1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
13 // If the trip count of a loop is computable, this pass also makes the following
15 // 1. The exit condition for the loop is canonicalized to compare the
16 // induction value against the exit value. This turns loops like:
17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 // 2. Any use outside of the loop of an expression derived from the indvar
19 // is changed to compute the derived value outside of the loop, eliminating
20 // the dependence on the exit value of the induction variable. If the only
21 // purpose of the loop is to compute the exit value of some derived
22 // expression, this transformation will make the loop dead.
24 //===----------------------------------------------------------------------===//
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include "llvm/Transforms/Scalar/LoopPassManager.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 #include "llvm/Transforms/Utils/LoopUtils.h"
83 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
90 #define DEBUG_TYPE "indvars"
92 STATISTIC(NumWidened
, "Number of indvars widened");
93 STATISTIC(NumReplaced
, "Number of exit values replaced");
94 STATISTIC(NumLFTR
, "Number of loop exit tests replaced");
95 STATISTIC(NumElimExt
, "Number of IV sign/zero extends eliminated");
96 STATISTIC(NumElimIV
, "Number of congruent IVs eliminated");
98 // Trip count verification can be enabled by default under NDEBUG if we
99 // implement a strong expression equivalence checker in SCEV. Until then, we
100 // use the verify-indvars flag, which may assert in some cases.
101 static cl::opt
<bool> VerifyIndvars(
102 "verify-indvars", cl::Hidden
,
103 cl::desc("Verify the ScalarEvolution result after running indvars"));
105 enum ReplaceExitVal
{ NeverRepl
, OnlyCheapRepl
, NoHardUse
, AlwaysRepl
};
107 static cl::opt
<ReplaceExitVal
> ReplaceExitValue(
108 "replexitval", cl::Hidden
, cl::init(OnlyCheapRepl
),
109 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
110 cl::values(clEnumValN(NeverRepl
, "never", "never replace exit value"),
111 clEnumValN(OnlyCheapRepl
, "cheap",
112 "only replace exit value when the cost is cheap"),
113 clEnumValN(NoHardUse
, "noharduse",
114 "only replace exit values when loop def likely dead"),
115 clEnumValN(AlwaysRepl
, "always",
116 "always replace exit value whenever possible")));
118 static cl::opt
<bool> UsePostIncrementRanges(
119 "indvars-post-increment-ranges", cl::Hidden
,
120 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
124 DisableLFTR("disable-lftr", cl::Hidden
, cl::init(false),
125 cl::desc("Disable Linear Function Test Replace optimization"));
131 class IndVarSimplify
{
135 const DataLayout
&DL
;
136 TargetLibraryInfo
*TLI
;
137 const TargetTransformInfo
*TTI
;
139 SmallVector
<WeakTrackingVH
, 16> DeadInsts
;
141 bool isValidRewrite(Value
*FromVal
, Value
*ToVal
);
143 bool handleFloatingPointIV(Loop
*L
, PHINode
*PH
);
144 bool rewriteNonIntegerIVs(Loop
*L
);
146 bool simplifyAndExtend(Loop
*L
, SCEVExpander
&Rewriter
, LoopInfo
*LI
);
147 bool optimizeLoopExits(Loop
*L
);
149 bool canLoopBeDeleted(Loop
*L
, SmallVector
<RewritePhi
, 8> &RewritePhiSet
);
150 bool rewriteLoopExitValues(Loop
*L
, SCEVExpander
&Rewriter
);
151 bool rewriteFirstIterationLoopExitValues(Loop
*L
);
152 bool hasHardUserWithinLoop(const Loop
*L
, const Instruction
*I
) const;
154 bool linearFunctionTestReplace(Loop
*L
, BasicBlock
*ExitingBB
,
155 const SCEV
*ExitCount
,
156 PHINode
*IndVar
, SCEVExpander
&Rewriter
);
158 bool sinkUnusedInvariants(Loop
*L
);
161 IndVarSimplify(LoopInfo
*LI
, ScalarEvolution
*SE
, DominatorTree
*DT
,
162 const DataLayout
&DL
, TargetLibraryInfo
*TLI
,
163 TargetTransformInfo
*TTI
)
164 : LI(LI
), SE(SE
), DT(DT
), DL(DL
), TLI(TLI
), TTI(TTI
) {}
169 } // end anonymous namespace
171 /// Return true if the SCEV expansion generated by the rewriter can replace the
172 /// original value. SCEV guarantees that it produces the same value, but the way
173 /// it is produced may be illegal IR. Ideally, this function will only be
174 /// called for verification.
175 bool IndVarSimplify::isValidRewrite(Value
*FromVal
, Value
*ToVal
) {
176 // If an SCEV expression subsumed multiple pointers, its expansion could
177 // reassociate the GEP changing the base pointer. This is illegal because the
178 // final address produced by a GEP chain must be inbounds relative to its
179 // underlying object. Otherwise basic alias analysis, among other things,
180 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
181 // producing an expression involving multiple pointers. Until then, we must
184 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
185 // because it understands lcssa phis while SCEV does not.
186 Value
*FromPtr
= FromVal
;
187 Value
*ToPtr
= ToVal
;
188 if (auto *GEP
= dyn_cast
<GEPOperator
>(FromVal
)) {
189 FromPtr
= GEP
->getPointerOperand();
191 if (auto *GEP
= dyn_cast
<GEPOperator
>(ToVal
)) {
192 ToPtr
= GEP
->getPointerOperand();
194 if (FromPtr
!= FromVal
|| ToPtr
!= ToVal
) {
195 // Quickly check the common case
196 if (FromPtr
== ToPtr
)
199 // SCEV may have rewritten an expression that produces the GEP's pointer
200 // operand. That's ok as long as the pointer operand has the same base
201 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
202 // base of a recurrence. This handles the case in which SCEV expansion
203 // converts a pointer type recurrence into a nonrecurrent pointer base
204 // indexed by an integer recurrence.
206 // If the GEP base pointer is a vector of pointers, abort.
207 if (!FromPtr
->getType()->isPointerTy() || !ToPtr
->getType()->isPointerTy())
210 const SCEV
*FromBase
= SE
->getPointerBase(SE
->getSCEV(FromPtr
));
211 const SCEV
*ToBase
= SE
->getPointerBase(SE
->getSCEV(ToPtr
));
212 if (FromBase
== ToBase
)
215 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
216 << " != " << *ToBase
<< "\n");
223 /// Determine the insertion point for this user. By default, insert immediately
224 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
225 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
226 /// common dominator for the incoming blocks. A nullptr can be returned if no
227 /// viable location is found: it may happen if User is a PHI and Def only comes
228 /// to this PHI from unreachable blocks.
229 static Instruction
*getInsertPointForUses(Instruction
*User
, Value
*Def
,
230 DominatorTree
*DT
, LoopInfo
*LI
) {
231 PHINode
*PHI
= dyn_cast
<PHINode
>(User
);
235 Instruction
*InsertPt
= nullptr;
236 for (unsigned i
= 0, e
= PHI
->getNumIncomingValues(); i
!= e
; ++i
) {
237 if (PHI
->getIncomingValue(i
) != Def
)
240 BasicBlock
*InsertBB
= PHI
->getIncomingBlock(i
);
242 if (!DT
->isReachableFromEntry(InsertBB
))
246 InsertPt
= InsertBB
->getTerminator();
249 InsertBB
= DT
->findNearestCommonDominator(InsertPt
->getParent(), InsertBB
);
250 InsertPt
= InsertBB
->getTerminator();
253 // If we have skipped all inputs, it means that Def only comes to Phi from
254 // unreachable blocks.
258 auto *DefI
= dyn_cast
<Instruction
>(Def
);
262 assert(DT
->dominates(DefI
, InsertPt
) && "def does not dominate all uses");
264 auto *L
= LI
->getLoopFor(DefI
->getParent());
265 assert(!L
|| L
->contains(LI
->getLoopFor(InsertPt
->getParent())));
267 for (auto *DTN
= (*DT
)[InsertPt
->getParent()]; DTN
; DTN
= DTN
->getIDom())
268 if (LI
->getLoopFor(DTN
->getBlock()) == L
)
269 return DTN
->getBlock()->getTerminator();
271 llvm_unreachable("DefI dominates InsertPt!");
274 //===----------------------------------------------------------------------===//
275 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
276 //===----------------------------------------------------------------------===//
278 /// Convert APF to an integer, if possible.
279 static bool ConvertToSInt(const APFloat
&APF
, int64_t &IntVal
) {
280 bool isExact
= false;
281 // See if we can convert this to an int64_t
283 if (APF
.convertToInteger(makeMutableArrayRef(UIntVal
), 64, true,
284 APFloat::rmTowardZero
, &isExact
) != APFloat::opOK
||
291 /// If the loop has floating induction variable then insert corresponding
292 /// integer induction variable if possible.
294 /// for(double i = 0; i < 10000; ++i)
296 /// is converted into
297 /// for(int i = 0; i < 10000; ++i)
299 bool IndVarSimplify::handleFloatingPointIV(Loop
*L
, PHINode
*PN
) {
300 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
301 unsigned BackEdge
= IncomingEdge
^1;
303 // Check incoming value.
304 auto *InitValueVal
= dyn_cast
<ConstantFP
>(PN
->getIncomingValue(IncomingEdge
));
307 if (!InitValueVal
|| !ConvertToSInt(InitValueVal
->getValueAPF(), InitValue
))
310 // Check IV increment. Reject this PN if increment operation is not
311 // an add or increment value can not be represented by an integer.
