1 //===- InstCombineCompares.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitICmp and visitFCmp functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
29 using namespace PatternMatch
;
31 #define DEBUG_TYPE "instcombine"
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel
, "Number of select opts");
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 static bool addWithOverflow(APInt
&Result
, const APInt
&In1
,
40 const APInt
&In2
, bool IsSigned
= false) {
43 Result
= In1
.sadd_ov(In2
, Overflow
);
45 Result
= In1
.uadd_ov(In2
, Overflow
);
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 static bool subWithOverflow(APInt
&Result
, const APInt
&In1
,
53 const APInt
&In2
, bool IsSigned
= false) {
56 Result
= In1
.ssub_ov(In2
, Overflow
);
58 Result
= In1
.usub_ov(In2
, Overflow
);
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst
&I
) {
66 for (auto *U
: I
.users())
67 if (isa
<BranchInst
>(U
))
72 /// Given an exploded icmp instruction, return true if the comparison only
73 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
74 /// result of the comparison is true when the input value is signed.
75 static bool isSignBitCheck(ICmpInst::Predicate Pred
, const APInt
&RHS
,
78 case ICmpInst::ICMP_SLT
: // True if LHS s< 0
80 return RHS
.isNullValue();
81 case ICmpInst::ICMP_SLE
: // True if LHS s<= RHS and RHS == -1
83 return RHS
.isAllOnesValue();
84 case ICmpInst::ICMP_SGT
: // True if LHS s> -1
86 return RHS
.isAllOnesValue();
87 case ICmpInst::ICMP_UGT
:
88 // True if LHS u> RHS and RHS == high-bit-mask - 1
90 return RHS
.isMaxSignedValue();
91 case ICmpInst::ICMP_UGE
:
92 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
94 return RHS
.isSignMask();
100 /// Returns true if the exploded icmp can be expressed as a signed comparison
101 /// to zero and updates the predicate accordingly.
102 /// The signedness of the comparison is preserved.
103 /// TODO: Refactor with decomposeBitTestICmp()?
104 static bool isSignTest(ICmpInst::Predicate
&Pred
, const APInt
&C
) {
105 if (!ICmpInst::isSigned(Pred
))
109 return ICmpInst::isRelational(Pred
);
111 if (C
.isOneValue()) {
112 if (Pred
== ICmpInst::ICMP_SLT
) {
113 Pred
= ICmpInst::ICMP_SLE
;
116 } else if (C
.isAllOnesValue()) {
117 if (Pred
== ICmpInst::ICMP_SGT
) {
118 Pred
= ICmpInst::ICMP_SGE
;
126 /// Given a signed integer type and a set of known zero and one bits, compute
127 /// the maximum and minimum values that could have the specified known zero and
128 /// known one bits, returning them in Min/Max.
129 /// TODO: Move to method on KnownBits struct?
130 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits
&Known
,
131 APInt
&Min
, APInt
&Max
) {
132 assert(Known
.getBitWidth() == Min
.getBitWidth() &&
133 Known
.getBitWidth() == Max
.getBitWidth() &&
134 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
135 APInt UnknownBits
= ~(Known
.Zero
|Known
.One
);
137 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
138 // bit if it is unknown.
140 Max
= Known
.One
|UnknownBits
;
142 if (UnknownBits
.isNegative()) { // Sign bit is unknown
148 /// Given an unsigned integer type and a set of known zero and one bits, compute
149 /// the maximum and minimum values that could have the specified known zero and
150 /// known one bits, returning them in Min/Max.
151 /// TODO: Move to method on KnownBits struct?
152 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits
&Known
,
153 APInt
&Min
, APInt
&Max
) {
154 assert(Known
.getBitWidth() == Min
.getBitWidth() &&
155 Known
.getBitWidth() == Max
.getBitWidth() &&
156 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
157 APInt UnknownBits
= ~(Known
.Zero
|Known
.One
);
159 // The minimum value is when the unknown bits are all zeros.
161 // The maximum value is when the unknown bits are all ones.
162 Max
= Known
.One
|UnknownBits
;
165 /// This is called when we see this pattern:
166 /// cmp pred (load (gep GV, ...)), cmpcst
167 /// where GV is a global variable with a constant initializer. Try to simplify
168 /// this into some simple computation that does not need the load. For example
169 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
171 /// If AndCst is non-null, then the loaded value is masked with that constant
172 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
173 Instruction
*InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst
*GEP
,
176 ConstantInt
*AndCst
) {
177 Constant
*Init
= GV
->getInitializer();
178 if (!isa
<ConstantArray
>(Init
) && !isa
<ConstantDataArray
>(Init
))
181 uint64_t ArrayElementCount
= Init
->getType()->getArrayNumElements();
182 // Don't blow up on huge arrays.
183 if (ArrayElementCount
> MaxArraySizeForCombine
)
186 // There are many forms of this optimization we can handle, for now, just do
187 // the simple index into a single-dimensional array.
189 // Require: GEP GV, 0, i {{, constant indices}}
190 if (GEP
->getNumOperands() < 3 ||
191 !isa
<ConstantInt
>(GEP
->getOperand(1)) ||
192 !cast
<ConstantInt
>(GEP
->getOperand(1))->isZero() ||
193 isa
<Constant
>(GEP
->getOperand(2)))
196 // Check that indices after the variable are constants and in-range for the
197 // type they index. Collect the indices. This is typically for arrays of
199 SmallVector
<unsigned, 4> LaterIndices
;
201 Type
*EltTy
= Init
->getType()->getArrayElementType();
202 for (unsigned i
= 3, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
203 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
204 if (!Idx
) return nullptr; // Variable index.
206 uint64_t IdxVal
= Idx
->getZExtValue();
207 if ((unsigned)IdxVal
!= IdxVal
) return nullptr; // Too large array index.
209 if (StructType
*STy
= dyn_cast
<StructType
>(EltTy
))
210 EltTy
= STy
->getElementType(IdxVal
);
211 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(EltTy
)) {
212 if (IdxVal
>= ATy
->getNumElements()) return nullptr;
213 EltTy
= ATy
->getElementType();
215 return nullptr; // Unknown type.
218 LaterIndices
.push_back(IdxVal
);
221 enum { Overdefined
= -3, Undefined
= -2 };
223 // Variables for our state machines.
225 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
226 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
227 // and 87 is the second (and last) index. FirstTrueElement is -2 when
228 // undefined, otherwise set to the first true element. SecondTrueElement is
229 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
230 int FirstTrueElement
= Undefined
, SecondTrueElement
= Undefined
;
232 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
233 // form "i != 47 & i != 87". Same state transitions as for true elements.
234 int FirstFalseElement
= Undefined
, SecondFalseElement
= Undefined
;
236 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
237 /// define a state machine that triggers for ranges of values that the index
238 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
239 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
240 /// index in the range (inclusive). We use -2 for undefined here because we
241 /// use relative comparisons and don't want 0-1 to match -1.
242 int TrueRangeEnd
= Undefined
, FalseRangeEnd
= Undefined
;
244 // MagicBitvector - This is a magic bitvector where we set a bit if the
245 // comparison is true for element 'i'. If there are 64 elements or less in
246 // the array, this will fully represent all the comparison results.
247 uint64_t MagicBitvector
= 0;
249 // Scan the array and see if one of our patterns matches.
250 Constant
*CompareRHS
= cast
<Constant
>(ICI
.getOperand(1));
251 for (unsigned i
= 0, e
= ArrayElementCount
; i
!= e
; ++i
) {
252 Constant
*Elt
= Init
->getAggregateElement(i
);
253 if (!Elt
) return nullptr;
255 // If this is indexing an array of structures, get the structure element.
256 if (!LaterIndices
.empty())
257 Elt
= ConstantExpr::getExtractValue(Elt
, LaterIndices
);
259 // If the element is masked, handle it.
260 if (AndCst
) Elt
= ConstantExpr::getAnd(Elt
, AndCst
);
262 // Find out if the comparison would be true or false for the i'th element.
263 Constant
*C
= ConstantFoldCompareInstOperands(ICI
.getPredicate(), Elt
,
264 CompareRHS
, DL
, &TLI
);
265 // If the result is undef for this element, ignore it.
266 if (isa
<UndefValue
>(C
)) {
267 // Extend range state machines to cover this element in case there is an
268 // undef in the middle of the range.
269 if (TrueRangeEnd
== (int)i
-1)
271 if (FalseRangeEnd
== (int)i
-1)
276 // If we can't compute the result for any of the elements, we have to give
277 // up evaluating the entire conditional.
278 if (!isa
<ConstantInt
>(C
)) return nullptr;
280 // Otherwise, we know if the comparison is true or false for this element,
281 // update our state machines.
282 bool IsTrueForElt
= !cast
<ConstantInt
>(C
)->isZero();
284 // State machine for single/double/range index comparison.
286 // Update the TrueElement state machine.
287 if (FirstTrueElement
== Undefined
)
288 FirstTrueElement
= TrueRangeEnd
= i
; // First true element.
290 // Update double-compare state machine.
291 if (SecondTrueElement
== Undefined
)
292 SecondTrueElement
= i
;
294 SecondTrueElement
= Overdefined
;
296 // Update range state machine.
297 if (TrueRangeEnd
== (int)i
-1)
300 TrueRangeEnd
= Overdefined
;
303 // Update the FalseElement state machine.
304 if (FirstFalseElement
== Undefined
)
305 FirstFalseElement
= FalseRangeEnd
= i
; // First false element.
307 // Update double-compare state machine.
308 if (SecondFalseElement
== Undefined
)
309 SecondFalseElement
= i
;
311 SecondFalseElement
= Overdefined
;
313 // Update range state machine.
314 if (FalseRangeEnd
== (int)i
-1)
317 FalseRangeEnd
= Overdefined
;
321 // If this element is in range, update our magic bitvector.
322 if (i
< 64 && IsTrueForElt
)
323 MagicBitvector
|= 1ULL << i
;
325 // If all of our states become overdefined, bail out early. Since the
326 // predicate is expensive, only check it every 8 elements. This is only
327 // really useful for really huge arrays.
328 if ((i
& 8) == 0 && i
>= 64 && SecondTrueElement
== Overdefined
&&
329 SecondFalseElement
== Overdefined
&& TrueRangeEnd
== Overdefined
&&
330 FalseRangeEnd
== Overdefined
)
334 // Now that we've scanned the entire array, emit our new comparison(s). We
335 // order the state machines in complexity of the generated code.
336 Value
*Idx
= GEP
->getOperand(2);
338 // If the index is larger than the pointer size of the target, truncate the
339 // index down like the GEP would do implicitly. We don't have to do this for
340 // an inbounds GEP because the index can't be out of range.
341 if (!GEP
->isInBounds()) {
342 Type
*IntPtrTy
= DL
.getIntPtrType(GEP
->getType());
343 unsigned PtrSize
= IntPtrTy
->getIntegerBitWidth();
344 if (Idx
->getType()->getPrimitiveSizeInBits() > PtrSize
)
345 Idx
= Builder
.CreateTrunc(Idx
, IntPtrTy
);
348 // If the comparison is only true for one or two elements, emit direct
350 if (SecondTrueElement
!= Overdefined
) {
351 // None true -> false.
352 if (FirstTrueElement
== Undefined
)
353 return replaceInstUsesWith(ICI
, Builder
.getFalse());
355 Value
*FirstTrueIdx
= ConstantInt::get(Idx
->getType(), FirstTrueElement
);
357 // True for one element -> 'i == 47'.
358 if (SecondTrueElement
== Undefined
)
359 return new ICmpInst(ICmpInst::ICMP_EQ
, Idx
, FirstTrueIdx
);
361 // True for two elements -> 'i == 47 | i == 72'.
362 Value
*C1
= Builder
.CreateICmpEQ(Idx
, FirstTrueIdx
);
363 Value
*SecondTrueIdx
= ConstantInt::get(Idx
->getType(), SecondTrueElement
);
364 Value
*C2
= Builder
.CreateICmpEQ(Idx
, SecondTrueIdx
);
365 return BinaryOperator::CreateOr(C1
, C2
);
368 // If the comparison is only false for one or two elements, emit direct
370 if (SecondFalseElement
!= Overdefined
) {
371 // None false -> true.
372 if (FirstFalseElement
== Undefined
)
373 return replaceInstUsesWith(ICI
, Builder
.getTrue());
375 Value
*FirstFalseIdx
= ConstantInt::get(Idx
->getType(), FirstFalseElement
);
377 // False for one element -> 'i != 47'.
378 if (SecondFalseElement
== Undefined
)
379 return new ICmpInst(ICmpInst::ICMP_NE
, Idx
, FirstFalseIdx
);
381 // False for two elements -> 'i != 47 & i != 72'.
382 Value
*C1
= Builder
.CreateICmpNE(Idx
, FirstFalseIdx
);
383 Value
*SecondFalseIdx
= ConstantInt::get(Idx
->getType(),SecondFalseElement
);
384 Value
*C2
= Builder
.CreateICmpNE(Idx
, SecondFalseIdx
);
385 return BinaryOperator::CreateAnd(C1
, C2
);
388 // If the comparison can be replaced with a range comparison for the elements
389 // where it is true, emit the range check.
390 if (TrueRangeEnd
!= Overdefined
) {
391 assert(TrueRangeEnd
!= FirstTrueElement
&& "Should emit single compare");
393 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
394 if (FirstTrueElement
) {
395 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstTrueElement
);
396 Idx
= Builder
.CreateAdd(Idx
, Offs
);
399 Value
*End
= ConstantInt::get(Idx
->getType(),
400 TrueRangeEnd
-FirstTrueElement
+1);
401 return new ICmpInst(ICmpInst::ICMP_ULT
, Idx
, End
);
404 // False range check.
405 if (FalseRangeEnd
!= Overdefined
) {
406 assert(FalseRangeEnd
!= FirstFalseElement
&& "Should emit single compare");
407 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
408 if (FirstFalseElement
) {
409 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstFalseElement
);
410 Idx
= Builder
.CreateAdd(Idx
, Offs
);
413 Value
*End
= ConstantInt::get(Idx
->getType(),
414 FalseRangeEnd
-FirstFalseElement
);
415 return new ICmpInst(ICmpInst::ICMP_UGT
, Idx
, End
);
418 // If a magic bitvector captures the entire comparison state
419 // of this load, replace it with computation that does:
420 // ((magic_cst >> i) & 1) != 0
424 // Look for an appropriate type:
425 // - The type of Idx if the magic fits
426 // - The smallest fitting legal type
427 if (ArrayElementCount
<= Idx
->getType()->getIntegerBitWidth())
430 Ty
= DL
.getSmallestLegalIntType(Init
->getContext(), ArrayElementCount
);
433 Value
*V
= Builder
.CreateIntCast(Idx
, Ty
, false);
434 V
= Builder
.CreateLShr(ConstantInt::get(Ty
, MagicBitvector
), V
);
435 V
= Builder
.CreateAnd(ConstantInt::get(Ty
, 1), V
);
436 return new ICmpInst(ICmpInst::ICMP_NE
, V
, ConstantInt::get(Ty
, 0));
443 /// Return a value that can be used to compare the *offset* implied by a GEP to
444 /// zero. For example, if we have &A[i], we want to return 'i' for
445 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
446 /// are involved. The above expression would also be legal to codegen as
447 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
448 /// This latter form is less amenable to optimization though, and we are allowed
449 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
451 /// If we can't emit an optimized form for this expression, this returns null.
453 static Value
*evaluateGEPOffsetExpression(User
*GEP
, InstCombiner
&IC
,
454 const DataLayout
&DL
) {
455 gep_type_iterator GTI
= gep_type_begin(GEP
);
457 // Check to see if this gep only has a single variable index. If so, and if
458 // any constant indices are a multiple of its scale, then we can compute this
459 // in terms of the scale of the variable index. For example, if the GEP
460 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
461 // because the expression will cross zero at the same point.
462 unsigned i
, e
= GEP
->getNumOperands();
464 for (i
= 1; i
!= e
; ++i
, ++GTI
) {
465 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
466 // Compute the aggregate offset of constant indices.
467 if (CI
->isZero()) continue;
469 // Handle a struct index, which adds its field offset to the pointer.
470 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
471 Offset
+= DL
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
473 uint64_t Size
= DL
.getTypeAllocSize(GTI
.getIndexedType());
474 Offset
+= Size
*CI
->getSExtValue();
477 // Found our variable index.
482 // If there are no variable indices, we must have a constant offset, just
483 // evaluate it the general way.
484 if (i
== e
) return nullptr;
486 Value
*VariableIdx
= GEP
->getOperand(i
);
487 // Determine the scale factor of the variable element. For example, this is
488 // 4 if the variable index is into an array of i32.
489 uint64_t VariableScale
= DL
.getTypeAllocSize(GTI
.getIndexedType());
491 // Verify that there are no other variable indices. If so, emit the hard way.
492 for (++i
, ++GTI
; i
!= e
; ++i
, ++GTI
) {
493 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
494 if (!CI
) return nullptr;
496 // Compute the aggregate offset of constant indices.
497 if (CI
->isZero()) continue;
499 // Handle a struct index, which adds its field offset to the pointer.
500 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
501 Offset
+= DL
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
503 uint64_t Size
= DL
.getTypeAllocSize(GTI
.getIndexedType());
504 Offset
+= Size
*CI
->getSExtValue();
508 // Okay, we know we have a single variable index, which must be a
509 // pointer/array/vector index. If there is no offset, life is simple, return
511 Type
*IntPtrTy
= DL
.getIntPtrType(GEP
->getOperand(0)->getType());
512 unsigned IntPtrWidth
= IntPtrTy
->getIntegerBitWidth();
514 // Cast to intptrty in case a truncation occurs. If an extension is needed,
515 // we don't need to bother extending: the extension won't affect where the
516 // computation crosses zero.
517 if (VariableIdx
->getType()->getPrimitiveSizeInBits() > IntPtrWidth
) {
518 VariableIdx
= IC
.Builder
.CreateTrunc(VariableIdx
, IntPtrTy
);
523 // Otherwise, there is an index. The computation we will do will be modulo
525 Offset
= SignExtend64(Offset
, IntPtrWidth
);
526 VariableScale
= SignExtend64(VariableScale
, IntPtrWidth
);
528 // To do this transformation, any constant index must be a multiple of the
529 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
530 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
531 // multiple of the variable scale.
532 int64_t NewOffs
= Offset
/ (int64_t)VariableScale
;
533 if (Offset
!= NewOffs
*(int64_t)VariableScale
)
536 // Okay, we can do this evaluation. Start by converting the index to intptr.
537 if (VariableIdx
->getType() != IntPtrTy
)
538 VariableIdx
= IC
.Builder
.CreateIntCast(VariableIdx
, IntPtrTy
,
540 Constant
*OffsetVal
= ConstantInt::get(IntPtrTy
, NewOffs
);
541 return IC
.Builder
.CreateAdd(VariableIdx
, OffsetVal
, "offset");
544 /// Returns true if we can rewrite Start as a GEP with pointer Base
545 /// and some integer offset. The nodes that need to be re-written
546 /// for this transformation will be added to Explored.
547 static bool canRewriteGEPAsOffset(Value
*Start
, Value
*Base
,
548 const DataLayout
&DL
,
549 SetVector
<Value
*> &Explored
) {
550 SmallVector
<Value
*, 16> WorkList(1, Start
);
551 Explored
.insert(Base
);
553 // The following traversal gives us an order which can be used
554 // when doing the final transformation. Since in the final
555 // transformation we create the PHI replacement instructions first,
556 // we don't have to get them in any particular order.
558 // However, for other instructions we will have to traverse the
559 // operands of an instruction first, which means that we have to
560 // do a post-order traversal.
561 while (!WorkList
.empty()) {
562 SetVector
<PHINode
*> PHIs
;
564 while (!WorkList
.empty()) {
565 if (Explored
.size() >= 100)
568 Value
*V
= WorkList
.back();
570 if (Explored
.count(V
) != 0) {
575 if (!isa
<IntToPtrInst
>(V
) && !isa
<PtrToIntInst
>(V
) &&
576 !isa
<GetElementPtrInst
>(V
) && !isa
<PHINode
>(V
))
577 // We've found some value that we can't explore which is different from
578 // the base. Therefore we can't do this transformation.
581 if (isa
<IntToPtrInst
>(V
) || isa
<PtrToIntInst
>(V
)) {
582 auto *CI
= dyn_cast
<CastInst
>(V
);
583 if (!CI
->isNoopCast(DL
))
586 if (Explored
.count(CI
->getOperand(0)) == 0)
587 WorkList
.push_back(CI
->getOperand(0));
590 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
591 // We're limiting the GEP to having one index. This will preserve
592 // the original pointer type. We could handle more cases in the
594 if (GEP
->getNumIndices() != 1 || !GEP
->isInBounds() ||
595 GEP
->getType() != Start
->getType())
598 if (Explored
.count(GEP
->getOperand(0)) == 0)
599 WorkList
.push_back(GEP
->getOperand(0));
602 if (WorkList
.back() == V
) {
604 // We've finished visiting this node, mark it as such.
608 if (auto *PN
= dyn_cast
<PHINode
>(V
)) {
609 // We cannot transform PHIs on unsplittable basic blocks.
610 if (isa
<CatchSwitchInst
>(PN
->getParent()->getTerminator()))
617 // Explore the PHI nodes further.
618 for (auto *PN
: PHIs
)
619 for (Value
*Op
: PN
->incoming_values())
620 if (Explored
.count(Op
) == 0)
621 WorkList
.push_back(Op
);
624 // Make sure that we can do this. Since we can't insert GEPs in a basic
625 // block before a PHI node, we can't easily do this transformation if
626 // we have PHI node users of transformed instructions.
627 for (Value
*Val
: Explored
) {
628 for (Value
*Use
: Val
->uses()) {
630 auto *PHI
= dyn_cast
<PHINode
>(Use
);
631 auto *Inst
= dyn_cast
<Instruction
>(Val
);
633 if (Inst
== Base
|| Inst
== PHI
|| !Inst
|| !PHI
||
634 Explored
.count(PHI
) == 0)
637 if (PHI
->getParent() == Inst
->getParent())
644 // Sets the appropriate insert point on Builder where we can add
645 // a replacement Instruction for V (if that is possible).
646 static void setInsertionPoint(IRBuilder
<> &Builder
, Value
*V
,
647 bool Before
= true) {
648 if (auto *PHI
= dyn_cast
<PHINode
>(V
)) {
649 Builder
.SetInsertPoint(&*PHI
->getParent()->getFirstInsertionPt());
652 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
654 I
= &*std::next(I
->getIterator());
655 Builder
.SetInsertPoint(I
);
658 if (auto *A
= dyn_cast
<Argument
>(V
)) {
659 // Set the insertion point in the entry block.
660 BasicBlock
&Entry
= A
->getParent()->getEntryBlock();
661 Builder
.SetInsertPoint(&*Entry
.getFirstInsertionPt());
664 // Otherwise, this is a constant and we don't need to set a new
666 assert(isa
<Constant
>(V
) && "Setting insertion point for unknown value!");
669 /// Returns a re-written value of Start as an indexed GEP using Base as a
671 static Value
*rewriteGEPAsOffset(Value
*Start
, Value
*Base
,
672 const DataLayout
&DL
,
673 SetVector
<Value
*> &Explored
) {
674 // Perform all the substitutions. This is a bit tricky because we can
675 // have cycles in our use-def chains.
676 // 1. Create the PHI nodes without any incoming values.
677 // 2. Create all the other values.
678 // 3. Add the edges for the PHI nodes.
679 // 4. Emit GEPs to get the original pointers.
680 // 5. Remove the original instructions.
681 Type
*IndexType
= IntegerType::get(
682 Base
->getContext(), DL
.getIndexTypeSizeInBits(Start
->getType()));
684 DenseMap
<Value
*, Value
*> NewInsts
;
685 NewInsts
[Base
] = ConstantInt::getNullValue(IndexType
);
687 // Create the new PHI nodes, without adding any incoming values.
688 for (Value
*Val
: Explored
) {
691 // Create empty phi nodes. This avoids cyclic dependencies when creating
692 // the remaining instructions.
693 if (auto *PHI
= dyn_cast
<PHINode
>(Val
))
694 NewInsts
[PHI
] = PHINode::Create(IndexType
, PHI
->getNumIncomingValues(),
695 PHI
->getName() + ".idx", PHI
);
697 IRBuilder
<> Builder(Base
->getContext());
699 // Create all the other instructions.
700 for (Value
*Val
: Explored
) {
702 if (NewInsts
.find(Val
) != NewInsts
.end())
705 if (auto *CI
= dyn_cast
<CastInst
>(Val
)) {
706 // Don't get rid of the intermediate variable here; the store can grow
707 // the map which will invalidate the reference to the input value.
708 Value
*V
= NewInsts
[CI
->getOperand(0)];
712 if (auto *GEP
= dyn_cast
<GEPOperator
>(Val
)) {
713 Value
*Index
= NewInsts
[GEP
->getOperand(1)] ? NewInsts
[GEP
->getOperand(1)]
714 : GEP
->getOperand(1);
715 setInsertionPoint(Builder
, GEP
);
716 // Indices might need to be sign extended. GEPs will magically do
717 // this, but we need to do it ourselves here.
718 if (Index
->getType()->getScalarSizeInBits() !=
719 NewInsts
[GEP
->getOperand(0)]->getType()->getScalarSizeInBits()) {
720 Index
= Builder
.CreateSExtOrTrunc(
721 Index
, NewInsts
[GEP
->getOperand(0)]->getType(),
722 GEP
->getOperand(0)->getName() + ".sext");
725 auto *Op
= NewInsts
[GEP
->getOperand(0)];
726 if (isa
<ConstantInt
>(Op
) && cast
<ConstantInt
>(Op
)->isZero())
727 NewInsts
[GEP
] = Index
;
729 NewInsts
[GEP
] = Builder
.CreateNSWAdd(
730 Op
, Index
, GEP
->getOperand(0)->getName() + ".add");
733 if (isa
<PHINode
>(Val
))
736 llvm_unreachable("Unexpected instruction type");
739 // Add the incoming values to the PHI nodes.
740 for (Value
*Val
: Explored
) {
743 // All the instructions have been created, we can now add edges to the
745 if (auto *PHI
= dyn_cast
<PHINode
>(Val
)) {
746 PHINode
*NewPhi
= static_cast<PHINode
*>(NewInsts
[PHI
]);
747 for (unsigned I
= 0, E
= PHI
->getNumIncomingValues(); I
< E
; ++I
) {
748 Value
*NewIncoming
= PHI
->getIncomingValue(I
);
750 if (NewInsts
.find(NewIncoming
) != NewInsts
.end())
751 NewIncoming
= NewInsts
[NewIncoming
];
753 NewPhi
->addIncoming(NewIncoming
, PHI
->getIncomingBlock(I
));
758 for (Value
*Val
: Explored
) {
762 // Depending on the type, for external users we have to emit
763 // a GEP or a GEP + ptrtoint.
764 setInsertionPoint(Builder
, Val
, false);
766 // If required, create an inttoptr instruction for Base.
767 Value
*NewBase
= Base
;
768 if (!Base
->getType()->isPointerTy())
769 NewBase
= Builder
.CreateBitOrPointerCast(Base
, Start
->getType(),
770 Start
->getName() + "to.ptr");
772 Value
*GEP
= Builder
.CreateInBoundsGEP(
773 Start
->getType()->getPointerElementType(), NewBase
,
774 makeArrayRef(NewInsts
[Val
]), Val
->getName() + ".ptr");
776 if (!Val
->getType()->isPointerTy()) {
777 Value
*Cast
= Builder
.CreatePointerCast(GEP
, Val
->getType(),
778 Val
->getName() + ".conv");
781 Val
->replaceAllUsesWith(GEP
);
784 return NewInsts
[Start
];
787 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
788 /// the input Value as a constant indexed GEP. Returns a pair containing
789 /// the GEPs Pointer and Index.
790 static std::pair
<Value
*, Value
*>
791 getAsConstantIndexedAddress(Value
*V
, const DataLayout
&DL
) {
792 Type
*IndexType
= IntegerType::get(V
->getContext(),
793 DL
.getIndexTypeSizeInBits(V
->getType()));
795 Constant
*Index
= ConstantInt::getNullValue(IndexType
);
797 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
798 // We accept only inbouds GEPs here to exclude the possibility of
800 if (!GEP
->isInBounds())
802 if (GEP
->hasAllConstantIndices() && GEP
->getNumIndices() == 1 &&
803 GEP
->getType() == V
->getType()) {
804 V
= GEP
->getOperand(0);
805 Constant
*GEPIndex
= static_cast<Constant
*>(GEP
->getOperand(1));
806 Index
= ConstantExpr::getAdd(
807 Index
, ConstantExpr::getSExtOrBitCast(GEPIndex
, IndexType
));
812 if (auto *CI
= dyn_cast
<IntToPtrInst
>(V
)) {
813 if (!CI
->isNoopCast(DL
))
815 V
= CI
->getOperand(0);
818 if (auto *CI
= dyn_cast
<PtrToIntInst
>(V
)) {
819 if (!CI
->isNoopCast(DL
))
821 V
= CI
->getOperand(0);
829 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
830 /// We can look through PHIs, GEPs and casts in order to determine a common base
831 /// between GEPLHS and RHS.
