = Shuf->getType()->getVectorNumElements();
2400 unsigned NumSrcVecElts = ShufOp0->getType()->getVectorNumElements();
2401 if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2402 DestTy->getVectorNumElements() == NumShufElts &&
2403 NumShufElts == NumSrcVecElts) {
2404 BitCastInst *Tmp;
2405 // If either of the operands is a cast from CI.getType(), then
2406 // evaluating the shuffle in the casted destination's type will allow
2407 // us to eliminate at least one cast.
2408 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2409 Tmp->getOperand(0)->getType() == DestTy) ||
2410 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2411 Tmp->getOperand(0)->getType() == DestTy)) {
2412 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2413 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2414 // Return a new shuffle vector. Use the same element ID's, as we
2415 // know the vector types match #elts.
2416 return new ShuffleVectorInst(LHS, RHS, Shuf->getOperand(2));
2420 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2421 // a byte-swap:
2422 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2423 // TODO: We should match the related pattern for bitreverse.
2424 if (DestTy->isIntegerTy() &&
2425 DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2426 SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 &&
2427 Shuf->hasOneUse() && Shuf->isReverse()) {
2428 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2429 assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
2430 Function *Bswap =
2431 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2432 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2433 return IntrinsicInst::Create(Bswap, { ScalarX });
2437 // Handle the A->B->A cast, and there is an intervening PHI node.
2438 if (PHINode *PN = dyn_cast<PHINode>(Src))
2439 if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2440 return I;
2442 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2443 return I;
2445 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2446 return I;
2448 if (Instruction *I = foldBitCastSelect(CI, Builder))
2449 return I;
2451 if (SrcTy->isPointerTy())
2452 return commonPointerCastTransforms(CI);
2453 return commonCastTransforms(CI);
2456 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2457 // If the destination pointer element type is not the same as the source's
2458 // first do a bitcast to the destination type, and then the addrspacecast.
2459 // This allows the cast to be exposed to other transforms.
2460 Value *Src = CI.getOperand(0);
2461 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2462 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2464 Type *DestElemTy = DestTy->getElementType();
2465 if (SrcTy->getElementType() != DestElemTy) {
2466 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2467 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2468 // Handle vectors of pointers.
2469 MidTy = VectorType::get(MidTy, VT->getNumElements());
2472 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2473 return new AddrSpaceCastInst(NewBitCast, CI.getType());
2476 return commonPointerCastTransforms(CI);