1 //===- InstCombineShifts.cpp ----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
19 using namespace PatternMatch
;
21 #define DEBUG_TYPE "instcombine"
24 // (x shiftopcode Q) shiftopcode K
25 // we should rewrite it as
26 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x)
27 // This is valid for any shift, but they must be identical.
29 reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator
*Sh0
,
30 const SimplifyQuery
&SQ
,
31 InstCombiner::BuilderTy
&Builder
) {
32 // Look for a shift of some instruction, ignore zext of shift amount if any.
36 m_Shift(m_Instruction(Sh0Op0
), m_ZExtOrSelf(m_Value(ShAmt0
)))))
39 // If there is a truncation between the two shifts, we must make note of it
40 // and look through it. The truncation imposes additional constraints on the
43 Value
*Trunc
= nullptr;
45 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1
)), m_Value(Trunc
)),
48 // Inner shift: (x shiftopcode ShAmt1)
49 // Like with other shift, ignore zext of shift amount if any.
51 if (!match(Sh1
, m_Shift(m_Value(X
), m_ZExtOrSelf(m_Value(ShAmt1
)))))
54 // We have two shift amounts from two different shifts. The types of those
55 // shift amounts may not match. If that's the case let's bailout now..
56 if (ShAmt0
->getType() != ShAmt1
->getType())
59 // The shift opcodes must be identical.
60 Instruction::BinaryOps ShiftOpcode
= Sh0
->getOpcode();
61 if (ShiftOpcode
!= Sh1
->getOpcode())
64 // Did we match a pattern with truncation ?
66 // For right-shifts we can't do any such simplifications. Leave as-is.
67 if (ShiftOpcode
!= Instruction::BinaryOps::Shl
)
68 return nullptr; // FIXME: still could perform constant-folding.
69 // If we saw truncation, we'll need to produce extra instruction,
70 // and for that one of the operands of the shift must be one-use.
71 if (!match(Sh0
, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
75 // Can we fold (ShAmt0+ShAmt1) ?
76 auto *NewShAmt
= dyn_cast_or_null
<Constant
>(
77 SimplifyAddInst(ShAmt0
, ShAmt1
, /*isNSW=*/false, /*isNUW=*/false,
78 SQ
.getWithInstruction(Sh0
)));
80 return nullptr; // Did not simplify.
81 // Is the new shift amount smaller than the bit width of inner shift?
82 if (!match(NewShAmt
, m_SpecificInt_ICMP(
83 ICmpInst::Predicate::ICMP_ULT
,
84 APInt(NewShAmt
->getType()->getScalarSizeInBits(),
85 X
->getType()->getScalarSizeInBits()))))
86 return nullptr; // FIXME: could perform constant-folding.
88 // All good, we can do this fold.
89 NewShAmt
= ConstantExpr::getZExtOrBitCast(NewShAmt
, X
->getType());
91 BinaryOperator
*NewShift
= BinaryOperator::Create(ShiftOpcode
, X
, NewShAmt
);
93 // The flags can only be propagated if there wasn't a trunc.
95 // If the pattern did not involve trunc, and both of the original shifts
96 // had the same flag set, preserve the flag.
97 if (ShiftOpcode
== Instruction::BinaryOps::Shl
) {
98 NewShift
->setHasNoUnsignedWrap(Sh0
->hasNoUnsignedWrap() &&
99 Sh1
->hasNoUnsignedWrap());
100 NewShift
->setHasNoSignedWrap(Sh0
->hasNoSignedWrap() &&
101 Sh1
->hasNoSignedWrap());
103 NewShift
->setIsExact(Sh0
->isExact() && Sh1
->isExact());
107 Instruction
*Ret
= NewShift
;
109 Builder
.Insert(NewShift
);
110 Ret
= CastInst::Create(Instruction::Trunc
, NewShift
, Sh0
->getType());
116 // If we have some pattern that leaves only some low bits set, and then performs
117 // left-shift of those bits, if none of the bits that are left after the final
118 // shift are modified by the mask, we can omit the mask.
120 // There are many variants to this pattern:
121 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
122 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
123 // c) (x & (-1 >> MaskShAmt)) << ShiftShAmt
124 // d) (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
125 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
126 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
127 // All these patterns can be simplified to just:
130 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
131 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
133 dropRedundantMaskingOfLeftShiftInput(BinaryOperator
*OuterShift
,
134 const SimplifyQuery
&SQ
) {
135 assert(OuterShift
->getOpcode() == Instruction::BinaryOps::Shl
&&
136 "The input must be 'shl'!");
138 Value
*Masked
= OuterShift
->getOperand(0);
139 Value
*ShiftShAmt
= OuterShift
->getOperand(1);
143 // ((1 << MaskShAmt) - 1)
144 auto MaskA
= m_Add(m_Shl(m_One(), m_Value(MaskShAmt
)), m_AllOnes());
145 // (~(-1 << maskNbits))
146 auto MaskB
= m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt
)), m_AllOnes());
148 auto MaskC
= m_Shr(m_AllOnes(), m_Value(MaskShAmt
));
149 // ((-1 << MaskShAmt) >> MaskShAmt)
151 m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt
)), m_Deferred(MaskShAmt
));
154 if (match(Masked
, m_c_And(m_CombineOr(MaskA
, MaskB
), m_Value(X
)))) {
155 // Can we simplify (MaskShAmt+ShiftShAmt) ?
157 SimplifyAddInst(MaskShAmt
, ShiftShAmt
, /*IsNSW=*/false, /*IsNUW=*/false,
158 SQ
.getWithInstruction(OuterShift
));
160 return nullptr; // Did not simplify.
161 // Is the total shift amount *not* smaller than the bit width?
162 // FIXME: could also rely on ConstantRange.