312 auto *Incr
= dyn_cast
<BinaryOperator
>(PN
->getIncomingValue(BackEdge
));
313 if (Incr
== nullptr || Incr
->getOpcode() != Instruction::FAdd
) return false;
315 // If this is not an add of the PHI with a constantfp, or if the constant fp
316 // is not an integer, bail out.
317 ConstantFP
*IncValueVal
= dyn_cast
<ConstantFP
>(Incr
->getOperand(1));
319 if (IncValueVal
== nullptr || Incr
->getOperand(0) != PN
||
320 !ConvertToSInt(IncValueVal
->getValueAPF(), IncValue
))
323 // Check Incr uses. One user is PN and the other user is an exit condition
324 // used by the conditional terminator.
325 Value::user_iterator IncrUse
= Incr
->user_begin();
326 Instruction
*U1
= cast
<Instruction
>(*IncrUse
++);
327 if (IncrUse
== Incr
->user_end()) return false;
328 Instruction
*U2
= cast
<Instruction
>(*IncrUse
++);
329 if (IncrUse
!= Incr
->user_end()) return false;
331 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
332 // only used by a branch, we can't transform it.
333 FCmpInst
*Compare
= dyn_cast
<FCmpInst
>(U1
);
335 Compare
= dyn_cast
<FCmpInst
>(U2
);
336 if (!Compare
|| !Compare
->hasOneUse() ||
337 !isa
<BranchInst
>(Compare
->user_back()))
340 BranchInst
*TheBr
= cast
<BranchInst
>(Compare
->user_back());
342 // We need to verify that the branch actually controls the iteration count
343 // of the loop. If not, the new IV can overflow and no one will notice.
344 // The branch block must be in the loop and one of the successors must be out
346 assert(TheBr
->isConditional() && "Can't use fcmp if not conditional");
347 if (!L
->contains(TheBr
->getParent()) ||
348 (L
->contains(TheBr
->getSuccessor(0)) &&
349 L
->contains(TheBr
->getSuccessor(1))))
352 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
354 ConstantFP
*ExitValueVal
= dyn_cast
<ConstantFP
>(Compare
->getOperand(1));
356 if (ExitValueVal
== nullptr ||
357 !ConvertToSInt(ExitValueVal
->getValueAPF(), ExitValue
))
360 // Find new predicate for integer comparison.
361 CmpInst::Predicate NewPred
= CmpInst::BAD_ICMP_PREDICATE
;
362 switch (Compare
->getPredicate()) {
363 default: return false; // Unknown comparison.
364 case CmpInst::FCMP_OEQ
:
365 case CmpInst::FCMP_UEQ
: NewPred
= CmpInst::ICMP_EQ
; break;
366 case CmpInst::FCMP_ONE
:
367 case CmpInst::FCMP_UNE
: NewPred
= CmpInst::ICMP_NE
; break;
368 case CmpInst::FCMP_OGT
:
369 case CmpInst::FCMP_UGT
: NewPred
= CmpInst::ICMP_SGT
; break;
370 case CmpInst::FCMP_OGE
:
371 case CmpInst::FCMP_UGE
: NewPred
= CmpInst::ICMP_SGE
; break;
372 case CmpInst::FCMP_OLT
:
373 case CmpInst::FCMP_ULT
: NewPred
= CmpInst::ICMP_SLT
; break;
374 case CmpInst::FCMP_OLE
:
375 case CmpInst::FCMP_ULE
: NewPred
= CmpInst::ICMP_SLE
; break;
378 // We convert the floating point induction variable to a signed i32 value if
379 // we can. This is only safe if the comparison will not overflow in a way
380 // that won't be trapped by the integer equivalent operations. Check for this
382 // TODO: We could use i64 if it is native and the range requires it.
384 // The start/stride/exit values must all fit in signed i32.
385 if (!isInt
<32>(InitValue
) || !isInt
<32>(IncValue
) || !isInt
<32>(ExitValue
))
388 // If not actually striding (add x, 0.0), avoid touching the code.
392 // Positive and negative strides have different safety conditions.
394 // If we have a positive stride, we require the init to be less than the
396 if (InitValue
>= ExitValue
)
399 uint32_t Range
= uint32_t(ExitValue
-InitValue
);
400 // Check for infinite loop, either:
401 // while (i <= Exit) or until (i > Exit)
402 if (NewPred
== CmpInst::ICMP_SLE
|| NewPred
== CmpInst::ICMP_SGT
) {
403 if (++Range
== 0) return false; // Range overflows.
406 unsigned Leftover
= Range
% uint32_t(IncValue
);
408 // If this is an equality comparison, we require that the strided value
409 // exactly land on the exit value, otherwise the IV condition will wrap
410 // around and do things the fp IV wouldn't.
411 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
415 // If the stride would wrap around the i32 before exiting, we can't
417 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) < ExitValue
)
420 // If we have a negative stride, we require the init to be greater than the
422 if (InitValue
<= ExitValue
)
425 uint32_t Range
= uint32_t(InitValue
-ExitValue
);
426 // Check for infinite loop, either:
427 // while (i >= Exit) or until (i < Exit)
428 if (NewPred
== CmpInst::ICMP_SGE
|| NewPred
== CmpInst::ICMP_SLT
) {
429 if (++Range
== 0) return false; // Range overflows.
432 unsigned Leftover
= Range
% uint32_t(-IncValue
);
434 // If this is an equality comparison, we require that the strided value
435 // exactly land on the exit value, otherwise the IV condition will wrap
436 // around and do things the fp IV wouldn't.
437 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
441 // If the stride would wrap around the i32 before exiting, we can't
443 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) > ExitValue
)
447 IntegerType
*Int32Ty
= Type::getInt32Ty(PN
->getContext());
449 // Insert new integer induction variable.
450 PHINode
*NewPHI
= PHINode::Create(Int32Ty
, 2, PN
->getName()+".int", PN
);
451 NewPHI
->addIncoming(ConstantInt::get(Int32Ty
, InitValue
),
452 PN
->getIncomingBlock(IncomingEdge
));
455 BinaryOperator::CreateAdd(NewPHI
, ConstantInt::get(Int32Ty
, IncValue
),
456 Incr
->getName()+".int", Incr
);
457 NewPHI
->addIncoming(NewAdd
, PN
->getIncomingBlock(BackEdge
));
459 ICmpInst
*NewCompare
= new ICmpInst(TheBr
, NewPred
, NewAdd
,
460 ConstantInt::get(Int32Ty
, ExitValue
),
463 // In the following deletions, PN may become dead and may be deleted.
464 // Use a WeakTrackingVH to observe whether this happens.
465 WeakTrackingVH WeakPH
= PN
;
467 // Delete the old floating point exit comparison. The branch starts using the
469 NewCompare
->takeName(Compare
);
470 Compare
->replaceAllUsesWith(NewCompare
);
471 RecursivelyDeleteTriviallyDeadInstructions(Compare
, TLI
);
473 // Delete the old floating point increment.
474 Incr
->replaceAllUsesWith(UndefValue::get(Incr
->getType()));
475 RecursivelyDeleteTriviallyDeadInstructions(Incr
, TLI
);
477 // If the FP induction variable still has uses, this is because something else
478 // in the loop uses its value. In order to canonicalize the induction
479 // variable, we chose to eliminate the IV and rewrite it in terms of an
482 // We give preference to sitofp over uitofp because it is faster on most
485 Value
*Conv
= new SIToFPInst(NewPHI
, PN
->getType(), "indvar.conv",
486 &*PN
->getParent()->getFirstInsertionPt());
487 PN
->replaceAllUsesWith(Conv
);
488 RecursivelyDeleteTriviallyDeadInstructions(PN
, TLI
);
493 bool IndVarSimplify::rewriteNonIntegerIVs(Loop
*L
) {
494 // First step. Check to see if there are any floating-point recurrences.
495 // If there are, change them into integer recurrences, permitting analysis by
496 // the SCEV routines.
497 BasicBlock
*Header
= L
->getHeader();
499 SmallVector
<WeakTrackingVH
, 8> PHIs
;
500 for (PHINode
&PN
: Header
->phis())
503 bool Changed
= false;
504 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
)
505 if (PHINode
*PN
= dyn_cast_or_null
<PHINode
>(&*PHIs
[i
]))
506 Changed
|= handleFloatingPointIV(L
, PN
);
508 // If the loop previously had floating-point IV, ScalarEvolution
509 // may not have been able to compute a trip count. Now that we've done some
510 // re-writing, the trip count may be computable.
518 // Collect information about PHI nodes which can be transformed in
519 // rewriteLoopExitValues.
523 // Ith incoming value.
526 // Exit value after expansion.
529 // High Cost when expansion.
532 RewritePhi(PHINode
*P
, unsigned I
, Value
*V
, bool H
)
533 : PN(P
), Ith(I
), Val(V
), HighCost(H
) {}
536 } // end anonymous namespace
538 //===----------------------------------------------------------------------===//
539 // rewriteLoopExitValues - Optimize IV users outside the loop.
540 // As a side effect, reduces the amount of IV processing within the loop.
541 //===----------------------------------------------------------------------===//
543 bool IndVarSimplify::hasHardUserWithinLoop(const Loop
*L
, const Instruction
*I
) const {
544 SmallPtrSet
<const Instruction
*, 8> Visited
;
545 SmallVector
<const Instruction
*, 8> WorkList
;
547 WorkList
.push_back(I
);
548 while (!WorkList
.empty()) {
549 const Instruction
*Curr
= WorkList
.pop_back_val();
550 // This use is outside the loop, nothing to do.
551 if (!L
->contains(Curr
))
553 // Do we assume it is a "hard" use which will not be eliminated easily?
