[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Transforms / Instrumentation / PGOInstrumentation.cpp
blob73a91d909a9052a1a5cbaaaffb884fdcccc1fbc2
1 //===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements PGO instrumentation using a minimum spanning tree based
10 // on the following paper:
11 // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
12 // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
13 // Issue 3, pp 313-322
14 // The idea of the algorithm based on the fact that for each node (except for
15 // the entry and exit), the sum of incoming edge counts equals the sum of
16 // outgoing edge counts. The count of edge on spanning tree can be derived from
17 // those edges not on the spanning tree. Knuth proves this method instruments
18 // the minimum number of edges.
20 // The minimal spanning tree here is actually a maximum weight tree -- on-tree
21 // edges have higher frequencies (more likely to execute). The idea is to
22 // instrument those less frequently executed edges to reduce the runtime
23 // overhead of instrumented binaries.
25 // This file contains two passes:
26 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
27 // count profile, and generates the instrumentation for indirect call
28 // profiling.
29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and
30 // annotates the branch weights. It also reads the indirect call value
31 // profiling records and annotate the indirect call instructions.
33 // To get the precise counter information, These two passes need to invoke at
34 // the same compilation point (so they see the same IR). For pass
35 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
36 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
37 // the profile is opened in module level and passed to each PGOUseFunc instance.
38 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
39 // in class FuncPGOInstrumentation.
41 // Class PGOEdge represents a CFG edge and some auxiliary information. Class
42 // BBInfo contains auxiliary information for each BB. These two classes are used
43 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
44 // class of PGOEdge and BBInfo, respectively. They contains extra data structure
45 // used in populating profile counters.
46 // The MST implementation is in Class CFGMST (CFGMST.h).
48 //===----------------------------------------------------------------------===//
50 #include "CFGMST.h"
51 #include "llvm/ADT/APInt.h"
52 #include "llvm/ADT/ArrayRef.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/ADT/Triple.h"
58 #include "llvm/ADT/Twine.h"
59 #include "llvm/ADT/iterator.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/BlockFrequencyInfo.h"
62 #include "llvm/Analysis/BranchProbabilityInfo.h"
63 #include "llvm/Analysis/CFG.h"
64 #include "llvm/Analysis/IndirectCallVisitor.h"
65 #include "llvm/Analysis/LoopInfo.h"
66 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
67 #include "llvm/Analysis/ProfileSummaryInfo.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/CallSite.h"
72 #include "llvm/IR/Comdat.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DiagnosticInfo.h"
76 #include "llvm/IR/Dominators.h"
77 #include "llvm/IR/Function.h"
78 #include "llvm/IR/GlobalAlias.h"
79 #include "llvm/IR/GlobalValue.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/IRBuilder.h"
82 #include "llvm/IR/InstVisitor.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/LLVMContext.h"
89 #include "llvm/IR/MDBuilder.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/PassManager.h"
92 #include "llvm/IR/ProfileSummary.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/Pass.h"
96 #include "llvm/ProfileData/InstrProf.h"
97 #include "llvm/ProfileData/InstrProfReader.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CommandLine.h"
101 #include "llvm/Support/DOTGraphTraits.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/Error.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/GraphWriter.h"
106 #include "llvm/Support/JamCRC.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Instrumentation.h"
109 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstdint>
114 #include <memory>
115 #include <numeric>
116 #include <string>
117 #include <unordered_map>
118 #include <utility>
119 #include <vector>
121 using namespace llvm;
122 using ProfileCount = Function::ProfileCount;
124 #define DEBUG_TYPE "pgo-instrumentation"
126 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
127 STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented.");
128 STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented.");
129 STATISTIC(NumOfPGOEdge, "Number of edges.");
130 STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
131 STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
132 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
133 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
134 STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
135 STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
136 STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO.");
137 STATISTIC(NumOfCSPGOSelectInsts,
138 "Number of select instruction instrumented in CSPGO.");
139 STATISTIC(NumOfCSPGOMemIntrinsics,
140 "Number of mem intrinsics instrumented in CSPGO.");
141 STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO.");
142 STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO.");
143 STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO.");
144 STATISTIC(NumOfCSPGOFunc,
145 "Number of functions having valid profile counts in CSPGO.");
146 STATISTIC(NumOfCSPGOMismatch,
147 "Number of functions having mismatch profile in CSPGO.");
148 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");
150 // Command line option to specify the file to read profile from. This is
151 // mainly used for testing.
152 static cl::opt<std::string>
153 PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
154 cl::value_desc("filename"),
155 cl::desc("Specify the path of profile data file. This is"
156 "mainly for test purpose."));
157 static cl::opt<std::string> PGOTestProfileRemappingFile(
158 "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden,
159 cl::value_desc("filename"),
160 cl::desc("Specify the path of profile remapping file. This is mainly for "
161 "test purpose."));
163 // Command line option to disable value profiling. The default is false:
164 // i.e. value profiling is enabled by default. This is for debug purpose.
165 static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
166 cl::Hidden,
167 cl::desc("Disable Value Profiling"));
169 // Command line option to set the maximum number of VP annotations to write to
170 // the metadata for a single indirect call callsite.
171 static cl::opt<unsigned> MaxNumAnnotations(
172 "icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore,
173 cl::desc("Max number of annotations for a single indirect "
174 "call callsite"));
176 // Command line option to set the maximum number of value annotations
177 // to write to the metadata for a single memop intrinsic.
178 static cl::opt<unsigned> MaxNumMemOPAnnotations(
179 "memop-max-annotations", cl::init(4), cl::Hidden, cl::ZeroOrMore,
180 cl::desc("Max number of preicise value annotations for a single memop"
181 "intrinsic"));
183 // Command line option to control appending FunctionHash to the name of a COMDAT
184 // function. This is to avoid the hash mismatch caused by the preinliner.
185 static cl::opt<bool> DoComdatRenaming(
186 "do-comdat-renaming", cl::init(false), cl::Hidden,
187 cl::desc("Append function hash to the name of COMDAT function to avoid "
188 "function hash mismatch due to the preinliner"));
190 // Command line option to enable/disable the warning about missing profile
191 // information.
192 static cl::opt<bool>
193 PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden,
194 cl::desc("Use this option to turn on/off "
195 "warnings about missing profile data for "
196 "functions."));
198 // Command line option to enable/disable the warning about a hash mismatch in
199 // the profile data.
200 static cl::opt<bool>
201 NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden,
202 cl::desc("Use this option to turn off/on "
203 "warnings about profile cfg mismatch."));
205 // Command line option to enable/disable the warning about a hash mismatch in
206 // the profile data for Comdat functions, which often turns out to be false
207 // positive due to the pre-instrumentation inline.
208 static cl::opt<bool>
209 NoPGOWarnMismatchComdat("no-pgo-warn-mismatch-comdat", cl::init(true),
210 cl::Hidden,
211 cl::desc("The option is used to turn on/off "
212 "warnings about hash mismatch for comdat "
213 "functions."));
215 // Command line option to enable/disable select instruction instrumentation.
216 static cl::opt<bool>
217 PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden,
218 cl::desc("Use this option to turn on/off SELECT "
219 "instruction instrumentation. "));
221 // Command line option to turn on CFG dot or text dump of raw profile counts
222 static cl::opt<PGOViewCountsType> PGOViewRawCounts(
223 "pgo-view-raw-counts", cl::Hidden,
224 cl::desc("A boolean option to show CFG dag or text "
225 "with raw profile counts from "
226 "profile data. See also option "
227 "-pgo-view-counts. To limit graph "
228 "display to only one function, use "
229 "filtering option -view-bfi-func-name."),
230 cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
231 clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
232 clEnumValN(PGOVCT_Text, "text", "show in text.")));
234 // Command line option to enable/disable memop intrinsic call.size profiling.
235 static cl::opt<bool>
236 PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden,
237 cl::desc("Use this option to turn on/off "
238 "memory intrinsic size profiling."));
240 // Emit branch probability as optimization remarks.