832 static Instruction
*transformToIndexedCompare(GEPOperator
*GEPLHS
, Value
*RHS
,
833 ICmpInst::Predicate Cond
,
834 const DataLayout
&DL
) {
835 // FIXME: Support vector of pointers.
836 if (GEPLHS
->getType()->isVectorTy())
839 if (!GEPLHS
->hasAllConstantIndices())
842 // Make sure the pointers have the same type.
843 if (GEPLHS
->getType() != RHS
->getType())
846 Value
*PtrBase
, *Index
;
847 std::tie(PtrBase
, Index
) = getAsConstantIndexedAddress(GEPLHS
, DL
);
849 // The set of nodes that will take part in this transformation.
850 SetVector
<Value
*> Nodes
;
852 if (!canRewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
))
855 // We know we can re-write this as
856 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
857 // Since we've only looked through inbouds GEPs we know that we
858 // can't have overflow on either side. We can therefore re-write
860 // OFFSET1 cmp OFFSET2
861 Value
*NewRHS
= rewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
);
863 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
864 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
865 // offset. Since Index is the offset of LHS to the base pointer, we will now
866 // compare the offsets instead of comparing the pointers.
867 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Index
, NewRHS
);
870 /// Fold comparisons between a GEP instruction and something else. At this point
871 /// we know that the GEP is on the LHS of the comparison.
872 Instruction
*InstCombiner::foldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
873 ICmpInst::Predicate Cond
,
875 // Don't transform signed compares of GEPs into index compares. Even if the
876 // GEP is inbounds, the final add of the base pointer can have signed overflow
877 // and would change the result of the icmp.
878 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
879 // the maximum signed value for the pointer type.
880 if (ICmpInst::isSigned(Cond
))
883 // Look through bitcasts and addrspacecasts. We do not however want to remove
885 if (!isa
<GetElementPtrInst
>(RHS
))
886 RHS
= RHS
->stripPointerCasts();
888 Value
*PtrBase
= GEPLHS
->getOperand(0);
889 // FIXME: Support vector pointer GEPs.
890 if (PtrBase
== RHS
&& GEPLHS
->isInBounds() &&
891 !GEPLHS
->getType()->isVectorTy()) {
892 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
893 // This transformation (ignoring the base and scales) is valid because we
894 // know pointers can't overflow since the gep is inbounds. See if we can
895 // output an optimized form.
896 Value
*Offset
= evaluateGEPOffsetExpression(GEPLHS
, *this, DL
);
898 // If not, synthesize the offset the hard way.
900 Offset
= EmitGEPOffset(GEPLHS
);
901 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Offset
,
902 Constant::getNullValue(Offset
->getType()));
905 if (GEPLHS
->isInBounds() && ICmpInst::isEquality(Cond
) &&
906 isa
<Constant
>(RHS
) && cast
<Constant
>(RHS
)->isNullValue() &&
907 !NullPointerIsDefined(I
.getFunction(),
908 RHS
->getType()->getPointerAddressSpace())) {
909 // For most address spaces, an allocation can't be placed at null, but null
910 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
911 // the only valid inbounds address derived from null, is null itself.
912 // Thus, we have four cases to consider:
913 // 1) Base == nullptr, Offset == 0 -> inbounds, null
914 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
915 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
916 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
918 // (Note if we're indexing a type of size 0, that simply collapses into one
919 // of the buckets above.)
921 // In general, we're allowed to make values less poison (i.e. remove
922 // sources of full UB), so in this case, we just select between the two
923 // non-poison cases (1 and 4 above).
925 // For vectors, we apply the same reasoning on a per-lane basis.
926 auto *Base
= GEPLHS
->getPointerOperand();
927 if (GEPLHS
->getType()->isVectorTy() && Base
->getType()->isPointerTy()) {
928 int NumElts
= GEPLHS
->getType()->getVectorNumElements();
929 Base
= Builder
.CreateVectorSplat(NumElts
, Base
);
931 return new ICmpInst(Cond
, Base
,
932 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
933 cast
<Constant
>(RHS
), Base
->getType()));
934 } else if (GEPOperator
*GEPRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
935 // If the base pointers are different, but the indices are the same, just
936 // compare the base pointer.
937 if (PtrBase
!= GEPRHS
->getOperand(0)) {
938 bool IndicesTheSame
= GEPLHS
->getNumOperands()==GEPRHS
->getNumOperands();
939 IndicesTheSame
&= GEPLHS
->getOperand(0)->getType() ==
940 GEPRHS
->getOperand(0)->getType();
942 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
943 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
944 IndicesTheSame
= false;
948 // If all indices are the same, just compare the base pointers.
949 Type
*BaseType
= GEPLHS
->getOperand(0)->getType();
950 if (IndicesTheSame
&& CmpInst::makeCmpResultType(BaseType
) == I
.getType())
951 return new ICmpInst(Cond
, GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
953 // If we're comparing GEPs with two base pointers that only differ in type
954 // and both GEPs have only constant indices or just one use, then fold
955 // the compare with the adjusted indices.
956 // FIXME: Support vector of pointers.
957 if (GEPLHS
->isInBounds() && GEPRHS
->isInBounds() &&
958 (GEPLHS
->hasAllConstantIndices() || GEPLHS
->hasOneUse()) &&
959 (GEPRHS
->hasAllConstantIndices() || GEPRHS
->hasOneUse()) &&
960 PtrBase
->stripPointerCasts() ==
961 GEPRHS
->getOperand(0)->stripPointerCasts() &&
962 !GEPLHS
->getType()->isVectorTy()) {
963 Value
*LOffset
= EmitGEPOffset(GEPLHS
);
964 Value
*ROffset
= EmitGEPOffset(GEPRHS
);
966 // If we looked through an addrspacecast between different sized address
967 // spaces, the LHS and RHS pointers are different sized
968 // integers. Truncate to the smaller one.
969 Type
*LHSIndexTy
= LOffset
->getType();
970 Type
*RHSIndexTy
= ROffset
->getType();
971 if (LHSIndexTy
!= RHSIndexTy
) {
972 if (LHSIndexTy
->getPrimitiveSizeInBits() <
973 RHSIndexTy
->getPrimitiveSizeInBits()) {
974 ROffset
= Builder
.CreateTrunc(ROffset
, LHSIndexTy
);
976 LOffset
= Builder
.CreateTrunc(LOffset
, RHSIndexTy
);
979 Value
*Cmp
= Builder
.CreateICmp(ICmpInst::getSignedPredicate(Cond
),
981 return replaceInstUsesWith(I
, Cmp
);
984 // Otherwise, the base pointers are different and the indices are
985 // different. Try convert this to an indexed compare by looking through
987 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
);
990 // If one of the GEPs has all zero indices, recurse.
991 // FIXME: Handle vector of pointers.
992 if (!GEPLHS
->getType()->isVectorTy() && GEPLHS
->hasAllZeroIndices())
993 return foldGEPICmp(GEPRHS
, GEPLHS
->getOperand(0),
994 ICmpInst::getSwappedPredicate(Cond
), I
);
996 // If the other GEP has all zero indices, recurse.
997 // FIXME: Handle vector of pointers.
998 if (!GEPRHS
->getType()->isVectorTy() && GEPRHS
->hasAllZeroIndices())
999 return foldGEPICmp(GEPLHS
, GEPRHS
->getOperand(0), Cond
, I
);
1001 bool GEPsInBounds
= GEPLHS
->isInBounds() && GEPRHS
->isInBounds();
1002 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands()) {
1003 // If the GEPs only differ by one index, compare it.
1004 unsigned NumDifferences
= 0; // Keep track of # differences.
1005 unsigned DiffOperand
= 0; // The operand that differs.
1006 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
1007 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
1008 Type
*LHSType
= GEPLHS
->getOperand(i
)->getType();
1009 Type
*RHSType
= GEPRHS
->getOperand(i
)->getType();
1010 // FIXME: Better support for vector of pointers.
1011 if (LHSType
->getPrimitiveSizeInBits() !=
1012 RHSType
->getPrimitiveSizeInBits() ||
1013 (GEPLHS
->getType()->isVectorTy() &&
1014 (!LHSType
->isVectorTy() || !RHSType
->isVectorTy()))) {
1015 // Irreconcilable differences.
1020 if (NumDifferences
++) break;
1024 if (NumDifferences
== 0) // SAME GEP?
1025 return replaceInstUsesWith(I
, // No comparison is needed here.
1026 ConstantInt::get(I
.getType(), ICmpInst::isTrueWhenEqual(Cond
)));
1028 else if (NumDifferences
== 1 && GEPsInBounds
) {
1029 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
1030 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
1031 // Make sure we do a signed comparison here.
1032 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), LHSV
, RHSV
);
1036 // Only lower this if the icmp is the only user of the GEP or if we expect
1037 // the result to fold to a constant!
1038 if (GEPsInBounds
&& (isa
<ConstantExpr
>(GEPLHS
) || GEPLHS
->hasOneUse()) &&
1039 (isa
<ConstantExpr
>(GEPRHS
) || GEPRHS
->hasOneUse())) {
1040 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
1041 Value
*L
= EmitGEPOffset(GEPLHS
);
1042 Value
*R
= EmitGEPOffset(GEPRHS
);
1043 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), L
, R
);
1047 // Try convert this to an indexed compare by looking through PHIs/casts as a
1049 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
);
1052 Instruction
*InstCombiner::foldAllocaCmp(ICmpInst
&ICI
,
1053 const AllocaInst
*Alloca
,
1054 const Value
*Other
) {
1055 assert(ICI
.isEquality() && "Cannot fold non-equality comparison.");
1057 // It would be tempting to fold away comparisons between allocas and any
1058 // pointer not based on that alloca (e.g. an argument). However, even
1059 // though such pointers cannot alias, they can still compare equal.
1061 // But LLVM doesn't specify where allocas get their memory, so if the alloca
1062 // doesn't escape we can argue that it's impossible to guess its value, and we
1063 // can therefore act as if any such guesses are wrong.
1065 // The code below checks that the alloca doesn't escape, and that it's only
1066 // used in a comparison once (the current instruction). The
1067 // single-comparison-use condition ensures that we're trivially folding all
1068 // comparisons against the alloca consistently, and avoids the risk of
1069 // erroneously folding a comparison of the pointer with itself.
1071 unsigned MaxIter
= 32; // Break cycles and bound to constant-time.
1073 SmallVector
<const Use
*, 32> Worklist
;
1074 for (const Use
&U
: Alloca
->uses()) {
1075 if (Worklist
.size() >= MaxIter
)
1077 Worklist
.push_back(&U
);
1080 unsigned NumCmps
= 0;
1081 while (!Worklist
.empty()) {
1082 assert(Worklist
.size() <= MaxIter
);
1083 const Use
*U
= Worklist
.pop_back_val();
1084 const Value
*V
= U
->getUser();
1087 if (isa
<BitCastInst
>(V
) || isa
<GetElementPtrInst
>(V
) || isa
<PHINode
>(V
) ||
1088 isa
<SelectInst
>(V
)) {
1090 } else if (isa
<LoadInst
>(V
)) {
1091 // Loading from the pointer doesn't escape it.
1093 } else if (const auto *SI
= dyn_cast
<StoreInst
>(V
)) {
1094 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1095 if (SI
->getValueOperand() == U
->get())
1098 } else if (isa
<ICmpInst
>(V
)) {
1100 return nullptr; // Found more than one cmp.
1102 } else if (const auto *Intrin
= dyn_cast
<IntrinsicInst
>(V
)) {
1103 switch (Intrin
->getIntrinsicID()) {
1104 // These intrinsics don't escape or compare the pointer. Memset is safe
1105 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1106 // we don't allow stores, so src cannot point to V.
1107 case Intrinsic::lifetime_start
: case Intrinsic::lifetime_end
:
1108 case Intrinsic::memcpy
: case Intrinsic::memmove
: case Intrinsic::memset
:
1116 for (const Use
&U
: V
->uses()) {
1117 if (Worklist
.size() >= MaxIter
)
1119 Worklist
.push_back(&U
);
1123 Type
*CmpTy
= CmpInst::makeCmpResultType(Other
->getType());
1124 return replaceInstUsesWith(
1126 ConstantInt::get(CmpTy
, !CmpInst::isTrueWhenEqual(ICI
.getPredicate())));
1129 /// Fold "icmp pred (X+C), X".
1130 Instruction
*InstCombiner::foldICmpAddOpConst(Value
*X
, const APInt
&C
,
1131 ICmpInst::Predicate Pred
) {
1132 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1133 // so the values can never be equal. Similarly for all other "or equals"
1135 assert(!!C
&& "C should not be zero!");
1137 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1138 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1139 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1140 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
) {
1141 Constant
*R
= ConstantInt::get(X
->getType(),
1142 APInt::getMaxValue(C
.getBitWidth()) - C
);
1143 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, R
);
1146 // (X+1) >u X --> X <u (0-1) --> X != 255
1147 // (X+2) >u X --> X <u (0-2) --> X <u 254
1148 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1149 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
)
1150 return new ICmpInst(ICmpInst::ICMP_ULT
, X
,
1151 ConstantInt::get(X
->getType(), -C
));
1153 APInt SMax
= APInt::getSignedMaxValue(C
.getBitWidth());
1155 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1156 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1157 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1158 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1159 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1160 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1161 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
1162 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1163 ConstantInt::get(X
->getType(), SMax
- C
));
1165 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1166 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1167 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1168 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1169 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1170 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1172 assert(Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
);
1173 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1174 ConstantInt::get(X
->getType(), SMax
- (C
- 1)));
1177 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1178 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1179 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1180 Instruction
*InstCombiner::foldICmpShrConstConst(ICmpInst
&I
, Value
*A
,
1183 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1185 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1186 if (I
.getPredicate() == I
.ICMP_NE
)
1187 Pred
= CmpInst::getInversePredicate(Pred
);
1188 return new ICmpInst(Pred
, LHS
, RHS
);
1191 // Don't bother doing any work for cases which InstSimplify handles.
1192 if (AP2
.isNullValue())
1195 bool IsAShr
= isa
<AShrOperator
>(I
.getOperand(0));
1197 if (AP2
.isAllOnesValue())
1199 if (AP2
.isNegative() != AP1
.isNegative())
1206 // 'A' must be large enough to shift out the highest set bit.
1207 return getICmp(I
.ICMP_UGT
, A
,
1208 ConstantInt::get(A
->getType(), AP2
.logBase2()));
1211 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1214 if (IsAShr
&& AP1
.isNegative())
1215 Shift
= AP1
.countLeadingOnes() - AP2
.countLeadingOnes();
1217 Shift
= AP1
.countLeadingZeros() - AP2
.countLeadingZeros();
1220 if (IsAShr
&& AP1
== AP2
.ashr(Shift
)) {
1221 // There are multiple solutions if we are comparing against -1 and the LHS
1222 // of the ashr is not a power of two.
1223 if (AP1
.isAllOnesValue() && !AP2
.isPowerOf2())
1224 return getICmp(I
.ICMP_UGE
, A
, ConstantInt::get(A
->getType(), Shift
));
1225 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1226 } else if (AP1
== AP2
.lshr(Shift
)) {
1227 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1231 // Shifting const2 will never be equal to const1.
1232 // FIXME: This should always be handled by InstSimplify?
1233 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1234 return replaceInstUsesWith(I
, TorF
);
1237 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1238 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1239 Instruction
*InstCombiner::foldICmpShlConstConst(ICmpInst
&I
, Value
*A
,
1242 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1244 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1245 if (I
.getPredicate() == I
.ICMP_NE
)
1246 Pred
= CmpInst::getInversePredicate(Pred
);
1247 return new ICmpInst(Pred
, LHS
, RHS
);
1250 // Don't bother doing any work for cases which InstSimplify handles.
1251 if (AP2
.isNullValue())
1254 unsigned AP2TrailingZeros
= AP2
.countTrailingZeros();
1256 if (!AP1
&& AP2TrailingZeros
!= 0)
1259 ConstantInt::get(A
->getType(), AP2
.getBitWidth() - AP2TrailingZeros
));
1262 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1264 // Get the distance between the lowest bits that are set.
1265 int Shift
= AP1
.countTrailingZeros() - AP2TrailingZeros
;
1267 if (Shift
> 0 && AP2
.shl(Shift
) == AP1
)
1268 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1270 // Shifting const2 will never be equal to const1.
1271 // FIXME: This should always be handled by InstSimplify?
1272 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1273 return replaceInstUsesWith(I
, TorF
);
1276 /// The caller has matched a pattern of the form:
1277 /// I = icmp ugt (add (add A, B), CI2), CI1
1278 /// If this is of the form:
1280 /// if (sum+128 >u 255)
1281 /// Then replace it with llvm.sadd.with.overflow.i8.
1283 static Instruction
*processUGT_ADDCST_ADD(ICmpInst
&I
, Value
*A
, Value
*B
,
1284 ConstantInt
*CI2
, ConstantInt
*CI1
,
1286 // The transformation we're trying to do here is to transform this into an
1287 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1288 // with a narrower add, and discard the add-with-constant that is part of the
1289 // range check (if we can't eliminate it, this isn't profitable).
1291 // In order to eliminate the add-with-constant, the compare can be its only
1293 Instruction
*AddWithCst
= cast
<Instruction
>(I
.getOperand(0));
1294 if (!AddWithCst
->hasOneUse())
1297 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1298 if (!CI2
->getValue().isPowerOf2())
1300 unsigned NewWidth
= CI2
->getValue().countTrailingZeros();
1301 if (NewWidth
!= 7 && NewWidth
!= 15 && NewWidth
!= 31)
1304 // The width of the new add formed is 1 more than the bias.
1307 // Check to see that CI1 is an all-ones value with NewWidth bits.
1308 if (CI1
->getBitWidth() == NewWidth
||
1309 CI1
->getValue() != APInt::getLowBitsSet(CI1
->getBitWidth(), NewWidth
))
1312 // This is only really a signed overflow check if the inputs have been
1313 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1314 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1315 unsigned NeededSignBits
= CI1
->getBitWidth() - NewWidth
+ 1;
1316 if (IC
.ComputeNumSignBits(A
, 0, &I
) < NeededSignBits
||
1317 IC
.ComputeNumSignBits(B
, 0, &I
) < NeededSignBits
)
1320 // In order to replace the original add with a narrower
1321 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1322 // and truncates that discard the high bits of the add. Verify that this is
1324 Instruction
*OrigAdd
= cast
<Instruction
>(AddWithCst
->getOperand(0));
1325 for (User
*U
: OrigAdd
->users()) {
1326 if (U
== AddWithCst
)
1329 // Only accept truncates for now. We would really like a nice recursive
1330 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1331 // chain to see which bits of a value are actually demanded. If the
1332 // original add had another add which was then immediately truncated, we
1333 // could still do the transformation.
1334 TruncInst
*TI
= dyn_cast
<TruncInst
>(U
);
1335 if (!TI
|| TI
->getType()->getPrimitiveSizeInBits() > NewWidth
)
1339 // If the pattern matches, truncate the inputs to the narrower type and
1340 // use the sadd_with_overflow intrinsic to efficiently compute both the
1341 // result and the overflow bit.
1342 Type
*NewType
= IntegerType::get(OrigAdd
->getContext(), NewWidth
);
1343 Function
*F
= Intrinsic::getDeclaration(
1344 I
.getModule(), Intrinsic::sadd_with_overflow
, NewType
);
1346 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
1348 // Put the new code above the original add, in case there are any uses of the
1349 // add between the add and the compare.
1350 Builder
.SetInsertPoint(OrigAdd
);
1352 Value
*TruncA
= Builder
.CreateTrunc(A
, NewType
, A
->getName() + ".trunc");
1353 Value
*TruncB
= Builder
.CreateTrunc(B
, NewType
, B
->getName() + ".trunc");
1354 CallInst
*Call
= Builder
.CreateCall(F
, {TruncA
, TruncB
}, "sadd");
1355 Value
*Add
= Builder
.CreateExtractValue(Call
, 0, "sadd.result");
1356 Value
*ZExt
= Builder
.CreateZExt(Add
, OrigAdd
->getType());
1358 // The inner add was the result of the narrow add, zero extended to the
1359 // wider type. Replace it with the result computed by the intrinsic.
1360 IC
.replaceInstUsesWith(*OrigAdd
, ZExt
);
1362 // The original icmp gets replaced with the overflow value.
1363 return ExtractValueInst::Create(Call
, 1, "sadd.overflow");
1367 /// icmp eq/ne (urem/srem %x, %y), 0
1368 /// iff %y is a power-of-two, we can replace this with a bit test:
1369 /// icmp eq/ne (and %x, (add %y, -1)), 0
1370 Instruction
*InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst
&I
) {
1371 // This fold is only valid for equality predicates.
1372 if (!I
.isEquality())
1374 ICmpInst::Predicate Pred
;
1375 Value
*X
, *Y
, *Zero
;
1376 if (!match(&I
, m_ICmp(Pred
, m_OneUse(m_IRem(m_Value(X
), m_Value(Y
))),
1377 m_CombineAnd(m_Zero(), m_Value(Zero
)))))
1379 if (!isKnownToBeAPowerOfTwo(Y
, /*OrZero*/ true, 0, &I
))
1381 // This may increase instruction count, we don't enforce that Y is a constant.
1382 Value
*Mask
= Builder
.CreateAdd(Y
, Constant::getAllOnesValue(Y
->getType()));
1383 Value
*Masked
= Builder
.CreateAnd(X
, Mask
);
1384 return ICmpInst::Create(Instruction::ICmp
, Pred
, Masked
, Zero
);
1387 // Handle icmp pred X, 0
1388 Instruction
*InstCombiner::foldICmpWithZero(ICmpInst
&Cmp
) {
1389 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1390 if (!match(Cmp
.getOperand(1), m_Zero()))
1393 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1394 if (Pred
== ICmpInst::ICMP_SGT
) {
1396 SelectPatternResult SPR
= matchSelectPattern(Cmp
.getOperand(0), A
, B
);
1397 if (SPR
.Flavor
== SPF_SMIN
) {
1398 if (isKnownPositive(A
, DL
, 0, &AC
, &Cmp
, &DT
))
1399 return new ICmpInst(Pred
, B
, Cmp
.getOperand(1));
1400 if (isKnownPositive(B
, DL
, 0, &AC
, &Cmp
, &DT
))
1401 return new ICmpInst(Pred
, A
, Cmp
.getOperand(1));
1405 if (Instruction
*New
= foldIRemByPowerOfTwoToBitTest(Cmp
))
1409 // icmp eq/ne (urem %x, %y), 0
1410 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1413 if (match(Cmp
.getOperand(0), m_URem(m_Value(X
), m_Value(Y
))) &&
1414 ICmpInst::isEquality(Pred
)) {
1415 KnownBits XKnown
= computeKnownBits(X
, 0, &Cmp
);
1416 KnownBits YKnown
= computeKnownBits(Y
, 0, &Cmp
);
1417 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
1418 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1424 /// Fold icmp Pred X, C.
1425 /// TODO: This code structure does not make sense. The saturating add fold
1426 /// should be moved to some other helper and extended as noted below (it is also
1427 /// possible that code has been made unnecessary - do we canonicalize IR to
1428 /// overflow/saturating intrinsics or not?).
1429 Instruction
*InstCombiner::foldICmpWithConstant(ICmpInst
&Cmp
) {
1430 // Match the following pattern, which is a common idiom when writing
1431 // overflow-safe integer arithmetic functions. The source performs an addition
1432 // in wider type and explicitly checks for overflow using comparisons against
1433 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1435 // TODO: This could probably be generalized to handle other overflow-safe
1436 // operations if we worked out the formulas to compute the appropriate magic
1440 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1441 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1442 Value
*Op0
= Cmp
.getOperand(0), *Op1
= Cmp
.getOperand(1);
1444 ConstantInt
*CI
, *CI2
; // I = icmp ugt (add (add A, B), CI2), CI
1445 if (Pred
== ICmpInst::ICMP_UGT
&& match(Op1
, m_ConstantInt(CI
)) &&
1446 match(Op0
, m_Add(m_Add(m_Value(A
), m_Value(B
)), m_ConstantInt(CI2
))))
1447 if (Instruction
*Res
= processUGT_ADDCST_ADD(Cmp
, A
, B
, CI2
, CI
, *this))
1453 /// Canonicalize icmp instructions based on dominating conditions.
1454 Instruction
*InstCombiner::foldICmpWithDominatingICmp(ICmpInst
&Cmp
) {
1455 // This is a cheap/incomplete check for dominance - just match a single
1456 // predecessor with a conditional branch.
1457 BasicBlock
*CmpBB
= Cmp
.getParent();
1458 BasicBlock
*DomBB
= CmpBB
->getSinglePredecessor();
1463 BasicBlock
*TrueBB
, *FalseBB
;
1464 if (!match(DomBB
->getTerminator(), m_Br(m_Value(DomCond
), TrueBB
, FalseBB
)))
1467 assert((TrueBB
== CmpBB
|| FalseBB
== CmpBB
) &&
1468 "Predecessor block does not point to successor?");
1470 // The branch should get simplified. Don't bother simplifying this condition.
1471 if (TrueBB
== FalseBB
)
1474 // Try to simplify this compare to T/F based on the dominating condition.
1475 Optional
<bool> Imp
= isImpliedCondition(DomCond
, &Cmp
, DL
, TrueBB
== CmpBB
);
1477 return replaceInstUsesWith(Cmp
, ConstantInt::get(Cmp
.getType(), *Imp
));
1479 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1480 Value
*X
= Cmp
.getOperand(0), *Y
= Cmp
.getOperand(1);
1481 ICmpInst::Predicate DomPred
;
1482 const APInt
*C
, *DomC
;
1483 if (match(DomCond
, m_ICmp(DomPred
, m_Specific(X
), m_APInt(DomC
))) &&
1484 match(Y
, m_APInt(C
))) {
1485 // We have 2 compares of a variable with constants. Calculate the constant
1486 // ranges of those compares to see if we can transform the 2nd compare:
1488 // DomCond = icmp DomPred X, DomC
1489 // br DomCond, CmpBB, FalseBB
1491 // Cmp = icmp Pred X, C
1492 ConstantRange CR
= ConstantRange::makeAllowedICmpRegion(Pred
, *C
);
1493 ConstantRange DominatingCR
=
1494 (CmpBB
== TrueBB
) ? ConstantRange::makeExactICmpRegion(DomPred
, *DomC
)
1495 : ConstantRange::makeExactICmpRegion(
1496 CmpInst::getInversePredicate(DomPred
), *DomC
);
1497 ConstantRange Intersection
= DominatingCR
.intersectWith(CR
);
1498 ConstantRange Difference
= DominatingCR
.difference(CR
);
1499 if (Intersection
.isEmptySet())
1500 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
1501 if (Difference
.isEmptySet())
1502 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
1504 // Canonicalizing a sign bit comparison that gets used in a branch,
1505 // pessimizes codegen by generating branch on zero instruction instead
1506 // of a test and branch. So we avoid canonicalizing in such situations
1507 // because test and branch instruction has better branch displacement
1508 // than compare and branch instruction.
1510 bool IsSignBit
= isSignBitCheck(Pred
, *C
, UnusedBit
);
1511 if (Cmp
.isEquality() || (IsSignBit
&& hasBranchUse(Cmp
)))
1514 if (const APInt
*EqC
= Intersection
.getSingleElement())
1515 return new ICmpInst(ICmpInst::ICMP_EQ
, X
, Builder
.getInt(*EqC
));
1516 if (const APInt
*NeC
= Difference
.getSingleElement())
1517 return new ICmpInst(ICmpInst::ICMP_NE
, X
, Builder
.getInt(*NeC
));
1523 /// Fold icmp (trunc X, Y), C.
1524 Instruction
*InstCombiner::foldICmpTruncConstant(ICmpInst
&Cmp
,
1527 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1528 Value
*X
= Trunc
->getOperand(0);
1529 if (C
.isOneValue() && C
.getBitWidth() > 1) {
1530 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1532 if (Pred
== ICmpInst::ICMP_SLT
&& match(X
, m_Signum(m_Value(V
))))
1533 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1534 ConstantInt::get(V
->getType(), 1));
1537 if (Cmp
.isEquality() && Trunc
->hasOneUse()) {
1538 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1539 // of the high bits truncated out of x are known.
1540 unsigned DstBits
= Trunc
->getType()->getScalarSizeInBits(),
1541 SrcBits
= X
->getType()->getScalarSizeInBits();
1542 KnownBits Known
= computeKnownBits(X
, 0, &Cmp
);
1544 // If all the high bits are known, we can do this xform.
1545 if ((Known
.Zero
| Known
.One
).countLeadingOnes() >= SrcBits
- DstBits
) {
1546 // Pull in the high bits from known-ones set.
1547 APInt NewRHS
= C
.zext(SrcBits
);
1548 NewRHS
|= Known
.One
& APInt::getHighBitsSet(SrcBits
, SrcBits
- DstBits
);
1549 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), NewRHS
));
1556 /// Fold icmp (xor X, Y), C.
1557 Instruction
*InstCombiner::foldICmpXorConstant(ICmpInst
&Cmp
,
1558 BinaryOperator
*Xor
,
1560 Value
*X
= Xor
->getOperand(0);
1561 Value
*Y
= Xor
->getOperand(1);
1563 if (!match(Y
, m_APInt(XorC
)))
1566 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1568 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1569 bool TrueIfSigned
= false;
1570 if (isSignBitCheck(Cmp
.getPredicate(), C
, TrueIfSigned
)) {
1572 // If the sign bit of the XorCst is not set, there is no change to
1573 // the operation, just stop using the Xor.