163 unsigned BitWidth
= X
->getType()->getScalarSizeInBits();
164 if (!match(SumOfShAmts
, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE
,
165 APInt(BitWidth
, BitWidth
))))
167 // All good, we can do this fold.
168 } else if (match(Masked
, m_c_And(m_CombineOr(MaskC
, MaskD
), m_Value(X
))) ||
169 match(Masked
, m_Shr(m_Shl(m_Value(X
), m_Value(MaskShAmt
)),
170 m_Deferred(MaskShAmt
)))) {
171 // Can we simplify (ShiftShAmt-MaskShAmt) ?
173 SimplifySubInst(ShiftShAmt
, MaskShAmt
, /*IsNSW=*/false, /*IsNUW=*/false,
174 SQ
.getWithInstruction(OuterShift
));
176 return nullptr; // Did not simplify.
177 // Is the difference non-negative? (is ShiftShAmt u>= MaskShAmt ?)
178 // FIXME: could also rely on ConstantRange.
179 if (!match(ShAmtsDiff
, m_NonNegative()))
181 // All good, we can do this fold.
183 return nullptr; // Don't know anything about this pattern.
186 // We no longer know that we won't shift-out non-0 bits.
187 return BinaryOperator::Create(OuterShift
->getOpcode(), X
, ShiftShAmt
);
190 Instruction
*InstCombiner::commonShiftTransforms(BinaryOperator
&I
) {
191 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
192 assert(Op0
->getType() == Op1
->getType());
194 // See if we can fold away this shift.
195 if (SimplifyDemandedInstructionBits(I
))
198 // Try to fold constant and into select arguments.
199 if (isa
<Constant
>(Op0
))
200 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
201 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
204 if (Constant
*CUI
= dyn_cast
<Constant
>(Op1
))
205 if (Instruction
*Res
= FoldShiftByConstant(Op0
, CUI
, I
))
208 if (Instruction
*NewShift
=
209 reassociateShiftAmtsOfTwoSameDirectionShifts(&I
, SQ
, Builder
))
212 // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
213 // iff A and C2 are both positive.
216 if (match(Op0
, m_Constant()) && match(Op1
, m_Add(m_Value(A
), m_Constant(C
))))
217 if (isKnownNonNegative(A
, DL
, 0, &AC
, &I
, &DT
) &&
218 isKnownNonNegative(C
, DL
, 0, &AC
, &I
, &DT
))
219 return BinaryOperator::Create(
220 I
.getOpcode(), Builder
.CreateBinOp(I
.getOpcode(), Op0
, C
), A
);
222 // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
223 // Because shifts by negative values (which could occur if A were negative)
226 if (Op1
->hasOneUse() && match(Op1
, m_SRem(m_Value(A
), m_Power2(B
)))) {
227 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
228 // demand the sign bit (and many others) here??
229 Value
*Rem
= Builder
.CreateAnd(A
, ConstantInt::get(I
.getType(), *B
- 1),
231 I
.setOperand(1, Rem
);
238 /// Return true if we can simplify two logical (either left or right) shifts
239 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
240 static bool canEvaluateShiftedShift(unsigned OuterShAmt
, bool IsOuterShl
,
241 Instruction
*InnerShift
, InstCombiner
&IC
,
243 assert(InnerShift
->isLogicalShift() && "Unexpected instruction type");
245 // We need constant scalar or constant splat shifts.
246 const APInt
*InnerShiftConst
;
247 if (!match(InnerShift
->getOperand(1), m_APInt(InnerShiftConst
)))
250 // Two logical shifts in the same direction:
251 // shl (shl X, C1), C2 --> shl X, C1 + C2
252 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
253 bool IsInnerShl
= InnerShift
->getOpcode() == Instruction::Shl
;
254 if (IsInnerShl
== IsOuterShl
)
257 // Equal shift amounts in opposite directions become bitwise 'and':
258 // lshr (shl X, C), C --> and X, C'
259 // shl (lshr X, C), C --> and X, C'
260 if (*InnerShiftConst
== OuterShAmt
)
263 // If the 2nd shift is bigger than the 1st, we can fold:
264 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
265 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
266 // but it isn't profitable unless we know the and'd out bits are already zero.
267 // Also, check that the inner shift is valid (less than the type width) or
268 // we'll crash trying to produce the bit mask for the 'and'.
269 unsigned TypeWidth
= InnerShift
->getType()->getScalarSizeInBits();
270 if (InnerShiftConst
->ugt(OuterShAmt
) && InnerShiftConst
->ult(TypeWidth
)) {
271 unsigned InnerShAmt
= InnerShiftConst
->getZExtValue();
273 IsInnerShl
? TypeWidth
- InnerShAmt
: InnerShAmt
- OuterShAmt
;
274 APInt Mask
= APInt::getLowBitsSet(TypeWidth
, OuterShAmt
) << MaskShift
;
275 if (IC
.MaskedValueIsZero(InnerShift
->getOperand(0), Mask
, 0, CxtI
))
282 /// See if we can compute the specified value, but shifted logically to the left
283 /// or right by some number of bits. This should return true if the expression
284 /// can be computed for the same cost as the current expression tree. This is
285 /// used to eliminate extraneous shifting from things like:
286 /// %C = shl i128 %A, 64
287 /// %D = shl i128 %B, 96
288 /// %E = or i128 %C, %D
289 /// %F = lshr i128 %E, 64
290 /// where the client will ask if E can be computed shifted right by 64-bits. If
291 /// this succeeds, getShiftedValue() will be called to produce the value.
292 static bool canEvaluateShifted(Value
*V
, unsigned NumBits
, bool IsLeftShift
,
293 InstCombiner
&IC
, Instruction
*CxtI
) {
294 // We can always evaluate constants shifted.
