[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Transforms / Scalar / DeadStoreElimination.cpp
bloba81645745b48776d09c287cbd510540e93a07329
1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a trivial dead store elimination that only considers
10 // basic-block local redundant stores.
12 // FIXME: This should eventually be extended to be a post-dominator tree
13 // traversal. Doing so would be pretty trivial.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OrderedBasicBlock.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstddef>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <utility>
68 using namespace llvm;
70 #define DEBUG_TYPE "dse"
72 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
73 STATISTIC(NumFastStores, "Number of stores deleted");
74 STATISTIC(NumFastOther, "Number of other instrs removed");
75 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
76 STATISTIC(NumModifiedStores, "Number of stores modified");
78 static cl::opt<bool>
79 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
80 cl::init(true), cl::Hidden,
81 cl::desc("Enable partial-overwrite tracking in DSE"));
83 static cl::opt<bool>
84 EnablePartialStoreMerging("enable-dse-partial-store-merging",
85 cl::init(true), cl::Hidden,
86 cl::desc("Enable partial store merging in DSE"));
88 //===----------------------------------------------------------------------===//
89 // Helper functions
90 //===----------------------------------------------------------------------===//
91 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
92 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
94 /// Delete this instruction. Before we do, go through and zero out all the
95 /// operands of this instruction. If any of them become dead, delete them and
96 /// the computation tree that feeds them.
97 /// If ValueSet is non-null, remove any deleted instructions from it as well.
98 static void
99 deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
100 MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
101 InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB,
102 SmallSetVector<const Value *, 16> *ValueSet = nullptr) {
103 SmallVector<Instruction*, 32> NowDeadInsts;
105 NowDeadInsts.push_back(I);
106 --NumFastOther;
108 // Keeping the iterator straight is a pain, so we let this routine tell the
109 // caller what the next instruction is after we're done mucking about.
110 BasicBlock::iterator NewIter = *BBI;
112 // Before we touch this instruction, remove it from memdep!
113 do {
114 Instruction *DeadInst = NowDeadInsts.pop_back_val();
115 ++NumFastOther;
117 // Try to preserve debug information attached to the dead instruction.
118 salvageDebugInfo(*DeadInst);
120 // This instruction is dead, zap it, in stages. Start by removing it from
121 // MemDep, which needs to know the operands and needs it to be in the
122 // function.
123 MD.removeInstruction(DeadInst);
125 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
126 Value *Op = DeadInst->getOperand(op);
127 DeadInst->setOperand(op, nullptr);
129 // If this operand just became dead, add it to the NowDeadInsts list.
130 if (!Op->use_empty()) continue;
132 if (Instruction *OpI = dyn_cast<Instruction>(Op))
133 if (isInstructionTriviallyDead(OpI, &TLI))
134 NowDeadInsts.push_back(OpI);
137 if (ValueSet) ValueSet->remove(DeadInst);
138 IOL.erase(DeadInst);
139 OBB.eraseInstruction(DeadInst);
141 if (NewIter == DeadInst->getIterator())
142 NewIter = DeadInst->eraseFromParent();
143 else
144 DeadInst->eraseFromParent();
145 } while (!NowDeadInsts.empty());
146 *BBI = NewIter;
149 /// Does this instruction write some memory? This only returns true for things
150 /// that we can analyze with other helpers below.
151 static bool hasAnalyzableMemoryWrite(Instruction *I,
152 const TargetLibraryInfo &TLI) {
153 if (isa<StoreInst>(I))
154 return true;
155 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
156 switch (II->getIntrinsicID()) {
157 default:
158 return false;
159 case Intrinsic::memset:
160 case Intrinsic::memmove:
161 case Intrinsic::memcpy:
162 case Intrinsic::memcpy_element_unordered_atomic:
163 case Intrinsic::memmove_element_unordered_atomic:
164 case Intrinsic::memset_element_unordered_atomic:
165 case Intrinsic::init_trampoline:
166 case Intrinsic::lifetime_end:
167 return true;
170 if (auto CS = CallSite(I)) {
171 if (Function *F = CS.getCalledFunction()) {
172 StringRef FnName = F->getName();
173 if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy))
174 return true;
175 if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy))
176 return true;
177 if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat))
178 return true;
179 if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat))
180 return true;
183 return false;
186 /// Return a Location stored to by the specified instruction. If isRemovable
187 /// returns true, this function and getLocForRead completely describe the memory
188 /// operations for this instruction.
189 static MemoryLocation getLocForWrite(Instruction *Inst) {
191 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
192 return MemoryLocation::get(SI);
194 if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
195 // memcpy/memmove/memset.
196 MemoryLocation Loc = MemoryLocation::getForDest(MI);
197 return Loc;
200 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
201 switch (II->getIntrinsicID()) {
202 default:
203 return MemoryLocation(); // Unhandled intrinsic.
204 case Intrinsic::init_trampoline:
205 return MemoryLocation(II->getArgOperand(0));
206 case Intrinsic::lifetime_end: {
207 uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
208 return MemoryLocation(II->getArgOperand(1), Len);
212 if (auto CS = CallSite(Inst))
213 // All the supported TLI functions so far happen to have dest as their
214 // first argument.
215 return MemoryLocation(CS.getArgument(0));
216 return MemoryLocation();
219 /// Return the location read by the specified "hasAnalyzableMemoryWrite"
220 /// instruction if any.
221 static MemoryLocation getLocForRead(Instruction *Inst,
222 const TargetLibraryInfo &TLI) {
223 assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");
225 // The only instructions that both read and write are the mem transfer
226 // instructions (memcpy/memmove).