1574 if (!XorC
->isNegative()) {
1575 Cmp
.setOperand(0, X
);
1580 // Emit the opposite comparison.
1582 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1583 ConstantInt::getAllOnesValue(X
->getType()));
1585 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1586 ConstantInt::getNullValue(X
->getType()));
1589 if (Xor
->hasOneUse()) {
1590 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1591 if (!Cmp
.isEquality() && XorC
->isSignMask()) {
1592 Pred
= Cmp
.isSigned() ? Cmp
.getUnsignedPredicate()
1593 : Cmp
.getSignedPredicate();
1594 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1597 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1598 if (!Cmp
.isEquality() && XorC
->isMaxSignedValue()) {
1599 Pred
= Cmp
.isSigned() ? Cmp
.getUnsignedPredicate()
1600 : Cmp
.getSignedPredicate();
1601 Pred
= Cmp
.getSwappedPredicate(Pred
);
1602 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1606 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1607 if (Pred
== ICmpInst::ICMP_UGT
) {
1608 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1609 if (*XorC
== ~C
&& (C
+ 1).isPowerOf2())
1610 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
1611 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1612 if (*XorC
== C
&& (C
+ 1).isPowerOf2())
1613 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
1615 if (Pred
== ICmpInst::ICMP_ULT
) {
1616 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1617 if (*XorC
== -C
&& C
.isPowerOf2())
1618 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1619 ConstantInt::get(X
->getType(), ~C
));
1620 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1621 if (*XorC
== C
&& (-C
).isPowerOf2())
1622 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1623 ConstantInt::get(X
->getType(), ~C
));
1628 /// Fold icmp (and (sh X, Y), C2), C1.
1629 Instruction
*InstCombiner::foldICmpAndShift(ICmpInst
&Cmp
, BinaryOperator
*And
,
1630 const APInt
&C1
, const APInt
&C2
) {
1631 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(And
->getOperand(0));
1632 if (!Shift
|| !Shift
->isShift())
1635 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1636 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1637 // code produced by the clang front-end, for bitfield access.
1638 // This seemingly simple opportunity to fold away a shift turns out to be
1639 // rather complicated. See PR17827 for details.
1640 unsigned ShiftOpcode
= Shift
->getOpcode();
1641 bool IsShl
= ShiftOpcode
== Instruction::Shl
;
1643 if (match(Shift
->getOperand(1), m_APInt(C3
))) {
1644 bool CanFold
= false;
1645 if (ShiftOpcode
== Instruction::Shl
) {
1646 // For a left shift, we can fold if the comparison is not signed. We can
1647 // also fold a signed comparison if the mask value and comparison value
1648 // are not negative. These constraints may not be obvious, but we can
1649 // prove that they are correct using an SMT solver.
1650 if (!Cmp
.isSigned() || (!C2
.isNegative() && !C1
.isNegative()))
1653 bool IsAshr
= ShiftOpcode
== Instruction::AShr
;
1654 // For a logical right shift, we can fold if the comparison is not signed.
1655 // We can also fold a signed comparison if the shifted mask value and the
1656 // shifted comparison value are not negative. These constraints may not be
1657 // obvious, but we can prove that they are correct using an SMT solver.
1658 // For an arithmetic shift right we can do the same, if we ensure
1659 // the And doesn't use any bits being shifted in. Normally these would
1660 // be turned into lshr by SimplifyDemandedBits, but not if there is an
1662 if (!IsAshr
|| (C2
.shl(*C3
).lshr(*C3
) == C2
)) {
1663 if (!Cmp
.isSigned() ||
1664 (!C2
.shl(*C3
).isNegative() && !C1
.shl(*C3
).isNegative()))
1670 APInt NewCst
= IsShl
? C1
.lshr(*C3
) : C1
.shl(*C3
);
1671 APInt SameAsC1
= IsShl
? NewCst
.shl(*C3
) : NewCst
.lshr(*C3
);
1672 // Check to see if we are shifting out any of the bits being compared.
1673 if (SameAsC1
!= C1
) {
1674 // If we shifted bits out, the fold is not going to work out. As a
1675 // special case, check to see if this means that the result is always
1676 // true or false now.
1677 if (Cmp
.getPredicate() == ICmpInst::ICMP_EQ
)
1678 return replaceInstUsesWith(Cmp
, ConstantInt::getFalse(Cmp
.getType()));
1679 if (Cmp
.getPredicate() == ICmpInst::ICMP_NE
)
1680 return replaceInstUsesWith(Cmp
, ConstantInt::getTrue(Cmp
.getType()));
1682 Cmp
.setOperand(1, ConstantInt::get(And
->getType(), NewCst
));
1683 APInt NewAndCst
= IsShl
? C2
.lshr(*C3
) : C2
.shl(*C3
);
1684 And
->setOperand(1, ConstantInt::get(And
->getType(), NewAndCst
));
1685 And
->setOperand(0, Shift
->getOperand(0));
1686 Worklist
.Add(Shift
); // Shift is dead.
1692 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1693 // preferable because it allows the C2 << Y expression to be hoisted out of a
1694 // loop if Y is invariant and X is not.
1695 if (Shift
->hasOneUse() && C1
.isNullValue() && Cmp
.isEquality() &&
1696 !Shift
->isArithmeticShift() && !isa
<Constant
>(Shift
->getOperand(0))) {
1699 IsShl
? Builder
.CreateLShr(And
->getOperand(1), Shift
->getOperand(1))
1700 : Builder
.CreateShl(And
->getOperand(1), Shift
->getOperand(1));
1702 // Compute X & (C2 << Y).
1703 Value
*NewAnd
= Builder
.CreateAnd(Shift
->getOperand(0), NewShift
);
1704 Cmp
.setOperand(0, NewAnd
);
1711 /// Fold icmp (and X, C2), C1.
1712 Instruction
*InstCombiner::foldICmpAndConstConst(ICmpInst
&Cmp
,
1713 BinaryOperator
*And
,
1715 bool isICMP_NE
= Cmp
.getPredicate() == ICmpInst::ICMP_NE
;
1717 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1718 // TODO: We canonicalize to the longer form for scalars because we have
1719 // better analysis/folds for icmp, and codegen may be better with icmp.
1720 if (isICMP_NE
&& Cmp
.getType()->isVectorTy() && C1
.isNullValue() &&
1721 match(And
->getOperand(1), m_One()))
1722 return new TruncInst(And
->getOperand(0), Cmp
.getType());
1726 if (!match(And
, m_And(m_Value(X
), m_APInt(C2
))))
1729 // Don't perform the following transforms if the AND has multiple uses
1730 if (!And
->hasOneUse())
1733 if (Cmp
.isEquality() && C1
.isNullValue()) {
1734 // Restrict this fold to single-use 'and' (PR10267).
1735 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1736 if (C2
->isSignMask()) {
1737 Constant
*Zero
= Constant::getNullValue(X
->getType());
1738 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
1739 return new ICmpInst(NewPred
, X
, Zero
);
1742 // Restrict this fold only for single-use 'and' (PR10267).
1743 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1744 if ((~(*C2
) + 1).isPowerOf2()) {
1746 ConstantExpr::getNeg(cast
<Constant
>(And
->getOperand(1)));
1747 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
1748 return new ICmpInst(NewPred
, X
, NegBOC
);
1752 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1753 // the input width without changing the value produced, eliminate the cast:
1755 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1757 // We can do this transformation if the constants do not have their sign bits
1758 // set or if it is an equality comparison. Extending a relational comparison
1759 // when we're checking the sign bit would not work.
1761 if (match(And
->getOperand(0), m_OneUse(m_Trunc(m_Value(W
)))) &&
1762 (Cmp
.isEquality() || (!C1
.isNegative() && !C2
->isNegative()))) {
1763 // TODO: Is this a good transform for vectors? Wider types may reduce
1764 // throughput. Should this transform be limited (even for scalars) by using
1765 // shouldChangeType()?
1766 if (!Cmp
.getType()->isVectorTy()) {
1767 Type
*WideType
= W
->getType();
1768 unsigned WideScalarBits
= WideType
->getScalarSizeInBits();
1769 Constant
*ZextC1
= ConstantInt::get(WideType
, C1
.zext(WideScalarBits
));
1770 Constant
*ZextC2
= ConstantInt::get(WideType
, C2
->zext(WideScalarBits
));
1771 Value
*NewAnd
= Builder
.CreateAnd(W
, ZextC2
, And
->getName());
1772 return new ICmpInst(Cmp
.getPredicate(), NewAnd
, ZextC1
);
1776 if (Instruction
*I
= foldICmpAndShift(Cmp
, And
, C1
, *C2
))
1779 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1780 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1782 // iff pred isn't signed
1783 if (!Cmp
.isSigned() && C1
.isNullValue() && And
->getOperand(0)->hasOneUse() &&
1784 match(And
->getOperand(1), m_One())) {
1785 Constant
*One
= cast
<Constant
>(And
->getOperand(1));
1786 Value
*Or
= And
->getOperand(0);
1787 Value
*A
, *B
, *LShr
;
1788 if (match(Or
, m_Or(m_Value(LShr
), m_Value(A
))) &&
1789 match(LShr
, m_LShr(m_Specific(A
), m_Value(B
)))) {
1790 unsigned UsesRemoved
= 0;
1791 if (And
->hasOneUse())
1793 if (Or
->hasOneUse())
1795 if (LShr
->hasOneUse())
1798 // Compute A & ((1 << B) | 1)
1799 Value
*NewOr
= nullptr;
1800 if (auto *C
= dyn_cast
<Constant
>(B
)) {
1801 if (UsesRemoved
>= 1)
1802 NewOr
= ConstantExpr::getOr(ConstantExpr::getNUWShl(One
, C
), One
);
1804 if (UsesRemoved
>= 3)
1805 NewOr
= Builder
.CreateOr(Builder
.CreateShl(One
, B
, LShr
->getName(),
1807 One
, Or
->getName());
1810 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
, And
->getName());
1811 Cmp
.setOperand(0, NewAnd
);
1820 /// Fold icmp (and X, Y), C.
1821 Instruction
*InstCombiner::foldICmpAndConstant(ICmpInst
&Cmp
,
1822 BinaryOperator
*And
,
1824 if (Instruction
*I
= foldICmpAndConstConst(Cmp
, And
, C
))
1827 // TODO: These all require that Y is constant too, so refactor with the above.
1829 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1830 Value
*X
= And
->getOperand(0);
1831 Value
*Y
= And
->getOperand(1);
1832 if (auto *LI
= dyn_cast
<LoadInst
>(X
))
1833 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0)))
1834 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
1835 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
1836 !LI
->isVolatile() && isa
<ConstantInt
>(Y
)) {
1837 ConstantInt
*C2
= cast
<ConstantInt
>(Y
);
1838 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, Cmp
, C2
))
1842 if (!Cmp
.isEquality())
1845 // X & -C == -C -> X > u ~C
1846 // X & -C != -C -> X <= u ~C
1847 // iff C is a power of 2
1848 if (Cmp
.getOperand(1) == Y
&& (-C
).isPowerOf2()) {
1849 auto NewPred
= Cmp
.getPredicate() == CmpInst::ICMP_EQ
? CmpInst::ICMP_UGT
1850 : CmpInst::ICMP_ULE
;
1851 return new ICmpInst(NewPred
, X
, SubOne(cast
<Constant
>(Cmp
.getOperand(1))));
1854 // (X & C2) == 0 -> (trunc X) >= 0
1855 // (X & C2) != 0 -> (trunc X) < 0
1856 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1858 if (And
->hasOneUse() && C
.isNullValue() && match(Y
, m_APInt(C2
))) {
1859 int32_t ExactLogBase2
= C2
->exactLogBase2();
1860 if (ExactLogBase2
!= -1 && DL
.isLegalInteger(ExactLogBase2
+ 1)) {
1861 Type
*NTy
= IntegerType::get(Cmp
.getContext(), ExactLogBase2
+ 1);
1862 if (And
->getType()->isVectorTy())
1863 NTy
= VectorType::get(NTy
, And
->getType()->getVectorNumElements());
1864 Value
*Trunc
= Builder
.CreateTrunc(X
, NTy
);
1865 auto NewPred
= Cmp
.getPredicate() == CmpInst::ICMP_EQ
? CmpInst::ICMP_SGE
1866 : CmpInst::ICMP_SLT
;
1867 return new ICmpInst(NewPred
, Trunc
, Constant::getNullValue(NTy
));
1874 /// Fold icmp (or X, Y), C.
1875 Instruction
*InstCombiner::foldICmpOrConstant(ICmpInst
&Cmp
, BinaryOperator
*Or
,
1877 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1878 if (C
.isOneValue()) {
1879 // icmp slt signum(V) 1 --> icmp slt V, 1
1881 if (Pred
== ICmpInst::ICMP_SLT
&& match(Or
, m_Signum(m_Value(V
))))
1882 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1883 ConstantInt::get(V
->getType(), 1));
1886 Value
*OrOp0
= Or
->getOperand(0), *OrOp1
= Or
->getOperand(1);
1887 if (Cmp
.isEquality() && Cmp
.getOperand(1) == OrOp1
) {
1888 // X | C == C --> X <=u C
1889 // X | C != C --> X >u C
1890 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1891 if ((C
+ 1).isPowerOf2()) {
1892 Pred
= (Pred
== CmpInst::ICMP_EQ
) ? CmpInst::ICMP_ULE
: CmpInst::ICMP_UGT
;
1893 return new ICmpInst(Pred
, OrOp0
, OrOp1
);
1895 // More general: are all bits outside of a mask constant set or not set?
1896 // X | C == C --> (X & ~C) == 0
1897 // X | C != C --> (X & ~C) != 0
1898 if (Or
->hasOneUse()) {
1899 Value
*A
= Builder
.CreateAnd(OrOp0
, ~C
);
1900 return new ICmpInst(Pred
, A
, ConstantInt::getNullValue(OrOp0
->getType()));
1904 if (!Cmp
.isEquality() || !C
.isNullValue() || !Or
->hasOneUse())
1908 if (match(Or
, m_Or(m_PtrToInt(m_Value(P
)), m_PtrToInt(m_Value(Q
))))) {
1909 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1910 // -> and (icmp eq P, null), (icmp eq Q, null).
1912 Builder
.CreateICmp(Pred
, P
, ConstantInt::getNullValue(P
->getType()));
1914 Builder
.CreateICmp(Pred
, Q
, ConstantInt::getNullValue(Q
->getType()));
1915 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1916 return BinaryOperator::Create(BOpc
, CmpP
, CmpQ
);
1919 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1920 // a shorter form that has more potential to be folded even further.
1921 Value
*X1
, *X2
, *X3
, *X4
;
1922 if (match(OrOp0
, m_OneUse(m_Xor(m_Value(X1
), m_Value(X2
)))) &&
1923 match(OrOp1
, m_OneUse(m_Xor(m_Value(X3
), m_Value(X4
))))) {
1924 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1925 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1926 Value
*Cmp12
= Builder
.CreateICmp(Pred
, X1
, X2
);
1927 Value
*Cmp34
= Builder
.CreateICmp(Pred
, X3
, X4
);
1928 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1929 return BinaryOperator::Create(BOpc
, Cmp12
, Cmp34
);
1935 /// Fold icmp (mul X, Y), C.
1936 Instruction
*InstCombiner::foldICmpMulConstant(ICmpInst
&Cmp
,
1937 BinaryOperator
*Mul
,
1940 if (!match(Mul
->getOperand(1), m_APInt(MulC
)))
1943 // If this is a test of the sign bit and the multiply is sign-preserving with
1944 // a constant operand, use the multiply LHS operand instead.
1945 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1946 if (isSignTest(Pred
, C
) && Mul
->hasNoSignedWrap()) {
1947 if (MulC
->isNegative())
1948 Pred
= ICmpInst::getSwappedPredicate(Pred
);
1949 return new ICmpInst(Pred
, Mul
->getOperand(0),
1950 Constant::getNullValue(Mul
->getType()));
1956 /// Fold icmp (shl 1, Y), C.
1957 static Instruction
*foldICmpShlOne(ICmpInst
&Cmp
, Instruction
*Shl
,
1960 if (!match(Shl
, m_Shl(m_One(), m_Value(Y
))))
1963 Type
*ShiftType
= Shl
->getType();
1964 unsigned TypeBits
= C
.getBitWidth();
1965 bool CIsPowerOf2
= C
.isPowerOf2();
1966 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1967 if (Cmp
.isUnsigned()) {
1968 // (1 << Y) pred C -> Y pred Log2(C)
1970 // (1 << Y) < 30 -> Y <= 4
1971 // (1 << Y) <= 30 -> Y <= 4
1972 // (1 << Y) >= 30 -> Y > 4
1973 // (1 << Y) > 30 -> Y > 4
1974 if (Pred
== ICmpInst::ICMP_ULT
)
1975 Pred
= ICmpInst::ICMP_ULE
;
1976 else if (Pred
== ICmpInst::ICMP_UGE
)
1977 Pred
= ICmpInst::ICMP_UGT
;
1980 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1981 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
1982 unsigned CLog2
= C
.logBase2();
1983 if (CLog2
== TypeBits
- 1) {
1984 if (Pred
== ICmpInst::ICMP_UGE
)
1985 Pred
= ICmpInst::ICMP_EQ
;
1986 else if (Pred
== ICmpInst::ICMP_ULT
)
1987 Pred
= ICmpInst::ICMP_NE
;
1989 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, CLog2
));
1990 } else if (Cmp
.isSigned()) {
1991 Constant
*BitWidthMinusOne
= ConstantInt::get(ShiftType
, TypeBits
- 1);
1992 if (C
.isAllOnesValue()) {
1993 // (1 << Y) <= -1 -> Y == 31
1994 if (Pred
== ICmpInst::ICMP_SLE
)
1995 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
1997 // (1 << Y) > -1 -> Y != 31
1998 if (Pred
== ICmpInst::ICMP_SGT
)
1999 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
2001 // (1 << Y) < 0 -> Y == 31
2002 // (1 << Y) <= 0 -> Y == 31
2003 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
2004 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
2006 // (1 << Y) >= 0 -> Y != 31
2007 // (1 << Y) > 0 -> Y != 31
2008 if (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
)
2009 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
2011 } else if (Cmp
.isEquality() && CIsPowerOf2
) {
2012 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, C
.logBase2()));
2018 /// Fold icmp (shl X, Y), C.
2019 Instruction
*InstCombiner::foldICmpShlConstant(ICmpInst
&Cmp
,
2020 BinaryOperator
*Shl
,
2022 const APInt
*ShiftVal
;
2023 if (Cmp
.isEquality() && match(Shl
->getOperand(0), m_APInt(ShiftVal
)))
2024 return foldICmpShlConstConst(Cmp
, Shl
->getOperand(1), C
, *ShiftVal
);
2026 const APInt
*ShiftAmt
;
2027 if (!match(Shl
->getOperand(1), m_APInt(ShiftAmt
)))
2028 return foldICmpShlOne(Cmp
, Shl
, C
);
2030 // Check that the shift amount is in range. If not, don't perform undefined
2031 // shifts. When the shift is visited, it will be simplified.
2032 unsigned TypeBits
= C
.getBitWidth();
2033 if (ShiftAmt
->uge(TypeBits
))
2036 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2037 Value
*X
= Shl
->getOperand(0);
2038 Type
*ShType
= Shl
->getType();
2040 // NSW guarantees that we are only shifting out sign bits from the high bits,
2041 // so we can ASHR the compare constant without needing a mask and eliminate
2043 if (Shl
->hasNoSignedWrap()) {
2044 if (Pred
== ICmpInst::ICMP_SGT
) {
2045 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2046 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2047 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2049 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2050 C
.ashr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2051 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2052 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2054 if (Pred
== ICmpInst::ICMP_SLT
) {
2055 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2056 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2057 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2058 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2059 assert(!C
.isMinSignedValue() && "Unexpected icmp slt");
2060 APInt ShiftedC
= (C
- 1).ashr(*ShiftAmt
) + 1;
2061 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2063 // If this is a signed comparison to 0 and the shift is sign preserving,
2064 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2065 // do that if we're sure to not continue on in this function.
2066 if (isSignTest(Pred
, C
))
2067 return new ICmpInst(Pred
, X
, Constant::getNullValue(ShType
));
2070 // NUW guarantees that we are only shifting out zero bits from the high bits,
2071 // so we can LSHR the compare constant without needing a mask and eliminate
2073 if (Shl
->hasNoUnsignedWrap()) {
2074 if (Pred
== ICmpInst::ICMP_UGT
) {
2075 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2076 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2077 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2079 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2080 C
.lshr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2081 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2082 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2084 if (Pred
== ICmpInst::ICMP_ULT
) {
2085 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2086 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2087 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2088 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2089 assert(C
.ugt(0) && "ult 0 should have been eliminated");
2090 APInt ShiftedC
= (C
- 1).lshr(*ShiftAmt
) + 1;
2091 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2095 if (Cmp
.isEquality() && Shl
->hasOneUse()) {
2096 // Strength-reduce the shift into an 'and'.
2097 Constant
*Mask
= ConstantInt::get(
2099 APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue()));
2100 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2101 Constant
*LShrC
= ConstantInt::get(ShType
, C
.lshr(*ShiftAmt
));
2102 return new ICmpInst(Pred
, And
, LShrC
);
2105 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2106 bool TrueIfSigned
= false;
2107 if (Shl
->hasOneUse() && isSignBitCheck(Pred
, C
, TrueIfSigned
)) {
2108 // (X << 31) <s 0 --> (X & 1) != 0
2109 Constant
*Mask
= ConstantInt::get(
2111 APInt::getOneBitSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue() - 1));
2112 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2113 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
2114 And
, Constant::getNullValue(ShType
));
2117 // Simplify 'shl' inequality test into 'and' equality test.
2118 if (Cmp
.isUnsigned() && Shl
->hasOneUse()) {
2119 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2120 if ((C
+ 1).isPowerOf2() &&
2121 (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
)) {
2122 Value
*And
= Builder
.CreateAnd(X
, (~C
).lshr(ShiftAmt
->getZExtValue()));
2123 return new ICmpInst(Pred
== ICmpInst::ICMP_ULE
? ICmpInst::ICMP_EQ
2124 : ICmpInst::ICMP_NE
,
2125 And
, Constant::getNullValue(ShType
));
2127 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2128 if (C
.isPowerOf2() &&
2129 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
)) {
2131 Builder
.CreateAnd(X
, (~(C
- 1)).lshr(ShiftAmt
->getZExtValue()));
2132 return new ICmpInst(Pred
== ICmpInst::ICMP_ULT
? ICmpInst::ICMP_EQ
2133 : ICmpInst::ICMP_NE
,
2134 And
, Constant::getNullValue(ShType
));
2138 // Transform (icmp pred iM (shl iM %v, N), C)
2139 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2140 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2141 // This enables us to get rid of the shift in favor of a trunc that may be
2142 // free on the target. It has the additional benefit of comparing to a
2143 // smaller constant that may be more target-friendly.
2144 unsigned Amt
= ShiftAmt
->getLimitedValue(TypeBits
- 1);
2145 if (Shl
->hasOneUse() && Amt
!= 0 && C
.countTrailingZeros() >= Amt
&&
2146 DL
.isLegalInteger(TypeBits
- Amt
)) {
2147 Type
*TruncTy
= IntegerType::get(Cmp
.getContext(), TypeBits
- Amt
);
2148 if (ShType
->isVectorTy())
2149 TruncTy
= VectorType::get(TruncTy
, ShType
->getVectorNumElements());
2151 ConstantInt::get(TruncTy
, C
.ashr(*ShiftAmt
).trunc(TypeBits
- Amt
));
2152 return new ICmpInst(Pred
, Builder
.CreateTrunc(X
, TruncTy
), NewC
);
2158 /// Fold icmp ({al}shr X, Y), C.
2159 Instruction
*InstCombiner::foldICmpShrConstant(ICmpInst
&Cmp
,
2160 BinaryOperator
*Shr
,
2162 // An exact shr only shifts out zero bits, so:
2163 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2164 Value
*X
= Shr
->getOperand(0);
2165 CmpInst::Predicate Pred
= Cmp
.getPredicate();
2166 if (Cmp
.isEquality() && Shr
->isExact() && Shr
->hasOneUse() &&
2168 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
2170 const APInt
*ShiftVal
;
2171 if (Cmp
.isEquality() && match(Shr
->getOperand(0), m_APInt(ShiftVal
)))
2172 return foldICmpShrConstConst(Cmp
, Shr
->getOperand(1), C
, *ShiftVal
);
2174 const APInt
*ShiftAmt
;
2175 if (!match(Shr
->getOperand(1), m_APInt(ShiftAmt
)))
2178 // Check that the shift amount is in range. If not, don't perform undefined
2179 // shifts. When the shift is visited it will be simplified.
2180 unsigned TypeBits
= C
.getBitWidth();
2181 unsigned ShAmtVal
= ShiftAmt
->getLimitedValue(TypeBits
);
2182 if (ShAmtVal
>= TypeBits
|| ShAmtVal
== 0)
2185 bool IsAShr
= Shr
->getOpcode() == Instruction::AShr
;
2186 bool IsExact
= Shr
->isExact();
2187 Type
*ShrTy
= Shr
->getType();
2188 // TODO: If we could guarantee that InstSimplify would handle all of the
2189 // constant-value-based preconditions in the folds below, then we could assert
2190 // those conditions rather than checking them. This is difficult because of
2191 // undef/poison (PR34838).
2193 if (Pred
== CmpInst::ICMP_SLT
|| (Pred
== CmpInst::ICMP_SGT
&& IsExact
)) {
2194 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2195 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2196 APInt ShiftedC
= C
.shl(ShAmtVal
);
2197 if (ShiftedC
.ashr(ShAmtVal
) == C
)
2198 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2200 if (Pred
== CmpInst::ICMP_SGT
) {
2201 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2202 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2203 if (!C
.isMaxSignedValue() && !(C
+ 1).shl(ShAmtVal
).isMinSignedValue() &&
2204 (ShiftedC
+ 1).ashr(ShAmtVal
) == (C
+ 1))
2205 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2208 if (Pred
== CmpInst::ICMP_ULT
|| (Pred
== CmpInst::ICMP_UGT
&& IsExact
)) {
2209 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2210 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2211 APInt ShiftedC
= C
.shl(ShAmtVal
);
2212 if (ShiftedC
.lshr(ShAmtVal
) == C
)
2213 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2215 if (Pred
== CmpInst::ICMP_UGT
) {
2216 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2217 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2218 if ((ShiftedC
+ 1).lshr(ShAmtVal
) == (C
+ 1))
2219 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2223 if (!Cmp
.isEquality())
2226 // Handle equality comparisons of shift-by-constant.
2228 // If the comparison constant changes with the shift, the comparison cannot
2229 // succeed (bits of the comparison constant cannot match the shifted value).
2230 // This should be known by InstSimplify and already be folded to true/false.
2231 assert(((IsAShr
&& C
.shl(ShAmtVal
).ashr(ShAmtVal
) == C
) ||
2232 (!IsAShr
&& C
.shl(ShAmtVal
).lshr(ShAmtVal
) == C
)) &&
2233 "Expected icmp+shr simplify did not occur.");
2235 // If the bits shifted out are known zero, compare the unshifted value:
2236 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2238 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2240 if (Shr
->hasOneUse()) {
2241 // Canonicalize the shift into an 'and':
2242 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2243 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
2244 Constant
*Mask
= ConstantInt::get(ShrTy
, Val
);
2245 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shr
->getName() + ".mask");
2246 return new ICmpInst(Pred
, And
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2252 /// Fold icmp (udiv X, Y), C.
2253 Instruction
*InstCombiner::foldICmpUDivConstant(ICmpInst
&Cmp
,
2254 BinaryOperator
*UDiv
,
2257 if (!match(UDiv
->getOperand(0), m_APInt(C2
)))
2260 assert(*C2
!= 0 && "udiv 0, X should have been simplified already.");
2262 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2263 Value
*Y
= UDiv
->getOperand(1);
2264 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
) {
2265 assert(!C
.isMaxValue() &&
2266 "icmp ugt X, UINT_MAX should have been simplified already.");
2267 return new ICmpInst(ICmpInst::ICMP_ULE
, Y
,
2268 ConstantInt::get(Y
->getType(), C2
->udiv(C
+ 1)));
2271 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2272 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
) {
2273 assert(C
!= 0 && "icmp ult X, 0 should have been simplified already.");
2274 return new ICmpInst(ICmpInst::ICMP_UGT
, Y
,
2275 ConstantInt::get(Y
->getType(), C2
->udiv(C
)));
2281 /// Fold icmp ({su}div X, Y), C.
2282 Instruction
*InstCombiner::foldICmpDivConstant(ICmpInst
&Cmp
,
2283 BinaryOperator
*Div
,
2285 // Fold: icmp pred ([us]div X, C2), C -> range test
2286 // Fold this div into the comparison, producing a range check.
2287 // Determine, based on the divide type, what the range is being
2288 // checked. If there is an overflow on the low or high side, remember
2289 // it, otherwise compute the range [low, hi) bounding the new value.
2290 // See: InsertRangeTest above for the kinds of replacements possible.