295 if (isa
<Constant
>(V
))
298 Instruction
*I
= dyn_cast
<Instruction
>(V
);
299 if (!I
) return false;
301 // If this is the opposite shift, we can directly reuse the input of the shift
302 // if the needed bits are already zero in the input. This allows us to reuse
303 // the value which means that we don't care if the shift has multiple uses.
304 // TODO: Handle opposite shift by exact value.
305 ConstantInt
*CI
= nullptr;
306 if ((IsLeftShift
&& match(I
, m_LShr(m_Value(), m_ConstantInt(CI
)))) ||
307 (!IsLeftShift
&& match(I
, m_Shl(m_Value(), m_ConstantInt(CI
))))) {
308 if (CI
->getValue() == NumBits
) {
309 // TODO: Check that the input bits are already zero with MaskedValueIsZero
311 // If this is a truncate of a logical shr, we can truncate it to a smaller
312 // lshr iff we know that the bits we would otherwise be shifting in are
314 uint32_t OrigBitWidth
= OrigTy
->getScalarSizeInBits();
315 uint32_t BitWidth
= Ty
->getScalarSizeInBits();
316 if (MaskedValueIsZero(I
->getOperand(0),
317 APInt::getHighBitsSet(OrigBitWidth
, OrigBitWidth
-BitWidth
)) &&
318 CI
->getLimitedValue(BitWidth
) < BitWidth
) {
319 return CanEvaluateTruncated(I
->getOperand(0), Ty
);
326 // We can't mutate something that has multiple uses: doing so would
327 // require duplicating the instruction in general, which isn't profitable.
328 if (!I
->hasOneUse()) return false;
330 switch (I
->getOpcode()) {
331 default: return false;
332 case Instruction::And
:
333 case Instruction::Or
:
334 case Instruction::Xor
:
335 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
336 return canEvaluateShifted(I
->getOperand(0), NumBits
, IsLeftShift
, IC
, I
) &&
337 canEvaluateShifted(I
->getOperand(1), NumBits
, IsLeftShift
, IC
, I
);
339 case Instruction::Shl
:
340 case Instruction::LShr
:
341 return canEvaluateShiftedShift(NumBits
, IsLeftShift
, I
, IC
, CxtI
);
343 case Instruction::Select
: {
344 SelectInst
*SI
= cast
<SelectInst
>(I
);
345 Value
*TrueVal
= SI
->getTrueValue();
346 Value
*FalseVal
= SI
->getFalseValue();
347 return canEvaluateShifted(TrueVal
, NumBits
, IsLeftShift
, IC
, SI
) &&
348 canEvaluateShifted(FalseVal
, NumBits
, IsLeftShift
, IC
, SI
);
350 case Instruction::PHI
: {
351 // We can change a phi if we can change all operands. Note that we never
352 // get into trouble with cyclic PHIs here because we only consider
353 // instructions with a single use.
354 PHINode
*PN
= cast
<PHINode
>(I
);
355 for (Value
*IncValue
: PN
->incoming_values())
356 if (!canEvaluateShifted(IncValue
, NumBits
, IsLeftShift
, IC
, PN
))
363 /// Fold OuterShift (InnerShift X, C1), C2.
364 /// See canEvaluateShiftedShift() for the constraints on these instructions.
365 static Value
*foldShiftedShift(BinaryOperator
*InnerShift
, unsigned OuterShAmt
,
367 InstCombiner::BuilderTy
&Builder
) {
368 bool IsInnerShl
= InnerShift
->getOpcode() == Instruction::Shl
;
369 Type
*ShType
= InnerShift
->getType();
370 unsigned TypeWidth
= ShType
->getScalarSizeInBits();
372 // We only accept shifts-by-a-constant in canEvaluateShifted().
374 match(InnerShift
->getOperand(1), m_APInt(C1
));
375 unsigned InnerShAmt
= C1
->getZExtValue();
377 // Change the shift amount and clear the appropriate IR flags.
378 auto NewInnerShift
= [&](unsigned ShAmt
) {
379 InnerShift
->setOperand(1, ConstantInt::get(ShType
, ShAmt
));
381 InnerShift
->setHasNoUnsignedWrap(false);
382 InnerShift
->setHasNoSignedWrap(false);
384 InnerShift
->setIsExact(false);
389 // Two logical shifts in the same direction:
390 // shl (shl X, C1), C2 --> shl X, C1 + C2
391 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
392 if (IsInnerShl
== IsOuterShl
) {
393 // If this is an oversized composite shift, then unsigned shifts get 0.
394 if (InnerShAmt
+ OuterShAmt
>= TypeWidth
)
395 return Constant::getNullValue(ShType
);
397 return NewInnerShift(InnerShAmt
+ OuterShAmt
);
400 // Equal shift amounts in opposite directions become bitwise 'and':
401 // lshr (shl X, C), C --> and X, C'
402 // shl (lshr X, C), C --> and X, C'
403 if (InnerShAmt
== OuterShAmt
) {
404 APInt Mask
= IsInnerShl
405 ? APInt::getLowBitsSet(TypeWidth
, TypeWidth
- OuterShAmt
)
406 : APInt::getHighBitsSet(TypeWidth
, TypeWidth
- OuterShAmt
);
407 Value
*And
= Builder
.CreateAnd(InnerShift
->getOperand(0),
408 ConstantInt::get(ShType
, Mask
));
409 if (auto *AndI
= dyn_cast
<Instruction
>(And
)) {
410 AndI
->moveBefore(InnerShift
);
411 AndI
->takeName(InnerShift
);
416 assert(InnerShAmt
> OuterShAmt
&&
417 "Unexpected opposite direction logical shift pair");
419 // In general, we would need an 'and' for this transform, but
420 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
421 // lshr (shl X, C1), C2 --> shl X, C1 - C2
422 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
423 return NewInnerShift(InnerShAmt
- OuterShAmt
);
426 /// When canEvaluateShifted() returns true for an expression, this function
427 /// inserts the new computation that produces the shifted value.