227 if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
228 return MemoryLocation::getForSource(MTI);
229 return MemoryLocation();
232 /// If the value of this instruction and the memory it writes to is unused, may
233 /// we delete this instruction?
234 static bool isRemovable(Instruction *I) {
235 // Don't remove volatile/atomic stores.
236 if (StoreInst *SI = dyn_cast<StoreInst>(I))
237 return SI->isUnordered();
239 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
240 switch (II->getIntrinsicID()) {
241 default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
242 case Intrinsic::lifetime_end:
243 // Never remove dead lifetime_end's, e.g. because it is followed by a
244 // free.
245 return false;
246 case Intrinsic::init_trampoline:
247 // Always safe to remove init_trampoline.
248 return true;
249 case Intrinsic::memset:
250 case Intrinsic::memmove:
251 case Intrinsic::memcpy:
252 // Don't remove volatile memory intrinsics.
253 return !cast<MemIntrinsic>(II)->isVolatile();
254 case Intrinsic::memcpy_element_unordered_atomic:
255 case Intrinsic::memmove_element_unordered_atomic:
256 case Intrinsic::memset_element_unordered_atomic:
257 return true;
261 // note: only get here for calls with analyzable writes - i.e. libcalls
262 if (auto CS = CallSite(I))
263 return CS.getInstruction()->use_empty();
265 return false;
268 /// Returns true if the end of this instruction can be safely shortened in
269 /// length.
270 static bool isShortenableAtTheEnd(Instruction *I) {
271 // Don't shorten stores for now
272 if (isa<StoreInst>(I))
273 return false;
275 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
276 switch (II->getIntrinsicID()) {
277 default: return false;
278 case Intrinsic::memset:
279 case Intrinsic::memcpy:
280 case Intrinsic::memcpy_element_unordered_atomic:
281 case Intrinsic::memset_element_unordered_atomic:
282 // Do shorten memory intrinsics.
283 // FIXME: Add memmove if it's also safe to transform.
284 return true;
288 // Don't shorten libcalls calls for now.
290 return false;
293 /// Returns true if the beginning of this instruction can be safely shortened
294 /// in length.
295 static bool isShortenableAtTheBeginning(Instruction *I) {
296 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
297 // easily done by offsetting the source address.
298 return isa<AnyMemSetInst>(I);
301 /// Return the pointer that is being written to.
302 static Value *getStoredPointerOperand(Instruction *I) {
303 //TODO: factor this to reuse getLocForWrite
304 MemoryLocation Loc = getLocForWrite(I);
305 assert(Loc.Ptr &&
306 "unable to find pointer written for analyzable instruction?");
307 // TODO: most APIs don't expect const Value *
308 return const_cast<Value*>(Loc.Ptr);
311 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
312 const TargetLibraryInfo &TLI,
313 const Function *F) {
314 uint64_t Size;
315 ObjectSizeOpts Opts;
316 Opts.NullIsUnknownSize = NullPointerIsDefined(F);
318 if (getObjectSize(V, Size, DL, &TLI, Opts))
319 return Size;
320 return MemoryLocation::UnknownSize;
323 namespace {
325 enum OverwriteResult {
326 OW_Begin,
327 OW_Complete,
328 OW_End,
329 OW_PartialEarlierWithFullLater,
330 OW_Unknown
333 } // end anonymous namespace
335 /// Return 'OW_Complete' if a store to the 'Later' location completely
336 /// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
337 /// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
338 /// beginning of the 'Earlier' location is overwritten by 'Later'.
339 /// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
340 /// overwritten by a latter (smaller) store which doesn't write outside the big
341 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
342 static OverwriteResult isOverwrite(const MemoryLocation &Later,
343 const MemoryLocation &Earlier,
344 const DataLayout &DL,
345 const TargetLibraryInfo &TLI,
346 int64_t &EarlierOff, int64_t &LaterOff,
347 Instruction *DepWrite,
348 InstOverlapIntervalsTy &IOL,
349 AliasAnalysis &AA,
350 const Function *F) {
351 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
352 // get imprecise values here, though (except for unknown sizes).
353 if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise())
354 return OW_Unknown;
356 const uint64_t LaterSize = Later.Size.getValue();
357 const uint64_t EarlierSize = Earlier.Size.getValue();
359 const Value *P1 = Earlier.Ptr->stripPointerCasts();
360 const Value *P2 = Later.Ptr->stripPointerCasts();
362 // If the start pointers are the same, we just have to compare sizes to see if
363 // the later store was larger than the earlier store.
364 if (P1 == P2 || AA.isMustAlias(P1, P2)) {
365 // Make sure that the Later size is >= the Earlier size.
366 if (LaterSize >= EarlierSize)
367 return OW_Complete;
370 // Check to see if the later store is to the entire object (either a global,
371 // an alloca, or a byval/inalloca argument). If so, then it clearly
372 // overwrites any other store to the same object.
373 const Value *UO1 = GetUnderlyingObject(P1, DL),
374 *UO2 = GetUnderlyingObject(P2, DL);
376 // If we can't resolve the same pointers to the same object, then we can't
377 // analyze them at all.
378 if (UO1 != UO2)
379 return OW_Unknown;
381 // If the "Later" store is to a recognizable object, get its size.
382 uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
383 if (ObjectSize != MemoryLocation::UnknownSize)
384 if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
385 return OW_Complete;
387 // Okay, we have stores to two completely different pointers. Try to
388 // decompose the pointer into a "base + constant_offset" form. If the base
389 // pointers are equal, then we can reason about the two stores.