554 if (Curr
->mayHaveSideEffects())
556 // Otherwise, add all its users to worklist.
557 for (auto U
: Curr
->users()) {
558 auto *UI
= cast
<Instruction
>(U
);
559 if (Visited
.insert(UI
).second
)
560 WorkList
.push_back(UI
);
566 /// Check to see if this loop has a computable loop-invariant execution count.
567 /// If so, this means that we can compute the final value of any expressions
568 /// that are recurrent in the loop, and substitute the exit values from the loop
569 /// into any instructions outside of the loop that use the final values of the
570 /// current expressions.
572 /// This is mostly redundant with the regular IndVarSimplify activities that
573 /// happen later, except that it's more powerful in some cases, because it's
574 /// able to brute-force evaluate arbitrary instructions as long as they have
575 /// constant operands at the beginning of the loop.
576 bool IndVarSimplify::rewriteLoopExitValues(Loop
*L
, SCEVExpander
&Rewriter
) {
577 // Check a pre-condition.
578 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
579 "Indvars did not preserve LCSSA!");
581 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
582 L
->getUniqueExitBlocks(ExitBlocks
);
584 SmallVector
<RewritePhi
, 8> RewritePhiSet
;
585 // Find all values that are computed inside the loop, but used outside of it.
586 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
587 // the exit blocks of the loop to find them.
588 for (BasicBlock
*ExitBB
: ExitBlocks
) {
589 // If there are no PHI nodes in this exit block, then no values defined
590 // inside the loop are used on this path, skip it.
591 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
594 unsigned NumPreds
= PN
->getNumIncomingValues();
596 // Iterate over all of the PHI nodes.
597 BasicBlock::iterator BBI
= ExitBB
->begin();
598 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
600 continue; // dead use, don't replace it
602 if (!SE
->isSCEVable(PN
->getType()))
605 // It's necessary to tell ScalarEvolution about this explicitly so that
606 // it can walk the def-use list and forget all SCEVs, as it may not be
607 // watching the PHI itself. Once the new exit value is in place, there
608 // may not be a def-use connection between the loop and every instruction
609 // which got a SCEVAddRecExpr for that loop.
612 // Iterate over all of the values in all the PHI nodes.
613 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
614 // If the value being merged in is not integer or is not defined
615 // in the loop, skip it.
616 Value
*InVal
= PN
->getIncomingValue(i
);
617 if (!isa
<Instruction
>(InVal
))
620 // If this pred is for a subloop, not L itself, skip it.
621 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
622 continue; // The Block is in a subloop, skip it.
624 // Check that InVal is defined in the loop.
625 Instruction
*Inst
= cast
<Instruction
>(InVal
);
626 if (!L
->contains(Inst
))
629 // Okay, this instruction has a user outside of the current loop
630 // and varies predictably *inside* the loop. Evaluate the value it
631 // contains when the loop exits, if possible. We prefer to start with
632 // expressions which are true for all exits (so as to maximize
633 // expression reuse by the SCEVExpander), but resort to per-exit
634 // evaluation if that fails.
635 const SCEV
*ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
636 if (isa
<SCEVCouldNotCompute
>(ExitValue
) ||
637 !SE
->isLoopInvariant(ExitValue
, L
) ||
638 !isSafeToExpand(ExitValue
, *SE
)) {
639 // TODO: This should probably be sunk into SCEV in some way; maybe a
640 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
641 // most SCEV expressions and other recurrence types (e.g. shift
642 // recurrences). Is there existing code we can reuse?
643 const SCEV
*ExitCount
= SE
->getExitCount(L
, PN
->getIncomingBlock(i
));
644 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
646 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(Inst
)))
647 if (AddRec
->getLoop() == L
)
648 ExitValue
= AddRec
->evaluateAtIteration(ExitCount
, *SE
);
649 if (isa
<SCEVCouldNotCompute
>(ExitValue
) ||
650 !SE
->isLoopInvariant(ExitValue
, L
) ||
651 !isSafeToExpand(ExitValue
, *SE
))
655 // Computing the value outside of the loop brings no benefit if it is
656 // definitely used inside the loop in a way which can not be optimized
657 // away. Avoid doing so unless we know we have a value which computes
658 // the ExitValue already. TODO: This should be merged into SCEV
659 // expander to leverage its knowledge of existing expressions.
660 if (ReplaceExitValue
!= AlwaysRepl
&&
661 !isa
<SCEVConstant
>(ExitValue
) && !isa
<SCEVUnknown
>(ExitValue
) &&
662 hasHardUserWithinLoop(L
, Inst
))
665 bool HighCost
= Rewriter
.isHighCostExpansion(ExitValue
, L
, Inst
);
666 Value
*ExitVal
= Rewriter
.expandCodeFor(ExitValue
, PN
->getType(), Inst
);
668 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
670 << " LoopVal = " << *Inst
<< "\n");
672 if (!isValidRewrite(Inst
, ExitVal
)) {
673 DeadInsts
.push_back(ExitVal
);
678 // If we reuse an instruction from a loop which is neither L nor one of
679 // its containing loops, we end up breaking LCSSA form for this loop by
680 // creating a new use of its instruction.
681 if (auto *ExitInsn
= dyn_cast
<Instruction
>(ExitVal
))
682 if (auto *EVL
= LI
->getLoopFor(ExitInsn
->getParent()))
684 assert(EVL
->contains(L
) && "LCSSA breach detected!");
687 // Collect all the candidate PHINodes to be rewritten.
688 RewritePhiSet
.emplace_back(PN
, i
, ExitVal
, HighCost
);
693 bool LoopCanBeDel
= canLoopBeDeleted(L
, RewritePhiSet
);
695 bool Changed
= false;
697 for (const RewritePhi
&Phi
: RewritePhiSet
) {
698 PHINode
*PN
= Phi
.PN
;
699 Value
*ExitVal
= Phi
.Val
;
701 // Only do the rewrite when the ExitValue can be expanded cheaply.
702 // If LoopCanBeDel is true, rewrite exit value aggressively.
703 if (ReplaceExitValue
== OnlyCheapRepl
&& !LoopCanBeDel
&& Phi
.HighCost
) {
704 DeadInsts
.push_back(ExitVal
);
710 Instruction
*Inst
= cast
<Instruction
>(PN
->getIncomingValue(Phi
.Ith
));
711 PN
->setIncomingValue(Phi
.Ith
, ExitVal
);
713 // If this instruction is dead now, delete it. Don't do it now to avoid
714 // invalidating iterators.
715 if (isInstructionTriviallyDead(Inst
, TLI
))
716 DeadInsts
.push_back(Inst
);
718 // Replace PN with ExitVal if that is legal and does not break LCSSA.
719 if (PN
->getNumIncomingValues() == 1 &&
720 LI
->replacementPreservesLCSSAForm(PN
, ExitVal
)) {
721 PN
->replaceAllUsesWith(ExitVal
);
722 PN
->eraseFromParent();
726 // The insertion point instruction may have been deleted; clear it out
727 // so that the rewriter doesn't trip over it later.
728 Rewriter
.clearInsertPoint();
732 //===---------------------------------------------------------------------===//
733 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
734 // they will exit at the first iteration.
735 //===---------------------------------------------------------------------===//
737 /// Check to see if this loop has loop invariant conditions which lead to loop
738 /// exits. If so, we know that if the exit path is taken, it is at the first
739 /// loop iteration. This lets us predict exit values of PHI nodes that live in
741 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop
*L
) {
742 // Verify the input to the pass is already in LCSSA form.
743 assert(L
->isLCSSAForm(*DT
));
745 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
746 L
->getUniqueExitBlocks(ExitBlocks
);
748 bool MadeAnyChanges
= false;
749 for (auto *ExitBB
: ExitBlocks
) {
750 // If there are no more PHI nodes in this exit block, then no more
751 // values defined inside the loop are used on this path.
752 for (PHINode
&PN
: ExitBB
->phis()) {
753 for (unsigned IncomingValIdx
= 0, E
= PN
.getNumIncomingValues();
754 IncomingValIdx
!= E
; ++IncomingValIdx
) {
755 auto *IncomingBB
= PN
.getIncomingBlock(IncomingValIdx
);
757 // Can we prove that the exit must run on the first iteration if it
758 // runs at all? (i.e. early exits are fine for our purposes, but
759 // traces which lead to this exit being taken on the 2nd iteration
760 // aren't.) Note that this is about whether the exit branch is
761 // executed, not about whether it is taken.
762 if (!L
->getLoopLatch() ||
763 !DT
->dominates(IncomingBB
, L
->getLoopLatch()))
766 // Get condition that leads to the exit path.
767 auto *TermInst
= IncomingBB
->getTerminator();
769 Value
*Cond
= nullptr;
770 if (auto *BI
= dyn_cast
<BranchInst
>(TermInst
)) {
771 // Must be a conditional branch, otherwise the block
772 // should not be in the loop.
773 Cond
= BI
->getCondition();
774 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TermInst
))
775 Cond
= SI
->getCondition();
779 if (!L
->isLoopInvariant(Cond
))
782 auto *ExitVal
= dyn_cast
<PHINode
>(PN
.getIncomingValue(IncomingValIdx
));
784 // Only deal with PHIs in the loop header.
785 if (!ExitVal
|| ExitVal
->getParent() != L
->getHeader())
788 // If ExitVal is a PHI on the loop header, then we know its
789 // value along this exit because the exit can only be taken
790 // on the first iteration.