428 static Value
*getShiftedValue(Value
*V
, unsigned NumBits
, bool isLeftShift
,
429 InstCombiner
&IC
, const DataLayout
&DL
) {
430 // We can always evaluate constants shifted.
431 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
433 V
= IC
.Builder
.CreateShl(C
, NumBits
);
435 V
= IC
.Builder
.CreateLShr(C
, NumBits
);
436 // If we got a constantexpr back, try to simplify it with TD info.
437 if (auto *C
= dyn_cast
<Constant
>(V
))
439 ConstantFoldConstant(C
, DL
, &IC
.getTargetLibraryInfo()))
444 Instruction
*I
= cast
<Instruction
>(V
);
447 switch (I
->getOpcode()) {
448 default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
449 case Instruction::And
:
450 case Instruction::Or
:
451 case Instruction::Xor
:
452 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
454 0, getShiftedValue(I
->getOperand(0), NumBits
, isLeftShift
, IC
, DL
));
456 1, getShiftedValue(I
->getOperand(1), NumBits
, isLeftShift
, IC
, DL
));
459 case Instruction::Shl
:
460 case Instruction::LShr
:
461 return foldShiftedShift(cast
<BinaryOperator
>(I
), NumBits
, isLeftShift
,
464 case Instruction::Select
:
466 1, getShiftedValue(I
->getOperand(1), NumBits
, isLeftShift
, IC
, DL
));
468 2, getShiftedValue(I
->getOperand(2), NumBits
, isLeftShift
, IC
, DL
));
470 case Instruction::PHI
: {
471 // We can change a phi if we can change all operands. Note that we never
472 // get into trouble with cyclic PHIs here because we only consider
473 // instructions with a single use.
474 PHINode
*PN
= cast
<PHINode
>(I
);
475 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
476 PN
->setIncomingValue(i
, getShiftedValue(PN
->getIncomingValue(i
), NumBits
,
477 isLeftShift
, IC
, DL
));
483 // If this is a bitwise operator or add with a constant RHS we might be able
484 // to pull it through a shift.
485 static bool canShiftBinOpWithConstantRHS(BinaryOperator
&Shift
,
486 BinaryOperator
*BO
) {
487 switch (BO
->getOpcode()) {
489 return false; // Do not perform transform!
490 case Instruction::Add
:
491 return Shift
.getOpcode() == Instruction::Shl
;
492 case Instruction::Or
:
493 case Instruction::Xor
:
494 case Instruction::And
:
499 Instruction
*InstCombiner::FoldShiftByConstant(Value
*Op0
, Constant
*Op1
,
501 bool isLeftShift
= I
.getOpcode() == Instruction::Shl
;
504 if (!match(Op1
, m_APInt(Op1C
)))
507 // See if we can propagate this shift into the input, this covers the trivial
508 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
509 if (I
.getOpcode() != Instruction::AShr
&&
510 canEvaluateShifted(Op0
, Op1C
->getZExtValue(), isLeftShift
, *this, &I
)) {
512 dbgs() << "ICE: GetShiftedValue propagating shift through expression"
513 " to eliminate shift:\n IN: "
514 << *Op0
<< "\n SH: " << I
<< "\n");
516 return replaceInstUsesWith(
517 I
, getShiftedValue(Op0
, Op1C
->getZExtValue(), isLeftShift
, *this, DL
));
520 // See if we can simplify any instructions used by the instruction whose sole
521 // purpose is to compute bits we don't care about.
522 unsigned TypeBits
= Op0
->getType()->getScalarSizeInBits();
524 assert(!Op1C
->uge(TypeBits
) &&
525 "Shift over the type width should have been removed already");
527 if (Instruction
*FoldedShift
= foldBinOpIntoSelectOrPhi(I
))
530 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
531 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(Op0
)) {
532 Instruction
*TrOp
= dyn_cast
<Instruction
>(TI
->getOperand(0));
533 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
534 // place. Don't try to do this transformation in this case. Also, we
535 // require that the input operand is a shift-by-constant so that we have
536 // confidence that the shifts will get folded together. We could do this
537 // xform in more cases, but it is unlikely to be profitable.
538 if (TrOp
&& I
.isLogicalShift() && TrOp
->isShift() &&
539 isa
<ConstantInt
>(TrOp
->getOperand(1))) {
540 // Okay, we'll do this xform. Make the shift of shift.
542 ConstantExpr::getZExt(cast
<Constant
>(Op1
), TrOp
->getType());
543 // (shift2 (shift1 & 0x00FF), c2)
544 Value
*NSh
= Builder
.CreateBinOp(I
.getOpcode(), TrOp
, ShAmt
, I
.getName());
546 // For logical shifts, the truncation has the effect of making the high
547 // part of the register be zeros. Emulate this by inserting an AND to
548 // clear the top bits as needed. This 'and' will usually be zapped by
549 // other xforms later if dead.
550 unsigned SrcSize
= TrOp
->getType()->getScalarSizeInBits();
551 unsigned DstSize
= TI
->getType()->getScalarSizeInBits();
552 APInt
MaskV(APInt::getLowBitsSet(SrcSize
, DstSize
));
554 // The mask we constructed says what the trunc would do if occurring
555 // between the shifts. We want to know the effect *after* the second
556 // shift. We know that it is a logical shift by a constant, so adjust the
557 // mask as appropriate.
