[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Transforms / Instrumentation / CFGMST.h
blob8bb6f47c4846f1cfe83f42f84fde0f8fcaa8f08d
1 //===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a Union-find algorithm to compute Minimum Spanning Tree
10 // for a given CFG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
15 #define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include <utility>
27 #include <vector>
29 #define DEBUG_TYPE "cfgmst"
31 namespace llvm {
33 /// An union-find based Minimum Spanning Tree for CFG
34 ///
35 /// Implements a Union-find algorithm to compute Minimum Spanning Tree
36 /// for a given CFG.
37 template <class Edge, class BBInfo> class CFGMST {
38 public:
39 Function &F;
41 // Store all the edges in CFG. It may contain some stale edges
42 // when Removed is set.
43 std::vector<std::unique_ptr<Edge>> AllEdges;
45 // This map records the auxiliary information for each BB.
46 DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
48 // Whehter the function has an exit block with no successors.
49 // (For function with an infinite loop, this block may be absent)
50 bool ExitBlockFound = false;
52 // Find the root group of the G and compress the path from G to the root.
53 BBInfo *findAndCompressGroup(BBInfo *G) {
54 if (G->Group != G)
55 G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
56 return static_cast<BBInfo *>(G->Group);
59 // Union BB1 and BB2 into the same group and return true.
60 // Returns false if BB1 and BB2 are already in the same group.
61 bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
62 BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
63 BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
65 if (BB1G == BB2G)
66 return false;
68 // Make the smaller rank tree a direct child or the root of high rank tree.
69 if (BB1G->Rank < BB2G->Rank)
70 BB1G->Group = BB2G;
71 else {
72 BB2G->Group = BB1G;
73 // If the ranks are the same, increment root of one tree by one.
74 if (BB1G->Rank == BB2G->Rank)
75 BB1G->Rank++;
77 return true;
80 // Give BB, return the auxiliary information.
81 BBInfo &getBBInfo(const BasicBlock *BB) const {
82 auto It = BBInfos.find(BB);
83 assert(It->second.get() != nullptr);
84 return *It->second.get();
87 // Give BB, return the auxiliary information if it's available.
88 BBInfo *findBBInfo(const BasicBlock *BB) const {
89 auto It = BBInfos.find(BB);
90 if (It == BBInfos.end())
91 return nullptr;
92 return It->second.get();
95 // Traverse the CFG using a stack. Find all the edges and assign the weight.
96 // Edges with large weight will be put into MST first so they are less likely
97 // to be instrumented.
98 void buildEdges() {
99 LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
101 const BasicBlock *Entry = &(F.getEntryBlock());
102 uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
103 Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr,
104 *ExitOutgoing = nullptr, *ExitIncoming = nullptr;
105 uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0;
107 // Add a fake edge to the entry.
108 EntryIncoming = &addEdge(nullptr, Entry, EntryWeight);
109 LLVM_DEBUG(dbgs() << " Edge: from fake node to " << Entry->getName()
110 << " w = " << EntryWeight << "\n");
112 // Special handling for single BB functions.
113 if (succ_empty(Entry)) {
114 addEdge(Entry, nullptr, EntryWeight);
115 return;
118 static const uint32_t CriticalEdgeMultiplier = 1000;
120 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
121 Instruction *TI = BB->getTerminator();
122 uint64_t BBWeight =
123 (BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2);
124 uint64_t Weight = 2;
125 if (int successors = TI->getNumSuccessors()) {
126 for (int i = 0; i != successors; ++i) {
127 BasicBlock *TargetBB = TI->getSuccessor(i);
128 bool Critical = isCriticalEdge(TI, i);
129 uint64_t scaleFactor = BBWeight;
130 if (Critical) {
131 if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
132 scaleFactor *= CriticalEdgeMultiplier;
133 else
134 scaleFactor = UINT64_MAX;
136 if (BPI != nullptr)
137 Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor);
138 auto *E = &addEdge(&*BB, TargetBB, Weight);
139 E->IsCritical = Critical;
140 LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to "
141 << TargetBB->getName() << " w=" << Weight << "\n");
143 // Keep track of entry/exit edges:
144 if (&*BB == Entry) {
145 if (Weight > MaxEntryOutWeight) {
146 MaxEntryOutWeight = Weight;
147 EntryOutgoing = E;
151 auto *TargetTI = TargetBB->getTerminator();
152 if (TargetTI && !TargetTI->getNumSuccessors()) {
153 if (Weight > MaxExitInWeight) {
154 MaxExitInWeight = Weight;
155 ExitIncoming = E;
159 } else {
160 ExitBlockFound = true;
161 Edge *ExitO = &addEdge(&*BB, nullptr, BBWeight);
162 if (BBWeight > MaxExitOutWeight) {
163 MaxExitOutWeight = BBWeight;
164 ExitOutgoing = ExitO;
166 LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to fake exit"
167 << " w = " << BBWeight << "\n");
171 // Entry/exit edge adjustment heurisitic:
172 // prefer instrumenting entry edge over exit edge
173 // if possible. Those exit edges may never have a chance to be
174 // executed (for instance the program is an event handling loop)
175 // before the profile is asynchronously dumped.