791 auto *LoopPreheader
= L
->getLoopPreheader();
792 assert(LoopPreheader
&& "Invalid loop");
793 int PreheaderIdx
= ExitVal
->getBasicBlockIndex(LoopPreheader
);
794 if (PreheaderIdx
!= -1) {
795 assert(ExitVal
->getParent() == L
->getHeader() &&
796 "ExitVal must be in loop header");
797 MadeAnyChanges
= true;
798 PN
.setIncomingValue(IncomingValIdx
,
799 ExitVal
->getIncomingValue(PreheaderIdx
));
804 return MadeAnyChanges
;
807 /// Check whether it is possible to delete the loop after rewriting exit
808 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
810 bool IndVarSimplify::canLoopBeDeleted(
811 Loop
*L
, SmallVector
<RewritePhi
, 8> &RewritePhiSet
) {
812 BasicBlock
*Preheader
= L
->getLoopPreheader();
813 // If there is no preheader, the loop will not be deleted.
817 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
818 // We obviate multiple ExitingBlocks case for simplicity.
819 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
820 // after exit value rewriting, we can enhance the logic here.
821 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
822 L
->getExitingBlocks(ExitingBlocks
);
823 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
824 L
->getUniqueExitBlocks(ExitBlocks
);
825 if (ExitBlocks
.size() != 1 || ExitingBlocks
.size() != 1)
828 BasicBlock
*ExitBlock
= ExitBlocks
[0];
829 BasicBlock::iterator BI
= ExitBlock
->begin();
830 while (PHINode
*P
= dyn_cast
<PHINode
>(BI
)) {
831 Value
*Incoming
= P
->getIncomingValueForBlock(ExitingBlocks
[0]);
833 // If the Incoming value of P is found in RewritePhiSet, we know it
834 // could be rewritten to use a loop invariant value in transformation
835 // phase later. Skip it in the loop invariant check below.
837 for (const RewritePhi
&Phi
: RewritePhiSet
) {
838 unsigned i
= Phi
.Ith
;
839 if (Phi
.PN
== P
&& (Phi
.PN
)->getIncomingValue(i
) == Incoming
) {
846 if (!found
&& (I
= dyn_cast
<Instruction
>(Incoming
)))
847 if (!L
->hasLoopInvariantOperands(I
))
853 for (auto *BB
: L
->blocks())
854 if (llvm::any_of(*BB
, [](Instruction
&I
) {
855 return I
.mayHaveSideEffects();
862 //===----------------------------------------------------------------------===//
863 // IV Widening - Extend the width of an IV to cover its widest uses.
864 //===----------------------------------------------------------------------===//
868 // Collect information about induction variables that are used by sign/zero
869 // extend operations. This information is recorded by CollectExtend and provides
870 // the input to WidenIV.
872 PHINode
*NarrowIV
= nullptr;
874 // Widest integer type created [sz]ext
875 Type
*WidestNativeType
= nullptr;
877 // Was a sext user seen before a zext?
878 bool IsSigned
= false;
881 } // end anonymous namespace
883 /// Update information about the induction variable that is extended by this
884 /// sign or zero extend operation. This is used to determine the final width of
885 /// the IV before actually widening it.
886 static void visitIVCast(CastInst
*Cast
, WideIVInfo
&WI
, ScalarEvolution
*SE
,
887 const TargetTransformInfo
*TTI
) {
888 bool IsSigned
= Cast
->getOpcode() == Instruction::SExt
;
889 if (!IsSigned
&& Cast
->getOpcode() != Instruction::ZExt
)
892 Type
*Ty
= Cast
->getType();
893 uint64_t Width
= SE
->getTypeSizeInBits(Ty
);
894 if (!Cast
->getModule()->getDataLayout().isLegalInteger(Width
))
897 // Check that `Cast` actually extends the induction variable (we rely on this
898 // later). This takes care of cases where `Cast` is extending a truncation of
899 // the narrow induction variable, and thus can end up being narrower than the
900 // "narrow" induction variable.
901 uint64_t NarrowIVWidth
= SE
->getTypeSizeInBits(WI
.NarrowIV
->getType());
902 if (NarrowIVWidth
>= Width
)
905 // Cast is either an sext or zext up to this point.
906 // We should not widen an indvar if arithmetics on the wider indvar are more
907 // expensive than those on the narrower indvar. We check only the cost of ADD
908 // because at least an ADD is required to increment the induction variable. We
909 // could compute more comprehensively the cost of all instructions on the
910 // induction variable when necessary.
912 TTI
->getArithmeticInstrCost(Instruction::Add
, Ty
) >
913 TTI
->getArithmeticInstrCost(Instruction::Add
,
914 Cast
->getOperand(0)->getType())) {
918 if (!WI
.WidestNativeType
) {
919 WI
.WidestNativeType
= SE
->getEffectiveSCEVType(Ty
);
920 WI
.IsSigned
= IsSigned
;
924 // We extend the IV to satisfy the sign of its first user, arbitrarily.
925 if (WI
.IsSigned
!= IsSigned
)
928 if (Width
> SE
->getTypeSizeInBits(WI
.WidestNativeType
))
929 WI
.WidestNativeType
= SE
->getEffectiveSCEVType(Ty
);
934 /// Record a link in the Narrow IV def-use chain along with the WideIV that
935 /// computes the same value as the Narrow IV def. This avoids caching Use*
937 struct NarrowIVDefUse
{
938 Instruction
*NarrowDef
= nullptr;
939 Instruction
*NarrowUse
= nullptr;
940 Instruction
*WideDef
= nullptr;
942 // True if the narrow def is never negative. Tracking this information lets
943 // us use a sign extension instead of a zero extension or vice versa, when
944 // profitable and legal.
945 bool NeverNegative
= false;
947 NarrowIVDefUse(Instruction
*ND
, Instruction
*NU
, Instruction
*WD
,
949 : NarrowDef(ND
), NarrowUse(NU
), WideDef(WD
),
950 NeverNegative(NeverNegative
) {}
953 /// The goal of this transform is to remove sign and zero extends without
954 /// creating any new induction variables. To do this, it creates a new phi of
955 /// the wider type and redirects all users, either removing extends or inserting
956 /// truncs whenever we stop propagating the type.
968 // Does the module have any calls to the llvm.experimental.guard intrinsic
969 // at all? If not we can avoid scanning instructions looking for guards.
973 PHINode
*WidePhi
= nullptr;
974 Instruction
*WideInc
= nullptr;
975 const SCEV
*WideIncExpr
= nullptr;
976 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
;
978 SmallPtrSet
<Instruction
*,16> Widened
;
979 SmallVector
<NarrowIVDefUse
, 8> NarrowIVUsers
;
981 enum ExtendKind
{ ZeroExtended
, SignExtended
, Unknown
};
983 // A map tracking the kind of extension used to widen each narrow IV
984 // and narrow IV user.
985 // Key: pointer to a narrow IV or IV user.
986 // Value: the kind of extension used to widen this Instruction.
987 DenseMap
<AssertingVH
<Instruction
>, ExtendKind
> ExtendKindMap
;
989 using DefUserPair
= std::pair
<AssertingVH
<Value
>, AssertingVH
<Instruction
>>;
991 // A map with control-dependent ranges for post increment IV uses. The key is
992 // a pair of IV def and a use of this def denoting the context. The value is
993 // a ConstantRange representing possible values of the def at the given
995 DenseMap
<DefUserPair
, ConstantRange
> PostIncRangeInfos
;
997 Optional
<ConstantRange
> getPostIncRangeInfo(Value
*Def
,
999 DefUserPair
Key(Def
, UseI
);
1000 auto It
= PostIncRangeInfos
.find(Key
);
1001 return It
== PostIncRangeInfos
.end()
1002 ? Optional
<ConstantRange
>(None
)
1003 : Optional
<ConstantRange
>(It
->second
);
1006 void calculatePostIncRanges(PHINode
*OrigPhi
);
1007 void calculatePostIncRange(Instruction
*NarrowDef
, Instruction
*NarrowUser
);
1009 void updatePostIncRangeInfo(Value
*Def
, Instruction
*UseI
, ConstantRange R
) {
1010 DefUserPair
Key(Def
, UseI
);
1011 auto It
= PostIncRangeInfos
.find(Key
);
1012 if (It
== PostIncRangeInfos
.end())
1013 PostIncRangeInfos
.insert({Key
, R
});
1015 It
->second
= R
.intersectWith(It
->second
);
1019 WidenIV(const WideIVInfo
&WI
, LoopInfo
*LInfo
, ScalarEvolution
*SEv
,
1020 DominatorTree
*DTree
, SmallVectorImpl
<WeakTrackingVH
> &DI
,
1022 : OrigPhi(WI
.NarrowIV
), WideType(WI
.WidestNativeType
), LI(LInfo
),
1023 L(LI
->getLoopFor(OrigPhi
->getParent())), SE(SEv
), DT(DTree
),
1024 HasGuards(HasGuards
), DeadInsts(DI
) {
1025 assert(L
->getHeader() == OrigPhi
->getParent() && "Phi must be an IV");
1026 ExtendKindMap
[OrigPhi
] = WI
.IsSigned
? SignExtended
: ZeroExtended
;
1029 PHINode
*createWideIV(SCEVExpander
&Rewriter
);
1032 Value
*createExtendInst(Value
*NarrowOper
, Type
*WideType
, bool IsSigned
,
1035 Instruction
*cloneIVUser(NarrowIVDefUse DU
, const SCEVAddRecExpr
*WideAR
);
1036 Instruction
*cloneArithmeticIVUser(NarrowIVDefUse DU
,
1037 const SCEVAddRecExpr
*WideAR
);
1038 Instruction
*cloneBitwiseIVUser(NarrowIVDefUse DU
);
1040 ExtendKind
getExtendKind(Instruction
*I
);
1042 using WidenedRecTy
= std::pair
<const SCEVAddRecExpr
*, ExtendKind
>;
1044 WidenedRecTy
getWideRecurrence(NarrowIVDefUse DU
);
1046 WidenedRecTy
getExtendedOperandRecurrence(NarrowIVDefUse DU
);
1048 const SCEV
*getSCEVByOpCode(const SCEV
*LHS
, const SCEV
*RHS
,
1049 unsigned OpCode
) const;
1051 Instruction
*widenIVUse(NarrowIVDefUse DU
, SCEVExpander
&Rewriter
);
1053 bool widenLoopCompare(NarrowIVDefUse DU
);
1054 bool widenWithVariantLoadUse(NarrowIVDefUse DU
);
1055 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU
);
1057 void pushNarrowIVUsers(Instruction
*NarrowDef
, Instruction
*WideDef
);
1060 } // end anonymous namespace
1062 Value
*WidenIV::createExtendInst(Value
*NarrowOper
, Type
*WideType
,
1063 bool IsSigned
, Instruction
*Use
) {
1064 // Set the debug location and conservative insertion point.