390 EarlierOff = 0;
391 LaterOff = 0;
392 const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
393 const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
395 // If the base pointers still differ, we have two completely different stores.
396 if (BP1 != BP2)
397 return OW_Unknown;
399 // The later store completely overlaps the earlier store if:
401 // 1. Both start at the same offset and the later one's size is greater than
402 // or equal to the earlier one's, or
404 // |--earlier--|
405 // |-- later --|
407 // 2. The earlier store has an offset greater than the later offset, but which
408 // still lies completely within the later store.
410 // |--earlier--|
411 // |----- later ------|
413 // We have to be careful here as *Off is signed while *.Size is unsigned.
414 if (EarlierOff >= LaterOff &&
415 LaterSize >= EarlierSize &&
416 uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
417 return OW_Complete;
419 // We may now overlap, although the overlap is not complete. There might also
420 // be other incomplete overlaps, and together, they might cover the complete
421 // earlier write.
422 // Note: The correctness of this logic depends on the fact that this function
423 // is not even called providing DepWrite when there are any intervening reads.
424 if (EnablePartialOverwriteTracking &&
425 LaterOff < int64_t(EarlierOff + EarlierSize) &&
426 int64_t(LaterOff + LaterSize) >= EarlierOff) {
428 // Insert our part of the overlap into the map.
429 auto &IM = IOL[DepWrite];
430 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
431 << ", " << int64_t(EarlierOff + EarlierSize)
432 << ") Later [" << LaterOff << ", "
433 << int64_t(LaterOff + LaterSize) << ")\n");
435 // Make sure that we only insert non-overlapping intervals and combine
436 // adjacent intervals. The intervals are stored in the map with the ending
437 // offset as the key (in the half-open sense) and the starting offset as
438 // the value.
439 int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;
441 // Find any intervals ending at, or after, LaterIntStart which start
442 // before LaterIntEnd.
443 auto ILI = IM.lower_bound(LaterIntStart);
444 if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
445 // This existing interval is overlapped with the current store somewhere
446 // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
447 // intervals and adjusting our start and end.
448 LaterIntStart = std::min(LaterIntStart, ILI->second);
449 LaterIntEnd = std::max(LaterIntEnd, ILI->first);
450 ILI = IM.erase(ILI);
452 // Continue erasing and adjusting our end in case other previous
453 // intervals are also overlapped with the current store.
455 // |--- ealier 1 ---| |--- ealier 2 ---|
456 // |------- later---------|
458 while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
459 assert(ILI->second > LaterIntStart && "Unexpected interval");
460 LaterIntEnd = std::max(LaterIntEnd, ILI->first);
461 ILI = IM.erase(ILI);
465 IM[LaterIntEnd] = LaterIntStart;
467 ILI = IM.begin();
468 if (ILI->second <= EarlierOff &&
469 ILI->first >= int64_t(EarlierOff + EarlierSize)) {
470 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
471 << EarlierOff << ", "
472 << int64_t(EarlierOff + EarlierSize)
473 << ") Composite Later [" << ILI->second << ", "
474 << ILI->first << ")\n");
475 ++NumCompletePartials;
476 return OW_Complete;
480 // Check for an earlier store which writes to all the memory locations that
481 // the later store writes to.
482 if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
483 int64_t(EarlierOff + EarlierSize) > LaterOff &&
484 uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
485 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
486 << EarlierOff << ", "
487 << int64_t(EarlierOff + EarlierSize)
488 << ") by a later store [" << LaterOff << ", "
489 << int64_t(LaterOff + LaterSize) << ")\n");
490 // TODO: Maybe come up with a better name?
491 return OW_PartialEarlierWithFullLater;
494 // Another interesting case is if the later store overwrites the end of the
495 // earlier store.
497 // |--earlier--|
498 // |-- later --|
500 // In this case we may want to trim the size of earlier to avoid generating
501 // writes to addresses which will definitely be overwritten later
502 if (!EnablePartialOverwriteTracking &&
503 (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
504 int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
505 return OW_End;
507 // Finally, we also need to check if the later store overwrites the beginning
508 // of the earlier store.
510 // |--earlier--|
511 // |-- later --|
513 // In this case we may want to move the destination address and trim the size
514 // of earlier to avoid generating writes to addresses which will definitely
515 // be overwritten later.
516 if (!EnablePartialOverwriteTracking &&
517 (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
518 assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
519 "Expect to be handled as OW_Complete");
520 return OW_Begin;
522 // Otherwise, they don't completely overlap.
523 return OW_Unknown;
526 /// If 'Inst' might be a self read (i.e. a noop copy of a
527 /// memory region into an identical pointer) then it doesn't actually make its
528 /// input dead in the traditional sense. Consider this case:
530 /// memmove(A <- B)
531 /// memmove(A <- A)
533 /// In this case, the second store to A does not make the first store to A dead.
534 /// The usual situation isn't an explicit A<-A store like this (which can be
535 /// trivially removed) but a case where two pointers may alias.
537 /// This function detects when it is unsafe to remove a dependent instruction
538 /// because the DSE inducing instruction may be a self-read.
539 static bool isPossibleSelfRead(Instruction *Inst,
540 const MemoryLocation &InstStoreLoc,
541 Instruction *DepWrite,
542 const TargetLibraryInfo &TLI,
543 AliasAnalysis &AA) {
544 // Self reads can only happen for instructions that read memory. Get the
545 // location read.
546 MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
547 if (!InstReadLoc.Ptr)
548 return false; // Not a reading instruction.
550 // If the read and written loc obviously don't alias, it isn't a read.