2292 if (!match(Div
->getOperand(1), m_APInt(C2
)))
2295 // FIXME: If the operand types don't match the type of the divide
2296 // then don't attempt this transform. The code below doesn't have the
2297 // logic to deal with a signed divide and an unsigned compare (and
2298 // vice versa). This is because (x /s C2) <s C produces different
2299 // results than (x /s C2) <u C or (x /u C2) <s C or even
2300 // (x /u C2) <u C. Simply casting the operands and result won't
2301 // work. :( The if statement below tests that condition and bails
2303 bool DivIsSigned
= Div
->getOpcode() == Instruction::SDiv
;
2304 if (!Cmp
.isEquality() && DivIsSigned
!= Cmp
.isSigned())
2307 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2308 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2309 // division-by-constant cases should be present, we can not assert that they
2310 // have happened before we reach this icmp instruction.
2311 if (C2
->isNullValue() || C2
->isOneValue() ||
2312 (DivIsSigned
&& C2
->isAllOnesValue()))
2315 // Compute Prod = C * C2. We are essentially solving an equation of
2316 // form X / C2 = C. We solve for X by multiplying C2 and C.
2317 // By solving for X, we can turn this into a range check instead of computing
2319 APInt Prod
= C
* *C2
;
2321 // Determine if the product overflows by seeing if the product is not equal to
2322 // the divide. Make sure we do the same kind of divide as in the LHS
2323 // instruction that we're folding.
2324 bool ProdOV
= (DivIsSigned
? Prod
.sdiv(*C2
) : Prod
.udiv(*C2
)) != C
;
2326 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2328 // If the division is known to be exact, then there is no remainder from the
2329 // divide, so the covered range size is unit, otherwise it is the divisor.
2330 APInt RangeSize
= Div
->isExact() ? APInt(C2
->getBitWidth(), 1) : *C2
;
2332 // Figure out the interval that is being checked. For example, a comparison
2333 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2334 // Compute this interval based on the constants involved and the signedness of
2335 // the compare/divide. This computes a half-open interval, keeping track of
2336 // whether either value in the interval overflows. After analysis each
2337 // overflow variable is set to 0 if it's corresponding bound variable is valid
2338 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2339 int LoOverflow
= 0, HiOverflow
= 0;
2340 APInt LoBound
, HiBound
;
2342 if (!DivIsSigned
) { // udiv
2343 // e.g. X/5 op 3 --> [15, 20)
2345 HiOverflow
= LoOverflow
= ProdOV
;
2347 // If this is not an exact divide, then many values in the range collapse
2348 // to the same result value.
2349 HiOverflow
= addWithOverflow(HiBound
, LoBound
, RangeSize
, false);
2351 } else if (C2
->isStrictlyPositive()) { // Divisor is > 0.
2352 if (C
.isNullValue()) { // (X / pos) op 0
2353 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2354 LoBound
= -(RangeSize
- 1);
2355 HiBound
= RangeSize
;
2356 } else if (C
.isStrictlyPositive()) { // (X / pos) op pos
2357 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
2358 HiOverflow
= LoOverflow
= ProdOV
;
2360 HiOverflow
= addWithOverflow(HiBound
, Prod
, RangeSize
, true);
2361 } else { // (X / pos) op neg
2362 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2364 LoOverflow
= HiOverflow
= ProdOV
? -1 : 0;
2366 APInt DivNeg
= -RangeSize
;
2367 LoOverflow
= addWithOverflow(LoBound
, HiBound
, DivNeg
, true) ? -1 : 0;
2370 } else if (C2
->isNegative()) { // Divisor is < 0.
2373 if (C
.isNullValue()) { // (X / neg) op 0
2374 // e.g. X/-5 op 0 --> [-4, 5)
2375 LoBound
= RangeSize
+ 1;
2376 HiBound
= -RangeSize
;
2377 if (HiBound
== *C2
) { // -INTMIN = INTMIN
2378 HiOverflow
= 1; // [INTMIN+1, overflow)
2379 HiBound
= APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2381 } else if (C
.isStrictlyPositive()) { // (X / neg) op pos
2382 // e.g. X/-5 op 3 --> [-19, -14)
2384 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
2386 LoOverflow
= addWithOverflow(LoBound
, HiBound
, RangeSize
, true) ? -1:0;
2387 } else { // (X / neg) op neg
2388 LoBound
= Prod
; // e.g. X/-5 op -3 --> [15, 20)
2389 LoOverflow
= HiOverflow
= ProdOV
;
2391 HiOverflow
= subWithOverflow(HiBound
, Prod
, RangeSize
, true);
2394 // Dividing by a negative swaps the condition. LT <-> GT
2395 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2398 Value
*X
= Div
->getOperand(0);
2400 default: llvm_unreachable("Unhandled icmp opcode!");
2401 case ICmpInst::ICMP_EQ
:
2402 if (LoOverflow
&& HiOverflow
)
2403 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2405 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
2406 ICmpInst::ICMP_UGE
, X
,
2407 ConstantInt::get(Div
->getType(), LoBound
));
2409 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
2410 ICmpInst::ICMP_ULT
, X
,
2411 ConstantInt::get(Div
->getType(), HiBound
));
2412 return replaceInstUsesWith(
2413 Cmp
, insertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, true));
2414 case ICmpInst::ICMP_NE
:
2415 if (LoOverflow
&& HiOverflow
)
2416 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2418 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
2419 ICmpInst::ICMP_ULT
, X
,
2420 ConstantInt::get(Div
->getType(), LoBound
));
2422 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
2423 ICmpInst::ICMP_UGE
, X
,
2424 ConstantInt::get(Div
->getType(), HiBound
));
2425 return replaceInstUsesWith(Cmp
,
2426 insertRangeTest(X
, LoBound
, HiBound
,
2427 DivIsSigned
, false));
2428 case ICmpInst::ICMP_ULT
:
2429 case ICmpInst::ICMP_SLT
:
2430 if (LoOverflow
== +1) // Low bound is greater than input range.
2431 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2432 if (LoOverflow
== -1) // Low bound is less than input range.
2433 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2434 return new ICmpInst(Pred
, X
, ConstantInt::get(Div
->getType(), LoBound
));
2435 case ICmpInst::ICMP_UGT
:
2436 case ICmpInst::ICMP_SGT
:
2437 if (HiOverflow
== +1) // High bound greater than input range.
2438 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2439 if (HiOverflow
== -1) // High bound less than input range.
2440 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2441 if (Pred
== ICmpInst::ICMP_UGT
)
2442 return new ICmpInst(ICmpInst::ICMP_UGE
, X
,
2443 ConstantInt::get(Div
->getType(), HiBound
));
2444 return new ICmpInst(ICmpInst::ICMP_SGE
, X
,
2445 ConstantInt::get(Div
->getType(), HiBound
));
2451 /// Fold icmp (sub X, Y), C.
2452 Instruction
*InstCombiner::foldICmpSubConstant(ICmpInst
&Cmp
,
2453 BinaryOperator
*Sub
,
2455 Value
*X
= Sub
->getOperand(0), *Y
= Sub
->getOperand(1);
2456 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2460 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2461 if (match(X
, m_APInt(C2
)) && *C2
== C
&& Cmp
.isEquality())
2462 return new ICmpInst(Cmp
.getPredicate(), Y
,
2463 ConstantInt::get(Y
->getType(), 0));
2465 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2466 if (match(X
, m_APInt(C2
)) &&
2467 ((Cmp
.isUnsigned() && Sub
->hasNoUnsignedWrap()) ||
2468 (Cmp
.isSigned() && Sub
->hasNoSignedWrap())) &&
2469 !subWithOverflow(SubResult
, *C2
, C
, Cmp
.isSigned()))
2470 return new ICmpInst(Cmp
.getSwappedPredicate(), Y
,
2471 ConstantInt::get(Y
->getType(), SubResult
));
2473 // The following transforms are only worth it if the only user of the subtract
2475 if (!Sub
->hasOneUse())
2478 if (Sub
->hasNoSignedWrap()) {
2479 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2480 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isAllOnesValue())
2481 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
2483 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2484 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isNullValue())
2485 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
2487 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2488 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isNullValue())
2489 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
2491 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2492 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isOneValue())
2493 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
2496 if (!match(X
, m_APInt(C2
)))
2499 // C2 - Y <u C -> (Y | (C - 1)) == C2
2500 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2501 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() &&
2502 (*C2
& (C
- 1)) == (C
- 1))
2503 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateOr(Y
, C
- 1), X
);
2505 // C2 - Y >u C -> (Y | C) != C2
2506 // iff C2 & C == C and C + 1 is a power of 2
2507 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == C
)
2508 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateOr(Y
, C
), X
);
2513 /// Fold icmp (add X, Y), C.
2514 Instruction
*InstCombiner::foldICmpAddConstant(ICmpInst
&Cmp
,
2515 BinaryOperator
*Add
,
2517 Value
*Y
= Add
->getOperand(1);
2519 if (Cmp
.isEquality() || !match(Y
, m_APInt(C2
)))
2522 // Fold icmp pred (add X, C2), C.
2523 Value
*X
= Add
->getOperand(0);
2524 Type
*Ty
= Add
->getType();
2525 CmpInst::Predicate Pred
= Cmp
.getPredicate();
2527 if (!Add
->hasOneUse())
2530 // If the add does not wrap, we can always adjust the compare by subtracting
2531 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2532 // are canonicalized to SGT/SLT/UGT/ULT.
2533 if ((Add
->hasNoSignedWrap() &&
2534 (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
)) ||
2535 (Add
->hasNoUnsignedWrap() &&
2536 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULT
))) {
2539 Cmp
.isSigned() ? C
.ssub_ov(*C2
, Overflow
) : C
.usub_ov(*C2
, Overflow
);
2540 // If there is overflow, the result must be true or false.
2541 // TODO: Can we assert there is no overflow because InstSimplify always
2542 // handles those cases?
2544 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2545 return new ICmpInst(Pred
, X
, ConstantInt::get(Ty
, NewC
));
2548 auto CR
= ConstantRange::makeExactICmpRegion(Pred
, C
).subtract(*C2
);
2549 const APInt
&Upper
= CR
.getUpper();
2550 const APInt
&Lower
= CR
.getLower();
2551 if (Cmp
.isSigned()) {
2552 if (Lower
.isSignMask())
2553 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantInt::get(Ty
, Upper
));
2554 if (Upper
.isSignMask())
2555 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, ConstantInt::get(Ty
, Lower
));
2557 if (Lower
.isMinValue())
2558 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantInt::get(Ty
, Upper
));
2559 if (Upper
.isMinValue())
2560 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, ConstantInt::get(Ty
, Lower
));
2563 // X+C <u C2 -> (X & -C2) == C
2564 // iff C & (C2-1) == 0
2565 // C2 is a power of 2
2566 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() && (*C2
& (C
- 1)) == 0)
2567 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateAnd(X
, -C
),
2568 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
2570 // X+C >u C2 -> (X & ~C2) != C
2572 // C2+1 is a power of 2
2573 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == 0)
2574 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateAnd(X
, ~C
),
2575 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
2580 bool InstCombiner::matchThreeWayIntCompare(SelectInst
*SI
, Value
*&LHS
,
2581 Value
*&RHS
, ConstantInt
*&Less
,
2582 ConstantInt
*&Equal
,
2583 ConstantInt
*&Greater
) {
2584 // TODO: Generalize this to work with other comparison idioms or ensure
2585 // they get canonicalized into this form.
2587 // select i1 (a == b),
2589 // i32 (select i1 (a < b), i32 Less, i32 Greater)
2590 // where Equal, Less and Greater are placeholders for any three constants.
2591 ICmpInst::Predicate PredA
;
2592 if (!match(SI
->getCondition(), m_ICmp(PredA
, m_Value(LHS
), m_Value(RHS
))) ||
2593 !ICmpInst::isEquality(PredA
))
2595 Value
*EqualVal
= SI
->getTrueValue();
2596 Value
*UnequalVal
= SI
->getFalseValue();
2597 // We still can get non-canonical predicate here, so canonicalize.
2598 if (PredA
== ICmpInst::ICMP_NE
)
2599 std::swap(EqualVal
, UnequalVal
);
2600 if (!match(EqualVal
, m_ConstantInt(Equal
)))
2602 ICmpInst::Predicate PredB
;
2604 if (!match(UnequalVal
, m_Select(m_ICmp(PredB
, m_Value(LHS2
), m_Value(RHS2
)),
2605 m_ConstantInt(Less
), m_ConstantInt(Greater
))))
2607 // We can get predicate mismatch here, so canonicalize if possible:
2608 // First, ensure that 'LHS' match.
2610 // x sgt y <--> y slt x
2611 std::swap(LHS2
, RHS2
);
2612 PredB
= ICmpInst::getSwappedPredicate(PredB
);
2616 // We also need to canonicalize 'RHS'.
2617 if (PredB
== ICmpInst::ICMP_SGT
&& isa
<Constant
>(RHS2
)) {
2618 // x sgt C-1 <--> x sge C <--> not(x slt C)
2619 auto FlippedStrictness
=
2620 getFlippedStrictnessPredicateAndConstant(PredB
, cast
<Constant
>(RHS2
));
2621 if (!FlippedStrictness
)
2623 assert(FlippedStrictness
->first
== ICmpInst::ICMP_SGE
&& "Sanity check");
2624 RHS2
= FlippedStrictness
->second
;
2625 // And kind-of perform the result swap.
2626 std::swap(Less
, Greater
);
2627 PredB
= ICmpInst::ICMP_SLT
;
2629 return PredB
== ICmpInst::ICMP_SLT
&& RHS
== RHS2
;
2632 Instruction
*InstCombiner::foldICmpSelectConstant(ICmpInst
&Cmp
,
2636 assert(C
&& "Cmp RHS should be a constant int!");
2637 // If we're testing a constant value against the result of a three way
2638 // comparison, the result can be expressed directly in terms of the
2639 // original values being compared. Note: We could possibly be more
2640 // aggressive here and remove the hasOneUse test. The original select is
2641 // really likely to simplify or sink when we remove a test of the result.
2642 Value
*OrigLHS
, *OrigRHS
;
2643 ConstantInt
*C1LessThan
, *C2Equal
, *C3GreaterThan
;
2644 if (Cmp
.hasOneUse() &&
2645 matchThreeWayIntCompare(Select
, OrigLHS
, OrigRHS
, C1LessThan
, C2Equal
,
2647 assert(C1LessThan
&& C2Equal
&& C3GreaterThan
);
2649 bool TrueWhenLessThan
=
2650 ConstantExpr::getCompare(Cmp
.getPredicate(), C1LessThan
, C
)
2652 bool TrueWhenEqual
=
2653 ConstantExpr::getCompare(Cmp
.getPredicate(), C2Equal
, C
)
2655 bool TrueWhenGreaterThan
=
2656 ConstantExpr::getCompare(Cmp
.getPredicate(), C3GreaterThan
, C
)
2659 // This generates the new instruction that will replace the original Cmp
2660 // Instruction. Instead of enumerating the various combinations when
2661 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2662 // false, we rely on chaining of ORs and future passes of InstCombine to
2663 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2665 // When none of the three constants satisfy the predicate for the RHS (C),
2666 // the entire original Cmp can be simplified to a false.
2667 Value
*Cond
= Builder
.getFalse();
2668 if (TrueWhenLessThan
)
2669 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SLT
,
2672 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_EQ
,
2674 if (TrueWhenGreaterThan
)
2675 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SGT
,
2678 return replaceInstUsesWith(Cmp
, Cond
);
2683 static Instruction
*foldICmpBitCast(ICmpInst
&Cmp
,
2684 InstCombiner::BuilderTy
&Builder
) {
2685 auto *Bitcast
= dyn_cast
<BitCastInst
>(Cmp
.getOperand(0));
2689 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2690 Value
*Op1
= Cmp
.getOperand(1);
2691 Value
*BCSrcOp
= Bitcast
->getOperand(0);
2693 // Make sure the bitcast doesn't change the number of vector elements.
2694 if (Bitcast
->getSrcTy()->getScalarSizeInBits() ==
2695 Bitcast
->getDestTy()->getScalarSizeInBits()) {
2696 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2698 if (match(BCSrcOp
, m_SIToFP(m_Value(X
)))) {
2699 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
2700 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
2701 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2702 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2703 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_SLT
||
2704 Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
) &&
2705 match(Op1
, m_Zero()))
2706 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2708 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2709 if (Pred
== ICmpInst::ICMP_SLT
&& match(Op1
, m_One()))
2710 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), 1));
2712 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2713 if (Pred
== ICmpInst::ICMP_SGT
&& match(Op1
, m_AllOnes()))
2714 return new ICmpInst(Pred
, X
,
2715 ConstantInt::getAllOnesValue(X
->getType()));
2718 // Zero-equality checks are preserved through unsigned floating-point casts:
2719 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2720 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2721 if (match(BCSrcOp
, m_UIToFP(m_Value(X
))))
2722 if (Cmp
.isEquality() && match(Op1
, m_Zero()))
2723 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2726 // Test to see if the operands of the icmp are casted versions of other
2727 // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2728 if (Bitcast
->getType()->isPointerTy() &&
2729 (isa
<Constant
>(Op1
) || isa
<BitCastInst
>(Op1
))) {
2730 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2731 // so eliminate it as well.
2732 if (auto *BC2
= dyn_cast
<BitCastInst
>(Op1
))
2733 Op1
= BC2
->getOperand(0);
2735 Op1
= Builder
.CreateBitCast(Op1
, BCSrcOp
->getType());
2736 return new ICmpInst(Pred
, BCSrcOp
, Op1
);
2739 // Folding: icmp <pred> iN X, C
2740 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2741 // and C is a splat of a K-bit pattern
2742 // and SC is a constant vector = <C', C', C', ..., C'>
2744 // %E = extractelement <M x iK> %vec, i32 C'
2745 // icmp <pred> iK %E, trunc(C)
2747 if (!match(Cmp
.getOperand(1), m_APInt(C
)) ||
2748 !Bitcast
->getType()->isIntegerTy() ||
2749 !Bitcast
->getSrcTy()->isIntOrIntVectorTy())
2755 m_ShuffleVector(m_Value(Vec
), m_Undef(), m_Constant(Mask
)))) {
2756 // Check whether every element of Mask is the same constant
2757 if (auto *Elem
= dyn_cast_or_null
<ConstantInt
>(Mask
->getSplatValue())) {
2758 auto *VecTy
= cast
<VectorType
>(BCSrcOp
->getType());
2759 auto *EltTy
= cast
<IntegerType
>(VecTy
->getElementType());
2760 if (C
->isSplat(EltTy
->getBitWidth())) {
2761 // Fold the icmp based on the value of C
2762 // If C is M copies of an iK sized bit pattern,
2764 // => %E = extractelement <N x iK> %vec, i32 Elem
2765 // icmp <pred> iK %SplatVal, <pattern>
2766 Value
*Extract
= Builder
.CreateExtractElement(Vec
, Elem
);
2767 Value
*NewC
= ConstantInt::get(EltTy
, C
->trunc(EltTy
->getBitWidth()));
2768 return new ICmpInst(Pred
, Extract
, NewC
);
2775 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2776 /// where X is some kind of instruction.
2777 Instruction
*InstCombiner::foldICmpInstWithConstant(ICmpInst
&Cmp
) {
2779 if (!match(Cmp
.getOperand(1), m_APInt(C
)))
2782 if (auto *BO
= dyn_cast
<BinaryOperator
>(Cmp
.getOperand(0))) {
2783 switch (BO
->getOpcode()) {
2784 case Instruction::Xor
:
2785 if (Instruction
*I
= foldICmpXorConstant(Cmp
, BO
, *C
))
2788 case Instruction::And
:
2789 if (Instruction
*I
= foldICmpAndConstant(Cmp
, BO
, *C
))
2792 case Instruction::Or
:
2793 if (Instruction
*I
= foldICmpOrConstant(Cmp
, BO
, *C
))
2796 case Instruction::Mul
:
2797 if (Instruction
*I
= foldICmpMulConstant(Cmp
, BO
, *C
))
2800 case Instruction::Shl
:
2801 if (Instruction
*I
= foldICmpShlConstant(Cmp
, BO
, *C
))
2804 case Instruction::LShr
:
2805 case Instruction::AShr
:
2806 if (Instruction
*I
= foldICmpShrConstant(Cmp
, BO
, *C
))
2809 case Instruction::UDiv
:
2810 if (Instruction
*I
= foldICmpUDivConstant(Cmp
, BO
, *C
))
2813 case Instruction::SDiv
:
2814 if (Instruction
*I
= foldICmpDivConstant(Cmp
, BO
, *C
))
2817 case Instruction::Sub
:
2818 if (Instruction
*I
= foldICmpSubConstant(Cmp
, BO
, *C
))
2821 case Instruction::Add
:
2822 if (Instruction
*I
= foldICmpAddConstant(Cmp
, BO
, *C
))
2828 // TODO: These folds could be refactored to be part of the above calls.
2829 if (Instruction
*I
= foldICmpBinOpEqualityWithConstant(Cmp
, BO
, *C
))
2833 // Match against CmpInst LHS being instructions other than binary operators.
2835 if (auto *SI
= dyn_cast
<SelectInst
>(Cmp
.getOperand(0))) {
2836 // For now, we only support constant integers while folding the
2837 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2838 // similar to the cases handled by binary ops above.
2839 if (ConstantInt
*ConstRHS
= dyn_cast
<ConstantInt
>(Cmp
.getOperand(1)))
2840 if (Instruction
*I
= foldICmpSelectConstant(Cmp
, SI
, ConstRHS
))
2844 if (auto *TI
= dyn_cast
<TruncInst
>(Cmp
.getOperand(0))) {
2845 if (Instruction
*I
= foldICmpTruncConstant(Cmp
, TI
, *C
))
2849 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
.getOperand(0)))
2850 if (Instruction
*I
= foldICmpIntrinsicWithConstant(Cmp
, II
, *C
))
2856 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2857 /// icmp eq/ne BO, C.
2858 Instruction
*InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst
&Cmp
,
2861 // TODO: Some of these folds could work with arbitrary constants, but this
2862 // function is limited to scalar and vector splat constants.
2863 if (!Cmp
.isEquality())
2866 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2867 bool isICMP_NE
= Pred
== ICmpInst::ICMP_NE
;
2868 Constant
*RHS
= cast
<Constant
>(Cmp
.getOperand(1));
2869 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
2871 switch (BO
->getOpcode()) {
2872 case Instruction::SRem
:
2873 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2874 if (C
.isNullValue() && BO
->hasOneUse()) {
2876 if (match(BOp1
, m_APInt(BOC
)) && BOC
->sgt(1) && BOC
->isPowerOf2()) {
2877 Value
*NewRem
= Builder
.CreateURem(BOp0
, BOp1
, BO
->getName());
2878 return new ICmpInst(Pred
, NewRem
,
2879 Constant::getNullValue(BO
->getType()));
2883 case Instruction::Add
: {
2884 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2886 if (match(BOp1
, m_APInt(BOC
))) {
2887 if (BO
->hasOneUse()) {
2888 Constant
*SubC
= ConstantExpr::getSub(RHS
, cast
<Constant
>(BOp1
));
2889 return new ICmpInst(Pred
, BOp0
, SubC
);
2891 } else if (C
.isNullValue()) {
2892 // Replace ((add A, B) != 0) with (A != -B) if A or B is
2893 // efficiently invertible, or if the add has just this one use.
2894 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
2895 return new ICmpInst(Pred
, BOp0
, NegVal
);
2896 if (Value
*NegVal
= dyn_castNegVal(BOp0
))
2897 return new ICmpInst(Pred
, NegVal
, BOp1
);
2898 if (BO
->hasOneUse()) {
2899 Value
*Neg
= Builder
.CreateNeg(BOp1
);
2901 return new ICmpInst(Pred
, BOp0
, Neg
);
2906 case Instruction::Xor
:
2907 if (BO
->hasOneUse()) {
2908 if (Constant
*BOC
= dyn_cast
<Constant
>(BOp1
)) {
2909 // For the xor case, we can xor two constants together, eliminating
2910 // the explicit xor.
2911 return new ICmpInst(Pred
, BOp0
, ConstantExpr::getXor(RHS
, BOC
));
2912 } else if (C
.isNullValue()) {
2913 // Replace ((xor A, B) != 0) with (A != B)
2914 return new ICmpInst(Pred
, BOp0
, BOp1
);
2918 case Instruction::Sub
:
2919 if (BO
->hasOneUse()) {
2921 if (match(BOp0
, m_APInt(BOC
))) {
2922 // Replace ((sub BOC, B) != C) with (B != BOC-C).
2923 Constant
*SubC
= ConstantExpr::getSub(cast
<Constant
>(BOp0
), RHS
);
2924 return new ICmpInst(Pred
, BOp1
, SubC
);
2925 } else if (C
.isNullValue()) {
2926 // Replace ((sub A, B) != 0) with (A != B).
2927 return new ICmpInst(Pred
, BOp0
, BOp1
);
2931 case Instruction::Or
: {
2933 if (match(BOp1
, m_APInt(BOC
)) && BO
->hasOneUse() && RHS
->isAllOnesValue()) {
2934 // Comparing if all bits outside of a constant mask are set?
2935 // Replace (X | C) == -1 with (X & ~C) == ~C.
2936 // This removes the -1 constant.
2937 Constant
*NotBOC
= ConstantExpr::getNot(cast
<Constant
>(BOp1
));
2938 Value
*And
= Builder
.CreateAnd(BOp0
, NotBOC
);
2939 return new ICmpInst(Pred
, And
, NotBOC
);
2943 case Instruction::And
: {
2945 if (match(BOp1
, m_APInt(BOC
))) {
2946 // If we have ((X & C) == C), turn it into ((X & C) != 0).
2947 if (C
== *BOC
&& C
.isPowerOf2())
2948 return new ICmpInst(isICMP_NE
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
,
2949 BO
, Constant::getNullValue(RHS
->getType()));
2953 case Instruction::Mul
:
2954 if (C
.isNullValue() && BO
->hasNoSignedWrap()) {
2956 if (match(BOp1
, m_APInt(BOC
)) && !BOC
->isNullValue()) {
2957 // The trivial case (mul X, 0) is handled by InstSimplify.
2958 // General case : (mul X, C) != 0 iff X != 0
2959 // (mul X, C) == 0 iff X == 0
2960 return new ICmpInst(Pred
, BOp0
, Constant::getNullValue(RHS
->getType()));
2964 case Instruction::UDiv
:
2965 if (C
.isNullValue()) {
2966 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
2967 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
2968 return new ICmpInst(NewPred
, BOp1
, BOp0
);
2977 /// Fold an equality icmp with LLVM intrinsic and constant operand.
2978 Instruction
*InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst
&Cmp
,
2981 Type
*Ty
= II
->getType();
2982 unsigned BitWidth
= C
.getBitWidth();
2983 switch (II
->getIntrinsicID()) {
2984 case Intrinsic::bswap
:
2986 Cmp
.setOperand(0, II
->getArgOperand(0));
2987 Cmp
.setOperand(1, ConstantInt::get(Ty
, C
.byteSwap()));
2990 case Intrinsic::ctlz
:
2991 case Intrinsic::cttz
: {
2992 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
2993 if (C
== BitWidth
) {
2995 Cmp
.setOperand(0, II
->getArgOperand(0));
2996 Cmp
.setOperand(1, ConstantInt::getNullValue(Ty
));
3000 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3001 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3002 // Limit to one use to ensure we don't increase instruction count.
3003 unsigned Num
= C
.getLimitedValue(BitWidth
);
3004 if (Num
!= BitWidth
&& II
->hasOneUse()) {
3005 bool IsTrailing
= II
->getIntrinsicID() == Intrinsic::cttz
;
3006 APInt Mask1
= IsTrailing
? APInt::getLowBitsSet(BitWidth
, Num
+ 1)
3007 : APInt::getHighBitsSet(BitWidth
, Num
+ 1);
3008 APInt Mask2
= IsTrailing
3009 ? APInt::getOneBitSet(BitWidth
, Num
)
3010 : APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3011 Cmp
.setOperand(0, Builder
.CreateAnd(II
->getArgOperand(0), Mask1
));
3012 Cmp
.setOperand(1, ConstantInt::get(Ty
, Mask2
));
3019 case Intrinsic::ctpop
: {
3020 // popcount(A) == 0 -> A == 0 and likewise for !=
3021 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3022 bool IsZero
= C
.isNullValue();
3023 if (IsZero
|| C
== BitWidth
) {
3025 Cmp
.setOperand(0, II
->getArgOperand(0));
3027 IsZero
? Constant::getNullValue(Ty
) : Constant::getAllOnesValue(Ty
);
3028 Cmp
.setOperand(1, NewOp
);
3040 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3041 Instruction
*InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst
&Cmp
,
3044 if (Cmp
.isEquality())
3045 return foldICmpEqIntrinsicWithConstant(Cmp
, II
, C
);
3047 Type
*Ty
= II
->getType();
3048 unsigned BitWidth
= C
.getBitWidth();
3049 switch (II
->getIntrinsicID()) {
3050 case Intrinsic::ctlz
: {
3051 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3052 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3053 unsigned Num
= C
.getLimitedValue();
3054 APInt Limit
= APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3055 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_ULT
,
3056 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3059 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3060 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
&&
3061 C
.uge(1) && C
.ule(BitWidth
)) {
3062 unsigned Num
= C
.getLimitedValue();
3063 APInt Limit
= APInt::getLowBitsSet(BitWidth
, BitWidth
- Num
);
3064 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_UGT
,
3065 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3069 case Intrinsic::cttz
: {
3070 // Limit to one use to ensure we don't increase instruction count.