1065 IRBuilder
<> Builder(Use
);
1066 // Hoist the insertion point into loop preheaders as far as possible.
1067 for (const Loop
*L
= LI
->getLoopFor(Use
->getParent());
1068 L
&& L
->getLoopPreheader() && L
->isLoopInvariant(NarrowOper
);
1069 L
= L
->getParentLoop())
1070 Builder
.SetInsertPoint(L
->getLoopPreheader()->getTerminator());
1072 return IsSigned
? Builder
.CreateSExt(NarrowOper
, WideType
) :
1073 Builder
.CreateZExt(NarrowOper
, WideType
);
1076 /// Instantiate a wide operation to replace a narrow operation. This only needs
1077 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1078 /// 0 for any operation we decide not to clone.
1079 Instruction
*WidenIV::cloneIVUser(NarrowIVDefUse DU
,
1080 const SCEVAddRecExpr
*WideAR
) {
1081 unsigned Opcode
= DU
.NarrowUse
->getOpcode();
1085 case Instruction::Add
:
1086 case Instruction::Mul
:
1087 case Instruction::UDiv
:
1088 case Instruction::Sub
:
1089 return cloneArithmeticIVUser(DU
, WideAR
);
1091 case Instruction::And
:
1092 case Instruction::Or
:
1093 case Instruction::Xor
:
1094 case Instruction::Shl
:
1095 case Instruction::LShr
:
1096 case Instruction::AShr
:
1097 return cloneBitwiseIVUser(DU
);
1101 Instruction
*WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU
) {
1102 Instruction
*NarrowUse
= DU
.NarrowUse
;
1103 Instruction
*NarrowDef
= DU
.NarrowDef
;
1104 Instruction
*WideDef
= DU
.WideDef
;
1106 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse
<< "\n");
1108 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1109 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1110 // invariant and will be folded or hoisted. If it actually comes from a
1111 // widened IV, it should be removed during a future call to widenIVUse.
1112 bool IsSigned
= getExtendKind(NarrowDef
) == SignExtended
;
1113 Value
*LHS
= (NarrowUse
->getOperand(0) == NarrowDef
)
1115 : createExtendInst(NarrowUse
->getOperand(0), WideType
,
1116 IsSigned
, NarrowUse
);
1117 Value
*RHS
= (NarrowUse
->getOperand(1) == NarrowDef
)
1119 : createExtendInst(NarrowUse
->getOperand(1), WideType
,
1120 IsSigned
, NarrowUse
);
1122 auto *NarrowBO
= cast
<BinaryOperator
>(NarrowUse
);
1123 auto *WideBO
= BinaryOperator::Create(NarrowBO
->getOpcode(), LHS
, RHS
,
1124 NarrowBO
->getName());
1125 IRBuilder
<> Builder(NarrowUse
);
1126 Builder
.Insert(WideBO
);
1127 WideBO
->copyIRFlags(NarrowBO
);
1131 Instruction
*WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU
,
1132 const SCEVAddRecExpr
*WideAR
) {
1133 Instruction
*NarrowUse
= DU
.NarrowUse
;
1134 Instruction
*NarrowDef
= DU
.NarrowDef
;
1135 Instruction
*WideDef
= DU
.WideDef
;
1137 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse
<< "\n");
1139 unsigned IVOpIdx
= (NarrowUse
->getOperand(0) == NarrowDef
) ? 0 : 1;
1141 // We're trying to find X such that
1143 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1145 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1146 // and check using SCEV if any of them are correct.
1148 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1149 // correct solution to X.
1150 auto GuessNonIVOperand
= [&](bool SignExt
) {
1151 const SCEV
*WideLHS
;
1152 const SCEV
*WideRHS
;
1154 auto GetExtend
= [this, SignExt
](const SCEV
*S
, Type
*Ty
) {
1156 return SE
->getSignExtendExpr(S
, Ty
);
1157 return SE
->getZeroExtendExpr(S
, Ty
);
1161 WideLHS
= SE
->getSCEV(WideDef
);
1162 const SCEV
*NarrowRHS
= SE
->getSCEV(NarrowUse
->getOperand(1));
1163 WideRHS
= GetExtend(NarrowRHS
, WideType
);
1165 const SCEV
*NarrowLHS
= SE
->getSCEV(NarrowUse
->getOperand(0));
1166 WideLHS
= GetExtend(NarrowLHS
, WideType
);
1167 WideRHS
= SE
->getSCEV(WideDef
);
1170 // WideUse is "WideDef `op.wide` X" as described in the comment.
1171 const SCEV
*WideUse
= nullptr;
1173 switch (NarrowUse
->getOpcode()) {
1175 llvm_unreachable("No other possibility!");
1177 case Instruction::Add
:
1178 WideUse
= SE
->getAddExpr(WideLHS
, WideRHS
);
1181 case Instruction::Mul
:
1182 WideUse
= SE
->getMulExpr(WideLHS
, WideRHS
);
1185 case Instruction::UDiv
:
1186 WideUse
= SE
->getUDivExpr(WideLHS
, WideRHS
);
1189 case Instruction::Sub
:
1190 WideUse
= SE
->getMinusSCEV(WideLHS
, WideRHS
);
1194 return WideUse
== WideAR
;
1197 bool SignExtend
= getExtendKind(NarrowDef
) == SignExtended
;
1198 if (!GuessNonIVOperand(SignExtend
)) {
1199 SignExtend
= !SignExtend
;
1200 if (!GuessNonIVOperand(SignExtend
))
1204 Value
*LHS
= (NarrowUse
->getOperand(0) == NarrowDef
)
1206 : createExtendInst(NarrowUse
->getOperand(0), WideType
,
1207 SignExtend
, NarrowUse
);
1208 Value
*RHS
= (NarrowUse
->getOperand(1) == NarrowDef
)
1210 : createExtendInst(NarrowUse
->getOperand(1), WideType
,
1211 SignExtend
, NarrowUse
);
1213 auto *NarrowBO
= cast
<BinaryOperator
>(NarrowUse
);
1214 auto *WideBO
= BinaryOperator::Create(NarrowBO
->getOpcode(), LHS
, RHS
,
1215 NarrowBO
->getName());
1217 IRBuilder
<> Builder(NarrowUse
);
1218 Builder
.Insert(WideBO
);
1219 WideBO
->copyIRFlags(NarrowBO
);
1223 WidenIV::ExtendKind
WidenIV::getExtendKind(Instruction
*I
) {
1224 auto It
= ExtendKindMap
.find(I
);
1225 assert(It
!= ExtendKindMap
.end() && "Instruction not yet extended!");
1229 const SCEV
*WidenIV::getSCEVByOpCode(const SCEV
*LHS
, const SCEV
*RHS
,
1230 unsigned OpCode
) const {
1231 if (OpCode
== Instruction::Add
)
1232 return SE
->getAddExpr(LHS
, RHS
);
1233 if (OpCode
== Instruction::Sub
)
1234 return SE
->getMinusSCEV(LHS
, RHS
);
1235 if (OpCode
== Instruction::Mul
)
1236 return SE
->getMulExpr(LHS
, RHS
);
1238 llvm_unreachable("Unsupported opcode.");
1241 /// No-wrap operations can transfer sign extension of their result to their
1242 /// operands. Generate the SCEV value for the widened operation without
1243 /// actually modifying the IR yet. If the expression after extending the
1244 /// operands is an AddRec for this loop, return the AddRec and the kind of
1246 WidenIV::WidenedRecTy
WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU
) {
1247 // Handle the common case of add<nsw/nuw>
1248 const unsigned OpCode
= DU
.NarrowUse
->getOpcode();
1249 // Only Add/Sub/Mul instructions supported yet.
1250 if (OpCode
!= Instruction::Add
&& OpCode
!= Instruction::Sub
&&
1251 OpCode
!= Instruction::Mul
)
1252 return {nullptr, Unknown
};
1254 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1255 // if extending the other will lead to a recurrence.