558 if (I
.getOpcode() == Instruction::Shl
)
559 MaskV
<<= Op1C
->getZExtValue();
561 assert(I
.getOpcode() == Instruction::LShr
&& "Unknown logical shift");
562 MaskV
.lshrInPlace(Op1C
->getZExtValue());
566 Value
*And
= Builder
.CreateAnd(NSh
,
567 ConstantInt::get(I
.getContext(), MaskV
),
570 // Return the value truncated to the interesting size.
571 return new TruncInst(And
, I
.getType());
575 if (Op0
->hasOneUse()) {
576 if (BinaryOperator
*Op0BO
= dyn_cast
<BinaryOperator
>(Op0
)) {
577 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
580 switch (Op0BO
->getOpcode()) {
582 case Instruction::Add
:
583 case Instruction::And
:
584 case Instruction::Or
:
585 case Instruction::Xor
: {
586 // These operators commute.
587 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
588 if (isLeftShift
&& Op0BO
->getOperand(1)->hasOneUse() &&
589 match(Op0BO
->getOperand(1), m_Shr(m_Value(V1
),
591 Value
*YS
= // (Y << C)
592 Builder
.CreateShl(Op0BO
->getOperand(0), Op1
, Op0BO
->getName());
594 Value
*X
= Builder
.CreateBinOp(Op0BO
->getOpcode(), YS
, V1
,
595 Op0BO
->getOperand(1)->getName());
596 unsigned Op1Val
= Op1C
->getLimitedValue(TypeBits
);
598 APInt Bits
= APInt::getHighBitsSet(TypeBits
, TypeBits
- Op1Val
);
599 Constant
*Mask
= ConstantInt::get(I
.getContext(), Bits
);
600 if (VectorType
*VT
= dyn_cast
<VectorType
>(X
->getType()))
601 Mask
= ConstantVector::getSplat(VT
->getNumElements(), Mask
);
602 return BinaryOperator::CreateAnd(X
, Mask
);
605 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
606 Value
*Op0BOOp1
= Op0BO
->getOperand(1);
607 if (isLeftShift
&& Op0BOOp1
->hasOneUse() &&
609 m_And(m_OneUse(m_Shr(m_Value(V1
), m_Specific(Op1
))),
610 m_ConstantInt(CC
)))) {
611 Value
*YS
= // (Y << C)
612 Builder
.CreateShl(Op0BO
->getOperand(0), Op1
, Op0BO
->getName());
614 Value
*XM
= Builder
.CreateAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
615 V1
->getName()+".mask");
616 return BinaryOperator::Create(Op0BO
->getOpcode(), YS
, XM
);
621 case Instruction::Sub
: {
622 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
623 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
624 match(Op0BO
->getOperand(0), m_Shr(m_Value(V1
),
626 Value
*YS
= // (Y << C)
627 Builder
.CreateShl(Op0BO
->getOperand(1), Op1
, Op0BO
->getName());
629 Value
*X
= Builder
.CreateBinOp(Op0BO
->getOpcode(), V1
, YS
,
630 Op0BO
->getOperand(0)->getName());
631 unsigned Op1Val
= Op1C
->getLimitedValue(TypeBits
);
633 APInt Bits
= APInt::getHighBitsSet(TypeBits
, TypeBits
- Op1Val
);
634 Constant
*Mask
= ConstantInt::get(I
.getContext(), Bits
);
635 if (VectorType
*VT
= dyn_cast
<VectorType
>(X
->getType()))
636 Mask
= ConstantVector::getSplat(VT
->getNumElements(), Mask
);
637 return BinaryOperator::CreateAnd(X
, Mask
);
640 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
641 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
642 match(Op0BO
->getOperand(0),
643 m_And(m_OneUse(m_Shr(m_Value(V1
), m_Value(V2
))),
644 m_ConstantInt(CC
))) && V2
== Op1
) {
645 Value
*YS
= // (Y << C)
646 Builder
.CreateShl(Op0BO
->getOperand(1), Op1
, Op0BO
->getName());
648 Value
*XM
= Builder
.CreateAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
649 V1
->getName()+".mask");
651 return BinaryOperator::Create(Op0BO
->getOpcode(), XM
, YS
);
659 // If the operand is a bitwise operator with a constant RHS, and the
660 // shift is the only use, we can pull it out of the shift.
662 if (match(Op0BO
->getOperand(1), m_APInt(Op0C
))) {
663 if (canShiftBinOpWithConstantRHS(I
, Op0BO
)) {
664 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(),
665 cast
<Constant
>(Op0BO
->getOperand(1)), Op1
);
668 Builder
.CreateBinOp(I
.getOpcode(), Op0BO
->getOperand(0), Op1
);
669 NewShift
->takeName(Op0BO
);
671 return BinaryOperator::Create(Op0BO
->getOpcode(), NewShift
,
676 // If the operand is a subtract with a constant LHS, and the shift
677 // is the only use, we can pull it out of the shift.
678 // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
679 if (isLeftShift
&& Op0BO
->getOpcode() == Instruction::Sub
&&
680 match(Op0BO
->getOperand(0), m_APInt(Op0C
))) {
681 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(),
682 cast
<Constant
>(Op0BO
->getOperand(0)), Op1
);
684 Value
*NewShift
= Builder
.CreateShl(Op0BO
->getOperand(1), Op1
);
685 NewShift
->takeName(Op0BO
);
687 return BinaryOperator::CreateSub(NewRHS
, NewShift
);
691 // If we have a select that conditionally executes some binary operator,
692 // see if we can pull it the select and operator through the shift.