3071 if (!II
->hasOneUse())
3074 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3075 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3076 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue() + 1);
3077 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_EQ
,
3078 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3079 ConstantInt::getNullValue(Ty
));
3082 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3083 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
&&
3084 C
.uge(1) && C
.ule(BitWidth
)) {
3085 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue());
3086 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_NE
,
3087 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3088 ConstantInt::getNullValue(Ty
));
3099 /// Handle icmp with constant (but not simple integer constant) RHS.
3100 Instruction
*InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst
&I
) {
3101 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3102 Constant
*RHSC
= dyn_cast
<Constant
>(Op1
);
3103 Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
);
3107 switch (LHSI
->getOpcode()) {
3108 case Instruction::GetElementPtr
:
3109 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3110 if (RHSC
->isNullValue() &&
3111 cast
<GetElementPtrInst
>(LHSI
)->hasAllZeroIndices())
3112 return new ICmpInst(
3113 I
.getPredicate(), LHSI
->getOperand(0),
3114 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
3116 case Instruction::PHI
:
3117 // Only fold icmp into the PHI if the phi and icmp are in the same
3118 // block. If in the same block, we're encouraging jump threading. If
3119 // not, we are just pessimizing the code by making an i1 phi.
3120 if (LHSI
->getParent() == I
.getParent())
3121 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
3124 case Instruction::Select
: {
3125 // If either operand of the select is a constant, we can fold the
3126 // comparison into the select arms, which will cause one to be
3127 // constant folded and the select turned into a bitwise or.
3128 Value
*Op1
= nullptr, *Op2
= nullptr;
3129 ConstantInt
*CI
= nullptr;
3130 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1))) {
3131 Op1
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
3132 CI
= dyn_cast
<ConstantInt
>(Op1
);
3134 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2))) {
3135 Op2
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
3136 CI
= dyn_cast
<ConstantInt
>(Op2
);
3139 // We only want to perform this transformation if it will not lead to
3140 // additional code. This is true if either both sides of the select
3141 // fold to a constant (in which case the icmp is replaced with a select
3142 // which will usually simplify) or this is the only user of the
3143 // select (in which case we are trading a select+icmp for a simpler
3144 // select+icmp) or all uses of the select can be replaced based on
3145 // dominance information ("Global cases").
3146 bool Transform
= false;
3149 else if (Op1
|| Op2
) {
3151 if (LHSI
->hasOneUse())
3154 else if (CI
&& !CI
->isZero())
3155 // When Op1 is constant try replacing select with second operand.
3156 // Otherwise Op2 is constant and try replacing select with first
3159 replacedSelectWithOperand(cast
<SelectInst
>(LHSI
), &I
, Op1
? 2 : 1);
3163 Op1
= Builder
.CreateICmp(I
.getPredicate(), LHSI
->getOperand(1), RHSC
,
3166 Op2
= Builder
.CreateICmp(I
.getPredicate(), LHSI
->getOperand(2), RHSC
,
3168 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
3172 case Instruction::IntToPtr
:
3173 // icmp pred inttoptr(X), null -> icmp pred X, 0
3174 if (RHSC
->isNullValue() &&
3175 DL
.getIntPtrType(RHSC
->getType()) == LHSI
->getOperand(0)->getType())
3176 return new ICmpInst(
3177 I
.getPredicate(), LHSI
->getOperand(0),
3178 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
3181 case Instruction::Load
:
3182 // Try to optimize things like "A[i] > 4" to index computations.
3183 if (GetElementPtrInst
*GEP
=
3184 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0))) {
3185 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
3186 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
3187 !cast
<LoadInst
>(LHSI
)->isVolatile())
3188 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
3197 /// Some comparisons can be simplified.
3198 /// In this case, we are looking for comparisons that look like
3199 /// a check for a lossy truncation.
3201 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
3202 /// Where Mask is some pattern that produces all-ones in low bits:
3204 /// ((-1 << y) >> y) <- non-canonical, has extra uses
3206 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
3207 /// The Mask can be a constant, too.
3208 /// For some predicates, the operands are commutative.
3209 /// For others, x can only be on a specific side.
3210 static Value
*foldICmpWithLowBitMaskedVal(ICmpInst
&I
,
3211 InstCombiner::BuilderTy
&Builder
) {
3212 ICmpInst::Predicate SrcPred
;
3214 auto m_VariableMask
= m_CombineOr(
3215 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3216 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3217 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3218 m_LShr(m_Shl(m_AllOnes(), m_Value(Y
)), m_Deferred(Y
))));
3219 auto m_Mask
= m_CombineOr(m_VariableMask
, m_LowBitMask());
3220 if (!match(&I
, m_c_ICmp(SrcPred
,
3221 m_c_And(m_CombineAnd(m_Mask
, m_Value(M
)), m_Value(X
)),
3225 ICmpInst::Predicate DstPred
;
3227 case ICmpInst::Predicate::ICMP_EQ
:
3228 // x & (-1 >> y) == x -> x u<= (-1 >> y)
3229 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3231 case ICmpInst::Predicate::ICMP_NE
:
3232 // x & (-1 >> y) != x -> x u> (-1 >> y)
3233 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3235 case ICmpInst::Predicate::ICMP_UGT
:
3236 // x u> x & (-1 >> y) -> x u> (-1 >> y)
3237 assert(X
== I
.getOperand(0) && "instsimplify took care of commut. variant");
3238 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3240 case ICmpInst::Predicate::ICMP_UGE
:
3241 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
3242 assert(X
== I
.getOperand(1) && "instsimplify took care of commut. variant");
3243 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3245 case ICmpInst::Predicate::ICMP_ULT
:
3246 // x & (-1 >> y) u< x -> x u> (-1 >> y)
3247 assert(X
== I
.getOperand(1) && "instsimplify took care of commut. variant");
3248 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3250 case ICmpInst::Predicate::ICMP_ULE
:
3251 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
3252 assert(X
== I
.getOperand(0) && "instsimplify took care of commut. variant");
3253 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3255 case ICmpInst::Predicate::ICMP_SGT
:
3256 // x s> x & (-1 >> y) -> x s> (-1 >> y)
3257 if (X
!= I
.getOperand(0)) // X must be on LHS of comparison!
3258 return nullptr; // Ignore the other case.
3259 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3261 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3263 DstPred
= ICmpInst::Predicate::ICMP_SGT
;
3265 case ICmpInst::Predicate::ICMP_SGE
:
3266 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
3267 if (X
!= I
.getOperand(1)) // X must be on RHS of comparison!
3268 return nullptr; // Ignore the other case.
3269 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3271 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3273 DstPred
= ICmpInst::Predicate::ICMP_SLE
;
3275 case ICmpInst::Predicate::ICMP_SLT
:
3276 // x & (-1 >> y) s< x -> x s> (-1 >> y)
3277 if (X
!= I
.getOperand(1)) // X must be on RHS of comparison!
3278 return nullptr; // Ignore the other case.
3279 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3281 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3283 DstPred
= ICmpInst::Predicate::ICMP_SGT
;
3285 case ICmpInst::Predicate::ICMP_SLE
:
3286 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3287 if (X
!= I
.getOperand(0)) // X must be on LHS of comparison!
3288 return nullptr; // Ignore the other case.
3289 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3291 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3293 DstPred
= ICmpInst::Predicate::ICMP_SLE
;
3296 llvm_unreachable("All possible folds are handled.");
3299 return Builder
.CreateICmp(DstPred
, X
, M
);
3302 /// Some comparisons can be simplified.
3303 /// In this case, we are looking for comparisons that look like
3304 /// a check for a lossy signed truncation.
3305 /// Folds: (MaskedBits is a constant.)
3306 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3308 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3309 /// Where KeptBits = bitwidth(%x) - MaskedBits
3311 foldICmpWithTruncSignExtendedVal(ICmpInst
&I
,
3312 InstCombiner::BuilderTy
&Builder
) {
3313 ICmpInst::Predicate SrcPred
;
3315 const APInt
*C0
, *C1
; // FIXME: non-splats, potentially with undef.
3316 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3317 if (!match(&I
, m_c_ICmp(SrcPred
,
3318 m_OneUse(m_AShr(m_Shl(m_Value(X
), m_APInt(C0
)),
3323 // Potential handling of non-splats: for each element:
3324 // * if both are undef, replace with constant 0.
3325 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3326 // * if both are not undef, and are different, bailout.
3327 // * else, only one is undef, then pick the non-undef one.
3329 // The shift amount must be equal.
3332 const APInt
&MaskedBits
= *C0
;
3333 assert(MaskedBits
!= 0 && "shift by zero should be folded away already.");
3335 ICmpInst::Predicate DstPred
;
3337 case ICmpInst::Predicate::ICMP_EQ
:
3338 // ((%x << MaskedBits) a>> MaskedBits) == %x
3340 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3341 DstPred
= ICmpInst::Predicate::ICMP_ULT
;
3343 case ICmpInst::Predicate::ICMP_NE
:
3344 // ((%x << MaskedBits) a>> MaskedBits) != %x
3346 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3347 DstPred
= ICmpInst::Predicate::ICMP_UGE
;
3349 // FIXME: are more folds possible?
3354 auto *XType
= X
->getType();
3355 const unsigned XBitWidth
= XType
->getScalarSizeInBits();
3356 const APInt BitWidth
= APInt(XBitWidth
, XBitWidth
);
3357 assert(BitWidth
.ugt(MaskedBits
) && "shifts should leave some bits untouched");
3359 // KeptBits = bitwidth(%x) - MaskedBits
3360 const APInt KeptBits
= BitWidth
- MaskedBits
;
3361 assert(KeptBits
.ugt(0) && KeptBits
.ult(BitWidth
) && "unreachable");
3362 // ICmpCst = (1 << KeptBits)
3363 const APInt ICmpCst
= APInt(XBitWidth
, 1).shl(KeptBits
);
3364 assert(ICmpCst
.isPowerOf2());
3365 // AddCst = (1 << (KeptBits-1))
3366 const APInt AddCst
= ICmpCst
.lshr(1);
3367 assert(AddCst
.ult(ICmpCst
) && AddCst
.isPowerOf2());
3369 // T0 = add %x, AddCst
3370 Value
*T0
= Builder
.CreateAdd(X
, ConstantInt::get(XType
, AddCst
));
3371 // T1 = T0 DstPred ICmpCst
3372 Value
*T1
= Builder
.CreateICmp(DstPred
, T0
, ConstantInt::get(XType
, ICmpCst
));
3378 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3379 // we should move shifts to the same hand of 'and', i.e. rewrite as
3380 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3381 // We are only interested in opposite logical shifts here.
3382 // One of the shifts can be truncated.
3383 // If we can, we want to end up creating 'lshr' shift.
3385 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst
&I
, const SimplifyQuery SQ
,
3386 InstCombiner::BuilderTy
&Builder
) {
3387 if (!I
.isEquality() || !match(I
.getOperand(1), m_Zero()) ||
3388 !I
.getOperand(0)->hasOneUse())
3391 auto m_AnyLogicalShift
= m_LogicalShift(m_Value(), m_Value());
3393 // Look for an 'and' of two logical shifts, one of which may be truncated.
3394 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3395 Instruction
*XShift
, *MaybeTruncation
, *YShift
;
3398 m_c_And(m_CombineAnd(m_AnyLogicalShift
, m_Instruction(XShift
)),
3399 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3400 m_AnyLogicalShift
, m_Instruction(YShift
))),
3401 m_Instruction(MaybeTruncation
)))))
3404 // We potentially looked past 'trunc', but only when matching YShift,
3405 // therefore YShift must have the widest type.
3406 Instruction
*WidestShift
= YShift
;
3407 // Therefore XShift must have the shallowest type.
3408 // Or they both have identical types if there was no truncation.
3409 Instruction
*NarrowestShift
= XShift
;
3411 Type
*WidestTy
= WidestShift
->getType();
3412 assert(NarrowestShift
->getType() == I
.getOperand(0)->getType() &&
3413 "We did not look past any shifts while matching XShift though.");
3414 bool HadTrunc
= WidestTy
!= I
.getOperand(0)->getType();
3416 // If YShift is a 'lshr', swap the shifts around.
3417 if (match(YShift
, m_LShr(m_Value(), m_Value())))
3418 std::swap(XShift
, YShift
);
3420 // The shifts must be in opposite directions.
3421 auto XShiftOpcode
= XShift
->getOpcode();
3422 if (XShiftOpcode
== YShift
->getOpcode())
3423 return nullptr; // Do not care about same-direction shifts here.
3425 Value
*X
, *XShAmt
, *Y
, *YShAmt
;
3426 match(XShift
, m_BinOp(m_Value(X
), m_ZExtOrSelf(m_Value(XShAmt
))));
3427 match(YShift
, m_BinOp(m_Value(Y
), m_ZExtOrSelf(m_Value(YShAmt
))));
3429 // If one of the values being shifted is a constant, then we will end with
3430 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3431 // however, we will need to ensure that we won't increase instruction count.
3432 if (!isa
<Constant
>(X
) && !isa
<Constant
>(Y
)) {
3433 // At least one of the hands of the 'and' should be one-use shift.
3434 if (!match(I
.getOperand(0),
3435 m_c_And(m_OneUse(m_AnyLogicalShift
), m_Value())))
3438 // Due to the 'trunc', we will need to widen X. For that either the old
3439 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3440 if (!MaybeTruncation
->hasOneUse() &&
3441 !NarrowestShift
->getOperand(1)->hasOneUse())
3446 // We have two shift amounts from two different shifts. The types of those
3447 // shift amounts may not match. If that's the case let's bailout now.
3448 if (XShAmt
->getType() != YShAmt
->getType())
3451 // Can we fold (XShAmt+YShAmt) ?
3452 auto *NewShAmt
= dyn_cast_or_null
<Constant
>(
3453 SimplifyAddInst(XShAmt
, YShAmt
, /*isNSW=*/false,
3454 /*isNUW=*/false, SQ
.getWithInstruction(&I
)));
3457 NewShAmt
= ConstantExpr::getZExtOrBitCast(NewShAmt
, WidestTy
);
3458 unsigned WidestBitWidth
= WidestTy
->getScalarSizeInBits();
3460 // Is the new shift amount smaller than the bit width?
3461 // FIXME: could also rely on ConstantRange.
3462 if (!match(NewShAmt
,
3463 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT
,
3464 APInt(WidestBitWidth
, WidestBitWidth
))))
3467 // An extra legality check is needed if we had trunc-of-lshr.
3468 if (HadTrunc
&& match(WidestShift
, m_LShr(m_Value(), m_Value()))) {
3469 auto CanFold
= [NewShAmt
, WidestBitWidth
, NarrowestShift
, SQ
,
3471 // It isn't obvious whether it's worth it to analyze non-constants here.
3472 // Also, let's basically give up on non-splat cases, pessimizing vectors.
3473 // If *any* of these preconditions matches we can perform the fold.
3474 Constant
*NewShAmtSplat
= NewShAmt
->getType()->isVectorTy()
3475 ? NewShAmt
->getSplatValue()
3477 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3478 if (NewShAmtSplat
&&
3479 (NewShAmtSplat
->isNullValue() ||
3480 NewShAmtSplat
->getUniqueInteger() == WidestBitWidth
- 1))
3482 // We consider *min* leading zeros so a single outlier
3483 // blocks the transform as opposed to allowing it.
3484 if (auto *C
= dyn_cast
<Constant
>(NarrowestShift
->getOperand(0))) {
3485 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
3486 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
3487 // If the value being shifted has at most lowest bit set we can fold.
3488 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
3489 if (MaxActiveBits
<= 1)
3491 // Precondition: NewShAmt u<= countLeadingZeros(C)
3492 if (NewShAmtSplat
&& NewShAmtSplat
->getUniqueInteger().ule(MinLeadZero
))
3495 if (auto *C
= dyn_cast
<Constant
>(WidestShift
->getOperand(0))) {
3496 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
3497 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
3498 // If the value being shifted has at most lowest bit set we can fold.
3499 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
3500 if (MaxActiveBits
<= 1)
3502 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3503 if (NewShAmtSplat
) {
3505 (WidestBitWidth
- 1) - NewShAmtSplat
->getUniqueInteger();
3506 if (AdjNewShAmt
.ule(MinLeadZero
))
3510 return false; // Can't tell if it's ok.
3516 // All good, we can do this fold.
3517 X
= Builder
.CreateZExt(X
, WidestTy
);
3518 Y
= Builder
.CreateZExt(Y
, WidestTy
);
3519 // The shift is the same that was for X.
3520 Value
*T0
= XShiftOpcode
== Instruction::BinaryOps::LShr
3521 ? Builder
.CreateLShr(X
, NewShAmt
)
3522 : Builder
.CreateShl(X
, NewShAmt
);
3523 Value
*T1
= Builder
.CreateAnd(T0
, Y
);
3524 return Builder
.CreateICmp(I
.getPredicate(), T1
,
3525 Constant::getNullValue(WidestTy
));
3530 /// ((x * y) u/ x) != y
3532 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3533 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3534 /// will mean that we are looking for the opposite answer.
3535 Value
*InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst
&I
) {
3536 ICmpInst::Predicate Pred
;
3540 // Look for: (-1 u/ x) u</u>= y
3541 if (!I
.isEquality() &&
3542 match(&I
, m_c_ICmp(Pred
, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X
))),
3545 // Canonicalize as-if y was on RHS.
3546 if (I
.getOperand(1) != Y
)
3547 Pred
= I
.getSwappedPredicate();
3549 // Are we checking that overflow does not happen, or does happen?
3551 case ICmpInst::Predicate::ICMP_ULT
:
3552 NeedNegation
= false;
3554 case ICmpInst::Predicate::ICMP_UGE
:
3555 NeedNegation
= true;
3558 return nullptr; // Wrong predicate.
3560 } else // Look for: ((x * y) u/ x) !=/== y
3561 if (I
.isEquality() &&
3562 match(&I
, m_c_ICmp(Pred
, m_Value(Y
),
3563 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y
),
3565 m_Instruction(Mul
)),
3566 m_Deferred(X
)))))) {
3567 NeedNegation
= Pred
== ICmpInst::Predicate::ICMP_EQ
;
3571 BuilderTy::InsertPointGuard
Guard(Builder
);
3572 // If the pattern included (x * y), we'll want to insert new instructions
3573 // right before that original multiplication so that we can replace it.
3574 bool MulHadOtherUses
= Mul
&& !Mul
->hasOneUse();
3575 if (MulHadOtherUses
)
3576 Builder
.SetInsertPoint(Mul
);
3578 Function
*F
= Intrinsic::getDeclaration(
3579 I
.getModule(), Intrinsic::umul_with_overflow
, X
->getType());
3580 CallInst
*Call
= Builder
.CreateCall(F
, {X
, Y
}, "umul");
3582 // If the multiplication was used elsewhere, to ensure that we don't leave
3583 // "duplicate" instructions, replace uses of that original multiplication
3584 // with the multiplication result from the with.overflow intrinsic.
3585 if (MulHadOtherUses
)
3586 replaceInstUsesWith(*Mul
, Builder
.CreateExtractValue(Call
, 0, "umul.val"));
3588 Value
*Res
= Builder
.CreateExtractValue(Call
, 1, "umul.ov");
3589 if (NeedNegation
) // This technically increases instruction count.
3590 Res
= Builder
.CreateNot(Res
, "umul.not.ov");
3595 /// Try to fold icmp (binop), X or icmp X, (binop).
3596 /// TODO: A large part of this logic is duplicated in InstSimplify's
3597 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3599 Instruction
*InstCombiner::foldICmpBinOp(ICmpInst
&I
) {
3600 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3602 // Special logic for binary operators.
3603 BinaryOperator
*BO0
= dyn_cast
<BinaryOperator
>(Op0
);
3604 BinaryOperator
*BO1
= dyn_cast
<BinaryOperator
>(Op1
);
3608 const CmpInst::Predicate Pred
= I
.getPredicate();
3611 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3612 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3613 if (match(Op0
, m_OneUse(m_c_Add(m_Specific(Op1
), m_Value(X
)))) &&
3614 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
3615 return new ICmpInst(Pred
, Builder
.CreateNot(Op1
), X
);
3616 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3617 if (match(Op1
, m_OneUse(m_c_Add(m_Specific(Op0
), m_Value(X
)))) &&
3618 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
3619 return new ICmpInst(Pred
, X
, Builder
.CreateNot(Op0
));
3621 bool NoOp0WrapProblem
= false, NoOp1WrapProblem
= false;
3622 if (BO0
&& isa
<OverflowingBinaryOperator
>(BO0
))
3624 ICmpInst::isEquality(Pred
) ||
3625 (CmpInst::isUnsigned(Pred
) && BO0
->hasNoUnsignedWrap()) ||
3626 (CmpInst::isSigned(Pred
) && BO0
->hasNoSignedWrap());
3627 if (BO1
&& isa
<OverflowingBinaryOperator
>(BO1
))
3629 ICmpInst::isEquality(Pred
) ||
3630 (CmpInst::isUnsigned(Pred
) && BO1
->hasNoUnsignedWrap()) ||
3631 (CmpInst::isSigned(Pred
) && BO1
->hasNoSignedWrap());
3633 // Analyze the case when either Op0 or Op1 is an add instruction.
3634 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3635 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr;
3636 if (BO0
&& BO0
->getOpcode() == Instruction::Add
) {
3637 A
= BO0
->getOperand(0);
3638 B
= BO0
->getOperand(1);
3640 if (BO1
&& BO1
->getOpcode() == Instruction::Add
) {
3641 C
= BO1
->getOperand(0);
3642 D
= BO1
->getOperand(1);
3645 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3646 if ((A
== Op1
|| B
== Op1
) && NoOp0WrapProblem
)
3647 return new ICmpInst(Pred
, A
== Op1
? B
: A
,
3648 Constant::getNullValue(Op1
->getType()));
3650 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3651 if ((C
== Op0
|| D
== Op0
) && NoOp1WrapProblem
)
3652 return new ICmpInst(Pred
, Constant::getNullValue(Op0
->getType()),
3655 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3656 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) && NoOp0WrapProblem
&&
3658 // Try not to increase register pressure.
3659 BO0
->hasOneUse() && BO1
->hasOneUse()) {
3660 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3663 // C + B == C + D -> B == D
3666 } else if (A
== D
) {
3667 // D + B == C + D -> B == C
3670 } else if (B
== C
) {
3671 // A + C == C + D -> A == D
3676 // A + D == C + D -> A == C
3680 return new ICmpInst(Pred
, Y
, Z
);
3683 // icmp slt (X + -1), Y -> icmp sle X, Y
3684 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&&
3685 match(B
, m_AllOnes()))
3686 return new ICmpInst(CmpInst::ICMP_SLE
, A
, Op1
);
3688 // icmp sge (X + -1), Y -> icmp sgt X, Y
3689 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&&
3690 match(B
, m_AllOnes()))
3691 return new ICmpInst(CmpInst::ICMP_SGT
, A
, Op1
);
3693 // icmp sle (X + 1), Y -> icmp slt X, Y
3694 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&& match(B
, m_One()))
3695 return new ICmpInst(CmpInst::ICMP_SLT
, A
, Op1
);
3697 // icmp sgt (X + 1), Y -> icmp sge X, Y
3698 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&& match(B
, m_One()))
3699 return new ICmpInst(CmpInst::ICMP_SGE
, A
, Op1
);
3701 // icmp sgt X, (Y + -1) -> icmp sge X, Y
3702 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&&
3703 match(D
, m_AllOnes()))
3704 return new ICmpInst(CmpInst::ICMP_SGE
, Op0
, C
);
3706 // icmp sle X, (Y + -1) -> icmp slt X, Y
3707 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&&
3708 match(D
, m_AllOnes()))
3709 return new ICmpInst(CmpInst::ICMP_SLT
, Op0
, C
);
3711 // icmp sge X, (Y + 1) -> icmp sgt X, Y
3712 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&& match(D
, m_One()))
3713 return new ICmpInst(CmpInst::ICMP_SGT
, Op0
, C
);
3715 // icmp slt X, (Y + 1) -> icmp sle X, Y
3716 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&& match(D
, m_One()))
3717 return new ICmpInst(CmpInst::ICMP_SLE
, Op0
, C
);
3719 // TODO: The subtraction-related identities shown below also hold, but
3720 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3721 // wouldn't happen even if they were implemented.
3723 // icmp ult (X - 1), Y -> icmp ule X, Y
3724 // icmp uge (X - 1), Y -> icmp ugt X, Y
3725 // icmp ugt X, (Y - 1) -> icmp uge X, Y
3726 // icmp ule X, (Y - 1) -> icmp ult X, Y
3728 // icmp ule (X + 1), Y -> icmp ult X, Y
3729 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_ULE
&& match(B
, m_One()))
3730 return new ICmpInst(CmpInst::ICMP_ULT
, A
, Op1
);
3732 // icmp ugt (X + 1), Y -> icmp uge X, Y
3733 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_UGT
&& match(B
, m_One()))
3734 return new ICmpInst(CmpInst::ICMP_UGE
, A
, Op1
);
3736 // icmp uge X, (Y + 1) -> icmp ugt X, Y
3737 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_UGE
&& match(D
, m_One()))
3738 return new ICmpInst(CmpInst::ICMP_UGT
, Op0
, C
);
3740 // icmp ult X, (Y + 1) -> icmp ule X, Y
3741 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_ULT
&& match(D
, m_One()))
3742 return new ICmpInst(CmpInst::ICMP_ULE
, Op0
, C
);
3744 // if C1 has greater magnitude than C2:
3745 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3746 // s.t. C3 = C1 - C2
3748 // if C2 has greater magnitude than C1:
3749 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3750 // s.t. C3 = C2 - C1
3751 if (A
&& C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
3752 (BO0
->hasOneUse() || BO1
->hasOneUse()) && !I
.isUnsigned())
3753 if (ConstantInt
*C1
= dyn_cast
<ConstantInt
>(B
))
3754 if (ConstantInt
*C2
= dyn_cast
<ConstantInt
>(D
)) {
3755 const APInt
&AP1
= C1
->getValue();
3756 const APInt
&AP2
= C2
->getValue();
3757 if (AP1
.isNegative() == AP2
.isNegative()) {
3758 APInt AP1Abs
= C1
->getValue().abs();
3759 APInt AP2Abs
= C2
->getValue().abs();
3760 if (AP1Abs
.uge(AP2Abs
)) {
3761 ConstantInt
*C3
= Builder
.getInt(AP1
- AP2
);
3762 Value
*NewAdd
= Builder
.CreateNSWAdd(A
, C3
);
3763 return new ICmpInst(Pred
, NewAdd
, C
);
3765 ConstantInt
*C3
= Builder
.getInt(AP2
- AP1
);
3766 Value
*NewAdd
= Builder
.CreateNSWAdd(C
, C3
);
3767 return new ICmpInst(Pred
, A
, NewAdd
);
3772 // Analyze the case when either Op0 or Op1 is a sub instruction.
3773 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3778 if (BO0
&& BO0
->getOpcode() == Instruction::Sub
) {
3779 A
= BO0
->getOperand(0);
3780 B
= BO0
->getOperand(1);
3782 if (BO1
&& BO1
->getOpcode() == Instruction::Sub
) {
3783 C
= BO1
->getOperand(0);
3784 D
= BO1
->getOperand(1);
3787 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3788 if (A
== Op1
&& NoOp0WrapProblem
)
3789 return new ICmpInst(Pred
, Constant::getNullValue(Op1
->getType()), B
);
3790 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3791 if (C
== Op0
&& NoOp1WrapProblem
)
3792 return new ICmpInst(Pred
, D
, Constant::getNullValue(Op0
->getType()));
3794 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3795 // (A - B) u>/u<= A --> B u>/u<= A
3796 if (A
== Op1
&& (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
3797 return new ICmpInst(Pred
, B
, A
);
3798 // C u</u>= (C - D) --> C u</u>= D
3799 if (C
== Op0
&& (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
3800 return new ICmpInst(Pred
, C
, D
);
3802 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3803 if (B
&& D
&& B
== D
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
3804 // Try not to increase register pressure.
3805 BO0
->hasOneUse() && BO1
->hasOneUse())
3806 return new ICmpInst(Pred
, A
, C
);
3807 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3808 if (A
&& C
&& A
== C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
3809 // Try not to increase register pressure.
3810 BO0
->hasOneUse() && BO1
->hasOneUse())
3811 return new ICmpInst(Pred
, D
, B
);
3813 // icmp (0-X) < cst --> x > -cst
3814 if (NoOp0WrapProblem
&& ICmpInst::isSigned(Pred
)) {
3816 if (match(BO0
, m_Neg(m_Value(X
))))
3817 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
))
3818 if (RHSC
->isNotMinSignedValue())
3819 return new ICmpInst(I
.getSwappedPredicate(), X
,
3820 ConstantExpr::getNeg(RHSC
));
3823 BinaryOperator
*SRem
= nullptr;
3824 // icmp (srem X, Y), Y
3825 if (BO0
&& BO0
->getOpcode() == Instruction::SRem
&& Op1
== BO0
->getOperand(1))
3827 // icmp Y, (srem X, Y)
3828 else if (BO1
&& BO1
->getOpcode() == Instruction::SRem
&&
3829 Op0
== BO1
->getOperand(1))
3832 // We don't check hasOneUse to avoid increasing register pressure because
3833 // the value we use is the same value this instruction was already using.