1256 const unsigned ExtendOperIdx
=
1257 DU
.NarrowUse
->getOperand(0) == DU
.NarrowDef
? 1 : 0;
1258 assert(DU
.NarrowUse
->getOperand(1-ExtendOperIdx
) == DU
.NarrowDef
&& "bad DU");
1260 const SCEV
*ExtendOperExpr
= nullptr;
1261 const OverflowingBinaryOperator
*OBO
=
1262 cast
<OverflowingBinaryOperator
>(DU
.NarrowUse
);
1263 ExtendKind ExtKind
= getExtendKind(DU
.NarrowDef
);
1264 if (ExtKind
== SignExtended
&& OBO
->hasNoSignedWrap())
1265 ExtendOperExpr
= SE
->getSignExtendExpr(
1266 SE
->getSCEV(DU
.NarrowUse
->getOperand(ExtendOperIdx
)), WideType
);
1267 else if(ExtKind
== ZeroExtended
&& OBO
->hasNoUnsignedWrap())
1268 ExtendOperExpr
= SE
->getZeroExtendExpr(
1269 SE
->getSCEV(DU
.NarrowUse
->getOperand(ExtendOperIdx
)), WideType
);
1271 return {nullptr, Unknown
};
1273 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1274 // flags. This instruction may be guarded by control flow that the no-wrap
1275 // behavior depends on. Non-control-equivalent instructions can be mapped to
1276 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1277 // semantics to those operations.
1278 const SCEV
*lhs
= SE
->getSCEV(DU
.WideDef
);
1279 const SCEV
*rhs
= ExtendOperExpr
;
1281 // Let's swap operands to the initial order for the case of non-commutative
1282 // operations, like SUB. See PR21014.
1283 if (ExtendOperIdx
== 0)
1284 std::swap(lhs
, rhs
);
1285 const SCEVAddRecExpr
*AddRec
=
1286 dyn_cast
<SCEVAddRecExpr
>(getSCEVByOpCode(lhs
, rhs
, OpCode
));
1288 if (!AddRec
|| AddRec
->getLoop() != L
)
1289 return {nullptr, Unknown
};
1291 return {AddRec
, ExtKind
};
1294 /// Is this instruction potentially interesting for further simplification after
1295 /// widening it's type? In other words, can the extend be safely hoisted out of
1296 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1297 /// so, return the extended recurrence and the kind of extension used. Otherwise
1298 /// return {nullptr, Unknown}.
1299 WidenIV::WidenedRecTy
WidenIV::getWideRecurrence(NarrowIVDefUse DU
) {
1300 if (!SE
->isSCEVable(DU
.NarrowUse
->getType()))
1301 return {nullptr, Unknown
};
1303 const SCEV
*NarrowExpr
= SE
->getSCEV(DU
.NarrowUse
);
1304 if (SE
->getTypeSizeInBits(NarrowExpr
->getType()) >=
1305 SE
->getTypeSizeInBits(WideType
)) {
1306 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1307 // index. So don't follow this use.
1308 return {nullptr, Unknown
};
1311 const SCEV
*WideExpr
;
1313 if (DU
.NeverNegative
) {
1314 WideExpr
= SE
->getSignExtendExpr(NarrowExpr
, WideType
);
1315 if (isa
<SCEVAddRecExpr
>(WideExpr
))
1316 ExtKind
= SignExtended
;
1318 WideExpr
= SE
->getZeroExtendExpr(NarrowExpr
, WideType
);
1319 ExtKind
= ZeroExtended
;
1321 } else if (getExtendKind(DU
.NarrowDef
) == SignExtended
) {
1322 WideExpr
= SE
->getSignExtendExpr(NarrowExpr
, WideType
);
1323 ExtKind
= SignExtended
;
1325 WideExpr
= SE
->getZeroExtendExpr(NarrowExpr
, WideType
);
1326 ExtKind
= ZeroExtended
;
1328 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(WideExpr
);
1329 if (!AddRec
|| AddRec
->getLoop() != L
)
1330 return {nullptr, Unknown
};
1331 return {AddRec
, ExtKind
};
1334 /// This IV user cannot be widened. Replace this use of the original narrow IV
1335 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1336 static void truncateIVUse(NarrowIVDefUse DU
, DominatorTree
*DT
, LoopInfo
*LI
) {
1337 auto *InsertPt
= getInsertPointForUses(DU
.NarrowUse
, DU
.NarrowDef
, DT
, LI
);
1340 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU
.WideDef
<< " for user "
1341 << *DU
.NarrowUse
<< "\n");
1342 IRBuilder
<> Builder(InsertPt
);
1343 Value
*Trunc
= Builder
.CreateTrunc(DU
.WideDef
, DU
.NarrowDef
->getType());
1344 DU
.NarrowUse
->replaceUsesOfWith(DU
.NarrowDef
, Trunc
);
1347 /// If the narrow use is a compare instruction, then widen the compare
1348 // (and possibly the other operand). The extend operation is hoisted into the
1349 // loop preheader as far as possible.
1350 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU
) {
1351 ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(DU
.NarrowUse
);
1355 // We can legally widen the comparison in the following two cases:
1357 // - The signedness of the IV extension and comparison match
1359 // - The narrow IV is always positive (and thus its sign extension is equal
1360 // to its zero extension). For instance, let's say we're zero extending
1361 // %narrow for the following use
1363 // icmp slt i32 %narrow, %val ... (A)
1365 // and %narrow is always positive. Then
1367 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1368 // == icmp slt i32 zext(%narrow), sext(%val)
1369 bool IsSigned
= getExtendKind(DU
.NarrowDef
) == SignExtended
;
1370 if (!(DU
.NeverNegative
|| IsSigned
== Cmp
->isSigned()))
1373 Value
*Op
= Cmp
->getOperand(Cmp
->getOperand(0) == DU
.NarrowDef
? 1 : 0);
1374 unsigned CastWidth
= SE
->getTypeSizeInBits(Op
->getType());
1375 unsigned IVWidth
= SE
->getTypeSizeInBits(WideType
);
1376 assert(CastWidth
<= IVWidth
&& "Unexpected width while widening compare.");
1378 // Widen the compare instruction.
1379 auto *InsertPt
= getInsertPointForUses(DU
.NarrowUse
, DU
.NarrowDef
, DT
, LI
);
1382 IRBuilder
<> Builder(InsertPt
);
1383 DU
.NarrowUse
->replaceUsesOfWith(DU
.NarrowDef
, DU
.WideDef
);
1385 // Widen the other operand of the compare, if necessary.
1386 if (CastWidth
< IVWidth
) {
1387 Value
*ExtOp
= createExtendInst(Op
, WideType
, Cmp
->isSigned(), Cmp
);
1388 DU
.NarrowUse
->replaceUsesOfWith(Op
, ExtOp
);
1393 /// If the narrow use is an instruction whose two operands are the defining
1394 /// instruction of DU and a load instruction, then we have the following:
1395 /// if the load is hoisted outside the loop, then we do not reach this function
1396 /// as scalar evolution analysis works fine in widenIVUse with variables
1397 /// hoisted outside the loop and efficient code is subsequently generated by
1398 /// not emitting truncate instructions. But when the load is not hoisted
1399 /// (whether due to limitation in alias analysis or due to a true legality),
1400 /// then scalar evolution can not proceed with loop variant values and
1401 /// inefficient code is generated. This function handles the non-hoisted load
1402 /// special case by making the optimization generate the same type of code for
1403 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1404 /// instruction). This special case is important especially when the induction
1405 /// variables are affecting addressing mode in code generation.
1406 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU
) {
1407 Instruction
*NarrowUse
= DU
.NarrowUse
;
1408 Instruction
*NarrowDef
= DU
.NarrowDef
;
1409 Instruction
*WideDef
= DU
.WideDef
;
1411 // Handle the common case of add<nsw/nuw>
1412 const unsigned OpCode
= NarrowUse
->getOpcode();
1413 // Only Add/Sub/Mul instructions are supported.
1414 if (OpCode
!= Instruction::Add
&& OpCode
!= Instruction::Sub
&&
1415 OpCode
!= Instruction::Mul
)
1418 // The operand that is not defined by NarrowDef of DU. Let's call it the
1420 unsigned ExtendOperIdx
= DU
.NarrowUse
->getOperand(0) == NarrowDef
? 1 : 0;
1421 assert(DU
.NarrowUse
->getOperand(1 - ExtendOperIdx
) == DU
.NarrowDef
&&
1424 const SCEV
*ExtendOperExpr
= nullptr;
1425 const OverflowingBinaryOperator
*OBO
=
1426 cast
<OverflowingBinaryOperator
>(NarrowUse
);
1427 ExtendKind ExtKind
= getExtendKind(NarrowDef
);
1428 if (ExtKind
== SignExtended
&& OBO
->hasNoSignedWrap())
1429 ExtendOperExpr
= SE
->getSignExtendExpr(
1430 SE
->getSCEV(NarrowUse
->getOperand(ExtendOperIdx
)), WideType
);
1431 else if (ExtKind
== ZeroExtended
&& OBO
->hasNoUnsignedWrap())
1432 ExtendOperExpr
= SE
->getZeroExtendExpr(
1433 SE
->getSCEV(NarrowUse
->getOperand(ExtendOperIdx
)), WideType
);
1437 // We are interested in the other operand being a load instruction.
1438 // But, we should look into relaxing this restriction later on.
1439 auto *I
= dyn_cast
<Instruction
>(NarrowUse
->getOperand(ExtendOperIdx
));
1440 if (I
&& I
->getOpcode() != Instruction::Load
)
1443 // Verifying that Defining operand is an AddRec
1444 const SCEV
*Op1
= SE
->getSCEV(WideDef
);
1445 const SCEVAddRecExpr
*AddRecOp1
= dyn_cast
<SCEVAddRecExpr
>(Op1
);
1446 if (!AddRecOp1
|| AddRecOp1
->getLoop() != L
)
1448 // Verifying that other operand is an Extend.