551 if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
552 return false;
554 if (isa<AnyMemCpyInst>(Inst)) {
555 // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
556 // but in practice memcpy(A <- B) either means that A and B are disjoint or
557 // are equal (i.e. there are not partial overlaps). Given that, if we have:
559 // memcpy/memmove(A <- B) // DepWrite
560 // memcpy(A <- B) // Inst
562 // with Inst reading/writing a >= size than DepWrite, we can reason as
563 // follows:
565 // - If A == B then both the copies are no-ops, so the DepWrite can be
566 // removed.
567 // - If A != B then A and B are disjoint locations in Inst. Since
568 // Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
569 // Therefore DepWrite can be removed.
570 MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
572 if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
573 return false;
576 // If DepWrite doesn't read memory or if we can't prove it is a must alias,
577 // then it can't be considered dead.
578 return true;
581 /// Returns true if the memory which is accessed by the second instruction is not
582 /// modified between the first and the second instruction.
583 /// Precondition: Second instruction must be dominated by the first
584 /// instruction.
585 static bool memoryIsNotModifiedBetween(Instruction *FirstI,
586 Instruction *SecondI,
587 AliasAnalysis *AA) {
588 SmallVector<BasicBlock *, 16> WorkList;
589 SmallPtrSet<BasicBlock *, 8> Visited;
590 BasicBlock::iterator FirstBBI(FirstI);
591 ++FirstBBI;
592 BasicBlock::iterator SecondBBI(SecondI);
593 BasicBlock *FirstBB = FirstI->getParent();
594 BasicBlock *SecondBB = SecondI->getParent();
595 MemoryLocation MemLoc = MemoryLocation::get(SecondI);
597 // Start checking the store-block.
598 WorkList.push_back(SecondBB);
599 bool isFirstBlock = true;
601 // Check all blocks going backward until we reach the load-block.
602 while (!WorkList.empty()) {
603 BasicBlock *B = WorkList.pop_back_val();
605 // Ignore instructions before LI if this is the FirstBB.
606 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
608 BasicBlock::iterator EI;
609 if (isFirstBlock) {
610 // Ignore instructions after SI if this is the first visit of SecondBB.
611 assert(B == SecondBB && "first block is not the store block");
612 EI = SecondBBI;
613 isFirstBlock = false;
614 } else {
615 // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
616 // In this case we also have to look at instructions after SI.
617 EI = B->end();
619 for (; BI != EI; ++BI) {
620 Instruction *I = &*BI;
621 if (I->mayWriteToMemory() && I != SecondI)
622 if (isModSet(AA->getModRefInfo(I, MemLoc)))
623 return false;
625 if (B != FirstBB) {
626 assert(B != &FirstBB->getParent()->getEntryBlock() &&
627 "Should not hit the entry block because SI must be dominated by LI");
628 for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
629 if (!Visited.insert(*PredI).second)
630 continue;
631 WorkList.push_back(*PredI);
635 return true;
638 /// Find all blocks that will unconditionally lead to the block BB and append
639 /// them to F.
640 static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
641 BasicBlock *BB, DominatorTree *DT) {
642 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
643 BasicBlock *Pred = *I;
644 if (Pred == BB) continue;
645 Instruction *PredTI = Pred->getTerminator();
646 if (PredTI->getNumSuccessors() != 1)
647 continue;
649 if (DT->isReachableFromEntry(Pred))
650 Blocks.push_back(Pred);
654 /// Handle frees of entire structures whose dependency is a store
655 /// to a field of that structure.
656 static bool handleFree(CallInst *F, AliasAnalysis *AA,
657 MemoryDependenceResults *MD, DominatorTree *DT,
658 const TargetLibraryInfo *TLI,
659 InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB) {
660 bool MadeChange = false;
662 MemoryLocation Loc = MemoryLocation(F->getOperand(0));
663 SmallVector<BasicBlock *, 16> Blocks;
664 Blocks.push_back(F->getParent());
665 const DataLayout &DL = F->getModule()->getDataLayout();
667 while (!Blocks.empty()) {
668 BasicBlock *BB = Blocks.pop_back_val();
669 Instruction *InstPt = BB->getTerminator();
670 if (BB == F->getParent()) InstPt = F;
672 MemDepResult Dep =
673 MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
674 while (Dep.isDef() || Dep.isClobber()) {
675 Instruction *Dependency = Dep.getInst();
676 if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
677 !isRemovable(Dependency))
678 break;
680 Value *DepPointer =
681 GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
683 // Check for aliasing.
684 if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
685 break;
687 LLVM_DEBUG(
688 dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: "
689 << *Dependency << '\n');
691 // DCE instructions only used to calculate that store.
692 BasicBlock::iterator BBI(Dependency);
693 deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, OBB);
694 ++NumFastStores;
695 MadeChange = true;
697 // Inst's old Dependency is now deleted. Compute the next dependency,
698 // which may also be dead, as in
699 // s[0] = 0;
700 // s[1] = 0; // This has just been deleted.
701 // free(s);
702 Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
705 if (Dep.isNonLocal())
706 findUnconditionalPreds(Blocks, BB, DT);
709 return MadeChange;
712 /// Check to see if the specified location may alias any of the stack objects in
713 /// the DeadStackObjects set. If so, they become live because the location is
714 /// being loaded.
715 static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
716 SmallSetVector<const Value *, 16> &DeadStackObjects,
717 const DataLayout &DL, AliasAnalysis *AA,
718 const TargetLibraryInfo *TLI,
719 const Function *F) {
720 const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
722 // A constant can't be in the dead pointer set.
723 if (isa<Constant>(UnderlyingPointer))
724 return;
726 // If the kill pointer can be easily reduced to an alloca, don't bother doing
727 // extraneous AA queries.