241 static cl::opt<bool>
242 EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden,
243 cl::desc("When this option is on, the annotated "
244 "branch probability will be emitted as "
245 "optimization remarks: -{Rpass|"
246 "pass-remarks}=pgo-instrumentation"));
248 // Command line option to turn on CFG dot dump after profile annotation.
249 // Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts
250 extern cl::opt<PGOViewCountsType> PGOViewCounts;
252 // Command line option to specify the name of the function for CFG dump
253 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
254 extern cl::opt<std::string> ViewBlockFreqFuncName;
256 // Return a string describing the branch condition that can be
257 // used in static branch probability heuristics:
258 static std::string getBranchCondString(Instruction *TI) {
259 BranchInst *BI = dyn_cast<BranchInst>(TI);
260 if (!BI || !BI->isConditional())
261 return std::string();
263 Value *Cond = BI->getCondition();
264 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
265 if (!CI)
266 return std::string();
268 std::string result;
269 raw_string_ostream OS(result);
270 OS << CmpInst::getPredicateName(CI->getPredicate()) << "_";
271 CI->getOperand(0)->getType()->print(OS, true);
273 Value *RHS = CI->getOperand(1);
274 ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
275 if (CV) {
276 if (CV->isZero())
277 OS << "_Zero";
278 else if (CV->isOne())
279 OS << "_One";
280 else if (CV->isMinusOne())
281 OS << "_MinusOne";
282 else
283 OS << "_Const";
285 OS.flush();
286 return result;
289 namespace {
291 /// The select instruction visitor plays three roles specified
292 /// by the mode. In \c VM_counting mode, it simply counts the number of
293 /// select instructions. In \c VM_instrument mode, it inserts code to count
294 /// the number times TrueValue of select is taken. In \c VM_annotate mode,
295 /// it reads the profile data and annotate the select instruction with metadata.
296 enum VisitMode { VM_counting, VM_instrument, VM_annotate };
297 class PGOUseFunc;
299 /// Instruction Visitor class to visit select instructions.
300 struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
301 Function &F;
302 unsigned NSIs = 0; // Number of select instructions instrumented.
303 VisitMode Mode = VM_counting; // Visiting mode.
304 unsigned *CurCtrIdx = nullptr; // Pointer to current counter index.
305 unsigned TotalNumCtrs = 0; // Total number of counters
306 GlobalVariable *FuncNameVar = nullptr;
307 uint64_t FuncHash = 0;
308 PGOUseFunc *UseFunc = nullptr;
310 SelectInstVisitor(Function &Func) : F(Func) {}
312 void countSelects(Function &Func) {
313 NSIs = 0;
314 Mode = VM_counting;
315 visit(Func);
318 // Visit the IR stream and instrument all select instructions. \p
319 // Ind is a pointer to the counter index variable; \p TotalNC
320 // is the total number of counters; \p FNV is the pointer to the
321 // PGO function name var; \p FHash is the function hash.
322 void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC,
323 GlobalVariable *FNV, uint64_t FHash) {
324 Mode = VM_instrument;
325 CurCtrIdx = Ind;
326 TotalNumCtrs = TotalNC;
327 FuncHash = FHash;
328 FuncNameVar = FNV;
329 visit(Func);
332 // Visit the IR stream and annotate all select instructions.
333 void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) {
334 Mode = VM_annotate;
335 UseFunc = UF;
336 CurCtrIdx = Ind;
337 visit(Func);
340 void instrumentOneSelectInst(SelectInst &SI);
341 void annotateOneSelectInst(SelectInst &SI);
343 // Visit \p SI instruction and perform tasks according to visit mode.
344 void visitSelectInst(SelectInst &SI);
346 // Return the number of select instructions. This needs be called after
347 // countSelects().
348 unsigned getNumOfSelectInsts() const { return NSIs; }
351 /// Instruction Visitor class to visit memory intrinsic calls.
352 struct MemIntrinsicVisitor : public InstVisitor<MemIntrinsicVisitor> {
353 Function &F;
354 unsigned NMemIs = 0; // Number of memIntrinsics instrumented.
355 VisitMode Mode = VM_counting; // Visiting mode.
356 unsigned CurCtrId = 0; // Current counter index.
357 unsigned TotalNumCtrs = 0; // Total number of counters
358 GlobalVariable *FuncNameVar = nullptr;
359 uint64_t FuncHash = 0;
360 PGOUseFunc *UseFunc = nullptr;
361 std::vector<Instruction *> Candidates;
363 MemIntrinsicVisitor(Function &Func) : F(Func) {}
365 void countMemIntrinsics(Function &Func) {
366 NMemIs = 0;
367 Mode = VM_counting;
368 visit(Func);
371 void instrumentMemIntrinsics(Function &Func, unsigned TotalNC,
372 GlobalVariable *FNV, uint64_t FHash) {
373 Mode = VM_instrument;
374 TotalNumCtrs = TotalNC;
375 FuncHash = FHash;
376 FuncNameVar = FNV;
377 visit(Func);
380 std::vector<Instruction *> findMemIntrinsics(Function &Func) {
381 Candidates.clear();
382 Mode = VM_annotate;
383 visit(Func);
384 return Candidates;
387 // Visit the IR stream and annotate all mem intrinsic call instructions.
388 void instrumentOneMemIntrinsic(MemIntrinsic &MI);
390 // Visit \p MI instruction and perform tasks according to visit mode.
391 void visitMemIntrinsic(MemIntrinsic &SI);
393 unsigned getNumOfMemIntrinsics() const { return NMemIs; }
396 class PGOInstrumentationGenLegacyPass : public ModulePass {
397 public:
398 static char ID;
400 PGOInstrumentationGenLegacyPass(bool IsCS = false)
401 : ModulePass(ID), IsCS(IsCS) {
402 initializePGOInstrumentationGenLegacyPassPass(
403 *PassRegistry::getPassRegistry());
406 StringRef getPassName() const override { return "PGOInstrumentationGenPass"; }
408 private:
409 // Is this is context-sensitive instrumentation.
410 bool IsCS;
411 bool runOnModule(Module &M) override;
413 void getAnalysisUsage(AnalysisUsage &AU) const override {
414 AU.addRequired<BlockFrequencyInfoWrapperPass>();
418 class PGOInstrumentationUseLegacyPass : public ModulePass {
419 public:
420 static char ID;
422 // Provide the profile filename as the parameter.
423 PGOInstrumentationUseLegacyPass(std::string Filename = "", bool IsCS = false)
424 : ModulePass(ID), ProfileFileName(std::move(Filename)), IsCS(IsCS) {
425 if (!PGOTestProfileFile.empty())
426 ProfileFileName = PGOTestProfileFile;
427 initializePGOInstrumentationUseLegacyPassPass(
428 *PassRegistry::getPassRegistry());
431 StringRef getPassName() const override { return "PGOInstrumentationUsePass"; }
433 private:
434 std::string ProfileFileName;
435 // Is this is context-sensitive instrumentation use.