694 // For example, turning:
695 // shl (select C, (add X, C1), X), C2
698 // select C, (add Y, C1 << C2), Y
702 if (match(Op0
, m_Select(m_Value(Cond
), m_OneUse(m_BinOp(TBO
)),
703 m_Value(FalseVal
)))) {
705 if (!isa
<Constant
>(FalseVal
) && TBO
->getOperand(0) == FalseVal
&&
706 match(TBO
->getOperand(1), m_APInt(C
)) &&
707 canShiftBinOpWithConstantRHS(I
, TBO
)) {
708 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(),
709 cast
<Constant
>(TBO
->getOperand(1)), Op1
);
712 Builder
.CreateBinOp(I
.getOpcode(), FalseVal
, Op1
);
713 Value
*NewOp
= Builder
.CreateBinOp(TBO
->getOpcode(), NewShift
,
715 return SelectInst::Create(Cond
, NewOp
, NewShift
);
721 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(TrueVal
),
722 m_OneUse(m_BinOp(FBO
))))) {
724 if (!isa
<Constant
>(TrueVal
) && FBO
->getOperand(0) == TrueVal
&&
725 match(FBO
->getOperand(1), m_APInt(C
)) &&
726 canShiftBinOpWithConstantRHS(I
, FBO
)) {
727 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(),
728 cast
<Constant
>(FBO
->getOperand(1)), Op1
);
731 Builder
.CreateBinOp(I
.getOpcode(), TrueVal
, Op1
);
732 Value
*NewOp
= Builder
.CreateBinOp(FBO
->getOpcode(), NewShift
,
734 return SelectInst::Create(Cond
, NewShift
, NewOp
);
742 Instruction
*InstCombiner::visitShl(BinaryOperator
&I
) {
743 if (Value
*V
= SimplifyShlInst(I
.getOperand(0), I
.getOperand(1),
744 I
.hasNoSignedWrap(), I
.hasNoUnsignedWrap(),
745 SQ
.getWithInstruction(&I
)))
746 return replaceInstUsesWith(I
, V
);
748 if (Instruction
*X
= foldVectorBinop(I
))
751 if (Instruction
*V
= commonShiftTransforms(I
))
754 if (Instruction
*V
= dropRedundantMaskingOfLeftShiftInput(&I
, SQ
))
757 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
758 Type
*Ty
= I
.getType();
759 unsigned BitWidth
= Ty
->getScalarSizeInBits();
761 const APInt
*ShAmtAPInt
;
762 if (match(Op1
, m_APInt(ShAmtAPInt
))) {
763 unsigned ShAmt
= ShAmtAPInt
->getZExtValue();
765 // shl (zext X), ShAmt --> zext (shl X, ShAmt)
766 // This is only valid if X would have zeros shifted out.
768 if (match(Op0
, m_OneUse(m_ZExt(m_Value(X
))))) {
769 unsigned SrcWidth
= X
->getType()->getScalarSizeInBits();
770 if (ShAmt
< SrcWidth
&&
771 MaskedValueIsZero(X
, APInt::getHighBitsSet(SrcWidth
, ShAmt
), 0, &I
))
772 return new ZExtInst(Builder
.CreateShl(X
, ShAmt
), Ty
);
775 // (X >> C) << C --> X & (-1 << C)
776 if (match(Op0
, m_Shr(m_Value(X
), m_Specific(Op1
)))) {
777 APInt
Mask(APInt::getHighBitsSet(BitWidth
, BitWidth
- ShAmt
));
778 return BinaryOperator::CreateAnd(X
, ConstantInt::get(Ty
, Mask
));
781 // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
782 // needs a few fixes for the rotate pattern recognition first.
784 if (match(Op0
, m_Exact(m_Shr(m_Value(X
), m_APInt(ShOp1
))))) {
785 unsigned ShrAmt
= ShOp1
->getZExtValue();
786 if (ShrAmt
< ShAmt
) {
787 // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
788 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShAmt
- ShrAmt
);
789 auto *NewShl
= BinaryOperator::CreateShl(X
, ShiftDiff
);
790 NewShl
->setHasNoUnsignedWrap(I
.hasNoUnsignedWrap());
791 NewShl
->setHasNoSignedWrap(I
.hasNoSignedWrap());
794 if (ShrAmt
> ShAmt
) {
795 // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
796 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShrAmt
- ShAmt
);
797 auto *NewShr
= BinaryOperator::Create(
798 cast
<BinaryOperator
>(Op0
)->getOpcode(), X
, ShiftDiff
);
799 NewShr
->setIsExact(true);
804 if (match(Op0
, m_Shl(m_Value(X
), m_APInt(ShOp1
)))) {
805 unsigned AmtSum
= ShAmt
+ ShOp1
->getZExtValue();
806 // Oversized shifts are simplified to zero in InstSimplify.
807 if (AmtSum
< BitWidth
)
808 // (X << C1) << C2 --> X << (C1 + C2)
809 return BinaryOperator::CreateShl(X
, ConstantInt::get(Ty
, AmtSum
));
812 // If the shifted-out value is known-zero, then this is a NUW shift.
813 if (!I
.hasNoUnsignedWrap() &&
814 MaskedValueIsZero(Op0
, APInt::getHighBitsSet(BitWidth
, ShAmt
), 0, &I
)) {
815 I
.setHasNoUnsignedWrap();
819 // If the shifted-out value is all signbits, then this is a NSW shift.
820 if (!I
.hasNoSignedWrap() && ComputeNumSignBits(Op0
, 0, &I
) > ShAmt
) {
821 I
.setHasNoSignedWrap();
826 // Transform (x >> y) << y to x & (-1 << y)
827 // Valid for any type of right-shift.