728 if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
729 DeadStackObjects.remove(UnderlyingPointer);
730 return;
733 // Remove objects that could alias LoadedLoc.
734 DeadStackObjects.remove_if([&](const Value *I) {
735 // See if the loaded location could alias the stack location.
736 MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
737 return !AA->isNoAlias(StackLoc, LoadedLoc);
741 /// Remove dead stores to stack-allocated locations in the function end block.
742 /// Ex:
743 /// %A = alloca i32
744 /// ...
745 /// store i32 1, i32* %A
746 /// ret void
747 static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
748 MemoryDependenceResults *MD,
749 const TargetLibraryInfo *TLI,
750 InstOverlapIntervalsTy &IOL,
751 OrderedBasicBlock &OBB) {
752 bool MadeChange = false;
754 // Keep track of all of the stack objects that are dead at the end of the
755 // function.
756 SmallSetVector<const Value*, 16> DeadStackObjects;
758 // Find all of the alloca'd pointers in the entry block.
759 BasicBlock &Entry = BB.getParent()->front();
760 for (Instruction &I : Entry) {
761 if (isa<AllocaInst>(&I))
762 DeadStackObjects.insert(&I);
764 // Okay, so these are dead heap objects, but if the pointer never escapes
765 // then it's leaked by this function anyways.
766 else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
767 DeadStackObjects.insert(&I);
770 // Treat byval or inalloca arguments the same, stores to them are dead at the
771 // end of the function.
772 for (Argument &AI : BB.getParent()->args())
773 if (AI.hasByValOrInAllocaAttr())
774 DeadStackObjects.insert(&AI);
776 const DataLayout &DL = BB.getModule()->getDataLayout();
778 // Scan the basic block backwards
779 for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
780 --BBI;
782 // If we find a store, check to see if it points into a dead stack value.
783 if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
784 // See through pointer-to-pointer bitcasts
785 SmallVector<const Value *, 4> Pointers;
786 GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
788 // Stores to stack values are valid candidates for removal.
789 bool AllDead = true;
790 for (const Value *Pointer : Pointers)
791 if (!DeadStackObjects.count(Pointer)) {
792 AllDead = false;
793 break;
796 if (AllDead) {
797 Instruction *Dead = &*BBI;
799 LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
800 << *Dead << "\n Objects: ";
801 for (SmallVectorImpl<const Value *>::iterator I =
802 Pointers.begin(),
803 E = Pointers.end();
804 I != E; ++I) {
805 dbgs() << **I;
806 if (std::next(I) != E)
807 dbgs() << ", ";
808 } dbgs()
809 << '\n');
811 // DCE instructions only used to calculate that store.
812 deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, OBB,
813 &DeadStackObjects);
814 ++NumFastStores;
815 MadeChange = true;
816 continue;
820 // Remove any dead non-memory-mutating instructions.
821 if (isInstructionTriviallyDead(&*BBI, TLI)) {
822 LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: "
823 << *&*BBI << '\n');
824 deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, OBB,
825 &DeadStackObjects);
826 ++NumFastOther;
827 MadeChange = true;
828 continue;
831 if (isa<AllocaInst>(BBI)) {
832 // Remove allocas from the list of dead stack objects; there can't be
833 // any references before the definition.
834 DeadStackObjects.remove(&*BBI);
835 continue;
838 if (auto *Call = dyn_cast<CallBase>(&*BBI)) {
839 // Remove allocation function calls from the list of dead stack objects;
840 // there can't be any references before the definition.
841 if (isAllocLikeFn(&*BBI, TLI))
842 DeadStackObjects.remove(&*BBI);
844 // If this call does not access memory, it can't be loading any of our
845 // pointers.
846 if (AA->doesNotAccessMemory(Call))
847 continue;
849 // If the call might load from any of our allocas, then any store above
850 // the call is live.
851 DeadStackObjects.remove_if([&](const Value *I) {
852 // See if the call site touches the value.
853 return isRefSet(AA->getModRefInfo(
854 Call, I, getPointerSize(I, DL, *TLI, BB.getParent())));
857 // If all of the allocas were clobbered by the call then we're not going
858 // to find anything else to process.
859 if (DeadStackObjects.empty())
860 break;
862 continue;
865 // We can remove the dead stores, irrespective of the fence and its ordering
866 // (release/acquire/seq_cst). Fences only constraints the ordering of
867 // already visible stores, it does not make a store visible to other
868 // threads. So, skipping over a fence does not change a store from being
869 // dead.
870 if (isa<FenceInst>(*BBI))
871 continue;
873 MemoryLocation LoadedLoc;
875 // If we encounter a use of the pointer, it is no longer considered dead
876 if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
877 if (!L->isUnordered()) // Be conservative with atomic/volatile load
878 break;
879 LoadedLoc = MemoryLocation::get(L);
880 } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
881 LoadedLoc = MemoryLocation::get(V);
882 } else if (!BBI->mayReadFromMemory()) {
883 // Instruction doesn't read memory. Note that stores that weren't removed
884 // above will hit this case.
885 continue;
886 } else {
887 // Unknown inst; assume it clobbers everything.
888 break;
891 // Remove any allocas from the DeadPointer set that are loaded, as this
892 // makes any stores above the access live.
893 removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());
895 // If all of the allocas were clobbered by the access then we're not going
896 // to find anything else to process.