436 bool IsCS;
438 bool runOnModule(Module &M) override;
440 void getAnalysisUsage(AnalysisUsage &AU) const override {
441 AU.addRequired<ProfileSummaryInfoWrapperPass>();
442 AU.addRequired<BlockFrequencyInfoWrapperPass>();
446 class PGOInstrumentationGenCreateVarLegacyPass : public ModulePass {
447 public:
448 static char ID;
449 StringRef getPassName() const override {
450 return "PGOInstrumentationGenCreateVarPass";
452 PGOInstrumentationGenCreateVarLegacyPass(std::string CSInstrName = "")
453 : ModulePass(ID), InstrProfileOutput(CSInstrName) {
454 initializePGOInstrumentationGenCreateVarLegacyPassPass(
455 *PassRegistry::getPassRegistry());
458 private:
459 bool runOnModule(Module &M) override {
460 createProfileFileNameVar(M, InstrProfileOutput);
461 createIRLevelProfileFlagVar(M, true);
462 return false;
464 std::string InstrProfileOutput;
467 } // end anonymous namespace
469 char PGOInstrumentationGenLegacyPass::ID = 0;
471 INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen",
472 "PGO instrumentation.", false, false)
473 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
474 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
475 INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen",
476 "PGO instrumentation.", false, false)
478 ModulePass *llvm::createPGOInstrumentationGenLegacyPass(bool IsCS) {
479 return new PGOInstrumentationGenLegacyPass(IsCS);
482 char PGOInstrumentationUseLegacyPass::ID = 0;
484 INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use",
485 "Read PGO instrumentation profile.", false, false)
486 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
487 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
488 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
489 INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use",
490 "Read PGO instrumentation profile.", false, false)
492 ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename,
493 bool IsCS) {
494 return new PGOInstrumentationUseLegacyPass(Filename.str(), IsCS);
497 char PGOInstrumentationGenCreateVarLegacyPass::ID = 0;
499 INITIALIZE_PASS(PGOInstrumentationGenCreateVarLegacyPass,
500 "pgo-instr-gen-create-var",
501 "Create PGO instrumentation version variable for CSPGO.", false,
502 false)
504 ModulePass *
505 llvm::createPGOInstrumentationGenCreateVarLegacyPass(StringRef CSInstrName) {
506 return new PGOInstrumentationGenCreateVarLegacyPass(CSInstrName);
509 namespace {
511 /// An MST based instrumentation for PGO
513 /// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO
514 /// in the function level.
515 struct PGOEdge {
516 // This class implements the CFG edges. Note the CFG can be a multi-graph.
517 // So there might be multiple edges with same SrcBB and DestBB.
518 const BasicBlock *SrcBB;
519 const BasicBlock *DestBB;
520 uint64_t Weight;
521 bool InMST = false;
522 bool Removed = false;
523 bool IsCritical = false;
525 PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
526 : SrcBB(Src), DestBB(Dest), Weight(W) {}
528 // Return the information string of an edge.
529 const std::string infoString() const {
530 return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
531 (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str();
535 // This class stores the auxiliary information for each BB.
536 struct BBInfo {
537 BBInfo *Group;
538 uint32_t Index;
539 uint32_t Rank = 0;
541 BBInfo(unsigned IX) : Group(this), Index(IX) {}
543 // Return the information string of this object.
544 const std::string infoString() const {
545 return (Twine("Index=") + Twine(Index)).str();
548 // Empty function -- only applicable to UseBBInfo.
549 void addOutEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
551 // Empty function -- only applicable to UseBBInfo.
552 void addInEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
555 // This class implements the CFG edges. Note the CFG can be a multi-graph.
556 template <class Edge, class BBInfo> class FuncPGOInstrumentation {
557 private:
558 Function &F;
560 // Is this is context-sensitive instrumentation.
561 bool IsCS;
563 // A map that stores the Comdat group in function F.
564 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers;
566 void computeCFGHash();
567 void renameComdatFunction();
569 public:
570 std::vector<std::vector<Instruction *>> ValueSites;
571 SelectInstVisitor SIVisitor;
572 MemIntrinsicVisitor MIVisitor;
573 std::string FuncName;
574 GlobalVariable *FuncNameVar;
576 // CFG hash value for this function.
577 uint64_t FunctionHash = 0;
579 // The Minimum Spanning Tree of function CFG.
580 CFGMST<Edge, BBInfo> MST;
582 // Collect all the BBs that will be instrumented, and store them in
583 // InstrumentBBs.
584 void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs);
586 // Give an edge, find the BB that will be instrumented.
587 // Return nullptr if there is no BB to be instrumented.
588 BasicBlock *getInstrBB(Edge *E);
590 // Return the auxiliary BB information.
591 BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
593 // Return the auxiliary BB information if available.
594 BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); }
596 // Dump edges and BB information.
597 void dumpInfo(std::string Str = "") const {
598 MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " +
599 Twine(FunctionHash) + "\t" + Str);
602 FuncPGOInstrumentation(
603 Function &Func,
604 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
605 bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
606 BlockFrequencyInfo *BFI = nullptr, bool IsCS = false)
607 : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers),
608 ValueSites(IPVK_Last + 1), SIVisitor(Func), MIVisitor(Func),
609 MST(F, BPI, BFI) {
610 // This should be done before CFG hash computation.
611 SIVisitor.countSelects(Func);
612 MIVisitor.countMemIntrinsics(Func);
613 if (!IsCS) {
614 NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
615 NumOfPGOMemIntrinsics += MIVisitor.getNumOfMemIntrinsics();
616 NumOfPGOBB += MST.BBInfos.size();
617 ValueSites[IPVK_IndirectCallTarget] = findIndirectCalls(Func);
618 } else {
619 NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
620 NumOfCSPGOMemIntrinsics += MIVisitor.getNumOfMemIntrinsics();
621 NumOfCSPGOBB += MST.BBInfos.size();
623 ValueSites[IPVK_MemOPSize] = MIVisitor.findMemIntrinsics(Func);
625 FuncName = getPGOFuncName(F);
626 computeCFGHash();
627 if (!ComdatMembers.empty())
628 renameComdatFunction();
629 LLVM_DEBUG(dumpInfo("after CFGMST"));
631 for (auto &E : MST.AllEdges) {
632 if (E->Removed)
633 continue;
634 IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++;
635 if (!E->InMST)
636 IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++;
639 if (CreateGlobalVar)
640 FuncNameVar = createPGOFuncNameVar(F, FuncName);
644 } // end anonymous namespace
646 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
647 // value of each BB in the CFG. The higher 32 bits record the number of edges.
648 template <class Edge, class BBInfo>
649 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
650 std::vector<char> Indexes;
651 JamCRC JC;
652 for (auto &BB : F) {
653 const Instruction *TI = BB.getTerminator();
654 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
655 BasicBlock *Succ = TI->getSuccessor(I);
656 auto BI = findBBInfo(Succ);
657 if (BI == nullptr)
658 continue;
659 uint32_t Index = BI->Index;
660 for (int J = 0; J < 4; J++)
661 Indexes.push_back((char)(Index >> (J * 8)));
664 JC.update(Indexes);
666 // Hash format for context sensitive profile. Reserve 4 bits for other
667 // information.
668 FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 |
669 (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 |
670 //(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 |
671 (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC();
672 // Reserve bit 60-63 for other information purpose.
673 FunctionHash &= 0x0FFFFFFFFFFFFFFF;
674 if (IsCS)
675 NamedInstrProfRecord::setCSFlagInHash(FunctionHash);
676 LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n"
677 << " CRC = " << JC.getCRC()
678 << ", Selects = " << SIVisitor.getNumOfSelectInsts()
679 << ", Edges = " << MST.AllEdges.size() << ", ICSites = "
680 << ValueSites[IPVK_IndirectCallTarget].size()
681 << ", Hash = " << FunctionHash << "\n";);
684 // Check if we can safely rename this Comdat function.
685 static bool canRenameComdat(
686 Function &F,
687 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
688 if (!DoComdatRenaming || !canRenameComdatFunc(F, true))
689 return false;
691 // FIXME: Current only handle those Comdat groups that only containing one
692 // function and function aliases.
693 // (1) For a Comdat group containing multiple functions, we need to have a
694 // unique postfix based on the hashes for each function. There is a
695 // non-trivial code refactoring to do this efficiently.
696 // (2) Variables can not be renamed, so we can not rename Comdat function in a
697 // group including global vars.
698 Comdat *C = F.getComdat();
699 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
700 if (dyn_cast<GlobalAlias>(CM.second))
701 continue;
702 Function *FM = dyn_cast<Function>(CM.second);
703 if (FM != &F)
704 return false;
706 return true;
709 // Append the CFGHash to the Comdat function name.
710 template <class Edge, class BBInfo>
711 void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
712 if (!canRenameComdat(F, ComdatMembers))
713 return;
714 std::string OrigName = F.getName().str();
715 std::string NewFuncName =
716 Twine(F.getName() + "." + Twine(FunctionHash)).str();
717 F.setName(Twine(NewFuncName));
718 GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F);
719 FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str();
720 Comdat *NewComdat;
721 Module *M = F.getParent();
722 // For AvailableExternallyLinkage functions, change the linkage to
723 // LinkOnceODR and put them into comdat. This is because after renaming, there
724 // is no backup external copy available for the function.