829 if (match(Op0
, m_OneUse(m_Shr(m_Value(X
), m_Specific(Op1
))))) {
830 Constant
*AllOnes
= ConstantInt::getAllOnesValue(Ty
);
831 Value
*Mask
= Builder
.CreateShl(AllOnes
, Op1
);
832 return BinaryOperator::CreateAnd(Mask
, X
);
836 if (match(Op1
, m_Constant(C1
))) {
839 // (C2 << X) << C1 --> (C2 << C1) << X
840 if (match(Op0
, m_OneUse(m_Shl(m_Constant(C2
), m_Value(X
)))))
841 return BinaryOperator::CreateShl(ConstantExpr::getShl(C2
, C1
), X
);
843 // (X * C2) << C1 --> X * (C2 << C1)
844 if (match(Op0
, m_Mul(m_Value(X
), m_Constant(C2
))))
845 return BinaryOperator::CreateMul(X
, ConstantExpr::getShl(C2
, C1
));
848 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
849 if (match(Op0
, m_One()) &&
850 match(Op1
, m_Sub(m_SpecificInt(BitWidth
- 1), m_Value(X
))))
851 return BinaryOperator::CreateLShr(
852 ConstantInt::get(Ty
, APInt::getSignMask(BitWidth
)), X
);
857 Instruction
*InstCombiner::visitLShr(BinaryOperator
&I
) {
858 if (Value
*V
= SimplifyLShrInst(I
.getOperand(0), I
.getOperand(1), I
.isExact(),
859 SQ
.getWithInstruction(&I
)))
860 return replaceInstUsesWith(I
, V
);
862 if (Instruction
*X
= foldVectorBinop(I
))
865 if (Instruction
*R
= commonShiftTransforms(I
))
868 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
869 Type
*Ty
= I
.getType();
870 const APInt
*ShAmtAPInt
;
871 if (match(Op1
, m_APInt(ShAmtAPInt
))) {
872 unsigned ShAmt
= ShAmtAPInt
->getZExtValue();
873 unsigned BitWidth
= Ty
->getScalarSizeInBits();
874 auto *II
= dyn_cast
<IntrinsicInst
>(Op0
);
875 if (II
&& isPowerOf2_32(BitWidth
) && Log2_32(BitWidth
) == ShAmt
&&
876 (II
->getIntrinsicID() == Intrinsic::ctlz
||
877 II
->getIntrinsicID() == Intrinsic::cttz
||
878 II
->getIntrinsicID() == Intrinsic::ctpop
)) {
879 // ctlz.i32(x)>>5 --> zext(x == 0)
880 // cttz.i32(x)>>5 --> zext(x == 0)
881 // ctpop.i32(x)>>5 --> zext(x == -1)
882 bool IsPop
= II
->getIntrinsicID() == Intrinsic::ctpop
;
883 Constant
*RHS
= ConstantInt::getSigned(Ty
, IsPop
? -1 : 0);
884 Value
*Cmp
= Builder
.CreateICmpEQ(II
->getArgOperand(0), RHS
);
885 return new ZExtInst(Cmp
, Ty
);
890 if (match(Op0
, m_Shl(m_Value(X
), m_APInt(ShOp1
))) && ShOp1
->ult(BitWidth
)) {
891 if (ShOp1
->ult(ShAmt
)) {
892 unsigned ShlAmt
= ShOp1
->getZExtValue();
893 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShAmt
- ShlAmt
);
894 if (cast
<BinaryOperator
>(Op0
)->hasNoUnsignedWrap()) {
895 // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
896 auto *NewLShr
= BinaryOperator::CreateLShr(X
, ShiftDiff
);
897 NewLShr
->setIsExact(I
.isExact());
900 // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2)
901 Value
*NewLShr
= Builder
.CreateLShr(X
, ShiftDiff
, "", I
.isExact());
902 APInt
Mask(APInt::getLowBitsSet(BitWidth
, BitWidth
- ShAmt
));
903 return BinaryOperator::CreateAnd(NewLShr
, ConstantInt::get(Ty
, Mask
));
905 if (ShOp1
->ugt(ShAmt
)) {
906 unsigned ShlAmt
= ShOp1
->getZExtValue();
907 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShlAmt
- ShAmt
);
908 if (cast
<BinaryOperator
>(Op0
)->hasNoUnsignedWrap()) {
909 // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
910 auto *NewShl
= BinaryOperator::CreateShl(X
, ShiftDiff
);
911 NewShl
->setHasNoUnsignedWrap(true);
914 // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2)
915 Value
*NewShl
= Builder
.CreateShl(X
, ShiftDiff
);
916 APInt
Mask(APInt::getLowBitsSet(BitWidth
, BitWidth
- ShAmt
));
917 return BinaryOperator::CreateAnd(NewShl
, ConstantInt::get(Ty
, Mask
));
919 assert(*ShOp1
== ShAmt
);
920 // (X << C) >>u C --> X & (-1 >>u C)
921 APInt
Mask(APInt::getLowBitsSet(BitWidth
, BitWidth
- ShAmt
));
922 return BinaryOperator::CreateAnd(X
, ConstantInt::get(Ty
, Mask
));
925 if (match(Op0
, m_OneUse(m_ZExt(m_Value(X
)))) &&
926 (!Ty
->isIntegerTy() || shouldChangeType(Ty
, X
->getType()))) {
927 assert(ShAmt
< X
->getType()->getScalarSizeInBits() &&
928 "Big shift not simplified to zero?");
929 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
930 Value
*NewLShr
= Builder
.CreateLShr(X
, ShAmt
);
931 return new ZExtInst(NewLShr
, Ty
);
934 if (match(Op0
, m_SExt(m_Value(X
))) &&
935 (!Ty
->isIntegerTy() || shouldChangeType(Ty
, X
->getType()))) {
936 // Are we moving the sign bit to the low bit and widening with high zeros?