897 if (DeadStackObjects.empty())
898 break;
901 return MadeChange;
904 static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
905 int64_t &EarlierSize, int64_t LaterOffset,
906 int64_t LaterSize, bool IsOverwriteEnd) {
907 // TODO: base this on the target vector size so that if the earlier
908 // store was too small to get vector writes anyway then its likely
909 // a good idea to shorten it
910 // Power of 2 vector writes are probably always a bad idea to optimize
911 // as any store/memset/memcpy is likely using vector instructions so
912 // shortening it to not vector size is likely to be slower
913 auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
914 unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
915 if (!IsOverwriteEnd)
916 LaterOffset = int64_t(LaterOffset + LaterSize);
918 if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
919 !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
920 return false;
922 int64_t NewLength = IsOverwriteEnd
923 ? LaterOffset - EarlierOffset
924 : EarlierSize - (LaterOffset - EarlierOffset);
926 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
927 // When shortening an atomic memory intrinsic, the newly shortened
928 // length must remain an integer multiple of the element size.
929 const uint32_t ElementSize = AMI->getElementSizeInBytes();
930 if (0 != NewLength % ElementSize)
931 return false;
934 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
935 << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
936 << *EarlierWrite << "\n KILLER (offset " << LaterOffset
937 << ", " << EarlierSize << ")\n");
939 Value *EarlierWriteLength = EarlierIntrinsic->getLength();
940 Value *TrimmedLength =
941 ConstantInt::get(EarlierWriteLength->getType(), NewLength);
942 EarlierIntrinsic->setLength(TrimmedLength);
944 EarlierSize = NewLength;
945 if (!IsOverwriteEnd) {
946 int64_t OffsetMoved = (LaterOffset - EarlierOffset);
947 Value *Indices[1] = {
948 ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
949 GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
950 EarlierIntrinsic->getRawDest()->getType()->getPointerElementType(),
951 EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
952 NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc());
953 EarlierIntrinsic->setDest(NewDestGEP);
954 EarlierOffset = EarlierOffset + OffsetMoved;
956 return true;
959 static bool tryToShortenEnd(Instruction *EarlierWrite,
960 OverlapIntervalsTy &IntervalMap,
961 int64_t &EarlierStart, int64_t &EarlierSize) {
962 if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
963 return false;
965 OverlapIntervalsTy::iterator OII = --IntervalMap.end();
966 int64_t LaterStart = OII->second;
967 int64_t LaterSize = OII->first - LaterStart;
969 if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
970 LaterStart + LaterSize >= EarlierStart + EarlierSize) {
971 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
972 LaterSize, true)) {
973 IntervalMap.erase(OII);
974 return true;
977 return false;
980 static bool tryToShortenBegin(Instruction *EarlierWrite,
981 OverlapIntervalsTy &IntervalMap,
982 int64_t &EarlierStart, int64_t &EarlierSize) {
983 if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
984 return false;
986 OverlapIntervalsTy::iterator OII = IntervalMap.begin();
987 int64_t LaterStart = OII->second;
988 int64_t LaterSize = OII->first - LaterStart;
990 if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
991 assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
992 "Should have been handled as OW_Complete");
993 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
994 LaterSize, false)) {
995 IntervalMap.erase(OII);
996 return true;
999 return false;
1002 static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
1003 const DataLayout &DL,
1004 InstOverlapIntervalsTy &IOL) {
1005 bool Changed = false;
1006 for (auto OI : IOL) {
1007 Instruction *EarlierWrite = OI.first;
1008 MemoryLocation Loc = getLocForWrite(EarlierWrite);
1009 assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
1011 const Value *Ptr = Loc.Ptr->stripPointerCasts();
1012 int64_t EarlierStart = 0;
1013 int64_t EarlierSize = int64_t(Loc.Size.getValue());
1014 GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
1015 OverlapIntervalsTy &IntervalMap = OI.second;
1016 Changed |=
1017 tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
1018 if (IntervalMap.empty())
1019 continue;
1020 Changed |=
1021 tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
1023 return Changed;
1026 static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
1027 AliasAnalysis *AA, MemoryDependenceResults *MD,
1028 const DataLayout &DL,
1029 const TargetLibraryInfo *TLI,
1030 InstOverlapIntervalsTy &IOL,
1031 OrderedBasicBlock &OBB) {
1032 // Must be a store instruction.
1033 StoreInst *SI = dyn_cast<StoreInst>(Inst);
1034 if (!SI)
1035 return false;
1037 // If we're storing the same value back to a pointer that we just loaded from,
1038 // then the store can be removed.
1039 if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
1040 if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
1041 isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
1043 LLVM_DEBUG(
1044 dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: "
1045 << *DepLoad << "\n STORE: " << *SI << '\n');
1047 deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB);
1048 ++NumRedundantStores;
1049 return true;
1053 // Remove null stores into the calloc'ed objects
1054 Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
1055 if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
1056 Instruction *UnderlyingPointer =
1057 dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
1059 if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
1060 memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
1061 LLVM_DEBUG(
1062 dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: "
1063 << *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n');
1065 deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB);
1066 ++NumRedundantStores;
1067 return true;
1070 return false;
1073 static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
1074 MemoryDependenceResults *MD, DominatorTree *DT,
1075 const TargetLibraryInfo *TLI) {
1076 const DataLayout &DL = BB.getModule()->getDataLayout();
1077 bool MadeChange = false;
1079 OrderedBasicBlock OBB(&BB);
1080 Instruction *LastThrowing = nullptr;
1082 // A map of interval maps representing partially-overwritten value parts.
1083 InstOverlapIntervalsTy IOL;
1085 // Do a top-down walk on the BB.
1086 for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
1087 // Handle 'free' calls specially.
