[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Transforms / Instrumentation / BoundsChecking.cpp
blob4dc9b611c15675d56af3fd33d7aa55ed646676ea
1 //===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/ADT/Twine.h"
12 #include "llvm/Analysis/MemoryBuiltins.h"
13 #include "llvm/Analysis/ScalarEvolution.h"
14 #include "llvm/Analysis/TargetFolder.h"
15 #include "llvm/Analysis/TargetLibraryInfo.h"
16 #include "llvm/IR/BasicBlock.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cstdint>
34 #include <vector>
36 using namespace llvm;
38 #define DEBUG_TYPE "bounds-checking"
40 static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
41 cl::desc("Use one trap block per function"));
43 STATISTIC(ChecksAdded, "Bounds checks added");
44 STATISTIC(ChecksSkipped, "Bounds checks skipped");
45 STATISTIC(ChecksUnable, "Bounds checks unable to add");
47 using BuilderTy = IRBuilder<TargetFolder>;
49 /// Gets the conditions under which memory accessing instructions will overflow.
50 ///
51 /// \p Ptr is the pointer that will be read/written, and \p InstVal is either
52 /// the result from the load or the value being stored. It is used to determine
53 /// the size of memory block that is touched.
54 ///
55 /// Returns the condition under which the access will overflow.
56 static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal,
57 const DataLayout &DL, TargetLibraryInfo &TLI,
58 ObjectSizeOffsetEvaluator &ObjSizeEval,
59 BuilderTy &IRB, ScalarEvolution &SE) {
60 uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType());
61 LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
62 << " bytes\n");
64 SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr);
66 if (!ObjSizeEval.bothKnown(SizeOffset)) {
67 ++ChecksUnable;
68 return nullptr;
71 Value *Size = SizeOffset.first;
72 Value *Offset = SizeOffset.second;
73 ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
75 Type *IntTy = DL.getIntPtrType(Ptr->getType());
76 Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
78 auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size));
79 auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset));
80 auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal));
82 // three checks are required to ensure safety:
83 // . Offset >= 0 (since the offset is given from the base ptr)
84 // . Size >= Offset (unsigned)
85 // . Size - Offset >= NeededSize (unsigned)
87 // optimization: if Size >= 0 (signed), skip 1st check
88 // FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows
89 Value *ObjSize = IRB.CreateSub(Size, Offset);
90 Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax())
91 ? ConstantInt::getFalse(Ptr->getContext())
92 : IRB.CreateICmpULT(Size, Offset);
93 Value *Cmp3 = SizeRange.sub(OffsetRange)
94 .getUnsignedMin()
95 .uge(NeededSizeRange.getUnsignedMax())
96 ? ConstantInt::getFalse(Ptr->getContext())
97 : IRB.CreateICmpULT(ObjSize, NeededSizeVal);
98 Value *Or = IRB.CreateOr(Cmp2, Cmp3);
99 if ((!SizeCI || SizeCI->getValue().slt(0)) &&
100 !SizeRange.getSignedMin().isNonNegative()) {
101 Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0));
102 Or = IRB.CreateOr(Cmp1, Or);
105 return Or;
108 /// Adds run-time bounds checks to memory accessing instructions.
110 /// \p Or is the condition that should guard the trap.
112 /// \p GetTrapBB is a callable that returns the trap BB to use on failure.
113 template <typename GetTrapBBT>
114 static void insertBoundsCheck(Value *Or, BuilderTy IRB, GetTrapBBT GetTrapBB) {
115 // check if the comparison is always false
116 ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or);
117 if (C) {
118 ++ChecksSkipped;
119 // If non-zero, nothing to do.
120 if (!C->getZExtValue())
121 return;
123 ++ChecksAdded;
125 BasicBlock::iterator SplitI = IRB.GetInsertPoint();
126 BasicBlock *OldBB = SplitI->getParent();
127 BasicBlock *Cont = OldBB->splitBasicBlock(SplitI);
128 OldBB->getTerminator()->eraseFromParent();
130 if (C) {
131 // If we have a constant zero, unconditionally branch.