937 unsigned SrcTyBitWidth
= X
->getType()->getScalarSizeInBits();
938 if (ShAmt
== BitWidth
- 1) {
939 // lshr (sext i1 X to iN), N-1 --> zext X to iN
940 if (SrcTyBitWidth
== 1)
941 return new ZExtInst(X
, Ty
);
943 // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
944 if (Op0
->hasOneUse()) {
945 Value
*NewLShr
= Builder
.CreateLShr(X
, SrcTyBitWidth
- 1);
946 return new ZExtInst(NewLShr
, Ty
);
950 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
951 if (ShAmt
== BitWidth
- SrcTyBitWidth
&& Op0
->hasOneUse()) {
952 // The new shift amount can't be more than the narrow source type.
953 unsigned NewShAmt
= std::min(ShAmt
, SrcTyBitWidth
- 1);
954 Value
*AShr
= Builder
.CreateAShr(X
, NewShAmt
);
955 return new ZExtInst(AShr
, Ty
);
959 if (match(Op0
, m_LShr(m_Value(X
), m_APInt(ShOp1
)))) {
960 unsigned AmtSum
= ShAmt
+ ShOp1
->getZExtValue();
961 // Oversized shifts are simplified to zero in InstSimplify.
962 if (AmtSum
< BitWidth
)
963 // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
964 return BinaryOperator::CreateLShr(X
, ConstantInt::get(Ty
, AmtSum
));
967 // If the shifted-out value is known-zero, then this is an exact shift.
969 MaskedValueIsZero(Op0
, APInt::getLowBitsSet(BitWidth
, ShAmt
), 0, &I
)) {
975 // Transform (x << y) >> y to x & (-1 >> y)
977 if (match(Op0
, m_OneUse(m_Shl(m_Value(X
), m_Specific(Op1
))))) {
978 Constant
*AllOnes
= ConstantInt::getAllOnesValue(Ty
);
979 Value
*Mask
= Builder
.CreateLShr(AllOnes
, Op1
);
980 return BinaryOperator::CreateAnd(Mask
, X
);
986 Instruction
*InstCombiner::visitAShr(BinaryOperator
&I
) {
987 if (Value
*V
= SimplifyAShrInst(I
.getOperand(0), I
.getOperand(1), I
.isExact(),
988 SQ
.getWithInstruction(&I
)))
989 return replaceInstUsesWith(I
, V
);
991 if (Instruction
*X
= foldVectorBinop(I
))
994 if (Instruction
*R
= commonShiftTransforms(I
))
997 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
998 Type
*Ty
= I
.getType();
999 unsigned BitWidth
= Ty
->getScalarSizeInBits();
1000 const APInt
*ShAmtAPInt
;
1001 if (match(Op1
, m_APInt(ShAmtAPInt
)) && ShAmtAPInt
->ult(BitWidth
)) {
1002 unsigned ShAmt
= ShAmtAPInt
->getZExtValue();
1004 // If the shift amount equals the difference in width of the destination
1005 // and source scalar types:
1006 // ashr (shl (zext X), C), C --> sext X
1008 if (match(Op0
, m_Shl(m_ZExt(m_Value(X
)), m_Specific(Op1
))) &&
1009 ShAmt
== BitWidth
- X
->getType()->getScalarSizeInBits())
1010 return new SExtInst(X
, Ty
);
1012 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1013 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1015 if (match(Op0
, m_NSWShl(m_Value(X
), m_APInt(ShOp1
))) &&
1016 ShOp1
->ult(BitWidth
)) {
1017 unsigned ShlAmt
= ShOp1
->getZExtValue();
1018 if (ShlAmt
< ShAmt
) {
1019 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1020 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShAmt
- ShlAmt
);
1021 auto *NewAShr
= BinaryOperator::CreateAShr(X
, ShiftDiff
);
1022 NewAShr
->setIsExact(I
.isExact());
1025 if (ShlAmt
> ShAmt
) {
1026 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1027 Constant
*ShiftDiff
= ConstantInt::get(Ty
, ShlAmt
- ShAmt
);
1028 auto *NewShl
= BinaryOperator::Create(Instruction::Shl
, X
, ShiftDiff
);
1029 NewShl
->setHasNoSignedWrap(true);
1034 if (match(Op0
, m_AShr(m_Value(X
), m_APInt(ShOp1
))) &&
1035 ShOp1
->ult(BitWidth
)) {
1036 unsigned AmtSum
= ShAmt
+ ShOp1
->getZExtValue();
1037 // Oversized arithmetic shifts replicate the sign bit.
1038 AmtSum
= std::min(AmtSum
, BitWidth
- 1);
1039 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1040 return BinaryOperator::CreateAShr(X
, ConstantInt::get(Ty
, AmtSum
));
1043 if (match(Op0
, m_OneUse(m_SExt(m_Value(X
)))) &&
1044 (Ty
->isVectorTy() || shouldChangeType(Ty
, X
->getType()))) {
1045 // ashr (sext X), C --> sext (ashr X, C')
1046 Type
*SrcTy
= X
->getType();
1047 ShAmt
= std::min(ShAmt
, SrcTy
->getScalarSizeInBits() - 1);
1048 Value
*NewSh
= Builder
.CreateAShr(X
, ConstantInt::get(SrcTy
, ShAmt
));
1049 return new SExtInst(NewSh
, Ty
);
1052 // If the shifted-out value is known-zero, then this is an exact shift.
1054 MaskedValueIsZero(Op0
, APInt::getLowBitsSet(BitWidth
, ShAmt
), 0, &I
)) {
1060 // See if we can turn a signed shr into an unsigned shr.
1061 if (MaskedValueIsZero(Op0
, APInt::getSignMask(BitWidth
), 0, &I
))
1062 return BinaryOperator::CreateLShr(Op0
, Op1
);