3834 switch (SRem
== BO0
? ICmpInst::getSwappedPredicate(Pred
) : Pred
) {
3837 case ICmpInst::ICMP_EQ
:
3838 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
3839 case ICmpInst::ICMP_NE
:
3840 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
3841 case ICmpInst::ICMP_SGT
:
3842 case ICmpInst::ICMP_SGE
:
3843 return new ICmpInst(ICmpInst::ICMP_SGT
, SRem
->getOperand(1),
3844 Constant::getAllOnesValue(SRem
->getType()));
3845 case ICmpInst::ICMP_SLT
:
3846 case ICmpInst::ICMP_SLE
:
3847 return new ICmpInst(ICmpInst::ICMP_SLT
, SRem
->getOperand(1),
3848 Constant::getNullValue(SRem
->getType()));
3852 if (BO0
&& BO1
&& BO0
->getOpcode() == BO1
->getOpcode() && BO0
->hasOneUse() &&
3853 BO1
->hasOneUse() && BO0
->getOperand(1) == BO1
->getOperand(1)) {
3854 switch (BO0
->getOpcode()) {
3857 case Instruction::Add
:
3858 case Instruction::Sub
:
3859 case Instruction::Xor
: {
3860 if (I
.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3861 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3864 if (match(BO0
->getOperand(1), m_APInt(C
))) {
3865 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3866 if (C
->isSignMask()) {
3867 ICmpInst::Predicate NewPred
=
3868 I
.isSigned() ? I
.getUnsignedPredicate() : I
.getSignedPredicate();
3869 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
3872 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3873 if (BO0
->getOpcode() == Instruction::Xor
&& C
->isMaxSignedValue()) {
3874 ICmpInst::Predicate NewPred
=
3875 I
.isSigned() ? I
.getUnsignedPredicate() : I
.getSignedPredicate();
3876 NewPred
= I
.getSwappedPredicate(NewPred
);
3877 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
3882 case Instruction::Mul
: {
3883 if (!I
.isEquality())
3887 if (match(BO0
->getOperand(1), m_APInt(C
)) && !C
->isNullValue() &&
3889 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3890 // Mask = -1 >> count-trailing-zeros(C).
3891 if (unsigned TZs
= C
->countTrailingZeros()) {
3892 Constant
*Mask
= ConstantInt::get(
3894 APInt::getLowBitsSet(C
->getBitWidth(), C
->getBitWidth() - TZs
));
3895 Value
*And1
= Builder
.CreateAnd(BO0
->getOperand(0), Mask
);
3896 Value
*And2
= Builder
.CreateAnd(BO1
->getOperand(0), Mask
);
3897 return new ICmpInst(Pred
, And1
, And2
);
3899 // If there are no trailing zeros in the multiplier, just eliminate
3900 // the multiplies (no masking is needed):
3901 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3902 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3906 case Instruction::UDiv
:
3907 case Instruction::LShr
:
3908 if (I
.isSigned() || !BO0
->isExact() || !BO1
->isExact())
3910 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3912 case Instruction::SDiv
:
3913 if (!I
.isEquality() || !BO0
->isExact() || !BO1
->isExact())
3915 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3917 case Instruction::AShr
:
3918 if (!BO0
->isExact() || !BO1
->isExact())
3920 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3922 case Instruction::Shl
: {
3923 bool NUW
= BO0
->hasNoUnsignedWrap() && BO1
->hasNoUnsignedWrap();
3924 bool NSW
= BO0
->hasNoSignedWrap() && BO1
->hasNoSignedWrap();
3927 if (!NSW
&& I
.isSigned())
3929 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
3935 // Transform A & (L - 1) `ult` L --> L != 0
3936 auto LSubOne
= m_Add(m_Specific(Op1
), m_AllOnes());
3937 auto BitwiseAnd
= m_c_And(m_Value(), LSubOne
);
3939 if (match(BO0
, BitwiseAnd
) && Pred
== ICmpInst::ICMP_ULT
) {
3940 auto *Zero
= Constant::getNullValue(BO0
->getType());
3941 return new ICmpInst(ICmpInst::ICMP_NE
, Op1
, Zero
);
3945 if (Value
*V
= foldUnsignedMultiplicationOverflowCheck(I
))
3946 return replaceInstUsesWith(I
, V
);
3948 if (Value
*V
= foldICmpWithLowBitMaskedVal(I
, Builder
))
3949 return replaceInstUsesWith(I
, V
);
3951 if (Value
*V
= foldICmpWithTruncSignExtendedVal(I
, Builder
))
3952 return replaceInstUsesWith(I
, V
);
3954 if (Value
*V
= foldShiftIntoShiftInAnotherHandOfAndInICmp(I
, SQ
, Builder
))
3955 return replaceInstUsesWith(I
, V
);
3960 /// Fold icmp Pred min|max(X, Y), X.
3961 static Instruction
*foldICmpWithMinMax(ICmpInst
&Cmp
) {
3962 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3963 Value
*Op0
= Cmp
.getOperand(0);
3964 Value
*X
= Cmp
.getOperand(1);
3966 // Canonicalize minimum or maximum operand to LHS of the icmp.
3967 if (match(X
, m_c_SMin(m_Specific(Op0
), m_Value())) ||
3968 match(X
, m_c_SMax(m_Specific(Op0
), m_Value())) ||
3969 match(X
, m_c_UMin(m_Specific(Op0
), m_Value())) ||
3970 match(X
, m_c_UMax(m_Specific(Op0
), m_Value()))) {
3972 Pred
= Cmp
.getSwappedPredicate();
3976 if (match(Op0
, m_c_SMin(m_Specific(X
), m_Value(Y
)))) {
3977 // smin(X, Y) == X --> X s<= Y
3978 // smin(X, Y) s>= X --> X s<= Y
3979 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_SGE
)
3980 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
3982 // smin(X, Y) != X --> X s> Y
3983 // smin(X, Y) s< X --> X s> Y
3984 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_SLT
)
3985 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
3987 // These cases should be handled in InstSimplify:
3988 // smin(X, Y) s<= X --> true
3989 // smin(X, Y) s> X --> false
3993 if (match(Op0
, m_c_SMax(m_Specific(X
), m_Value(Y
)))) {
3994 // smax(X, Y) == X --> X s>= Y
3995 // smax(X, Y) s<= X --> X s>= Y
3996 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_SLE
)
3997 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
3999 // smax(X, Y) != X --> X s< Y
4000 // smax(X, Y) s> X --> X s< Y
4001 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_SGT
)
4002 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
4004 // These cases should be handled in InstSimplify:
4005 // smax(X, Y) s>= X --> true
4006 // smax(X, Y) s< X --> false
4010 if (match(Op0
, m_c_UMin(m_Specific(X
), m_Value(Y
)))) {
4011 // umin(X, Y) == X --> X u<= Y
4012 // umin(X, Y) u>= X --> X u<= Y
4013 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_UGE
)
4014 return new ICmpInst(ICmpInst::ICMP_ULE
, X
, Y
);
4016 // umin(X, Y) != X --> X u> Y
4017 // umin(X, Y) u< X --> X u> Y
4018 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_ULT
)
4019 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
4021 // These cases should be handled in InstSimplify:
4022 // umin(X, Y) u<= X --> true
4023 // umin(X, Y) u> X --> false
4027 if (match(Op0
, m_c_UMax(m_Specific(X
), m_Value(Y
)))) {
4028 // umax(X, Y) == X --> X u>= Y
4029 // umax(X, Y) u<= X --> X u>= Y
4030 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_ULE
)
4031 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, Y
);
4033 // umax(X, Y) != X --> X u< Y
4034 // umax(X, Y) u> X --> X u< Y
4035 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_UGT
)
4036 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
4038 // These cases should be handled in InstSimplify:
4039 // umax(X, Y) u>= X --> true
4040 // umax(X, Y) u< X --> false
4047 Instruction
*InstCombiner::foldICmpEquality(ICmpInst
&I
) {
4048 if (!I
.isEquality())
4051 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4052 const CmpInst::Predicate Pred
= I
.getPredicate();
4053 Value
*A
, *B
, *C
, *D
;
4054 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
4055 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
4056 Value
*OtherVal
= A
== Op1
? B
: A
;
4057 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
4060 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
4061 // A^c1 == C^c2 --> A == C^(c1^c2)
4062 ConstantInt
*C1
, *C2
;
4063 if (match(B
, m_ConstantInt(C1
)) && match(D
, m_ConstantInt(C2
)) &&
4065 Constant
*NC
= Builder
.getInt(C1
->getValue() ^ C2
->getValue());
4066 Value
*Xor
= Builder
.CreateXor(C
, NC
);
4067 return new ICmpInst(Pred
, A
, Xor
);
4070 // A^B == A^D -> B == D
4072 return new ICmpInst(Pred
, B
, D
);
4074 return new ICmpInst(Pred
, B
, C
);
4076 return new ICmpInst(Pred
, A
, D
);
4078 return new ICmpInst(Pred
, A
, C
);
4082 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) && (A
== Op0
|| B
== Op0
)) {
4083 // A == (A^B) -> B == 0
4084 Value
*OtherVal
= A
== Op0
? B
: A
;
4085 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
4088 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4089 if (match(Op0
, m_OneUse(m_And(m_Value(A
), m_Value(B
)))) &&
4090 match(Op1
, m_OneUse(m_And(m_Value(C
), m_Value(D
))))) {
4091 Value
*X
= nullptr, *Y
= nullptr, *Z
= nullptr;
4097 } else if (A
== D
) {
4101 } else if (B
== C
) {
4105 } else if (B
== D
) {
4111 if (X
) { // Build (X^Y) & Z
4112 Op1
= Builder
.CreateXor(X
, Y
);
4113 Op1
= Builder
.CreateAnd(Op1
, Z
);
4114 I
.setOperand(0, Op1
);
4115 I
.setOperand(1, Constant::getNullValue(Op1
->getType()));
4120 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4121 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4123 if ((Op0
->hasOneUse() && match(Op0
, m_ZExt(m_Value(A
))) &&
4124 match(Op1
, m_And(m_Value(B
), m_ConstantInt(Cst1
)))) ||
4125 (Op1
->hasOneUse() && match(Op0
, m_And(m_Value(B
), m_ConstantInt(Cst1
))) &&
4126 match(Op1
, m_ZExt(m_Value(A
))))) {
4127 APInt Pow2
= Cst1
->getValue() + 1;
4128 if (Pow2
.isPowerOf2() && isa
<IntegerType
>(A
->getType()) &&
4129 Pow2
.logBase2() == cast
<IntegerType
>(A
->getType())->getBitWidth())
4130 return new ICmpInst(Pred
, A
, Builder
.CreateTrunc(B
, A
->getType()));
4133 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4134 // For lshr and ashr pairs.
4135 if ((match(Op0
, m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4136 match(Op1
, m_OneUse(m_LShr(m_Value(B
), m_Specific(Cst1
))))) ||
4137 (match(Op0
, m_OneUse(m_AShr(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4138 match(Op1
, m_OneUse(m_AShr(m_Value(B
), m_Specific(Cst1
)))))) {
4139 unsigned TypeBits
= Cst1
->getBitWidth();
4140 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
4141 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
4142 ICmpInst::Predicate NewPred
=
4143 Pred
== ICmpInst::ICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
4144 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
4145 APInt CmpVal
= APInt::getOneBitSet(TypeBits
, ShAmt
);
4146 return new ICmpInst(NewPred
, Xor
, Builder
.getInt(CmpVal
));
4150 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4151 if (match(Op0
, m_OneUse(m_Shl(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4152 match(Op1
, m_OneUse(m_Shl(m_Value(B
), m_Specific(Cst1
))))) {
4153 unsigned TypeBits
= Cst1
->getBitWidth();
4154 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
4155 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
4156 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
4157 APInt AndVal
= APInt::getLowBitsSet(TypeBits
, TypeBits
- ShAmt
);
4158 Value
*And
= Builder
.CreateAnd(Xor
, Builder
.getInt(AndVal
),
4159 I
.getName() + ".mask");
4160 return new ICmpInst(Pred
, And
, Constant::getNullValue(Cst1
->getType()));
4164 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4165 // "icmp (and X, mask), cst"
4167 if (Op0
->hasOneUse() &&
4168 match(Op0
, m_Trunc(m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(ShAmt
))))) &&
4169 match(Op1
, m_ConstantInt(Cst1
)) &&
4170 // Only do this when A has multiple uses. This is most important to do
4171 // when it exposes other optimizations.
4173 unsigned ASize
= cast
<IntegerType
>(A
->getType())->getPrimitiveSizeInBits();
4175 if (ShAmt
< ASize
) {
4177 APInt::getLowBitsSet(ASize
, Op0
->getType()->getPrimitiveSizeInBits());
4180 APInt CmpV
= Cst1
->getValue().zext(ASize
);
4183 Value
*Mask
= Builder
.CreateAnd(A
, Builder
.getInt(MaskV
));
4184 return new ICmpInst(Pred
, Mask
, Builder
.getInt(CmpV
));
4188 // If both operands are byte-swapped or bit-reversed, just compare the
4190 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4191 // and handle more intrinsics.
4192 if ((match(Op0
, m_BSwap(m_Value(A
))) && match(Op1
, m_BSwap(m_Value(B
)))) ||
4193 (match(Op0
, m_BitReverse(m_Value(A
))) &&
4194 match(Op1
, m_BitReverse(m_Value(B
)))))
4195 return new ICmpInst(Pred
, A
, B
);
4197 // Canonicalize checking for a power-of-2-or-zero value:
4198 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4199 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4200 if (!match(Op0
, m_OneUse(m_c_And(m_Add(m_Value(A
), m_AllOnes()),
4202 !match(Op1
, m_ZeroInt()))
4205 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4206 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4207 if (match(Op0
, m_OneUse(m_c_And(m_Neg(m_Specific(Op1
)), m_Specific(Op1
)))))
4210 m_OneUse(m_c_And(m_Neg(m_Specific(Op0
)), m_Specific(Op0
)))))
4214 Type
*Ty
= A
->getType();
4215 CallInst
*CtPop
= Builder
.CreateUnaryIntrinsic(Intrinsic::ctpop
, A
);
4216 return Pred
== ICmpInst::ICMP_EQ
4217 ? new ICmpInst(ICmpInst::ICMP_ULT
, CtPop
, ConstantInt::get(Ty
, 2))
4218 : new ICmpInst(ICmpInst::ICMP_UGT
, CtPop
, ConstantInt::get(Ty
, 1));
4224 static Instruction
*foldICmpWithZextOrSext(ICmpInst
&ICmp
,
4225 InstCombiner::BuilderTy
&Builder
) {
4226 assert(isa
<CastInst
>(ICmp
.getOperand(0)) && "Expected cast for operand 0");
4227 auto *CastOp0
= cast
<CastInst
>(ICmp
.getOperand(0));
4229 if (!match(CastOp0
, m_ZExtOrSExt(m_Value(X
))))
4232 bool IsSignedExt
= CastOp0
->getOpcode() == Instruction::SExt
;
4233 bool IsSignedCmp
= ICmp
.isSigned();
4234 if (auto *CastOp1
= dyn_cast
<CastInst
>(ICmp
.getOperand(1))) {
4235 // If the signedness of the two casts doesn't agree (i.e. one is a sext
4236 // and the other is a zext), then we can't handle this.
4237 // TODO: This is too strict. We can handle some predicates (equality?).
4238 if (CastOp0
->getOpcode() != CastOp1
->getOpcode())
4241 // Not an extension from the same type?
4242 Value
*Y
= CastOp1
->getOperand(0);
4243 Type
*XTy
= X
->getType(), *YTy
= Y
->getType();
4245 // One of the casts must have one use because we are creating a new cast.
4246 if (!CastOp0
->hasOneUse() && !CastOp1
->hasOneUse())
4248 // Extend the narrower operand to the type of the wider operand.
4249 if (XTy
->getScalarSizeInBits() < YTy
->getScalarSizeInBits())
4250 X
= Builder
.CreateCast(CastOp0
->getOpcode(), X
, YTy
);
4251 else if (YTy
->getScalarSizeInBits() < XTy
->getScalarSizeInBits())
4252 Y
= Builder
.CreateCast(CastOp0
->getOpcode(), Y
, XTy
);
4257 // (zext X) == (zext Y) --> X == Y
4258 // (sext X) == (sext Y) --> X == Y
4259 if (ICmp
.isEquality())
4260 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
4262 // A signed comparison of sign extended values simplifies into a
4263 // signed comparison.
4264 if (IsSignedCmp
&& IsSignedExt
)
4265 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
4267 // The other three cases all fold into an unsigned comparison.
4268 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Y
);
4271 // Below here, we are only folding a compare with constant.
4272 auto *C
= dyn_cast
<Constant
>(ICmp
.getOperand(1));
4276 // Compute the constant that would happen if we truncated to SrcTy then
4277 // re-extended to DestTy.
4278 Type
*SrcTy
= CastOp0
->getSrcTy();
4279 Type
*DestTy
= CastOp0
->getDestTy();
4280 Constant
*Res1
= ConstantExpr::getTrunc(C
, SrcTy
);
4281 Constant
*Res2
= ConstantExpr::getCast(CastOp0
->getOpcode(), Res1
, DestTy
);
4283 // If the re-extended constant didn't change...
4285 if (ICmp
.isEquality())
4286 return new ICmpInst(ICmp
.getPredicate(), X
, Res1
);
4288 // A signed comparison of sign extended values simplifies into a
4289 // signed comparison.
4290 if (IsSignedExt
&& IsSignedCmp
)
4291 return new ICmpInst(ICmp
.getPredicate(), X
, Res1
);
4293 // The other three cases all fold into an unsigned comparison.
4294 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Res1
);
4297 // The re-extended constant changed, partly changed (in the case of a vector),
4298 // or could not be determined to be equal (in the case of a constant
4299 // expression), so the constant cannot be represented in the shorter type.
4300 // All the cases that fold to true or false will have already been handled
4301 // by SimplifyICmpInst, so only deal with the tricky case.
4302 if (IsSignedCmp
|| !IsSignedExt
|| !isa
<ConstantInt
>(C
))
4305 // Is source op positive?
4306 // icmp ult (sext X), C --> icmp sgt X, -1
4307 if (ICmp
.getPredicate() == ICmpInst::ICMP_ULT
)
4308 return new ICmpInst(CmpInst::ICMP_SGT
, X
, Constant::getAllOnesValue(SrcTy
));
4310 // Is source op negative?
4311 // icmp ugt (sext X), C --> icmp slt X, 0
4312 assert(ICmp
.getPredicate() == ICmpInst::ICMP_UGT
&& "ICmp should be folded!");
4313 return new ICmpInst(CmpInst::ICMP_SLT
, X
, Constant::getNullValue(SrcTy
));
4316 /// Handle icmp (cast x), (cast or constant).
4317 Instruction
*InstCombiner::foldICmpWithCastOp(ICmpInst
&ICmp
) {
4318 auto *CastOp0
= dyn_cast
<CastInst
>(ICmp
.getOperand(0));
4321 if (!isa
<Constant
>(ICmp
.getOperand(1)) && !isa
<CastInst
>(ICmp
.getOperand(1)))
4324 Value
*Op0Src
= CastOp0
->getOperand(0);
4325 Type
*SrcTy
= CastOp0
->getSrcTy();
4326 Type
*DestTy
= CastOp0
->getDestTy();
4328 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4329 // integer type is the same size as the pointer type.
4330 auto CompatibleSizes
= [&](Type
*SrcTy
, Type
*DestTy
) {
4331 if (isa
<VectorType
>(SrcTy
)) {
4332 SrcTy
= cast
<VectorType
>(SrcTy
)->getElementType();
4333 DestTy
= cast
<VectorType
>(DestTy
)->getElementType();
4335 return DL
.getPointerTypeSizeInBits(SrcTy
) == DestTy
->getIntegerBitWidth();
4337 if (CastOp0
->getOpcode() == Instruction::PtrToInt
&&
4338 CompatibleSizes(SrcTy
, DestTy
)) {
4339 Value
*NewOp1
= nullptr;
4340 if (auto *PtrToIntOp1
= dyn_cast
<PtrToIntOperator
>(ICmp
.getOperand(1))) {
4341 Value
*PtrSrc
= PtrToIntOp1
->getOperand(0);
4342 if (PtrSrc
->getType()->getPointerAddressSpace() ==
4343 Op0Src
->getType()->getPointerAddressSpace()) {
4344 NewOp1
= PtrToIntOp1
->getOperand(0);
4345 // If the pointer types don't match, insert a bitcast.
4346 if (Op0Src
->getType() != NewOp1
->getType())
4347 NewOp1
= Builder
.CreateBitCast(NewOp1
, Op0Src
->getType());
4349 } else if (auto *RHSC
= dyn_cast
<Constant
>(ICmp
.getOperand(1))) {
4350 NewOp1
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
4354 return new ICmpInst(ICmp
.getPredicate(), Op0Src
, NewOp1
);
4357 return foldICmpWithZextOrSext(ICmp
, Builder
);
4360 static bool isNeutralValue(Instruction::BinaryOps BinaryOp
, Value
*RHS
) {
4363 llvm_unreachable("Unsupported binary op");
4364 case Instruction::Add
:
4365 case Instruction::Sub
:
4366 return match(RHS
, m_Zero());
4367 case Instruction::Mul
:
4368 return match(RHS
, m_One());
4372 OverflowResult
InstCombiner::computeOverflow(
4373 Instruction::BinaryOps BinaryOp
, bool IsSigned
,
4374 Value
*LHS
, Value
*RHS
, Instruction
*CxtI
) const {
4377 llvm_unreachable("Unsupported binary op");
4378 case Instruction::Add
:
4380 return computeOverflowForSignedAdd(LHS
, RHS
, CxtI
);
4382 return computeOverflowForUnsignedAdd(LHS
, RHS
, CxtI
);
4383 case Instruction::Sub
:
4385 return computeOverflowForSignedSub(LHS
, RHS
, CxtI
);
4387 return computeOverflowForUnsignedSub(LHS
, RHS
, CxtI
);
4388 case Instruction::Mul
:
4390 return computeOverflowForSignedMul(LHS
, RHS
, CxtI
);
4392 return computeOverflowForUnsignedMul(LHS
, RHS
, CxtI
);
4396 bool InstCombiner::OptimizeOverflowCheck(
4397 Instruction::BinaryOps BinaryOp
, bool IsSigned
, Value
*LHS
, Value
*RHS
,
4398 Instruction
&OrigI
, Value
*&Result
, Constant
*&Overflow
) {
4399 if (OrigI
.isCommutative() && isa
<Constant
>(LHS
) && !isa
<Constant
>(RHS
))
4400 std::swap(LHS
, RHS
);
4402 // If the overflow check was an add followed by a compare, the insertion point
4403 // may be pointing to the compare. We want to insert the new instructions
4404 // before the add in case there are uses of the add between the add and the
4406 Builder
.SetInsertPoint(&OrigI
);
4408 if (isNeutralValue(BinaryOp
, RHS
)) {
4410 Overflow
= Builder
.getFalse();
4414 switch (computeOverflow(BinaryOp
, IsSigned
, LHS
, RHS
, &OrigI
)) {
4415 case OverflowResult::MayOverflow
:
4417 case OverflowResult::AlwaysOverflowsLow
:
4418 case OverflowResult::AlwaysOverflowsHigh
:
4419 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
4420 Result
->takeName(&OrigI
);
4421 Overflow
= Builder
.getTrue();
4423 case OverflowResult::NeverOverflows
:
4424 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
4425 Result
->takeName(&OrigI
);
4426 Overflow
= Builder
.getFalse();
4427 if (auto *Inst
= dyn_cast
<Instruction
>(Result
)) {
4429 Inst
->setHasNoSignedWrap();
4431 Inst
->setHasNoUnsignedWrap();
4436 llvm_unreachable("Unexpected overflow result");
4439 /// Recognize and process idiom involving test for multiplication
4442 /// The caller has matched a pattern of the form:
4443 /// I = cmp u (mul(zext A, zext B), V
4444 /// The function checks if this is a test for overflow and if so replaces
4445 /// multiplication with call to 'mul.with.overflow' intrinsic.
4447 /// \param I Compare instruction.
4448 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
4449 /// the compare instruction. Must be of integer type.
4450 /// \param OtherVal The other argument of compare instruction.
4451 /// \returns Instruction which must replace the compare instruction, NULL if no
4452 /// replacement required.
4453 static Instruction
*processUMulZExtIdiom(ICmpInst
&I
, Value
*MulVal
,
4454 Value
*OtherVal
, InstCombiner
&IC
) {
4455 // Don't bother doing this transformation for pointers, don't do it for
4457 if (!isa
<IntegerType
>(MulVal
->getType()))
4460 assert(I
.getOperand(0) == MulVal
|| I
.getOperand(1) == MulVal
);
4461 assert(I
.getOperand(0) == OtherVal
|| I
.getOperand(1) == OtherVal
);
4462 auto *MulInstr
= dyn_cast
<Instruction
>(MulVal
);
4465 assert(MulInstr
->getOpcode() == Instruction::Mul
);
4467 auto *LHS
= cast
<ZExtOperator
>(MulInstr
->getOperand(0)),
4468 *RHS
= cast
<ZExtOperator
>(MulInstr
->getOperand(1));
4469 assert(LHS
->getOpcode() == Instruction::ZExt
);
4470 assert(RHS
->getOpcode() == Instruction::ZExt
);
4471 Value
*A
= LHS
->getOperand(0), *B
= RHS
->getOperand(0);
4473 // Calculate type and width of the result produced by mul.with.overflow.
4474 Type
*TyA
= A
->getType(), *TyB
= B
->getType();
4475 unsigned WidthA
= TyA
->getPrimitiveSizeInBits(),
4476 WidthB
= TyB
->getPrimitiveSizeInBits();
4479 if (WidthB
> WidthA
) {
4487 // In order to replace the original mul with a narrower mul.with.overflow,
4488 // all uses must ignore upper bits of the product. The number of used low
4489 // bits must be not greater than the width of mul.with.overflow.
4490 if (MulVal
->hasNUsesOrMore(2))
4491 for (User
*U
: MulVal
->users()) {
4494 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
4495 // Check if truncation ignores bits above MulWidth.
4496 unsigned TruncWidth
= TI
->getType()->getPrimitiveSizeInBits();
4497 if (TruncWidth
> MulWidth
)
4499 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
4500 // Check if AND ignores bits above MulWidth.
4501 if (BO
->getOpcode() != Instruction::And
)
4503 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
4504 const APInt
&CVal
= CI
->getValue();
4505 if (CVal
.getBitWidth() - CVal
.countLeadingZeros() > MulWidth
)
4508 // In this case we could have the operand of the binary operation
4509 // being defined in another block, and performing the replacement
4510 // could break the dominance relation.
4514 // Other uses prohibit this transformation.
4519 // Recognize patterns
4520 switch (I
.getPredicate()) {
4521 case ICmpInst::ICMP_EQ
:
4522 case ICmpInst::ICMP_NE
:
4523 // Recognize pattern:
4524 // mulval = mul(zext A, zext B)
4525 // cmp eq/neq mulval, zext trunc mulval
4526 if (ZExtInst
*Zext
= dyn_cast
<ZExtInst
>(OtherVal
))
4527 if (Zext
->hasOneUse()) {
4528 Value
*ZextArg
= Zext
->getOperand(0);
4529 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(ZextArg
))
4530 if (Trunc
->getType()->getPrimitiveSizeInBits() == MulWidth
)
4534 // Recognize pattern:
4535 // mulval = mul(zext A, zext B)
4536 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4539 if (match(OtherVal
, m_And(m_Value(ValToMask
), m_ConstantInt(CI
)))) {
4540 if (ValToMask
!= MulVal
)
4542 const APInt
&CVal
= CI
->getValue() + 1;
4543 if (CVal
.isPowerOf2()) {
4544 unsigned MaskWidth
= CVal
.logBase2();
4545 if (MaskWidth
== MulWidth
)
4546 break; // Recognized
4551 case ICmpInst::ICMP_UGT
:
4552 // Recognize pattern:
4553 // mulval = mul(zext A, zext B)
4554 // cmp ugt mulval, max
4555 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4556 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
4557 MaxVal
= MaxVal
.zext(CI
->getBitWidth());
4558 if (MaxVal
.eq(CI
->getValue()))
4559 break; // Recognized
4563 case ICmpInst::ICMP_UGE
:
4564 // Recognize pattern:
4565 // mulval = mul(zext A, zext B)
4566 // cmp uge mulval, max+1
4567 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4568 APInt MaxVal
= APInt::getOneBitSet(CI
->getBitWidth(), MulWidth
);
4569 if (MaxVal
.eq(CI
->getValue()))
4570 break; // Recognized
4574 case ICmpInst::ICMP_ULE
:
4575 // Recognize pattern:
4576 // mulval = mul(zext A, zext B)
4577 // cmp ule mulval, max
4578 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4579 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
4580 MaxVal
= MaxVal
.zext(CI
->getBitWidth());
4581 if (MaxVal
.eq(CI
->getValue()))
4582 break; // Recognized
4586 case ICmpInst::ICMP_ULT
:
4587 // Recognize pattern:
4588 // mulval = mul(zext A, zext B)
4589 // cmp ule mulval, max + 1
4590 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4591 APInt MaxVal
= APInt::getOneBitSet(CI
->getBitWidth(), MulWidth
);
4592 if (MaxVal
.eq(CI
->getValue()))
4593 break; // Recognized
4601 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
4602 Builder
.SetInsertPoint(MulInstr
);
4604 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4605 Value
*MulA
= A
, *MulB
= B
;
4606 if (WidthA
< MulWidth
)
4607 MulA
= Builder
.CreateZExt(A
, MulType
);
4608 if (WidthB
< MulWidth
)
4609 MulB
= Builder
.CreateZExt(B
, MulType
);
4610 Function
*F
= Intrinsic::getDeclaration(
4611 I
.getModule(), Intrinsic::umul_with_overflow
, MulType
);
4612 CallInst
*Call
= Builder
.CreateCall(F
, {MulA
, MulB
}, "umul");
4613 IC
.Worklist
.Add(MulInstr
);
4615 // If there are uses of mul result other than the comparison, we know that
4616 // they are truncation or binary AND. Change them to use result of
4617 // mul.with.overflow and adjust properly mask/size.