1088 if (CallInst *F = isFreeCall(&*BBI, TLI)) {
1089 MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, OBB);
1090 // Increment BBI after handleFree has potentially deleted instructions.
1091 // This ensures we maintain a valid iterator.
1092 ++BBI;
1093 continue;
1096 Instruction *Inst = &*BBI++;
1098 if (Inst->mayThrow()) {
1099 LastThrowing = Inst;
1100 continue;
1103 // Check to see if Inst writes to memory. If not, continue.
1104 if (!hasAnalyzableMemoryWrite(Inst, *TLI))
1105 continue;
1107 // eliminateNoopStore will update in iterator, if necessary.
1108 if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, OBB)) {
1109 MadeChange = true;
1110 continue;
1113 // If we find something that writes memory, get its memory dependence.
1114 MemDepResult InstDep = MD->getDependency(Inst, &OBB);
1116 // Ignore any store where we can't find a local dependence.
1117 // FIXME: cross-block DSE would be fun. :)
1118 if (!InstDep.isDef() && !InstDep.isClobber())
1119 continue;
1121 // Figure out what location is being stored to.
1122 MemoryLocation Loc = getLocForWrite(Inst);
1124 // If we didn't get a useful location, fail.
1125 if (!Loc.Ptr)
1126 continue;
1128 // Loop until we find a store we can eliminate or a load that
1129 // invalidates the analysis. Without an upper bound on the number of
1130 // instructions examined, this analysis can become very time-consuming.
1131 // However, the potential gain diminishes as we process more instructions
1132 // without eliminating any of them. Therefore, we limit the number of
1133 // instructions we look at.
1134 auto Limit = MD->getDefaultBlockScanLimit();
1135 while (InstDep.isDef() || InstDep.isClobber()) {
1136 // Get the memory clobbered by the instruction we depend on. MemDep will
1137 // skip any instructions that 'Loc' clearly doesn't interact with. If we
1138 // end up depending on a may- or must-aliased load, then we can't optimize
1139 // away the store and we bail out. However, if we depend on something
1140 // that overwrites the memory location we *can* potentially optimize it.
1142 // Find out what memory location the dependent instruction stores.
1143 Instruction *DepWrite = InstDep.getInst();
1144 if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
1145 break;
1146 MemoryLocation DepLoc = getLocForWrite(DepWrite);
1147 // If we didn't get a useful location, or if it isn't a size, bail out.
1148 if (!DepLoc.Ptr)
1149 break;
1151 // Make sure we don't look past a call which might throw. This is an
1152 // issue because MemoryDependenceAnalysis works in the wrong direction:
1153 // it finds instructions which dominate the current instruction, rather than
1154 // instructions which are post-dominated by the current instruction.
1156 // If the underlying object is a non-escaping memory allocation, any store
1157 // to it is dead along the unwind edge. Otherwise, we need to preserve
1158 // the store.
1159 if (LastThrowing && OBB.dominates(DepWrite, LastThrowing)) {
1160 const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
1161 bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
1162 if (!IsStoreDeadOnUnwind) {
1163 // We're looking for a call to an allocation function
1164 // where the allocation doesn't escape before the last
1165 // throwing instruction; PointerMayBeCaptured
1166 // reasonably fast approximation.
1167 IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
1168 !PointerMayBeCaptured(Underlying, false, true);
1170 if (!IsStoreDeadOnUnwind)
1171 break;
1174 // If we find a write that is a) removable (i.e., non-volatile), b) is
1175 // completely obliterated by the store to 'Loc', and c) which we know that
1176 // 'Inst' doesn't load from, then we can remove it.
1177 // Also try to merge two stores if a later one only touches memory written
1178 // to by the earlier one.
1179 if (isRemovable(DepWrite) &&
1180 !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
1181 int64_t InstWriteOffset, DepWriteOffset;
1182 OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset,
1183 InstWriteOffset, DepWrite, IOL, *AA,
1184 BB.getParent());
1185 if (OR == OW_Complete) {
1186 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DepWrite
1187 << "\n KILLER: " << *Inst << '\n');
1189 // Delete the store and now-dead instructions that feed it.
1190 deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB);
1191 ++NumFastStores;
1192 MadeChange = true;
1194 // We erased DepWrite; start over.
1195 InstDep = MD->getDependency(Inst, &OBB);
1196 continue;
1197 } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
1198 ((OR == OW_Begin &&
1199 isShortenableAtTheBeginning(DepWrite)))) {
1200 assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
1201 "when partial-overwrite "
1202 "tracking is enabled");
1203 // The overwrite result is known, so these must be known, too.
1204 int64_t EarlierSize = DepLoc.Size.getValue();
1205 int64_t LaterSize = Loc.Size.getValue();
1206 bool IsOverwriteEnd = (OR == OW_End);
1207 MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
1208 InstWriteOffset, LaterSize, IsOverwriteEnd);
1209 } else if (EnablePartialStoreMerging &&
1210 OR == OW_PartialEarlierWithFullLater) {
1211 auto *Earlier = dyn_cast<StoreInst>(DepWrite);
1212 auto *Later = dyn_cast<StoreInst>(Inst);
1213 if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
1214 DL.typeSizeEqualsStoreSize(
1215 Earlier->getValueOperand()->getType()) &&
1216 Later && isa<ConstantInt>(Later->getValueOperand()) &&
1217 DL.typeSizeEqualsStoreSize(
1218 Later->getValueOperand()->getType()) &&
1219 memoryIsNotModifiedBetween(Earlier, Later, AA)) {
1220 // If the store we find is:
1221 // a) partially overwritten by the store to 'Loc'
1222 // b) the later store is fully contained in the earlier one and
1223 // c) they both have a constant value
1224 // d) none of the two stores need padding
1225 // Merge the two stores, replacing the earlier store's value with a
1226 // merge of both values.