725 if (!F.hasComdat()) {
726 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
727 NewComdat = M->getOrInsertComdat(StringRef(NewFuncName));
728 F.setLinkage(GlobalValue::LinkOnceODRLinkage);
729 F.setComdat(NewComdat);
730 return;
733 // This function belongs to a single function Comdat group.
734 Comdat *OrigComdat = F.getComdat();
735 std::string NewComdatName =
736 Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str();
737 NewComdat = M->getOrInsertComdat(StringRef(NewComdatName));
738 NewComdat->setSelectionKind(OrigComdat->getSelectionKind());
740 for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) {
741 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(CM.second)) {
742 // For aliases, change the name directly.
743 assert(dyn_cast<Function>(GA->getAliasee()->stripPointerCasts()) == &F);
744 std::string OrigGAName = GA->getName().str();
745 GA->setName(Twine(GA->getName() + "." + Twine(FunctionHash)));
746 GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigGAName, GA);
747 continue;
749 // Must be a function.
750 Function *CF = dyn_cast<Function>(CM.second);
751 assert(CF);
752 CF->setComdat(NewComdat);
756 // Collect all the BBs that will be instruments and return them in
757 // InstrumentBBs and setup InEdges/OutEdge for UseBBInfo.
758 template <class Edge, class BBInfo>
759 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs(
760 std::vector<BasicBlock *> &InstrumentBBs) {
761 // Use a worklist as we will update the vector during the iteration.
762 std::vector<Edge *> EdgeList;
763 EdgeList.reserve(MST.AllEdges.size());
764 for (auto &E : MST.AllEdges)
765 EdgeList.push_back(E.get());
767 for (auto &E : EdgeList) {
768 BasicBlock *InstrBB = getInstrBB(E);
769 if (InstrBB)
770 InstrumentBBs.push_back(InstrBB);
773 // Set up InEdges/OutEdges for all BBs.
774 for (auto &E : MST.AllEdges) {
775 if (E->Removed)
776 continue;
777 const BasicBlock *SrcBB = E->SrcBB;
778 const BasicBlock *DestBB = E->DestBB;
779 BBInfo &SrcInfo = getBBInfo(SrcBB);
780 BBInfo &DestInfo = getBBInfo(DestBB);
781 SrcInfo.addOutEdge(E.get());
782 DestInfo.addInEdge(E.get());
786 // Given a CFG E to be instrumented, find which BB to place the instrumented
787 // code. The function will split the critical edge if necessary.
788 template <class Edge, class BBInfo>
789 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
790 if (E->InMST || E->Removed)
791 return nullptr;
793 BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
794 BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
795 // For a fake edge, instrument the real BB.
796 if (SrcBB == nullptr)
797 return DestBB;
798 if (DestBB == nullptr)
799 return SrcBB;
801 auto canInstrument = [](BasicBlock *BB) -> BasicBlock * {
802 // There are basic blocks (such as catchswitch) cannot be instrumented.
803 // If the returned first insertion point is the end of BB, skip this BB.
804 if (BB->getFirstInsertionPt() == BB->end())
805 return nullptr;
806 return BB;
809 // Instrument the SrcBB if it has a single successor,
810 // otherwise, the DestBB if this is not a critical edge.
811 Instruction *TI = SrcBB->getTerminator();
812 if (TI->getNumSuccessors() <= 1)
813 return canInstrument(SrcBB);
814 if (!E->IsCritical)
815 return canInstrument(DestBB);
817 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
818 BasicBlock *InstrBB = SplitCriticalEdge(TI, SuccNum);
819 if (!InstrBB) {
820 LLVM_DEBUG(
821 dbgs() << "Fail to split critical edge: not instrument this edge.\n");
822 return nullptr;
824 // For a critical edge, we have to split. Instrument the newly
825 // created BB.
826 IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++;
827 LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index
828 << " --> " << getBBInfo(DestBB).Index << "\n");
829 // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB.
830 MST.addEdge(SrcBB, InstrBB, 0);
831 // Second one: Add new edge of InstrBB->DestBB.
832 Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0);
833 NewEdge1.InMST = true;
834 E->Removed = true;
836 return canInstrument(InstrBB);
839 // Visit all edge and instrument the edges not in MST, and do value profiling.
840 // Critical edges will be split.
841 static void instrumentOneFunc(
842 Function &F, Module *M, BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFI,
843 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
844 bool IsCS) {
845 // Split indirectbr critical edges here before computing the MST rather than
846 // later in getInstrBB() to avoid invalidating it.
847 SplitIndirectBrCriticalEdges(F, BPI, BFI);
849 FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(F, ComdatMembers, true, BPI,
850 BFI, IsCS);
851 std::vector<BasicBlock *> InstrumentBBs;
852 FuncInfo.getInstrumentBBs(InstrumentBBs);
853 unsigned NumCounters =
854 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
856 uint32_t I = 0;
857 Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
858 for (auto *InstrBB : InstrumentBBs) {
859 IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
860 assert(Builder.GetInsertPoint() != InstrBB->end() &&
861 "Cannot get the Instrumentation point");
862 Builder.CreateCall(
863 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment),
864 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
865 Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters),
866 Builder.getInt32(I++)});
869 // Now instrument select instructions:
870 FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar,
871 FuncInfo.FunctionHash);
872 assert(I == NumCounters);
874 if (DisableValueProfiling)
875 return;
877 unsigned NumIndirectCalls = 0;
878 for (auto &I : FuncInfo.ValueSites[IPVK_IndirectCallTarget]) {
879 CallSite CS(I);
880 Value *Callee = CS.getCalledValue();
881 LLVM_DEBUG(dbgs() << "Instrument one indirect call: CallSite Index = "
882 << NumIndirectCalls << "\n");
883 IRBuilder<> Builder(I);
884 assert(Builder.GetInsertPoint() != I->getParent()->end() &&
885 "Cannot get the Instrumentation point");
886 Builder.CreateCall(
887 Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
888 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
889 Builder.getInt64(FuncInfo.FunctionHash),
890 Builder.CreatePtrToInt(Callee, Builder.getInt64Ty()),
891 Builder.getInt32(IPVK_IndirectCallTarget),
892 Builder.getInt32(NumIndirectCalls++)});
894 NumOfPGOICall += NumIndirectCalls;
896 // Now instrument memop intrinsic calls.
897 FuncInfo.MIVisitor.instrumentMemIntrinsics(
898 F, NumCounters, FuncInfo.FuncNameVar, FuncInfo.FunctionHash);
901 namespace {
903 // This class represents a CFG edge in profile use compilation.
904 struct PGOUseEdge : public PGOEdge {
905 bool CountValid = false;
906 uint64_t CountValue = 0;
908 PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
909 : PGOEdge(Src, Dest, W) {}
911 // Set edge count value
912 void setEdgeCount(uint64_t Value) {
913 CountValue = Value;
914 CountValid = true;
917 // Return the information string for this object.
918 const std::string infoString() const {
919 if (!CountValid)
920 return PGOEdge::infoString();
921 return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue))
922 .str();
926 using DirectEdges = SmallVector<PGOUseEdge *, 2>;
928 // This class stores the auxiliary information for each BB.
929 struct UseBBInfo : public BBInfo {
930 uint64_t CountValue = 0;
931 bool CountValid;
932 int32_t UnknownCountInEdge = 0;
933 int32_t UnknownCountOutEdge = 0;
934 DirectEdges InEdges;
935 DirectEdges OutEdges;
937 UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {}
939 UseBBInfo(unsigned IX, uint64_t C)
940 : BBInfo(IX), CountValue(C), CountValid(true) {}
942 // Set the profile count value for this BB.
943 void setBBInfoCount(uint64_t Value) {
944 CountValue = Value;
945 CountValid = true;
948 // Return the information string of this object.