4618 if (MulVal
->hasNUsesOrMore(2)) {
4619 Value
*Mul
= Builder
.CreateExtractValue(Call
, 0, "umul.value");
4620 for (auto UI
= MulVal
->user_begin(), UE
= MulVal
->user_end(); UI
!= UE
;) {
4622 if (U
== &I
|| U
== OtherVal
)
4624 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
4625 if (TI
->getType()->getPrimitiveSizeInBits() == MulWidth
)
4626 IC
.replaceInstUsesWith(*TI
, Mul
);
4628 TI
->setOperand(0, Mul
);
4629 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
4630 assert(BO
->getOpcode() == Instruction::And
);
4631 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4632 ConstantInt
*CI
= cast
<ConstantInt
>(BO
->getOperand(1));
4633 APInt ShortMask
= CI
->getValue().trunc(MulWidth
);
4634 Value
*ShortAnd
= Builder
.CreateAnd(Mul
, ShortMask
);
4636 cast
<Instruction
>(Builder
.CreateZExt(ShortAnd
, BO
->getType()));
4637 IC
.Worklist
.Add(Zext
);
4638 IC
.replaceInstUsesWith(*BO
, Zext
);
4640 llvm_unreachable("Unexpected Binary operation");
4642 IC
.Worklist
.Add(cast
<Instruction
>(U
));
4645 if (isa
<Instruction
>(OtherVal
))
4646 IC
.Worklist
.Add(cast
<Instruction
>(OtherVal
));
4648 // The original icmp gets replaced with the overflow value, maybe inverted
4649 // depending on predicate.
4650 bool Inverse
= false;
4651 switch (I
.getPredicate()) {
4652 case ICmpInst::ICMP_NE
:
4654 case ICmpInst::ICMP_EQ
:
4657 case ICmpInst::ICMP_UGT
:
4658 case ICmpInst::ICMP_UGE
:
4659 if (I
.getOperand(0) == MulVal
)
4663 case ICmpInst::ICMP_ULT
:
4664 case ICmpInst::ICMP_ULE
:
4665 if (I
.getOperand(1) == MulVal
)
4670 llvm_unreachable("Unexpected predicate");
4673 Value
*Res
= Builder
.CreateExtractValue(Call
, 1);
4674 return BinaryOperator::CreateNot(Res
);
4677 return ExtractValueInst::Create(Call
, 1);
4680 /// When performing a comparison against a constant, it is possible that not all
4681 /// the bits in the LHS are demanded. This helper method computes the mask that
4683 static APInt
getDemandedBitsLHSMask(ICmpInst
&I
, unsigned BitWidth
) {
4685 if (!match(I
.getOperand(1), m_APInt(RHS
)))
4686 return APInt::getAllOnesValue(BitWidth
);
4688 // If this is a normal comparison, it demands all bits. If it is a sign bit
4689 // comparison, it only demands the sign bit.
4691 if (isSignBitCheck(I
.getPredicate(), *RHS
, UnusedBit
))
4692 return APInt::getSignMask(BitWidth
);
4694 switch (I
.getPredicate()) {
4695 // For a UGT comparison, we don't care about any bits that
4696 // correspond to the trailing ones of the comparand. The value of these
4697 // bits doesn't impact the outcome of the comparison, because any value
4698 // greater than the RHS must differ in a bit higher than these due to carry.
4699 case ICmpInst::ICMP_UGT
:
4700 return APInt::getBitsSetFrom(BitWidth
, RHS
->countTrailingOnes());
4702 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4703 // Any value less than the RHS must differ in a higher bit because of carries.
4704 case ICmpInst::ICMP_ULT
:
4705 return APInt::getBitsSetFrom(BitWidth
, RHS
->countTrailingZeros());
4708 return APInt::getAllOnesValue(BitWidth
);
4712 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4713 /// should be swapped.
4714 /// The decision is based on how many times these two operands are reused
4715 /// as subtract operands and their positions in those instructions.
4716 /// The rationale is that several architectures use the same instruction for
4717 /// both subtract and cmp. Thus, it is better if the order of those operands
4719 /// \return true if Op0 and Op1 should be swapped.
4720 static bool swapMayExposeCSEOpportunities(const Value
*Op0
, const Value
*Op1
) {
4721 // Filter out pointer values as those cannot appear directly in subtract.
4722 // FIXME: we may want to go through inttoptrs or bitcasts.
4723 if (Op0
->getType()->isPointerTy())
4725 // If a subtract already has the same operands as a compare, swapping would be
4726 // bad. If a subtract has the same operands as a compare but in reverse order,
4727 // then swapping is good.
4729 for (const User
*U
: Op0
->users()) {
4730 if (match(U
, m_Sub(m_Specific(Op1
), m_Specific(Op0
))))
4732 else if (match(U
, m_Sub(m_Specific(Op0
), m_Specific(Op1
))))
4735 return GoodToSwap
> 0;
4738 /// Check that one use is in the same block as the definition and all
4739 /// other uses are in blocks dominated by a given block.
4741 /// \param DI Definition
4743 /// \param DB Block that must dominate all uses of \p DI outside
4744 /// the parent block
4745 /// \return true when \p UI is the only use of \p DI in the parent block
4746 /// and all other uses of \p DI are in blocks dominated by \p DB.
4748 bool InstCombiner::dominatesAllUses(const Instruction
*DI
,
4749 const Instruction
*UI
,
4750 const BasicBlock
*DB
) const {
4751 assert(DI
&& UI
&& "Instruction not defined\n");
4752 // Ignore incomplete definitions.
4753 if (!DI
->getParent())
4755 // DI and UI must be in the same block.
4756 if (DI
->getParent() != UI
->getParent())
4758 // Protect from self-referencing blocks.
4759 if (DI
->getParent() == DB
)
4761 for (const User
*U
: DI
->users()) {
4762 auto *Usr
= cast
<Instruction
>(U
);
4763 if (Usr
!= UI
&& !DT
.dominates(DB
, Usr
->getParent()))
4769 /// Return true when the instruction sequence within a block is select-cmp-br.
4770 static bool isChainSelectCmpBranch(const SelectInst
*SI
) {
4771 const BasicBlock
*BB
= SI
->getParent();
4774 auto *BI
= dyn_cast_or_null
<BranchInst
>(BB
->getTerminator());
4775 if (!BI
|| BI
->getNumSuccessors() != 2)
4777 auto *IC
= dyn_cast
<ICmpInst
>(BI
->getCondition());
4778 if (!IC
|| (IC
->getOperand(0) != SI
&& IC
->getOperand(1) != SI
))
4783 /// True when a select result is replaced by one of its operands
4784 /// in select-icmp sequence. This will eventually result in the elimination
4787 /// \param SI Select instruction
4788 /// \param Icmp Compare instruction
4789 /// \param SIOpd Operand that replaces the select
4792 /// - The replacement is global and requires dominator information
4793 /// - The caller is responsible for the actual replacement
4798 /// %4 = select i1 %3, %C* %0, %C* null
4799 /// %5 = icmp eq %C* %4, null
4800 /// br i1 %5, label %9, label %7
4802 /// ; <label>:7 ; preds = %entry
4803 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4806 /// can be transformed to
4808 /// %5 = icmp eq %C* %0, null
4809 /// %6 = select i1 %3, i1 %5, i1 true
4810 /// br i1 %6, label %9, label %7
4812 /// ; <label>:7 ; preds = %entry
4813 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
4815 /// Similar when the first operand of the select is a constant or/and
4816 /// the compare is for not equal rather than equal.
4818 /// NOTE: The function is only called when the select and compare constants
4819 /// are equal, the optimization can work only for EQ predicates. This is not a
4820 /// major restriction since a NE compare should be 'normalized' to an equal
4821 /// compare, which usually happens in the combiner and test case
4822 /// select-cmp-br.ll checks for it.
4823 bool InstCombiner::replacedSelectWithOperand(SelectInst
*SI
,
4824 const ICmpInst
*Icmp
,
4825 const unsigned SIOpd
) {
4826 assert((SIOpd
== 1 || SIOpd
== 2) && "Invalid select operand!");
4827 if (isChainSelectCmpBranch(SI
) && Icmp
->getPredicate() == ICmpInst::ICMP_EQ
) {
4828 BasicBlock
*Succ
= SI
->getParent()->getTerminator()->getSuccessor(1);
4829 // The check for the single predecessor is not the best that can be
4830 // done. But it protects efficiently against cases like when SI's
4831 // home block has two successors, Succ and Succ1, and Succ1 predecessor
4832 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4833 // replaced can be reached on either path. So the uniqueness check
4834 // guarantees that the path all uses of SI (outside SI's parent) are on
4835 // is disjoint from all other paths out of SI. But that information
4836 // is more expensive to compute, and the trade-off here is in favor
4837 // of compile-time. It should also be noticed that we check for a single
4838 // predecessor and not only uniqueness. This to handle the situation when
4839 // Succ and Succ1 points to the same basic block.
4840 if (Succ
->getSinglePredecessor() && dominatesAllUses(SI
, Icmp
, Succ
)) {
4842 SI
->replaceUsesOutsideBlock(SI
->getOperand(SIOpd
), SI
->getParent());
4849 /// Try to fold the comparison based on range information we can get by checking
4850 /// whether bits are known to be zero or one in the inputs.
4851 Instruction
*InstCombiner::foldICmpUsingKnownBits(ICmpInst
&I
) {
4852 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4853 Type
*Ty
= Op0
->getType();
4854 ICmpInst::Predicate Pred
= I
.getPredicate();
4856 // Get scalar or pointer size.
4857 unsigned BitWidth
= Ty
->isIntOrIntVectorTy()
4858 ? Ty
->getScalarSizeInBits()
4859 : DL
.getIndexTypeSizeInBits(Ty
->getScalarType());
4864 KnownBits
Op0Known(BitWidth
);
4865 KnownBits
Op1Known(BitWidth
);
4867 if (SimplifyDemandedBits(&I
, 0,
4868 getDemandedBitsLHSMask(I
, BitWidth
),
4872 if (SimplifyDemandedBits(&I
, 1, APInt::getAllOnesValue(BitWidth
),
4876 // Given the known and unknown bits, compute a range that the LHS could be
4877 // in. Compute the Min, Max and RHS values based on the known bits. For the
4878 // EQ and NE we use unsigned values.
4879 APInt
Op0Min(BitWidth
, 0), Op0Max(BitWidth
, 0);
4880 APInt
Op1Min(BitWidth
, 0), Op1Max(BitWidth
, 0);
4882 computeSignedMinMaxValuesFromKnownBits(Op0Known
, Op0Min
, Op0Max
);
4883 computeSignedMinMaxValuesFromKnownBits(Op1Known
, Op1Min
, Op1Max
);
4885 computeUnsignedMinMaxValuesFromKnownBits(Op0Known
, Op0Min
, Op0Max
);
4886 computeUnsignedMinMaxValuesFromKnownBits(Op1Known
, Op1Min
, Op1Max
);
4889 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4890 // out that the LHS or RHS is a constant. Constant fold this now, so that
4891 // code below can assume that Min != Max.
4892 if (!isa
<Constant
>(Op0
) && Op0Min
== Op0Max
)
4893 return new ICmpInst(Pred
, ConstantExpr::getIntegerValue(Ty
, Op0Min
), Op1
);
4894 if (!isa
<Constant
>(Op1
) && Op1Min
== Op1Max
)
4895 return new ICmpInst(Pred
, Op0
, ConstantExpr::getIntegerValue(Ty
, Op1Min
));
4897 // Based on the range information we know about the LHS, see if we can
4898 // simplify this comparison. For example, (x&4) < 8 is always true.
4901 llvm_unreachable("Unknown icmp opcode!");
4902 case ICmpInst::ICMP_EQ
:
4903 case ICmpInst::ICMP_NE
: {
4904 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
)) {
4905 return Pred
== CmpInst::ICMP_EQ
4906 ? replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()))
4907 : replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4910 // If all bits are known zero except for one, then we know at most one bit
4911 // is set. If the comparison is against zero, then this is a check to see if
4912 // *that* bit is set.
4913 APInt Op0KnownZeroInverted
= ~Op0Known
.Zero
;
4914 if (Op1Known
.isZero()) {
4915 // If the LHS is an AND with the same constant, look through it.
4916 Value
*LHS
= nullptr;
4918 if (!match(Op0
, m_And(m_Value(LHS
), m_APInt(LHSC
))) ||
4919 *LHSC
!= Op0KnownZeroInverted
)
4923 if (match(LHS
, m_Shl(m_One(), m_Value(X
)))) {
4924 APInt ValToCheck
= Op0KnownZeroInverted
;
4925 Type
*XTy
= X
->getType();
4926 if (ValToCheck
.isPowerOf2()) {
4927 // ((1 << X) & 8) == 0 -> X != 3
4928 // ((1 << X) & 8) != 0 -> X == 3
4929 auto *CmpC
= ConstantInt::get(XTy
, ValToCheck
.countTrailingZeros());
4930 auto NewPred
= ICmpInst::getInversePredicate(Pred
);
4931 return new ICmpInst(NewPred
, X
, CmpC
);
4932 } else if ((++ValToCheck
).isPowerOf2()) {
4933 // ((1 << X) & 7) == 0 -> X >= 3
4934 // ((1 << X) & 7) != 0 -> X < 3
4935 auto *CmpC
= ConstantInt::get(XTy
, ValToCheck
.countTrailingZeros());
4937 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_UGE
: CmpInst::ICMP_ULT
;
4938 return new ICmpInst(NewPred
, X
, CmpC
);
4942 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4944 if (Op0KnownZeroInverted
.isOneValue() &&
4945 match(LHS
, m_LShr(m_Power2(CI
), m_Value(X
)))) {
4946 // ((8 >>u X) & 1) == 0 -> X != 3
4947 // ((8 >>u X) & 1) != 0 -> X == 3
4948 unsigned CmpVal
= CI
->countTrailingZeros();
4949 auto NewPred
= ICmpInst::getInversePredicate(Pred
);
4950 return new ICmpInst(NewPred
, X
, ConstantInt::get(X
->getType(), CmpVal
));
4955 case ICmpInst::ICMP_ULT
: {
4956 if (Op0Max
.ult(Op1Min
)) // A <u B -> true if max(A) < min(B)
4957 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4958 if (Op0Min
.uge(Op1Max
)) // A <u B -> false if min(A) >= max(B)
4959 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4960 if (Op1Min
== Op0Max
) // A <u B -> A != B if max(A) == min(B)
4961 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4964 if (match(Op1
, m_APInt(CmpC
))) {
4965 // A <u C -> A == C-1 if min(A)+1 == C
4966 if (*CmpC
== Op0Min
+ 1)
4967 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
4968 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
4969 // X <u C --> X == 0, if the number of zero bits in the bottom of X
4970 // exceeds the log2 of C.
4971 if (Op0Known
.countMinTrailingZeros() >= CmpC
->ceilLogBase2())
4972 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
4973 Constant::getNullValue(Op1
->getType()));
4977 case ICmpInst::ICMP_UGT
: {
4978 if (Op0Min
.ugt(Op1Max
)) // A >u B -> true if min(A) > max(B)
4979 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4980 if (Op0Max
.ule(Op1Min
)) // A >u B -> false if max(A) <= max(B)
4981 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4982 if (Op1Max
== Op0Min
) // A >u B -> A != B if min(A) == max(B)
4983 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4986 if (match(Op1
, m_APInt(CmpC
))) {
4987 // A >u C -> A == C+1 if max(a)-1 == C
4988 if (*CmpC
== Op0Max
- 1)
4989 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
4990 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
4991 // X >u C --> X != 0, if the number of zero bits in the bottom of X
4992 // exceeds the log2 of C.
4993 if (Op0Known
.countMinTrailingZeros() >= CmpC
->getActiveBits())
4994 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
,
4995 Constant::getNullValue(Op1
->getType()));
4999 case ICmpInst::ICMP_SLT
: {
5000 if (Op0Max
.slt(Op1Min
)) // A <s B -> true if max(A) < min(C)
5001 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5002 if (Op0Min
.sge(Op1Max
)) // A <s B -> false if min(A) >= max(C)
5003 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5004 if (Op1Min
== Op0Max
) // A <s B -> A != B if max(A) == min(B)
5005 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5007 if (match(Op1
, m_APInt(CmpC
))) {
5008 if (*CmpC
== Op0Min
+ 1) // A <s C -> A == C-1 if min(A)+1 == C
5009 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5010 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
5014 case ICmpInst::ICMP_SGT
: {
5015 if (Op0Min
.sgt(Op1Max
)) // A >s B -> true if min(A) > max(B)
5016 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5017 if (Op0Max
.sle(Op1Min
)) // A >s B -> false if max(A) <= min(B)
5018 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5019 if (Op1Max
== Op0Min
) // A >s B -> A != B if min(A) == max(B)
5020 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5022 if (match(Op1
, m_APInt(CmpC
))) {
5023 if (*CmpC
== Op0Max
- 1) // A >s C -> A == C+1 if max(A)-1 == C
5024 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5025 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
5029 case ICmpInst::ICMP_SGE
:
5030 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SGE with ConstantInt not folded!");
5031 if (Op0Min
.sge(Op1Max
)) // A >=s B -> true if min(A) >= max(B)
5032 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5033 if (Op0Max
.slt(Op1Min
)) // A >=s B -> false if max(A) < min(B)
5034 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5035 if (Op1Min
== Op0Max
) // A >=s B -> A == B if max(A) == min(B)
5036 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5038 case ICmpInst::ICMP_SLE
:
5039 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SLE with ConstantInt not folded!");
5040 if (Op0Max
.sle(Op1Min
)) // A <=s B -> true if max(A) <= min(B)
5041 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5042 if (Op0Min
.sgt(Op1Max
)) // A <=s B -> false if min(A) > max(B)
5043 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5044 if (Op1Max
== Op0Min
) // A <=s B -> A == B if min(A) == max(B)
5045 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5047 case ICmpInst::ICMP_UGE
:
5048 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_UGE with ConstantInt not folded!");
5049 if (Op0Min
.uge(Op1Max
)) // A >=u B -> true if min(A) >= max(B)
5050 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5051 if (Op0Max
.ult(Op1Min
)) // A >=u B -> false if max(A) < min(B)
5052 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5053 if (Op1Min
== Op0Max
) // A >=u B -> A == B if max(A) == min(B)
5054 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5056 case ICmpInst::ICMP_ULE
:
5057 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_ULE with ConstantInt not folded!");
5058 if (Op0Max
.ule(Op1Min
)) // A <=u B -> true if max(A) <= min(B)
5059 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5060 if (Op0Min
.ugt(Op1Max
)) // A <=u B -> false if min(A) > max(B)
5061 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5062 if (Op1Max
== Op0Min
) // A <=u B -> A == B if min(A) == max(B)
5063 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5067 // Turn a signed comparison into an unsigned one if both operands are known to
5068 // have the same sign.
5070 ((Op0Known
.Zero
.isNegative() && Op1Known
.Zero
.isNegative()) ||
5071 (Op0Known
.One
.isNegative() && Op1Known
.One
.isNegative())))
5072 return new ICmpInst(I
.getUnsignedPredicate(), Op0
, Op1
);
5077 llvm::Optional
<std::pair
<CmpInst::Predicate
, Constant
*>>
5078 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred
,
5080 assert(ICmpInst::isRelational(Pred
) && ICmpInst::isIntPredicate(Pred
) &&
5081 "Only for relational integer predicates.");
5083 Type
*Type
= C
->getType();
5084 bool IsSigned
= ICmpInst::isSigned(Pred
);
5086 CmpInst::Predicate UnsignedPred
= ICmpInst::getUnsignedPredicate(Pred
);
5087 bool WillIncrement
=
5088 UnsignedPred
== ICmpInst::ICMP_ULE
|| UnsignedPred
== ICmpInst::ICMP_UGT
;
5090 // Check if the constant operand can be safely incremented/decremented
5091 // without overflowing/underflowing.
5092 auto ConstantIsOk
= [WillIncrement
, IsSigned
](ConstantInt
*C
) {
5093 return WillIncrement
? !C
->isMaxValue(IsSigned
) : !C
->isMinValue(IsSigned
);
5096 // For scalars, SimplifyICmpInst should have already handled
5097 // the edge cases for us, so we just assert on them.
5098 // For vectors, we must handle the edge cases.
5099 if (isa
<ConstantInt
>(C
)) {
5100 // A <= MAX -> TRUE ; A >= MIN -> TRUE
5101 assert(ConstantIsOk(cast
<ConstantInt
>(C
)));
5102 } else if (Type
->isVectorTy()) {
5103 // TODO? If the edge cases for vectors were guaranteed to be handled as they
5104 // are for scalar, we could remove the min/max checks. However, to do that,
5105 // we would have to use insertelement/shufflevector to replace edge values.
5106 unsigned NumElts
= Type
->getVectorNumElements();
5107 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5108 Constant
*Elt
= C
->getAggregateElement(i
);
5112 if (isa
<UndefValue
>(Elt
))
5115 // Bail out if we can't determine if this constant is min/max or if we
5116 // know that this constant is min/max.
5117 auto *CI
= dyn_cast
<ConstantInt
>(Elt
);
5118 if (!CI
|| !ConstantIsOk(CI
))
5126 CmpInst::Predicate NewPred
= CmpInst::getFlippedStrictnessPredicate(Pred
);
5128 // Increment or decrement the constant.
5129 Constant
*OneOrNegOne
= ConstantInt::get(Type
, WillIncrement
? 1 : -1, true);
5130 Constant
*NewC
= ConstantExpr::getAdd(C
, OneOrNegOne
);
5132 return std::make_pair(NewPred
, NewC
);
5135 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5136 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5137 /// allows them to be folded in visitICmpInst.
5138 static ICmpInst
*canonicalizeCmpWithConstant(ICmpInst
&I
) {
5139 ICmpInst::Predicate Pred
= I
.getPredicate();
5140 if (ICmpInst::isEquality(Pred
) || !ICmpInst::isIntPredicate(Pred
) ||
5141 isCanonicalPredicate(Pred
))
5144 Value
*Op0
= I
.getOperand(0);
5145 Value
*Op1
= I
.getOperand(1);
5146 auto *Op1C
= dyn_cast
<Constant
>(Op1
);
5150 auto FlippedStrictness
= getFlippedStrictnessPredicateAndConstant(Pred
, Op1C
);
5151 if (!FlippedStrictness
)
5154 return new ICmpInst(FlippedStrictness
->first
, Op0
, FlippedStrictness
->second
);
5157 /// Integer compare with boolean values can always be turned into bitwise ops.
5158 static Instruction
*canonicalizeICmpBool(ICmpInst
&I
,
5159 InstCombiner::BuilderTy
&Builder
) {
5160 Value
*A
= I
.getOperand(0), *B
= I
.getOperand(1);
5161 assert(A
->getType()->isIntOrIntVectorTy(1) && "Bools only");
5163 // A boolean compared to true/false can be simplified to Op0/true/false in
5164 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5165 // Cases not handled by InstSimplify are always 'not' of Op0.
5166 if (match(B
, m_Zero())) {
5167 switch (I
.getPredicate()) {
5168 case CmpInst::ICMP_EQ
: // A == 0 -> !A
5169 case CmpInst::ICMP_ULE
: // A <=u 0 -> !A
5170 case CmpInst::ICMP_SGE
: // A >=s 0 -> !A
5171 return BinaryOperator::CreateNot(A
);
5173 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5175 } else if (match(B
, m_One())) {
5176 switch (I
.getPredicate()) {
5177 case CmpInst::ICMP_NE
: // A != 1 -> !A
5178 case CmpInst::ICMP_ULT
: // A <u 1 -> !A
5179 case CmpInst::ICMP_SGT
: // A >s -1 -> !A
5180 return BinaryOperator::CreateNot(A
);
5182 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5186 switch (I
.getPredicate()) {
5188 llvm_unreachable("Invalid icmp instruction!");
5189 case ICmpInst::ICMP_EQ
:
5190 // icmp eq i1 A, B -> ~(A ^ B)
5191 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
5193 case ICmpInst::ICMP_NE
:
5194 // icmp ne i1 A, B -> A ^ B
5195 return BinaryOperator::CreateXor(A
, B
);
5197 case ICmpInst::ICMP_UGT
:
5198 // icmp ugt -> icmp ult
5201 case ICmpInst::ICMP_ULT
:
5202 // icmp ult i1 A, B -> ~A & B
5203 return BinaryOperator::CreateAnd(Builder
.CreateNot(A
), B
);
5205 case ICmpInst::ICMP_SGT
:
5206 // icmp sgt -> icmp slt
5209 case ICmpInst::ICMP_SLT
:
5210 // icmp slt i1 A, B -> A & ~B
5211 return BinaryOperator::CreateAnd(Builder
.CreateNot(B
), A
);
5213 case ICmpInst::ICMP_UGE
:
5214 // icmp uge -> icmp ule
5217 case ICmpInst::ICMP_ULE
:
5218 // icmp ule i1 A, B -> ~A | B
5219 return BinaryOperator::CreateOr(Builder
.CreateNot(A
), B
);
5221 case ICmpInst::ICMP_SGE
:
5222 // icmp sge -> icmp sle
5225 case ICmpInst::ICMP_SLE
:
5226 // icmp sle i1 A, B -> A | ~B
5227 return BinaryOperator::CreateOr(Builder
.CreateNot(B
), A
);
5231 // Transform pattern like:
5232 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
5233 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
5237 static Instruction
*foldICmpWithHighBitMask(ICmpInst
&Cmp
,
5238 InstCombiner::BuilderTy
&Builder
) {
5239 ICmpInst::Predicate Pred
, NewPred
;
5242 m_c_ICmp(Pred
, m_OneUse(m_Shl(m_One(), m_Value(Y
))), m_Value(X
)))) {
5243 // We want X to be the icmp's second operand, so swap predicate if it isn't.
5244 if (Cmp
.getOperand(0) == X
)
5245 Pred
= Cmp
.getSwappedPredicate();
5248 case ICmpInst::ICMP_ULE
:
5249 NewPred
= ICmpInst::ICMP_NE
;
5251 case ICmpInst::ICMP_UGT
:
5252 NewPred
= ICmpInst::ICMP_EQ
;
5257 } else if (match(&Cmp
, m_c_ICmp(Pred
,
5258 m_OneUse(m_CombineOr(
5259 m_Not(m_Shl(m_AllOnes(), m_Value(Y
))),
5260 m_Add(m_Shl(m_One(), m_Value(Y
)),
5263 // The variant with 'add' is not canonical, (the variant with 'not' is)
5264 // we only get it because it has extra uses, and can't be canonicalized,
5266 // We want X to be the icmp's second operand, so swap predicate if it isn't.
5267 if (Cmp
.getOperand(0) == X
)
5268 Pred
= Cmp
.getSwappedPredicate();
5271 case ICmpInst::ICMP_ULT
:
5272 NewPred
= ICmpInst::ICMP_NE
;
5274 case ICmpInst::ICMP_UGE
:
5275 NewPred
= ICmpInst::ICMP_EQ
;
5283 Value
*NewX
= Builder
.CreateLShr(X
, Y
, X
->getName() + ".highbits");
5284 Constant
*Zero
= Constant::getNullValue(NewX
->getType());
5285 return CmpInst::Create(Instruction::ICmp
, NewPred
, NewX
, Zero
);
5288 static Instruction
*foldVectorCmp(CmpInst
&Cmp
,
5289 InstCombiner::BuilderTy
&Builder
) {
5290 // If both arguments of the cmp are shuffles that use the same mask and
5291 // shuffle within a single vector, move the shuffle after the cmp.