1227 // TODO: Deal with other constant types (vectors, etc), and probably
1228 // some mem intrinsics (if needed)
1230 APInt EarlierValue =
1231 cast<ConstantInt>(Earlier->getValueOperand())->getValue();
1232 APInt LaterValue =
1233 cast<ConstantInt>(Later->getValueOperand())->getValue();
1234 unsigned LaterBits = LaterValue.getBitWidth();
1235 assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
1236 LaterValue = LaterValue.zext(EarlierValue.getBitWidth());
1238 // Offset of the smaller store inside the larger store
1239 unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
1240 unsigned LShiftAmount =
1241 DL.isBigEndian()
1242 ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits
1243 : BitOffsetDiff;
1244 APInt Mask =
1245 APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
1246 LShiftAmount + LaterBits);
1247 // Clear the bits we'll be replacing, then OR with the smaller
1248 // store, shifted appropriately.
1249 APInt Merged =
1250 (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
1251 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *DepWrite
1252 << "\n Later: " << *Inst
1253 << "\n Merged Value: " << Merged << '\n');
1255 auto *SI = new StoreInst(
1256 ConstantInt::get(Earlier->getValueOperand()->getType(), Merged),
1257 Earlier->getPointerOperand(), false, Earlier->getAlignment(),
1258 Earlier->getOrdering(), Earlier->getSyncScopeID(), DepWrite);
1260 unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
1261 LLVMContext::MD_alias_scope,
1262 LLVMContext::MD_noalias,
1263 LLVMContext::MD_nontemporal};
1264 SI->copyMetadata(*DepWrite, MDToKeep);
1265 ++NumModifiedStores;
1267 // Remove earlier, wider, store
1268 OBB.replaceInstruction(DepWrite, SI);
1270 // Delete the old stores and now-dead instructions that feed them.
1271 deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, OBB);
1272 deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB);
1273 MadeChange = true;
1275 // We erased DepWrite and Inst (Loc); start over.
1276 break;
1281 // If this is a may-aliased store that is clobbering the store value, we
1282 // can keep searching past it for another must-aliased pointer that stores
1283 // to the same location. For example, in:
1284 // store -> P
1285 // store -> Q
1286 // store -> P
1287 // we can remove the first store to P even though we don't know if P and Q
1288 // alias.
1289 if (DepWrite == &BB.front()) break;
1291 // Can't look past this instruction if it might read 'Loc'.
1292 if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
1293 break;
1295 InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
1296 DepWrite->getIterator(), &BB,
1297 /*QueryInst=*/ nullptr, &Limit);
1301 if (EnablePartialOverwriteTracking)
1302 MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
1304 // If this block ends in a return, unwind, or unreachable, all allocas are
1305 // dead at its end, which means stores to them are also dead.
1306 if (BB.getTerminator()->getNumSuccessors() == 0)
1307 MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, OBB);
1309 return MadeChange;
1312 static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
1313 MemoryDependenceResults *MD, DominatorTree *DT,
1314 const TargetLibraryInfo *TLI) {
1315 bool MadeChange = false;
1316 for (BasicBlock &BB : F)
1317 // Only check non-dead blocks. Dead blocks may have strange pointer
1318 // cycles that will confuse alias analysis.
1319 if (DT->isReachableFromEntry(&BB))
1320 MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
1322 return MadeChange;
1325 //===----------------------------------------------------------------------===//
1326 // DSE Pass
1327 //===----------------------------------------------------------------------===//
1328 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
1329 AliasAnalysis *AA = &AM.getResult<AAManager>(F);
1330 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1331 MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
1332 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1334 if (!eliminateDeadStores(F, AA, MD, DT, TLI))
1335 return PreservedAnalyses::all();
1337 PreservedAnalyses PA;
1338 PA.preserveSet<CFGAnalyses>();
1339 PA.preserve<GlobalsAA>();
1340 PA.preserve<MemoryDependenceAnalysis>();
1341 return PA;
1344 namespace {
1346 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
1347 class DSELegacyPass : public FunctionPass {
1348 public:
1349 static char ID; // Pass identification, replacement for typeid
1351 DSELegacyPass() : FunctionPass(ID) {
1352 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
1355 bool runOnFunction(Function &F) override {
1356 if (skipFunction(F))
1357 return false;
1359 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1360 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1361 MemoryDependenceResults *MD =
1362 &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1363 const TargetLibraryInfo *TLI =
1364 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1366 return eliminateDeadStores(F, AA, MD, DT, TLI);
1369 void getAnalysisUsage(AnalysisUsage &AU) const override {
1370 AU.setPreservesCFG();
1371 AU.addRequired<DominatorTreeWrapperPass>();
1372 AU.addRequired<AAResultsWrapperPass>();
1373 AU.addRequired<MemoryDependenceWrapperPass>();
1374 AU.addRequired<TargetLibraryInfoWrapperPass>();
1375 AU.addPreserved<DominatorTreeWrapperPass>();
1376 AU.addPreserved<GlobalsAAWrapperPass>();
1377 AU.addPreserved<MemoryDependenceWrapperPass>();
1381 } // end anonymous namespace
1383 char DSELegacyPass::ID = 0;
1385 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
1386 false)
1387 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1388 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1389 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1390 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1391 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1392 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
1393 false)
1395 FunctionPass *llvm::createDeadStoreEliminationPass() {
1396 return new DSELegacyPass();