949 const std::string infoString() const {
950 if (!CountValid)
951 return BBInfo::infoString();
952 return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str();
955 // Add an OutEdge and update the edge count.
956 void addOutEdge(PGOUseEdge *E) {
957 OutEdges.push_back(E);
958 UnknownCountOutEdge++;
961 // Add an InEdge and update the edge count.
962 void addInEdge(PGOUseEdge *E) {
963 InEdges.push_back(E);
964 UnknownCountInEdge++;
968 } // end anonymous namespace
970 // Sum up the count values for all the edges.
971 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
972 uint64_t Total = 0;
973 for (auto &E : Edges) {
974 if (E->Removed)
975 continue;
976 Total += E->CountValue;
978 return Total;
981 namespace {
983 class PGOUseFunc {
984 public:
985 PGOUseFunc(Function &Func, Module *Modu,
986 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
987 BranchProbabilityInfo *BPI = nullptr,
988 BlockFrequencyInfo *BFIin = nullptr, bool IsCS = false)
989 : F(Func), M(Modu), BFI(BFIin),
990 FuncInfo(Func, ComdatMembers, false, BPI, BFIin, IsCS),
991 FreqAttr(FFA_Normal), IsCS(IsCS) {}
993 // Read counts for the instrumented BB from profile.
994 bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros);
996 // Populate the counts for all BBs.
997 void populateCounters();
999 // Set the branch weights based on the count values.
1000 void setBranchWeights();
1002 // Annotate the value profile call sites for all value kind.
1003 void annotateValueSites();
1005 // Annotate the value profile call sites for one value kind.
1006 void annotateValueSites(uint32_t Kind);
1008 // Annotate the irreducible loop header weights.
1009 void annotateIrrLoopHeaderWeights();
1011 // The hotness of the function from the profile count.
1012 enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };
1014 // Return the function hotness from the profile.
1015 FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }
1017 // Return the function hash.
1018 uint64_t getFuncHash() const { return FuncInfo.FunctionHash; }
1020 // Return the profile record for this function;
1021 InstrProfRecord &getProfileRecord() { return ProfileRecord; }
1023 // Return the auxiliary BB information.
1024 UseBBInfo &getBBInfo(const BasicBlock *BB) const {
1025 return FuncInfo.getBBInfo(BB);
1028 // Return the auxiliary BB information if available.
1029 UseBBInfo *findBBInfo(const BasicBlock *BB) const {
1030 return FuncInfo.findBBInfo(BB);
1033 Function &getFunc() const { return F; }
1035 void dumpInfo(std::string Str = "") const {
1036 FuncInfo.dumpInfo(Str);
1039 uint64_t getProgramMaxCount() const { return ProgramMaxCount; }
1040 private:
1041 Function &F;
1042 Module *M;
1043 BlockFrequencyInfo *BFI;
1045 // This member stores the shared information with class PGOGenFunc.
1046 FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo;
1048 // The maximum count value in the profile. This is only used in PGO use
1049 // compilation.
1050 uint64_t ProgramMaxCount;
1052 // Position of counter that remains to be read.
1053 uint32_t CountPosition = 0;
1055 // Total size of the profile count for this function.
1056 uint32_t ProfileCountSize = 0;
1058 // ProfileRecord for this function.
1059 InstrProfRecord ProfileRecord;
1061 // Function hotness info derived from profile.
1062 FuncFreqAttr FreqAttr;
1064 // Is to use the context sensitive profile.
1065 bool IsCS;
1067 // Find the Instrumented BB and set the value. Return false on error.
1068 bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
1070 // Set the edge counter value for the unknown edge -- there should be only
1071 // one unknown edge.
1072 void setEdgeCount(DirectEdges &Edges, uint64_t Value);
1074 // Return FuncName string;
1075 const std::string getFuncName() const { return FuncInfo.FuncName; }
1077 // Set the hot/cold inline hints based on the count values.
1078 // FIXME: This function should be removed once the functionality in
1079 // the inliner is implemented.
1080 void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
1081 if (ProgramMaxCount == 0)
1082 return;
1083 // Threshold of the hot functions.
1084 const BranchProbability HotFunctionThreshold(1, 100);
1085 // Threshold of the cold functions.
1086 const BranchProbability ColdFunctionThreshold(2, 10000);
1087 if (EntryCount >= HotFunctionThreshold.scale(ProgramMaxCount))
1088 FreqAttr = FFA_Hot;
1089 else if (MaxCount <= ColdFunctionThreshold.scale(ProgramMaxCount))
1090 FreqAttr = FFA_Cold;
1094 } // end anonymous namespace
1096 // Visit all the edges and assign the count value for the instrumented
1097 // edges and the BB. Return false on error.
1098 bool PGOUseFunc::setInstrumentedCounts(
1099 const std::vector<uint64_t> &CountFromProfile) {
1101 std::vector<BasicBlock *> InstrumentBBs;
1102 FuncInfo.getInstrumentBBs(InstrumentBBs);
1103 unsigned NumCounters =
1104 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
1105 // The number of counters here should match the number of counters
1106 // in profile. Return if they mismatch.
1107 if (NumCounters != CountFromProfile.size()) {
1108 return false;
1110 // Set the profile count to the Instrumented BBs.
1111 uint32_t I = 0;
1112 for (BasicBlock *InstrBB : InstrumentBBs) {
1113 uint64_t CountValue = CountFromProfile[I++];
1114 UseBBInfo &Info = getBBInfo(InstrBB);
1115 Info.setBBInfoCount(CountValue);
1117 ProfileCountSize = CountFromProfile.size();
1118 CountPosition = I;
1120 // Set the edge count and update the count of unknown edges for BBs.
1121 auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void {
1122 E->setEdgeCount(Value);
1123 this->getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1124 this->getBBInfo(E->DestBB).UnknownCountInEdge--;
1127 // Set the profile count the Instrumented edges. There are BBs that not in
1128 // MST but not instrumented. Need to set the edge count value so that we can
1129 // populate the profile counts later.
1130 for (auto &E : FuncInfo.MST.AllEdges) {
1131 if (E->Removed || E->InMST)
1132 continue;
1133 const BasicBlock *SrcBB = E->SrcBB;
1134 UseBBInfo &SrcInfo = getBBInfo(SrcBB);
1136 // If only one out-edge, the edge profile count should be the same as BB
1137 // profile count.
1138 if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1)
1139 setEdgeCount(E.get(), SrcInfo.CountValue);
1140 else {
1141 const BasicBlock *DestBB = E->DestBB;
1142 UseBBInfo &DestInfo = getBBInfo(DestBB);
1143 // If only one in-edge, the edge profile count should be the same as BB
1144 // profile count.
1145 if (DestInfo.CountValid && DestInfo.InEdges.size() == 1)
1146 setEdgeCount(E.get(), DestInfo.CountValue);
1148 if (E->CountValid)
1149 continue;
1150 // E's count should have been set from profile. If not, this meenas E skips
1151 // the instrumentation. We set the count to 0.
1152 setEdgeCount(E.get(), 0);
1154 return true;
1157 // Set the count value for the unknown edge. There should be one and only one
1158 // unknown edge in Edges vector.
1159 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
1160 for (auto &E : Edges) {
1161 if (E->CountValid)
1162 continue;
1163 E->setEdgeCount(Value);
1165 getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1166 getBBInfo(E->DestBB).UnknownCountInEdge--;
1167 return;
1169 llvm_unreachable("Cannot find the unknown count edge");
1172 // Read the profile from ProfileFileName and assign the value to the
1173 // instrumented BB and the edges. This function also updates ProgramMaxCount.
1174 // Return true if the profile are successfully read, and false on errors.