5292 Value
*LHS
= Cmp
.getOperand(0), *RHS
= Cmp
.getOperand(1);
5295 if (match(LHS
, m_ShuffleVector(m_Value(V1
), m_Undef(), m_Constant(M
))) &&
5296 match(RHS
, m_ShuffleVector(m_Value(V2
), m_Undef(), m_Specific(M
))) &&
5297 V1
->getType() == V2
->getType() &&
5298 (LHS
->hasOneUse() || RHS
->hasOneUse())) {
5299 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5300 CmpInst::Predicate P
= Cmp
.getPredicate();
5301 Value
*NewCmp
= isa
<ICmpInst
>(Cmp
) ? Builder
.CreateICmp(P
, V1
, V2
)
5302 : Builder
.CreateFCmp(P
, V1
, V2
);
5303 return new ShuffleVectorInst(NewCmp
, UndefValue::get(NewCmp
->getType()), M
);
5308 Instruction
*InstCombiner::visitICmpInst(ICmpInst
&I
) {
5309 bool Changed
= false;
5310 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5311 unsigned Op0Cplxity
= getComplexity(Op0
);
5312 unsigned Op1Cplxity
= getComplexity(Op1
);
5314 /// Orders the operands of the compare so that they are listed from most
5315 /// complex to least complex. This puts constants before unary operators,
5316 /// before binary operators.
5317 if (Op0Cplxity
< Op1Cplxity
||
5318 (Op0Cplxity
== Op1Cplxity
&& swapMayExposeCSEOpportunities(Op0
, Op1
))) {
5320 std::swap(Op0
, Op1
);
5324 if (Value
*V
= SimplifyICmpInst(I
.getPredicate(), Op0
, Op1
,
5325 SQ
.getWithInstruction(&I
)))
5326 return replaceInstUsesWith(I
, V
);
5328 // Comparing -val or val with non-zero is the same as just comparing val
5329 // ie, abs(val) != 0 -> val != 0
5330 if (I
.getPredicate() == ICmpInst::ICMP_NE
&& match(Op1
, m_Zero())) {
5331 Value
*Cond
, *SelectTrue
, *SelectFalse
;
5332 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(SelectTrue
),
5333 m_Value(SelectFalse
)))) {
5334 if (Value
*V
= dyn_castNegVal(SelectTrue
)) {
5335 if (V
== SelectFalse
)
5336 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
5338 else if (Value
*V
= dyn_castNegVal(SelectFalse
)) {
5339 if (V
== SelectTrue
)
5340 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
5345 if (Op0
->getType()->isIntOrIntVectorTy(1))
5346 if (Instruction
*Res
= canonicalizeICmpBool(I
, Builder
))
5349 if (ICmpInst
*NewICmp
= canonicalizeCmpWithConstant(I
))
5352 if (Instruction
*Res
= foldICmpWithConstant(I
))
5355 if (Instruction
*Res
= foldICmpWithDominatingICmp(I
))
5358 if (Instruction
*Res
= foldICmpUsingKnownBits(I
))
5361 // Test if the ICmpInst instruction is used exclusively by a select as
5362 // part of a minimum or maximum operation. If so, refrain from doing
5363 // any other folding. This helps out other analyses which understand
5364 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5365 // and CodeGen. And in this case, at least one of the comparison
5366 // operands has at least one user besides the compare (the select),
5367 // which would often largely negate the benefit of folding anyway.
5369 // Do the same for the other patterns recognized by matchSelectPattern.
5371 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
5373 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
5374 if (SPR
.Flavor
!= SPF_UNKNOWN
)
5378 // Do this after checking for min/max to prevent infinite looping.
5379 if (Instruction
*Res
= foldICmpWithZero(I
))
5382 // FIXME: We only do this after checking for min/max to prevent infinite
5383 // looping caused by a reverse canonicalization of these patterns for min/max.
5384 // FIXME: The organization of folds is a mess. These would naturally go into
5385 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5386 // down here after the min/max restriction.
5387 ICmpInst::Predicate Pred
= I
.getPredicate();
5389 if (match(Op1
, m_APInt(C
))) {
5390 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
5391 if (Pred
== ICmpInst::ICMP_UGT
&& C
->isMaxSignedValue()) {
5392 Constant
*Zero
= Constant::getNullValue(Op0
->getType());
5393 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
, Zero
);
5396 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
5397 if (Pred
== ICmpInst::ICMP_ULT
&& C
->isMinSignedValue()) {
5398 Constant
*AllOnes
= Constant::getAllOnesValue(Op0
->getType());
5399 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
, AllOnes
);
5403 if (Instruction
*Res
= foldICmpInstWithConstant(I
))
5406 if (Instruction
*Res
= foldICmpInstWithConstantNotInt(I
))
5409 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5410 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op0
))
5411 if (Instruction
*NI
= foldGEPICmp(GEP
, Op1
, I
.getPredicate(), I
))
5413 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op1
))
5414 if (Instruction
*NI
= foldGEPICmp(GEP
, Op0
,
5415 ICmpInst::getSwappedPredicate(I
.getPredicate()), I
))
5418 // Try to optimize equality comparisons against alloca-based pointers.
5419 if (Op0
->getType()->isPointerTy() && I
.isEquality()) {
5420 assert(Op1
->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5421 if (auto *Alloca
= dyn_cast
<AllocaInst
>(GetUnderlyingObject(Op0
, DL
)))
5422 if (Instruction
*New
= foldAllocaCmp(I
, Alloca
, Op1
))
5424 if (auto *Alloca
= dyn_cast
<AllocaInst
>(GetUnderlyingObject(Op1
, DL
)))
5425 if (Instruction
*New
= foldAllocaCmp(I
, Alloca
, Op0
))
5429 if (Instruction
*Res
= foldICmpBitCast(I
, Builder
))
5432 if (Instruction
*R
= foldICmpWithCastOp(I
))
5435 if (Instruction
*Res
= foldICmpBinOp(I
))
5438 if (Instruction
*Res
= foldICmpWithMinMax(I
))
5443 // Transform (A & ~B) == 0 --> (A & B) != 0
5444 // and (A & ~B) != 0 --> (A & B) == 0
5445 // if A is a power of 2.
5446 if (match(Op0
, m_And(m_Value(A
), m_Not(m_Value(B
)))) &&
5447 match(Op1
, m_Zero()) &&
5448 isKnownToBeAPowerOfTwo(A
, false, 0, &I
) && I
.isEquality())
5449 return new ICmpInst(I
.getInversePredicate(), Builder
.CreateAnd(A
, B
),
5452 // ~X < ~Y --> Y < X
5453 // ~X < C --> X > ~C
5454 if (match(Op0
, m_Not(m_Value(A
)))) {
5455 if (match(Op1
, m_Not(m_Value(B
))))
5456 return new ICmpInst(I
.getPredicate(), B
, A
);
5459 if (match(Op1
, m_APInt(C
)))
5460 return new ICmpInst(I
.getSwappedPredicate(), A
,
5461 ConstantInt::get(Op1
->getType(), ~(*C
)));
5464 Instruction
*AddI
= nullptr;
5465 if (match(&I
, m_UAddWithOverflow(m_Value(A
), m_Value(B
),
5466 m_Instruction(AddI
))) &&
5467 isa
<IntegerType
>(A
->getType())) {
5470 if (OptimizeOverflowCheck(Instruction::Add
, /*Signed*/false, A
, B
,
5471 *AddI
, Result
, Overflow
)) {
5472 replaceInstUsesWith(*AddI
, Result
);
5473 return replaceInstUsesWith(I
, Overflow
);
5477 // (zext a) * (zext b) --> llvm.umul.with.overflow.
5478 if (match(Op0
, m_Mul(m_ZExt(m_Value(A
)), m_ZExt(m_Value(B
))))) {
5479 if (Instruction
*R
= processUMulZExtIdiom(I
, Op0
, Op1
, *this))
5482 if (match(Op1
, m_Mul(m_ZExt(m_Value(A
)), m_ZExt(m_Value(B
))))) {
5483 if (Instruction
*R
= processUMulZExtIdiom(I
, Op1
, Op0
, *this))
5488 if (Instruction
*Res
= foldICmpEquality(I
))
5491 // The 'cmpxchg' instruction returns an aggregate containing the old value and
5492 // an i1 which indicates whether or not we successfully did the swap.
5494 // Replace comparisons between the old value and the expected value with the
5495 // indicator that 'cmpxchg' returns.
5497 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5498 // spuriously fail. In those cases, the old value may equal the expected
5499 // value but it is possible for the swap to not occur.
5500 if (I
.getPredicate() == ICmpInst::ICMP_EQ
)
5501 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(Op0
))
5502 if (auto *ACXI
= dyn_cast
<AtomicCmpXchgInst
>(EVI
->getAggregateOperand()))
5503 if (EVI
->getIndices()[0] == 0 && ACXI
->getCompareOperand() == Op1
&&
5505 return ExtractValueInst::Create(ACXI
, 1);
5511 if (match(Op0
, m_Add(m_Value(X
), m_APInt(C
))) && Op1
== X
)
5512 return foldICmpAddOpConst(X
, *C
, I
.getPredicate());
5515 if (match(Op1
, m_Add(m_Value(X
), m_APInt(C
))) && Op0
== X
)
5516 return foldICmpAddOpConst(X
, *C
, I
.getSwappedPredicate());
5519 if (Instruction
*Res
= foldICmpWithHighBitMask(I
, Builder
))
5522 if (I
.getType()->isVectorTy())
5523 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
5526 return Changed
? &I
: nullptr;
5529 /// Fold fcmp ([us]itofp x, cst) if possible.
5530 Instruction
*InstCombiner::foldFCmpIntToFPConst(FCmpInst
&I
, Instruction
*LHSI
,
5532 if (!isa
<ConstantFP
>(RHSC
)) return nullptr;
5533 const APFloat
&RHS
= cast
<ConstantFP
>(RHSC
)->getValueAPF();
5535 // Get the width of the mantissa. We don't want to hack on conversions that
5536 // might lose information from the integer, e.g. "i64 -> float"
5537 int MantissaWidth
= LHSI
->getType()->getFPMantissaWidth();
5538 if (MantissaWidth
== -1) return nullptr; // Unknown.
5540 IntegerType
*IntTy
= cast
<IntegerType
>(LHSI
->getOperand(0)->getType());
5542 bool LHSUnsigned
= isa
<UIToFPInst
>(LHSI
);
5544 if (I
.isEquality()) {
5545 FCmpInst::Predicate P
= I
.getPredicate();
5546 bool IsExact
= false;
5547 APSInt
RHSCvt(IntTy
->getBitWidth(), LHSUnsigned
);
5548 RHS
.convertToInteger(RHSCvt
, APFloat::rmNearestTiesToEven
, &IsExact
);
5550 // If the floating point constant isn't an integer value, we know if we will
5551 // ever compare equal / not equal to it.
5553 // TODO: Can never be -0.0 and other non-representable values
5554 APFloat
RHSRoundInt(RHS
);
5555 RHSRoundInt
.roundToIntegral(APFloat::rmNearestTiesToEven
);
5556 if (RHS
.compare(RHSRoundInt
) != APFloat::cmpEqual
) {
5557 if (P
== FCmpInst::FCMP_OEQ
|| P
== FCmpInst::FCMP_UEQ
)
5558 return replaceInstUsesWith(I
, Builder
.getFalse());
5560 assert(P
== FCmpInst::FCMP_ONE
|| P
== FCmpInst::FCMP_UNE
);
5561 return replaceInstUsesWith(I
, Builder
.getTrue());
5565 // TODO: If the constant is exactly representable, is it always OK to do
5566 // equality compares as integer?
5569 // Check to see that the input is converted from an integer type that is small
5570 // enough that preserves all bits. TODO: check here for "known" sign bits.
5571 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5572 unsigned InputSize
= IntTy
->getScalarSizeInBits();
5574 // Following test does NOT adjust InputSize downwards for signed inputs,
5575 // because the most negative value still requires all the mantissa bits
5576 // to distinguish it from one less than that value.
5577 if ((int)InputSize
> MantissaWidth
) {
5578 // Conversion would lose accuracy. Check if loss can impact comparison.
5579 int Exp
= ilogb(RHS
);
5580 if (Exp
== APFloat::IEK_Inf
) {
5581 int MaxExponent
= ilogb(APFloat::getLargest(RHS
.getSemantics()));
5582 if (MaxExponent
< (int)InputSize
- !LHSUnsigned
)
5583 // Conversion could create infinity.
5586 // Note that if RHS is zero or NaN, then Exp is negative
5587 // and first condition is trivially false.
5588 if (MantissaWidth
<= Exp
&& Exp
<= (int)InputSize
- !LHSUnsigned
)
5589 // Conversion could affect comparison.
5594 // Otherwise, we can potentially simplify the comparison. We know that it
5595 // will always come through as an integer value and we know the constant is
5596 // not a NAN (it would have been previously simplified).
5597 assert(!RHS
.isNaN() && "NaN comparison not already folded!");
5599 ICmpInst::Predicate Pred
;
5600 switch (I
.getPredicate()) {
5601 default: llvm_unreachable("Unexpected predicate!");
5602 case FCmpInst::FCMP_UEQ
:
5603 case FCmpInst::FCMP_OEQ
:
5604 Pred
= ICmpInst::ICMP_EQ
;
5606 case FCmpInst::FCMP_UGT
:
5607 case FCmpInst::FCMP_OGT
:
5608 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_SGT
;
5610 case FCmpInst::FCMP_UGE
:
5611 case FCmpInst::FCMP_OGE
:
5612 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_SGE
;
5614 case FCmpInst::FCMP_ULT
:
5615 case FCmpInst::FCMP_OLT
:
5616 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_SLT
;
5618 case FCmpInst::FCMP_ULE
:
5619 case FCmpInst::FCMP_OLE
:
5620 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_SLE
;
5622 case FCmpInst::FCMP_UNE
:
5623 case FCmpInst::FCMP_ONE
:
5624 Pred
= ICmpInst::ICMP_NE
;
5626 case FCmpInst::FCMP_ORD
:
5627 return replaceInstUsesWith(I
, Builder
.getTrue());
5628 case FCmpInst::FCMP_UNO
:
5629 return replaceInstUsesWith(I
, Builder
.getFalse());
5632 // Now we know that the APFloat is a normal number, zero or inf.
5634 // See if the FP constant is too large for the integer. For example,
5635 // comparing an i8 to 300.0.
5636 unsigned IntWidth
= IntTy
->getScalarSizeInBits();
5639 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5640 // and large values.
5641 APFloat
SMax(RHS
.getSemantics());
5642 SMax
.convertFromAPInt(APInt::getSignedMaxValue(IntWidth
), true,
5643 APFloat::rmNearestTiesToEven
);
5644 if (SMax
.compare(RHS
) == APFloat::cmpLessThan
) { // smax < 13123.0
5645 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SLT
||
5646 Pred
== ICmpInst::ICMP_SLE
)
5647 return replaceInstUsesWith(I
, Builder
.getTrue());
5648 return replaceInstUsesWith(I
, Builder
.getFalse());
5651 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5652 // +INF and large values.
5653 APFloat
UMax(RHS
.getSemantics());
5654 UMax
.convertFromAPInt(APInt::getMaxValue(IntWidth
), false,
5655 APFloat::rmNearestTiesToEven
);
5656 if (UMax
.compare(RHS
) == APFloat::cmpLessThan
) { // umax < 13123.0
5657 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_ULT
||
5658 Pred
== ICmpInst::ICMP_ULE
)
5659 return replaceInstUsesWith(I
, Builder
.getTrue());
5660 return replaceInstUsesWith(I
, Builder
.getFalse());
5665 // See if the RHS value is < SignedMin.
5666 APFloat
SMin(RHS
.getSemantics());
5667 SMin
.convertFromAPInt(APInt::getSignedMinValue(IntWidth
), true,
5668 APFloat::rmNearestTiesToEven
);
5669 if (SMin
.compare(RHS
) == APFloat::cmpGreaterThan
) { // smin > 12312.0
5670 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
||
5671 Pred
== ICmpInst::ICMP_SGE
)
5672 return replaceInstUsesWith(I
, Builder
.getTrue());
5673 return replaceInstUsesWith(I
, Builder
.getFalse());
5676 // See if the RHS value is < UnsignedMin.
5677 APFloat
SMin(RHS
.getSemantics());
5678 SMin
.convertFromAPInt(APInt::getMinValue(IntWidth
), true,
5679 APFloat::rmNearestTiesToEven
);
5680 if (SMin
.compare(RHS
) == APFloat::cmpGreaterThan
) { // umin > 12312.0
5681 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_UGT
||
5682 Pred
== ICmpInst::ICMP_UGE
)
5683 return replaceInstUsesWith(I
, Builder
.getTrue());
5684 return replaceInstUsesWith(I
, Builder
.getFalse());
5688 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5689 // [0, UMAX], but it may still be fractional. See if it is fractional by
5690 // casting the FP value to the integer value and back, checking for equality.
5691 // Don't do this for zero, because -0.0 is not fractional.
5692 Constant
*RHSInt
= LHSUnsigned
5693 ? ConstantExpr::getFPToUI(RHSC
, IntTy
)
5694 : ConstantExpr::getFPToSI(RHSC
, IntTy
);
5695 if (!RHS
.isZero()) {
5696 bool Equal
= LHSUnsigned
5697 ? ConstantExpr::getUIToFP(RHSInt
, RHSC
->getType()) == RHSC
5698 : ConstantExpr::getSIToFP(RHSInt
, RHSC
->getType()) == RHSC
;
5700 // If we had a comparison against a fractional value, we have to adjust
5701 // the compare predicate and sometimes the value. RHSC is rounded towards
5702 // zero at this point.
5704 default: llvm_unreachable("Unexpected integer comparison!");
5705 case ICmpInst::ICMP_NE
: // (float)int != 4.4 --> true
5706 return replaceInstUsesWith(I
, Builder
.getTrue());
5707 case ICmpInst::ICMP_EQ
: // (float)int == 4.4 --> false
5708 return replaceInstUsesWith(I
, Builder
.getFalse());
5709 case ICmpInst::ICMP_ULE
:
5710 // (float)int <= 4.4 --> int <= 4
5711 // (float)int <= -4.4 --> false
5712 if (RHS
.isNegative())
5713 return replaceInstUsesWith(I
, Builder
.getFalse());
5715 case ICmpInst::ICMP_SLE
:
5716 // (float)int <= 4.4 --> int <= 4
5717 // (float)int <= -4.4 --> int < -4
5718 if (RHS
.isNegative())
5719 Pred
= ICmpInst::ICMP_SLT
;
5721 case ICmpInst::ICMP_ULT
:
5722 // (float)int < -4.4 --> false
5723 // (float)int < 4.4 --> int <= 4
5724 if (RHS
.isNegative())
5725 return replaceInstUsesWith(I
, Builder
.getFalse());
5726 Pred
= ICmpInst::ICMP_ULE
;
5728 case ICmpInst::ICMP_SLT
:
5729 // (float)int < -4.4 --> int < -4
5730 // (float)int < 4.4 --> int <= 4
5731 if (!RHS
.isNegative())
5732 Pred
= ICmpInst::ICMP_SLE
;
5734 case ICmpInst::ICMP_UGT
:
5735 // (float)int > 4.4 --> int > 4
5736 // (float)int > -4.4 --> true
5737 if (RHS
.isNegative())
5738 return replaceInstUsesWith(I
, Builder
.getTrue());
5740 case ICmpInst::ICMP_SGT
:
5741 // (float)int > 4.4 --> int > 4
5742 // (float)int > -4.4 --> int >= -4
5743 if (RHS
.isNegative())
5744 Pred
= ICmpInst::ICMP_SGE
;
5746 case ICmpInst::ICMP_UGE
:
5747 // (float)int >= -4.4 --> true
5748 // (float)int >= 4.4 --> int > 4
5749 if (RHS
.isNegative())
5750 return replaceInstUsesWith(I
, Builder
.getTrue());
5751 Pred
= ICmpInst::ICMP_UGT
;
5753 case ICmpInst::ICMP_SGE
:
5754 // (float)int >= -4.4 --> int >= -4
5755 // (float)int >= 4.4 --> int > 4
5756 if (!RHS
.isNegative())
5757 Pred
= ICmpInst::ICMP_SGT
;
5763 // Lower this FP comparison into an appropriate integer version of the
5765 return new ICmpInst(Pred
, LHSI
->getOperand(0), RHSInt
);
5768 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5769 static Instruction
*foldFCmpReciprocalAndZero(FCmpInst
&I
, Instruction
*LHSI
,
5771 // When C is not 0.0 and infinities are not allowed:
5772 // (C / X) < 0.0 is a sign-bit test of X
5773 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5774 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5777 // Multiply (C / X) < 0.0 by X * X / C.
5778 // - X is non zero, if it is the flag 'ninf' is violated.
5779 // - C defines the sign of X * X * C. Thus it also defines whether to swap
5780 // the predicate. C is also non zero by definition.
5782 // Thus X * X / C is non zero and the transformation is valid. [qed]
5784 FCmpInst::Predicate Pred
= I
.getPredicate();
5786 // Check that predicates are valid.
5787 if ((Pred
!= FCmpInst::FCMP_OGT
) && (Pred
!= FCmpInst::FCMP_OLT
) &&
5788 (Pred
!= FCmpInst::FCMP_OGE
) && (Pred
!= FCmpInst::FCMP_OLE
))
5791 // Check that RHS operand is zero.
5792 if (!match(RHSC
, m_AnyZeroFP()))
5795 // Check fastmath flags ('ninf').
5796 if (!LHSI
->hasNoInfs() || !I
.hasNoInfs())
5799 // Check the properties of the dividend. It must not be zero to avoid a
5800 // division by zero (see Proof).
5802 if (!match(LHSI
->getOperand(0), m_APFloat(C
)))
5808 // Get swapped predicate if necessary.
5809 if (C
->isNegative())
5810 Pred
= I
.getSwappedPredicate();
5812 return new FCmpInst(Pred
, LHSI
->getOperand(1), RHSC
, "", &I
);
5815 /// Optimize fabs(X) compared with zero.
5816 static Instruction
*foldFabsWithFcmpZero(FCmpInst
&I
) {
5818 if (!match(I
.getOperand(0), m_Intrinsic
<Intrinsic::fabs
>(m_Value(X
))) ||
5819 !match(I
.getOperand(1), m_PosZeroFP()))
5822 auto replacePredAndOp0
= [](FCmpInst
*I
, FCmpInst::Predicate P
, Value
*X
) {
5824 I
->setOperand(0, X
);
5828 switch (I
.getPredicate()) {
5829 case FCmpInst::FCMP_UGE
:
5830 case FCmpInst::FCMP_OLT
:
5831 // fabs(X) >= 0.0 --> true
5832 // fabs(X) < 0.0 --> false
5833 llvm_unreachable("fcmp should have simplified");
5835 case FCmpInst::FCMP_OGT
:
5836 // fabs(X) > 0.0 --> X != 0.0
5837 return replacePredAndOp0(&I
, FCmpInst::FCMP_ONE
, X
);
5839 case FCmpInst::FCMP_UGT
:
5840 // fabs(X) u> 0.0 --> X u!= 0.0
5841 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNE
, X
);
5843 case FCmpInst::FCMP_OLE
:
5844 // fabs(X) <= 0.0 --> X == 0.0
5845 return replacePredAndOp0(&I
, FCmpInst::FCMP_OEQ
, X
);
5847 case FCmpInst::FCMP_ULE
:
5848 // fabs(X) u<= 0.0 --> X u== 0.0
5849 return replacePredAndOp0(&I
, FCmpInst::FCMP_UEQ
, X
);
5851 case FCmpInst::FCMP_OGE
:
5852 // fabs(X) >= 0.0 --> !isnan(X)
5853 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
5854 return replacePredAndOp0(&I
, FCmpInst::FCMP_ORD
, X
);
5856 case FCmpInst::FCMP_ULT
:
5857 // fabs(X) u< 0.0 --> isnan(X)
5858 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
5859 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNO
, X
);
5861 case FCmpInst::FCMP_OEQ
:
5862 case FCmpInst::FCMP_UEQ
:
5863 case FCmpInst::FCMP_ONE
:
5864 case FCmpInst::FCMP_UNE
:
5865 case FCmpInst::FCMP_ORD
:
5866 case FCmpInst::FCMP_UNO
:
5867 // Look through the fabs() because it doesn't change anything but the sign.
5868 // fabs(X) == 0.0 --> X == 0.0,
5869 // fabs(X) != 0.0 --> X != 0.0
5870 // isnan(fabs(X)) --> isnan(X)
5871 // !isnan(fabs(X) --> !isnan(X)
5872 return replacePredAndOp0(&I
, I
.getPredicate(), X
);
5879 Instruction
*InstCombiner::visitFCmpInst(FCmpInst
&I
) {
5880 bool Changed
= false;
5882 /// Orders the operands of the compare so that they are listed from most
5883 /// complex to least complex. This puts constants before unary operators,
5884 /// before binary operators.
5885 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1))) {
5890 const CmpInst::Predicate Pred
= I
.getPredicate();
5891 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5892 if (Value
*V
= SimplifyFCmpInst(Pred
, Op0
, Op1
, I
.getFastMathFlags(),
5893 SQ
.getWithInstruction(&I
)))
5894 return replaceInstUsesWith(I
, V
);
5896 // Simplify 'fcmp pred X, X'
5897 Type
*OpType
= Op0
->getType();
5898 assert(OpType
== Op1
->getType() && "fcmp with different-typed operands?");
5902 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
5903 case FCmpInst::FCMP_ULT
: // True if unordered or less than
5904 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
5905 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
5906 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5907 I
.setPredicate(FCmpInst::FCMP_UNO
);
5908 I
.setOperand(1, Constant::getNullValue(OpType
));
5911 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
5912 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
5913 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
5914 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
5915 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5916 I
.setPredicate(FCmpInst::FCMP_ORD
);
5917 I
.setOperand(1, Constant::getNullValue(OpType
));
5922 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
5923 // then canonicalize the operand to 0.0.
5924 if (Pred
== CmpInst::FCMP_ORD
|| Pred
== CmpInst::FCMP_UNO
) {
5925 if (!match(Op0
, m_PosZeroFP()) && isKnownNeverNaN(Op0
, &TLI
)) {
5926 I
.setOperand(0, ConstantFP::getNullValue(OpType
));
5929 if (!match(Op1
, m_PosZeroFP()) && isKnownNeverNaN(Op1
, &TLI
)) {
5930 I
.setOperand(1, ConstantFP::getNullValue(OpType
));
5935 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
5937 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
))))
5938 return new FCmpInst(I
.getSwappedPredicate(), X
, Y
, "", &I
);
5940 // Test if the FCmpInst instruction is used exclusively by a select as
5941 // part of a minimum or maximum operation. If so, refrain from doing
5942 // any other folding. This helps out other analyses which understand
5943 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5944 // and CodeGen. And in this case, at least one of the comparison
5945 // operands has at least one user besides the compare (the select),
5946 // which would often largely negate the benefit of folding anyway.
5948 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
5950 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
5951 if (SPR
.Flavor
!= SPF_UNKNOWN
)
5955 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
5956 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
5957 if (match(Op1
, m_AnyZeroFP()) && !match(Op1
, m_PosZeroFP())) {
5958 I
.setOperand(1, ConstantFP::getNullValue(OpType
));
5962 // Handle fcmp with instruction LHS and constant RHS.
5965 if (match(Op0
, m_Instruction(LHSI
)) && match(Op1
, m_Constant(RHSC
))) {
5966 switch (LHSI
->getOpcode()) {
5967 case Instruction::PHI
:
5968 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5969 // block. If in the same block, we're encouraging jump threading. If
5970 // not, we are just pessimizing the code by making an i1 phi.
5971 if (LHSI
->getParent() == I
.getParent())
5972 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
5975 case Instruction::SIToFP
:
5976 case Instruction::UIToFP
:
5977 if (Instruction
*NV
= foldFCmpIntToFPConst(I
, LHSI
, RHSC
))
5980 case Instruction::FDiv
:
5981 if (Instruction
*NV
= foldFCmpReciprocalAndZero(I
, LHSI
, RHSC
))
5984 case Instruction::Load
:
5985 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0)))
5986 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
5987 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
5988 !cast
<LoadInst
>(LHSI
)->isVolatile())
5989 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
5995 if (Instruction
*R
= foldFabsWithFcmpZero(I
))
5998 if (match(Op0
, m_FNeg(m_Value(X
)))) {
5999 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6001 if (match(Op1
, m_Constant(C
))) {
6002 Constant
*NegC
= ConstantExpr::getFNeg(C
);
6003 return new FCmpInst(I
.getSwappedPredicate(), X
, NegC
, "", &I
);
6007 if (match(Op0
, m_FPExt(m_Value(X
)))) {
6008 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6009 if (match(Op1
, m_FPExt(m_Value(Y
))) && X
->getType() == Y
->getType())
6010 return new FCmpInst(Pred
, X
, Y
, "", &I
);
6012 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6014 if (match(Op1
, m_APFloat(C
))) {
6015 const fltSemantics
&FPSem
=
6016 X
->getType()->getScalarType()->getFltSemantics();
6018 APFloat TruncC
= *C
;
6019 TruncC
.convert(FPSem
, APFloat::rmNearestTiesToEven
, &Lossy
);
6021 // Avoid lossy conversions and denormals.
6022 // Zero is a special case that's OK to convert.
6023 APFloat Fabs
= TruncC
;
6026 ((Fabs
.compare(APFloat::getSmallestNormalized(FPSem
)) !=
6027 APFloat::cmpLessThan
) || Fabs
.isZero())) {
6028 Constant
*NewC
= ConstantFP::get(X
->getType(), TruncC
);
6029 return new FCmpInst(Pred
, X
, NewC
, "", &I
);
6034 if (I
.getType()->isVectorTy())
6035 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
6038 return Changed
? &I
: nullptr;