132 // FIXME: We should really handle this differently to bypass the splitting
133 // the block.
134 BranchInst::Create(GetTrapBB(IRB), OldBB);
135 return;
138 // Create the conditional branch.
139 BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB);
142 static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI,
143 ScalarEvolution &SE) {
144 const DataLayout &DL = F.getParent()->getDataLayout();
145 ObjectSizeOpts EvalOpts;
146 EvalOpts.RoundToAlign = true;
147 ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts);
149 // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
150 // touching instructions
151 SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo;
152 for (Instruction &I : instructions(F)) {
153 Value *Or = nullptr;
154 BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL));
155 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
156 Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI,
157 ObjSizeEval, IRB, SE);
158 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
159 Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(),
160 DL, TLI, ObjSizeEval, IRB, SE);
161 } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
162 Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(),
163 DL, TLI, ObjSizeEval, IRB, SE);
164 } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
165 Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(), DL,
166 TLI, ObjSizeEval, IRB, SE);
168 if (Or)
169 TrapInfo.push_back(std::make_pair(&I, Or));
172 // Create a trapping basic block on demand using a callback. Depending on
173 // flags, this will either create a single block for the entire function or
174 // will create a fresh block every time it is called.
175 BasicBlock *TrapBB = nullptr;
176 auto GetTrapBB = [&TrapBB](BuilderTy &IRB) {
177 if (TrapBB && SingleTrapBB)
178 return TrapBB;
180 Function *Fn = IRB.GetInsertBlock()->getParent();
181 // FIXME: This debug location doesn't make a lot of sense in the
182 // `SingleTrapBB` case.
183 auto DebugLoc = IRB.getCurrentDebugLocation();
184 IRBuilder<>::InsertPointGuard Guard(IRB);
185 TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
186 IRB.SetInsertPoint(TrapBB);
188 auto *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap);
189 CallInst *TrapCall = IRB.CreateCall(F, {});
190 TrapCall->setDoesNotReturn();
191 TrapCall->setDoesNotThrow();
192 TrapCall->setDebugLoc(DebugLoc);
193 IRB.CreateUnreachable();
195 return TrapBB;
198 // Add the checks.
199 for (const auto &Entry : TrapInfo) {
200 Instruction *Inst = Entry.first;
201 BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL));
202 insertBoundsCheck(Entry.second, IRB, GetTrapBB);
205 return !TrapInfo.empty();
208 PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) {
209 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
210 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
212 if (!addBoundsChecking(F, TLI, SE))
213 return PreservedAnalyses::all();
215 return PreservedAnalyses::none();
218 namespace {
219 struct BoundsCheckingLegacyPass : public FunctionPass {
220 static char ID;
222 BoundsCheckingLegacyPass() : FunctionPass(ID) {
223 initializeBoundsCheckingLegacyPassPass(*PassRegistry::getPassRegistry());
226 bool runOnFunction(Function &F) override {
227 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
228 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
229 return addBoundsChecking(F, TLI, SE);
232 void getAnalysisUsage(AnalysisUsage &AU) const override {
233 AU.addRequired<TargetLibraryInfoWrapperPass>();
234 AU.addRequired<ScalarEvolutionWrapperPass>();
237 } // namespace
239 char BoundsCheckingLegacyPass::ID = 0;
240 INITIALIZE_PASS_BEGIN(BoundsCheckingLegacyPass, "bounds-checking",
241 "Run-time bounds checking", false, false)
242 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
243 INITIALIZE_PASS_END(BoundsCheckingLegacyPass, "bounds-checking",
244 "Run-time bounds checking", false, false)
246 FunctionPass *llvm::createBoundsCheckingLegacyPass() {
247 return new BoundsCheckingLegacyPass();