1175 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros) {
1176 auto &Ctx = M->getContext();
1177 Expected<InstrProfRecord> Result =
1178 PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash);
1179 if (Error E = Result.takeError()) {
1180 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
1181 auto Err = IPE.get();
1182 bool SkipWarning = false;
1183 LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
1184 << FuncInfo.FuncName << ": ");
1185 if (Err == instrprof_error::unknown_function) {
1186 IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
1187 SkipWarning = !PGOWarnMissing;
1188 LLVM_DEBUG(dbgs() << "unknown function");
1189 } else if (Err == instrprof_error::hash_mismatch ||
1190 Err == instrprof_error::malformed) {
1191 IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
1192 SkipWarning =
1193 NoPGOWarnMismatch ||
1194 (NoPGOWarnMismatchComdat &&
1195 (F.hasComdat() ||
1196 F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
1197 LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")");
1200 LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
1201 if (SkipWarning)
1202 return;
1204 std::string Msg = IPE.message() + std::string(" ") + F.getName().str() +
1205 std::string(" Hash = ") +
1206 std::to_string(FuncInfo.FunctionHash);
1208 Ctx.diagnose(
1209 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
1211 return false;
1213 ProfileRecord = std::move(Result.get());
1214 std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;
1216 IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
1217 LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
1218 uint64_t ValueSum = 0;
1219 for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
1220 LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n");
1221 ValueSum += CountFromProfile[I];
1223 AllZeros = (ValueSum == 0);
1225 LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n");
1227 getBBInfo(nullptr).UnknownCountOutEdge = 2;
1228 getBBInfo(nullptr).UnknownCountInEdge = 2;
1230 if (!setInstrumentedCounts(CountFromProfile)) {
1231 LLVM_DEBUG(
1232 dbgs() << "Inconsistent number of counts, skipping this function");
1233 Ctx.diagnose(DiagnosticInfoPGOProfile(
1234 M->getName().data(),
1235 Twine("Inconsistent number of counts in ") + F.getName().str()
1236 + Twine(": the profile may be stale or there is a function name collision."),
1237 DS_Warning));
1238 return false;
1240 ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS);
1241 return true;
1244 // Populate the counters from instrumented BBs to all BBs.
1245 // In the end of this operation, all BBs should have a valid count value.
1246 void PGOUseFunc::populateCounters() {
1247 bool Changes = true;
1248 unsigned NumPasses = 0;
1249 while (Changes) {
1250 NumPasses++;
1251 Changes = false;
1253 // For efficient traversal, it's better to start from the end as most
1254 // of the instrumented edges are at the end.
1255 for (auto &BB : reverse(F)) {
1256 UseBBInfo *Count = findBBInfo(&BB);
1257 if (Count == nullptr)
1258 continue;
1259 if (!Count->CountValid) {
1260 if (Count->UnknownCountOutEdge == 0) {
1261 Count->CountValue = sumEdgeCount(Count->OutEdges);
1262 Count->CountValid = true;
1263 Changes = true;
1264 } else if (Count->UnknownCountInEdge == 0) {
1265 Count->CountValue = sumEdgeCount(Count->InEdges);
1266 Count->CountValid = true;
1267 Changes = true;
1270 if (Count->CountValid) {
1271 if (Count->UnknownCountOutEdge == 1) {
1272 uint64_t Total = 0;
1273 uint64_t OutSum = sumEdgeCount(Count->OutEdges);
1274 // If the one of the successor block can early terminate (no-return),
1275 // we can end up with situation where out edge sum count is larger as
1276 // the source BB's count is collected by a post-dominated block.
1277 if (Count->CountValue > OutSum)
1278 Total = Count->CountValue - OutSum;
1279 setEdgeCount(Count->OutEdges, Total);
1280 Changes = true;
1282 if (Count->UnknownCountInEdge == 1) {
1283 uint64_t Total = 0;
1284 uint64_t InSum = sumEdgeCount(Count->InEdges);
1285 if (Count->CountValue > InSum)
1286 Total = Count->CountValue - InSum;
1287 setEdgeCount(Count->InEdges, Total);
1288 Changes = true;
1294 LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
1295 #ifndef NDEBUG
1296 // Assert every BB has a valid counter.
1297 for (auto &BB : F) {
1298 auto BI = findBBInfo(&BB);
1299 if (BI == nullptr)
1300 continue;
1301 assert(BI->CountValid && "BB count is not valid");
1303 #endif
1304 uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
1305 F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real));
1306 uint64_t FuncMaxCount = FuncEntryCount;
1307 for (auto &BB : F) {
1308 auto BI = findBBInfo(&BB);
1309 if (BI == nullptr)
1310 continue;
1311 FuncMaxCount = std::max(FuncMaxCount, BI->CountValue);
1313 markFunctionAttributes(FuncEntryCount, FuncMaxCount);
1315 // Now annotate select instructions
1316 FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition);
1317 assert(CountPosition == ProfileCountSize);
1319 LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile."));
1322 // Assign the scaled count values to the BB with multiple out edges.
1323 void PGOUseFunc::setBranchWeights() {
1324 // Generate MD_prof metadata for every branch instruction.
1325 LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName()
1326 << " IsCS=" << IsCS << "\n");
1327 for (auto &BB : F) {
1328 Instruction *TI = BB.getTerminator();
1329 if (TI->getNumSuccessors() < 2)
1330 continue;
1331 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
1332 isa<IndirectBrInst>(TI)))
1333 continue;
1335 if (getBBInfo(&BB).CountValue == 0)
1336 continue;
1338 // We have a non-zero Branch BB.
1339 const UseBBInfo &BBCountInfo = getBBInfo(&BB);
1340 unsigned Size = BBCountInfo.OutEdges.size();
1341 SmallVector<uint64_t, 2> EdgeCounts(Size, 0);
1342 uint64_t MaxCount = 0;
1343 for (unsigned s = 0; s < Size; s++) {
1344 const PGOUseEdge *E = BBCountInfo.OutEdges[s];
1345 const BasicBlock *SrcBB = E->SrcBB;
1346 const BasicBlock *DestBB = E->DestBB;
1347 if (DestBB == nullptr)
1348 continue;
1349 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
1350 uint64_t EdgeCount = E->CountValue;
1351 if (EdgeCount > MaxCount)
1352 MaxCount = EdgeCount;
1353 EdgeCounts[SuccNum] = EdgeCount;
1355 setProfMetadata(M, TI, EdgeCounts, MaxCount);
1359 static bool isIndirectBrTarget(BasicBlock *BB) {
1360 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1361 if (isa<IndirectBrInst>((*PI)->getTerminator()))
1362 return true;
1364 return false;
1367 void PGOUseFunc::annotateIrrLoopHeaderWeights() {
1368 LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n");
1369 // Find irr loop headers
1370 for (auto &BB : F) {
1371 // As a heuristic also annotate indrectbr targets as they have a high chance
1372 // to become an irreducible loop header after the indirectbr tail
1373 // duplication.
1374 if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) {
1375 Instruction *TI = BB.getTerminator();
1376 const UseBBInfo &BBCountInfo = getBBInfo(&BB);
1377 setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue);
1382 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
1383 Module *M = F.getParent();
1384 IRBuilder<> Builder(&SI);
1385 Type *Int64Ty = Builder.getInt64Ty();
1386 Type *I8PtrTy = Builder.getInt8PtrTy();
1387 auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty);
1388 Builder.CreateCall(
1389 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step),
1390 {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
1391 Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs),
1392 Builder.getInt32(*CurCtrIdx), Step});
1393 ++(*CurCtrIdx);
1396 void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
1397 std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts;
1398 assert(*CurCtrIdx < CountFromProfile.size() &&
1399 "Out of bound access of counters");
1400 uint64_t SCounts[2];
1401 SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count
1402 ++(*CurCtrIdx);
1403 uint64_t TotalCount = 0;
1404 auto BI = UseFunc->findBBInfo(SI.getParent());
1405 if (BI != nullptr)
1406 TotalCount = BI->CountValue;
1407 // False Count
1408 SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0);
1409 uint64_t MaxCount = std::max(SCounts[0], SCounts[1]);
1410 if (MaxCount)
1411 setProfMetadata(F.getParent(), &SI, SCounts, MaxCount);
1414 void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
1415 if (!PGOInstrSelect)
1416 return;
1417 // FIXME: do not handle this yet.