1449 if (ExtKind
== SignExtended
) {
1450 if (!isa
<SCEVSignExtendExpr
>(ExtendOperExpr
))
1453 if (!isa
<SCEVZeroExtendExpr
>(ExtendOperExpr
))
1457 if (ExtKind
== SignExtended
) {
1458 for (Use
&U
: NarrowUse
->uses()) {
1459 SExtInst
*User
= dyn_cast
<SExtInst
>(U
.getUser());
1460 if (!User
|| User
->getType() != WideType
)
1463 } else { // ExtKind == ZeroExtended
1464 for (Use
&U
: NarrowUse
->uses()) {
1465 ZExtInst
*User
= dyn_cast
<ZExtInst
>(U
.getUser());
1466 if (!User
|| User
->getType() != WideType
)
1474 /// Special Case for widening with variant Loads (see
1475 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1476 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU
) {
1477 Instruction
*NarrowUse
= DU
.NarrowUse
;
1478 Instruction
*NarrowDef
= DU
.NarrowDef
;
1479 Instruction
*WideDef
= DU
.WideDef
;
1481 ExtendKind ExtKind
= getExtendKind(NarrowDef
);
1483 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse
<< "\n");
1485 // Generating a widening use instruction.
1486 Value
*LHS
= (NarrowUse
->getOperand(0) == NarrowDef
)
1488 : createExtendInst(NarrowUse
->getOperand(0), WideType
,
1489 ExtKind
, NarrowUse
);
1490 Value
*RHS
= (NarrowUse
->getOperand(1) == NarrowDef
)
1492 : createExtendInst(NarrowUse
->getOperand(1), WideType
,
1493 ExtKind
, NarrowUse
);
1495 auto *NarrowBO
= cast
<BinaryOperator
>(NarrowUse
);
1496 auto *WideBO
= BinaryOperator::Create(NarrowBO
->getOpcode(), LHS
, RHS
,
1497 NarrowBO
->getName());
1498 IRBuilder
<> Builder(NarrowUse
);
1499 Builder
.Insert(WideBO
);
1500 WideBO
->copyIRFlags(NarrowBO
);
1502 if (ExtKind
== SignExtended
)
1503 ExtendKindMap
[NarrowUse
] = SignExtended
;
1505 ExtendKindMap
[NarrowUse
] = ZeroExtended
;
1508 if (ExtKind
== SignExtended
) {
1509 for (Use
&U
: NarrowUse
->uses()) {
1510 SExtInst
*User
= dyn_cast
<SExtInst
>(U
.getUser());
1511 if (User
&& User
->getType() == WideType
) {
1512 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User
<< " replaced by "
1513 << *WideBO
<< "\n");
1515 User
->replaceAllUsesWith(WideBO
);
1516 DeadInsts
.emplace_back(User
);
1519 } else { // ExtKind == ZeroExtended
1520 for (Use
&U
: NarrowUse
->uses()) {
1521 ZExtInst
*User
= dyn_cast
<ZExtInst
>(U
.getUser());
1522 if (User
&& User
->getType() == WideType
) {
1523 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User
<< " replaced by "
1524 << *WideBO
<< "\n");
1526 User
->replaceAllUsesWith(WideBO
);
1527 DeadInsts
.emplace_back(User
);
1533 /// Determine whether an individual user of the narrow IV can be widened. If so,
1534 /// return the wide clone of the user.
1535 Instruction
*WidenIV::widenIVUse(NarrowIVDefUse DU
, SCEVExpander
&Rewriter
) {
1536 assert(ExtendKindMap
.count(DU
.NarrowDef
) &&
1537 "Should already know the kind of extension used to widen NarrowDef");
1539 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1540 if (PHINode
*UsePhi
= dyn_cast
<PHINode
>(DU
.NarrowUse
)) {
1541 if (LI
->getLoopFor(UsePhi
->getParent()) != L
) {
1542 // For LCSSA phis, sink the truncate outside the loop.
1543 // After SimplifyCFG most loop exit targets have a single predecessor.
1544 // Otherwise fall back to a truncate within the loop.
1545 if (UsePhi
->getNumOperands() != 1)
1546 truncateIVUse(DU
, DT
, LI
);
1548 // Widening the PHI requires us to insert a trunc. The logical place
1549 // for this trunc is in the same BB as the PHI. This is not possible if
1550 // the BB is terminated by a catchswitch.
1551 if (isa
<CatchSwitchInst
>(UsePhi
->getParent()->getTerminator()))
1555 PHINode::Create(DU
.WideDef
->getType(), 1, UsePhi
->getName() + ".wide",
1557 WidePhi
->addIncoming(DU
.WideDef
, UsePhi
->getIncomingBlock(0));
1558 IRBuilder
<> Builder(&*WidePhi
->getParent()->getFirstInsertionPt());
1559 Value
*Trunc
= Builder
.CreateTrunc(WidePhi
, DU
.NarrowDef
->getType());
1560 UsePhi
->replaceAllUsesWith(Trunc
);
1561 DeadInsts
.emplace_back(UsePhi
);
1562 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
<< " to "
1563 << *WidePhi
<< "\n");
1569 // This narrow use can be widened by a sext if it's non-negative or its narrow
1570 // def was widended by a sext. Same for zext.
1571 auto canWidenBySExt
= [&]() {
1572 return DU
.NeverNegative
|| getExtendKind(DU
.NarrowDef
) == SignExtended
;
1574 auto canWidenByZExt
= [&]() {
1575 return DU
.NeverNegative
|| getExtendKind(DU
.NarrowDef
) == ZeroExtended
;
1578 // Our raison d'etre! Eliminate sign and zero extension.
1579 if ((isa
<SExtInst
>(DU
.NarrowUse
) && canWidenBySExt()) ||
1580 (isa
<ZExtInst
>(DU
.NarrowUse
) && canWidenByZExt())) {
1581 Value
*NewDef
= DU
.WideDef
;
1582 if (DU
.NarrowUse
->getType() != WideType
) {
1583 unsigned CastWidth
= SE
->getTypeSizeInBits(DU
.NarrowUse
->getType());
1584 unsigned IVWidth
= SE
->getTypeSizeInBits(WideType
);
1585 if (CastWidth
< IVWidth
) {
1586 // The cast isn't as wide as the IV, so insert a Trunc.
1587 IRBuilder
<> Builder(DU
.NarrowUse
);
1588 NewDef
= Builder
.CreateTrunc(DU
.WideDef
, DU
.NarrowUse
->getType());
1591 // A wider extend was hidden behind a narrower one. This may induce
1592 // another round of IV widening in which the intermediate IV becomes
1593 // dead. It should be very rare.
1594 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1595 << " not wide enough to subsume " << *DU
.NarrowUse
1597 DU
.NarrowUse
->replaceUsesOfWith(DU
.NarrowDef
, DU
.WideDef
);
1598 NewDef
= DU
.NarrowUse
;
1601 if (NewDef
!= DU
.NarrowUse
) {
1602 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU
.NarrowUse
1603 << " replaced by " << *DU
.WideDef
<< "\n");
1605 DU
.NarrowUse
->replaceAllUsesWith(NewDef
);
1606 DeadInsts
.emplace_back(DU
.NarrowUse
);
1608 // Now that the extend is gone, we want to expose it's uses for potential
1609 // further simplification. We don't need to directly inform SimplifyIVUsers
1610 // of the new users, because their parent IV will be processed later as a
1611 // new loop phi. If we preserved IVUsers analysis, we would also want to
1612 // push the uses of WideDef here.
1614 // No further widening is needed. The deceased [sz]ext had done it for us.
1618 // Does this user itself evaluate to a recurrence after widening?
1619 WidenedRecTy WideAddRec
= getExtendedOperandRecurrence(DU
);
1620 if (!WideAddRec
.first
)
1621 WideAddRec
= getWideRecurrence(DU
);
1623 assert((WideAddRec
.first
== nullptr) == (WideAddRec
.second
== Unknown
));
1624 if (!WideAddRec
.first
) {
1625 // If use is a loop condition, try to promote the condition instead of
1626 // truncating the IV first.
1627 if (widenLoopCompare(DU
))
1630 // We are here about to generate a truncate instruction that may hurt
1631 // performance because the scalar evolution expression computed earlier
1632 // in WideAddRec.first does not indicate a polynomial induction expression.
1633 // In that case, look at the operands of the use instruction to determine
1634 // if we can still widen the use instead of truncating its operand.
1635 if (widenWithVariantLoadUse(DU
)) {
1636 widenWithVariantLoadUseCodegen(DU
);
1640 // This user does not evaluate to a recurrence after widening, so don't
1641 // follow it. Instead insert a Trunc to kill off the original use,
1642 // eventually isolating the original narrow IV so it can be removed.
1643 truncateIVUse(DU
, DT
, LI
);
1646 // Assume block terminators cannot evaluate to a recurrence. We can't to
1647 // insert a Trunc after a terminator if there happens to be a critical edge.
1648 assert(DU
.NarrowUse
!= DU
.NarrowUse
->getParent()->getTerminator() &&
1649 "SCEV is not expected to evaluate a block terminator");
1651 // Reuse the IV increment that SCEVExpander created as long as it dominates
1653 Instruction
*WideUse
= nullptr;
1654 if (WideAddRec
.first
== WideIncExpr
&&
1655 Rewriter
.hoistIVInc(WideInc
, DU
.NarrowUse
))
1658 WideUse
= cloneIVUser(DU
, WideAddRec
.first
);
1662 // Evaluation of WideAddRec ensured that the narrow expression could be
1663 // extended outside the loop without overflow. This suggests that the wide use
1664 // evaluates to the same expression as the extended narrow use, but doesn't
1665 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1666 // where it fails, we simply throw away the newly created wide use.