177 // If EntryIncoming and ExitOutgoing has similar weight, make sure
178 // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing
179 // and ExitIncoming has similar weight, make sure ExitIncoming becomes
180 // the min-edge.
181 uint64_t EntryInWeight = EntryWeight;
183 if (EntryInWeight >= MaxExitOutWeight &&
184 EntryInWeight * 2 < MaxExitOutWeight * 3) {
185 EntryIncoming->Weight = MaxExitOutWeight;
186 ExitOutgoing->Weight = EntryInWeight + 1;
189 if (MaxEntryOutWeight >= MaxExitInWeight &&
190 MaxEntryOutWeight * 2 < MaxExitInWeight * 3) {
191 EntryOutgoing->Weight = MaxExitInWeight;
192 ExitIncoming->Weight = MaxEntryOutWeight + 1;
196 // Sort CFG edges based on its weight.
197 void sortEdgesByWeight() {
198 llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1,
199 const std::unique_ptr<Edge> &Edge2) {
200 return Edge1->Weight > Edge2->Weight;
204 // Traverse all the edges and compute the Minimum Weight Spanning Tree
205 // using union-find algorithm.
206 void computeMinimumSpanningTree() {
207 // First, put all the critical edge with landing-pad as the Dest to MST.
208 // This works around the insufficient support of critical edges split
209 // when destination BB is a landing pad.
210 for (auto &Ei : AllEdges) {
211 if (Ei->Removed)
212 continue;
213 if (Ei->IsCritical) {
214 if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
215 if (unionGroups(Ei->SrcBB, Ei->DestBB))
216 Ei->InMST = true;
221 for (auto &Ei : AllEdges) {
222 if (Ei->Removed)
223 continue;
224 // If we detect infinite loops, force
225 // instrumenting the entry edge:
226 if (!ExitBlockFound && Ei->SrcBB == nullptr)
227 continue;
228 if (unionGroups(Ei->SrcBB, Ei->DestBB))
229 Ei->InMST = true;
233 // Dump the Debug information about the instrumentation.
234 void dumpEdges(raw_ostream &OS, const Twine &Message) const {
235 if (!Message.str().empty())
236 OS << Message << "\n";
237 OS << " Number of Basic Blocks: " << BBInfos.size() << "\n";
238 for (auto &BI : BBInfos) {
239 const BasicBlock *BB = BI.first;
240 OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " "
241 << BI.second->infoString() << "\n";
244 OS << " Number of Edges: " << AllEdges.size()
245 << " (*: Instrument, C: CriticalEdge, -: Removed)\n";
246 uint32_t Count = 0;
247 for (auto &EI : AllEdges)
248 OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
249 << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
252 // Add an edge to AllEdges with weight W.
253 Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
254 uint32_t Index = BBInfos.size();
255 auto Iter = BBInfos.end();
256 bool Inserted;
257 std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
258 if (Inserted) {
259 // Newly inserted, update the real info.
260 Iter->second = std::move(std::make_unique<BBInfo>(Index));
261 Index++;
263 std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
264 if (Inserted)
265 // Newly inserted, update the real info.
266 Iter->second = std::move(std::make_unique<BBInfo>(Index));
267 AllEdges.emplace_back(new Edge(Src, Dest, W));
268 return *AllEdges.back();
271 BranchProbabilityInfo *BPI;
272 BlockFrequencyInfo *BFI;
274 public:
275 CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr,
276 BlockFrequencyInfo *BFI_ = nullptr)
277 : F(Func), BPI(BPI_), BFI(BFI_) {
278 buildEdges();
279 sortEdgesByWeight();
280 computeMinimumSpanningTree();
284 } // end namespace llvm
286 #undef DEBUG_TYPE // "cfgmst"
288 #endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H