1418 if (SI.getCondition()->getType()->isVectorTy())
1419 return;
1421 switch (Mode) {
1422 case VM_counting:
1423 NSIs++;
1424 return;
1425 case VM_instrument:
1426 instrumentOneSelectInst(SI);
1427 return;
1428 case VM_annotate:
1429 annotateOneSelectInst(SI);
1430 return;
1433 llvm_unreachable("Unknown visiting mode");
1436 void MemIntrinsicVisitor::instrumentOneMemIntrinsic(MemIntrinsic &MI) {
1437 Module *M = F.getParent();
1438 IRBuilder<> Builder(&MI);
1439 Type *Int64Ty = Builder.getInt64Ty();
1440 Type *I8PtrTy = Builder.getInt8PtrTy();
1441 Value *Length = MI.getLength();
1442 assert(!isa<ConstantInt>(Length));
1443 Builder.CreateCall(
1444 Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
1445 {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
1446 Builder.getInt64(FuncHash), Builder.CreateZExtOrTrunc(Length, Int64Ty),
1447 Builder.getInt32(IPVK_MemOPSize), Builder.getInt32(CurCtrId)});
1448 ++CurCtrId;
1451 void MemIntrinsicVisitor::visitMemIntrinsic(MemIntrinsic &MI) {
1452 if (!PGOInstrMemOP)
1453 return;
1454 Value *Length = MI.getLength();
1455 // Not instrument constant length calls.
1456 if (dyn_cast<ConstantInt>(Length))
1457 return;
1459 switch (Mode) {
1460 case VM_counting:
1461 NMemIs++;
1462 return;
1463 case VM_instrument:
1464 instrumentOneMemIntrinsic(MI);
1465 return;
1466 case VM_annotate:
1467 Candidates.push_back(&MI);
1468 return;
1470 llvm_unreachable("Unknown visiting mode");
1473 // Traverse all valuesites and annotate the instructions for all value kind.
1474 void PGOUseFunc::annotateValueSites() {
1475 if (DisableValueProfiling)
1476 return;
1478 // Create the PGOFuncName meta data.
1479 createPGOFuncNameMetadata(F, FuncInfo.FuncName);
1481 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1482 annotateValueSites(Kind);
1485 static const char *ValueProfKindDescr[] = {
1486 #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr,
1487 #include "llvm/ProfileData/InstrProfData.inc"
1490 // Annotate the instructions for a specific value kind.
1491 void PGOUseFunc::annotateValueSites(uint32_t Kind) {
1492 assert(Kind <= IPVK_Last);
1493 unsigned ValueSiteIndex = 0;
1494 auto &ValueSites = FuncInfo.ValueSites[Kind];
1495 unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind);
1496 if (NumValueSites != ValueSites.size()) {
1497 auto &Ctx = M->getContext();
1498 Ctx.diagnose(DiagnosticInfoPGOProfile(
1499 M->getName().data(),
1500 Twine("Inconsistent number of value sites for ") +
1501 Twine(ValueProfKindDescr[Kind]) +
1502 Twine(" profiling in \"") + F.getName().str() +
1503 Twine("\", possibly due to the use of a stale profile."),
1504 DS_Warning));
1505 return;
1508 for (auto &I : ValueSites) {
1509 LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind
1510 << "): Index = " << ValueSiteIndex << " out of "
1511 << NumValueSites << "\n");
1512 annotateValueSite(*M, *I, ProfileRecord,
1513 static_cast<InstrProfValueKind>(Kind), ValueSiteIndex,
1514 Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations
1515 : MaxNumAnnotations);
1516 ValueSiteIndex++;
1520 // Collect the set of members for each Comdat in module M and store
1521 // in ComdatMembers.
1522 static void collectComdatMembers(
1523 Module &M,
1524 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
1525 if (!DoComdatRenaming)
1526 return;
1527 for (Function &F : M)
1528 if (Comdat *C = F.getComdat())
1529 ComdatMembers.insert(std::make_pair(C, &F));
1530 for (GlobalVariable &GV : M.globals())
1531 if (Comdat *C = GV.getComdat())
1532 ComdatMembers.insert(std::make_pair(C, &GV));
1533 for (GlobalAlias &GA : M.aliases())
1534 if (Comdat *C = GA.getComdat())
1535 ComdatMembers.insert(std::make_pair(C, &GA));
1538 static bool InstrumentAllFunctions(
1539 Module &M, function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1540 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
1541 // For the context-sensitve instrumentation, we should have a separated pass
1542 // (before LTO/ThinLTO linking) to create these variables.
1543 if (!IsCS)
1544 createIRLevelProfileFlagVar(M, /* IsCS */ false);
1545 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1546 collectComdatMembers(M, ComdatMembers);
1548 for (auto &F : M) {
1549 if (F.isDeclaration())
1550 continue;
1551 auto *BPI = LookupBPI(F);
1552 auto *BFI = LookupBFI(F);
1553 instrumentOneFunc(F, &M, BPI, BFI, ComdatMembers, IsCS);
1555 return true;
1558 PreservedAnalyses
1559 PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) {
1560 createProfileFileNameVar(M, CSInstrName);
1561 createIRLevelProfileFlagVar(M, /* IsCS */ true);
1562 return PreservedAnalyses::all();
1565 bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) {
1566 if (skipModule(M))
1567 return false;
1569 auto LookupBPI = [this](Function &F) {
1570 return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
1572 auto LookupBFI = [this](Function &F) {
1573 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
1575 return InstrumentAllFunctions(M, LookupBPI, LookupBFI, IsCS);
1578 PreservedAnalyses PGOInstrumentationGen::run(Module &M,
1579 ModuleAnalysisManager &AM) {
1580 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1581 auto LookupBPI = [&FAM](Function &F) {
1582 return &FAM.getResult<BranchProbabilityAnalysis>(F);
1585 auto LookupBFI = [&FAM](Function &F) {
1586 return &FAM.getResult<BlockFrequencyAnalysis>(F);
1589 if (!InstrumentAllFunctions(M, LookupBPI, LookupBFI, IsCS))
1590 return PreservedAnalyses::all();
1592 return PreservedAnalyses::none();
1595 static bool annotateAllFunctions(
1596 Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName,
1597 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1598 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
1599 LLVM_DEBUG(dbgs() << "Read in profile counters: ");
1600 auto &Ctx = M.getContext();
1601 // Read the counter array from file.
1602 auto ReaderOrErr =
1603 IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName);
1604 if (Error E = ReaderOrErr.takeError()) {
1605 handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
1606 Ctx.diagnose(
1607 DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message()));
1609 return false;
1612 std::unique_ptr<IndexedInstrProfReader> PGOReader =
1613 std::move(ReaderOrErr.get());
1614 if (!PGOReader) {
1615 Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
1616 StringRef("Cannot get PGOReader")));
1617 return false;
1619 if (!PGOReader->hasCSIRLevelProfile() && IsCS)
1620 return false;
1622 // TODO: might need to change the warning once the clang option is finalized.
1623 if (!PGOReader->isIRLevelProfile()) {
1624 Ctx.diagnose(DiagnosticInfoPGOProfile(
1625 ProfileFileName.data(), "Not an IR level instrumentation profile"));
1626 return false;
1629 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1630 collectComdatMembers(M, ComdatMembers);
1631 std::vector<Function *> HotFunctions;
1632 std::vector<Function *> ColdFunctions;
1633 for (auto &F : M) {
1634 if (F.isDeclaration())
1635 continue;
1636 auto *BPI = LookupBPI(F);
1637 auto *BFI = LookupBFI(F);
1638 // Split indirectbr critical edges here before computing the MST rather than
1639 // later in getInstrBB() to avoid invalidating it.
1640 SplitIndirectBrCriticalEdges(F, BPI, BFI);
1641 PGOUseFunc Func(F, &M, ComdatMembers, BPI, BFI, IsCS);
1642 bool AllZeros = false;
1643 if (!Func.readCounters(PGOReader.get(), AllZeros))
1644 continue;
1645 if (AllZeros) {
1646 F.setEntryCount(ProfileCount(0, Function::PCT_Real));
1647 if (Func.getProgramMaxCount() != 0)
1648 ColdFunctions.push_back(&F);
1649 continue;
1651 Func.populateCounters();
1652 Func.setBranchWeights();
1653 Func.annotateValueSites();
1654 Func.annotateIrrLoopHeaderWeights();
1655 PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
1656 if (FreqAttr == PGOUseFunc::FFA_Cold)
1657 ColdFunctions.push_back(&F);
1658 else if (FreqAttr == PGOUseFunc::FFA_Hot)
1659 HotFunctions.push_back(&F);
1660 if (PGOViewCounts != PGOVCT_None &&
1661 (ViewBlockFreqFuncName.empty() ||
1662 F.getName().equals(ViewBlockFreqFuncName))) {
1663 LoopInfo LI{DominatorTree(F)};
1664 std::unique_ptr<BranchProbabilityInfo> NewBPI =
1665 std::make_unique<BranchProbabilityInfo>(F, LI);
1666 std::unique_ptr<BlockFrequencyInfo> NewBFI =
1667 std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI);
1668 if (PGOViewCounts == PGOVCT_Graph)
1669 NewBFI->view();
1670 else if (PGOViewCounts == PGOVCT_Text) {
1671 dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n";
1672 NewBFI->print(dbgs());
1675 if (PGOViewRawCounts != PGOVCT_None &&
1676 (ViewBlockFreqFuncName.empty() ||
1677 F.getName().equals(ViewBlockFreqFuncName))) {
1678 if (PGOViewRawCounts == PGOVCT_Graph)
1679 if (ViewBlockFreqFuncName.empty())
1680 WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
1681 else
1682 ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
1683 else if (PGOViewRawCounts == PGOVCT_Text) {
1684 dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n";
1685 Func.dumpInfo();
1689 M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()),
1690 IsCS ? ProfileSummary::PSK_CSInstr
1691 : ProfileSummary::PSK_Instr);
1693 // Set function hotness attribute from the profile.
1694 // We have to apply these attributes at the end because their presence
1695 // can affect the BranchProbabilityInfo of any callers, resulting in an
1696 // inconsistent MST between prof-gen and prof-use.
1697 for (auto &F : HotFunctions) {
1698 F->addFnAttr(Attribute::InlineHint);
1699 LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
1700 << "\n");
1702 for (auto &F : ColdFunctions) {
1703 F->addFnAttr(Attribute::Cold);
1704 LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName()
1705 << "\n");
1707 return true;
1710 PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename,
1711 std::string RemappingFilename,
1712 bool IsCS)
1713 : ProfileFileName(std::move(Filename)),
1714 ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) {
1715 if (!PGOTestProfileFile.empty())
1716 ProfileFileName = PGOTestProfileFile;
1717 if (!PGOTestProfileRemappingFile.empty())
1718 ProfileRemappingFileName = PGOTestProfileRemappingFile;
1721 PreservedAnalyses PGOInstrumentationUse::run(Module &M,
1722 ModuleAnalysisManager &AM) {
1724 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1725 auto LookupBPI = [&FAM](Function &F) {
1726 return &FAM.getResult<BranchProbabilityAnalysis>(F);
1729 auto LookupBFI = [&FAM](Function &F) {
1730 return &FAM.getResult<BlockFrequencyAnalysis>(F);
1733 if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName,
1734 LookupBPI, LookupBFI, IsCS))
1735 return PreservedAnalyses::all();
1737 return PreservedAnalyses::none();
1740 bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) {
1741 if (skipModule(M))
1742 return false;
1744 auto LookupBPI = [this](Function &F) {
1745 return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
1747 auto LookupBFI = [this](Function &F) {
1748 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
1751 return annotateAllFunctions(M, ProfileFileName, "", LookupBPI, LookupBFI,
1752 IsCS);
1755 static std::string getSimpleNodeName(const BasicBlock *Node) {
1756 if (!Node->getName().empty())
1757 return Node->getName();
1759 std::string SimpleNodeName;
1760 raw_string_ostream OS(SimpleNodeName);
1761 Node->printAsOperand(OS, false);
1762 return OS.str();
1765 void llvm::setProfMetadata(Module *M, Instruction *TI,
1766 ArrayRef<uint64_t> EdgeCounts,
1767 uint64_t MaxCount) {
1768 MDBuilder MDB(M->getContext());
1769 assert(MaxCount > 0 && "Bad max count");
1770 uint64_t Scale = calculateCountScale(MaxCount);
1771 SmallVector<unsigned, 4> Weights;
1772 for (const auto &ECI : EdgeCounts)
1773 Weights.push_back(scaleBranchCount(ECI, Scale));
1775 LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W
1776 : Weights) {
1777 dbgs() << W << " ";
1778 } dbgs() << "\n";);
1779 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1780 if (EmitBranchProbability) {
1781 std::string BrCondStr = getBranchCondString(TI);
1782 if (BrCondStr.empty())
1783 return;
1785 uint64_t WSum =
1786 std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0,
1787 [](uint64_t w1, uint64_t w2) { return w1 + w2; });
1788 uint64_t TotalCount =
1789 std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0,
1790 [](uint64_t c1, uint64_t c2) { return c1 + c2; });
1791 Scale = calculateCountScale(WSum);
1792 BranchProbability BP(scaleBranchCount(Weights[0], Scale),
1793 scaleBranchCount(WSum, Scale));
1794 std::string BranchProbStr;
1795 raw_string_ostream OS(BranchProbStr);
1796 OS << BP;
1797 OS << " (total count : " << TotalCount << ")";
1798 OS.flush();
1799 Function *F = TI->getParent()->getParent();
1800 OptimizationRemarkEmitter ORE(F);
1801 ORE.emit([&]() {
1802 return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI)
1803 << BrCondStr << " is true with probability : " << BranchProbStr;
1808 namespace llvm {
1810 void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) {
1811 MDBuilder MDB(M->getContext());
1812 TI->setMetadata(llvm::LLVMContext::MD_irr_loop,
1813 MDB.createIrrLoopHeaderWeight(Count));
1816 template <> struct GraphTraits<PGOUseFunc *> {
1817 using NodeRef = const BasicBlock *;
1818 using ChildIteratorType = succ_const_iterator;
1819 using nodes_iterator = pointer_iterator<Function::const_iterator>;
1821 static NodeRef getEntryNode(const PGOUseFunc *G) {
1822 return &G->getFunc().front();
1825 static ChildIteratorType child_begin(const NodeRef N) {
1826 return succ_begin(N);
1829 static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }
1831 static nodes_iterator nodes_begin(const PGOUseFunc *G) {
1832 return nodes_iterator(G->getFunc().begin());
1835 static nodes_iterator nodes_end(const PGOUseFunc *G) {
1836 return nodes_iterator(G->getFunc().end());
1840 template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits {
1841 explicit DOTGraphTraits(bool isSimple = false)
1842 : DefaultDOTGraphTraits(isSimple) {}
1844 static std::string getGraphName(const PGOUseFunc *G) {
1845 return G->getFunc().getName();
1848 std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) {
1849 std::string Result;
1850 raw_string_ostream OS(Result);
1852 OS << getSimpleNodeName(Node) << ":\\l";
1853 UseBBInfo *BI = Graph->findBBInfo(Node);
1854 OS << "Count : ";
1855 if (BI && BI->CountValid)
1856 OS << BI->CountValue << "\\l";
1857 else
1858 OS << "Unknown\\l";
1860 if (!PGOInstrSelect)
1861 return Result;
1863 for (auto BI = Node->begin(); BI != Node->end(); ++BI) {
1864 auto *I = &*BI;
1865 if (!isa<SelectInst>(I))
1866 continue;
1867 // Display scaled counts for SELECT instruction:
1868 OS << "SELECT : { T = ";
1869 uint64_t TC, FC;
1870 bool HasProf = I->extractProfMetadata(TC, FC);
1871 if (!HasProf)
1872 OS << "Unknown, F = Unknown }\\l";
1873 else
1874 OS << TC << ", F = " << FC << " }\\l";
1876 return Result;
1880 } // end namespace llvm