1667 if (WideAddRec
.first
!= SE
->getSCEV(WideUse
)) {
1668 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
<< ": "
1669 << *SE
->getSCEV(WideUse
) << " != " << *WideAddRec
.first
1671 DeadInsts
.emplace_back(WideUse
);
1675 ExtendKindMap
[DU
.NarrowUse
] = WideAddRec
.second
;
1676 // Returning WideUse pushes it on the worklist.
1680 /// Add eligible users of NarrowDef to NarrowIVUsers.
1681 void WidenIV::pushNarrowIVUsers(Instruction
*NarrowDef
, Instruction
*WideDef
) {
1682 const SCEV
*NarrowSCEV
= SE
->getSCEV(NarrowDef
);
1683 bool NonNegativeDef
=
1684 SE
->isKnownPredicate(ICmpInst::ICMP_SGE
, NarrowSCEV
,
1685 SE
->getConstant(NarrowSCEV
->getType(), 0));
1686 for (User
*U
: NarrowDef
->users()) {
1687 Instruction
*NarrowUser
= cast
<Instruction
>(U
);
1689 // Handle data flow merges and bizarre phi cycles.
1690 if (!Widened
.insert(NarrowUser
).second
)
1693 bool NonNegativeUse
= false;
1694 if (!NonNegativeDef
) {
1695 // We might have a control-dependent range information for this context.
1696 if (auto RangeInfo
= getPostIncRangeInfo(NarrowDef
, NarrowUser
))
1697 NonNegativeUse
= RangeInfo
->getSignedMin().isNonNegative();
1700 NarrowIVUsers
.emplace_back(NarrowDef
, NarrowUser
, WideDef
,
1701 NonNegativeDef
|| NonNegativeUse
);
1705 /// Process a single induction variable. First use the SCEVExpander to create a
1706 /// wide induction variable that evaluates to the same recurrence as the
1707 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1708 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1709 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1711 /// It would be simpler to delete uses as they are processed, but we must avoid
1712 /// invalidating SCEV expressions.
1713 PHINode
*WidenIV::createWideIV(SCEVExpander
&Rewriter
) {
1714 // Is this phi an induction variable?
1715 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(OrigPhi
));
1719 // Widen the induction variable expression.
1720 const SCEV
*WideIVExpr
= getExtendKind(OrigPhi
) == SignExtended
1721 ? SE
->getSignExtendExpr(AddRec
, WideType
)
1722 : SE
->getZeroExtendExpr(AddRec
, WideType
);
1724 assert(SE
->getEffectiveSCEVType(WideIVExpr
->getType()) == WideType
&&
1725 "Expect the new IV expression to preserve its type");
1727 // Can the IV be extended outside the loop without overflow?
1728 AddRec
= dyn_cast
<SCEVAddRecExpr
>(WideIVExpr
);
1729 if (!AddRec
|| AddRec
->getLoop() != L
)
1732 // An AddRec must have loop-invariant operands. Since this AddRec is
1733 // materialized by a loop header phi, the expression cannot have any post-loop
1734 // operands, so they must dominate the loop header.
1736 SE
->properlyDominates(AddRec
->getStart(), L
->getHeader()) &&
1737 SE
->properlyDominates(AddRec
->getStepRecurrence(*SE
), L
->getHeader()) &&
1738 "Loop header phi recurrence inputs do not dominate the loop");
1740 // Iterate over IV uses (including transitive ones) looking for IV increments
1741 // of the form 'add nsw %iv, <const>'. For each increment and each use of
1742 // the increment calculate control-dependent range information basing on
1743 // dominating conditions inside of the loop (e.g. a range check inside of the
1744 // loop). Calculated ranges are stored in PostIncRangeInfos map.
1746 // Control-dependent range information is later used to prove that a narrow
1747 // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1748 // this on demand because when pushNarrowIVUsers needs this information some
1749 // of the dominating conditions might be already widened.
1750 if (UsePostIncrementRanges
)
1751 calculatePostIncRanges(OrigPhi
);
1753 // The rewriter provides a value for the desired IV expression. This may
1754 // either find an existing phi or materialize a new one. Either way, we
1755 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1756 // of the phi-SCC dominates the loop entry.
1757 Instruction
*InsertPt
= &L
->getHeader()->front();
1758 WidePhi
= cast
<PHINode
>(Rewriter
.expandCodeFor(AddRec
, WideType
, InsertPt
));
1760 // Remembering the WideIV increment generated by SCEVExpander allows
1761 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1762 // employ a general reuse mechanism because the call above is the only call to
1763 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1764 if (BasicBlock
*LatchBlock
= L
->getLoopLatch()) {
1766 cast
<Instruction
>(WidePhi
->getIncomingValueForBlock(LatchBlock
));
1767 WideIncExpr
= SE
->getSCEV(WideInc
);
1768 // Propagate the debug location associated with the original loop increment
1769 // to the new (widened) increment.
1771 cast
<Instruction
>(OrigPhi
->getIncomingValueForBlock(LatchBlock
));
1772 WideInc
->setDebugLoc(OrigInc
->getDebugLoc());
1775 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi
<< "\n");
1778 // Traverse the def-use chain using a worklist starting at the original IV.
1779 assert(Widened
.empty() && NarrowIVUsers
.empty() && "expect initial state" );
1781 Widened
.insert(OrigPhi
);
1782 pushNarrowIVUsers(OrigPhi
, WidePhi
);
1784 while (!NarrowIVUsers
.empty()) {
1785 NarrowIVDefUse DU
= NarrowIVUsers
.pop_back_val();
1787 // Process a def-use edge. This may replace the use, so don't hold a
1788 // use_iterator across it.
1789 Instruction
*WideUse
= widenIVUse(DU
, Rewriter
);
1791 // Follow all def-use edges from the previous narrow use.
1793 pushNarrowIVUsers(DU
.NarrowUse
, WideUse
);
1795 // widenIVUse may have removed the def-use edge.
1796 if (DU
.NarrowDef
->use_empty())
1797 DeadInsts
.emplace_back(DU
.NarrowDef
);
1800 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1801 // evaluate the same recurrence, we can just copy the debug info over.
1802 SmallVector
<DbgValueInst
*, 1> DbgValues
;
1803 llvm::findDbgValues(DbgValues
, OrigPhi
);
1804 auto *MDPhi
= MetadataAsValue::get(WidePhi
->getContext(),
1805 ValueAsMetadata::get(WidePhi
));
1806 for (auto &DbgValue
: DbgValues
)
1807 DbgValue
->setOperand(0, MDPhi
);
1811 /// Calculates control-dependent range for the given def at the given context
1812 /// by looking at dominating conditions inside of the loop
1813 void WidenIV::calculatePostIncRange(Instruction
*NarrowDef
,
1814 Instruction
*NarrowUser
) {
1815 using namespace llvm::PatternMatch
;
1817 Value
*NarrowDefLHS
;
1818 const APInt
*NarrowDefRHS
;
1819 if (!match(NarrowDef
, m_NSWAdd(m_Value(NarrowDefLHS
),
1820 m_APInt(NarrowDefRHS
))) ||
1821 !NarrowDefRHS
->isNonNegative())
1824 auto UpdateRangeFromCondition
= [&] (Value
*Condition
,
1826 CmpInst::Predicate Pred
;
1828 if (!match(Condition
, m_ICmp(Pred
, m_Specific(NarrowDefLHS
),
1832 CmpInst::Predicate P
=
1833 TrueDest
? Pred
: CmpInst::getInversePredicate(Pred
);
1835 auto CmpRHSRange
= SE
->getSignedRange(SE
->getSCEV(CmpRHS
));
1836 auto CmpConstrainedLHSRange
=
1837 ConstantRange::makeAllowedICmpRegion(P
, CmpRHSRange
);
1838 auto NarrowDefRange
=
1839 CmpConstrainedLHSRange
.addWithNoSignedWrap(*NarrowDefRHS
);
1841 updatePostIncRangeInfo(NarrowDef
, NarrowUser
, NarrowDefRange
);
1844 auto UpdateRangeFromGuards
= [&](Instruction
*Ctx
) {
1848 for (Instruction
&I
: make_range(Ctx
->getIterator().getReverse(),
1849 Ctx
->getParent()->rend())) {
1851 if (match(&I
, m_Intrinsic
<Intrinsic::experimental_guard
>(m_Value(C
))))
1852 UpdateRangeFromCondition(C
, /*TrueDest=*/true);
1856 UpdateRangeFromGuards(NarrowUser
);
1858 BasicBlock
*NarrowUserBB
= NarrowUser
->getParent();
1859 // If NarrowUserBB is statically unreachable asking dominator queries may
1860 // yield surprising results. (e.g. the block may not have a dom tree node)
1861 if (!DT
->isReachableFromEntry(NarrowUserBB
))
1864 for (auto *DTB
= (*DT
)[NarrowUserBB
]->getIDom();
1865 L
->contains(DTB
->getBlock());
1866 DTB
= DTB
->getIDom()) {
1867 auto *BB
= DTB
->getBlock();
1868 auto *TI
= BB
->getTerminator();
1869 UpdateRangeFromGuards(TI
);
1871 auto *BI
= dyn_cast
<BranchInst
>(TI
);
1872 if (!BI
|| !BI
->isConditional())
1875 auto *TrueSuccessor
= BI
->getSuccessor(0);
1876 auto *FalseSuccessor
= BI
->getSuccessor(1);
1878 auto DominatesNarrowUser
= [this, NarrowUser
] (BasicBlockEdge BBE
) {
1879 return BBE
.isSingleEdge() &&
1880 DT
->dominates(BBE
, NarrowUser
->getParent());
1883 if (DominatesNarrowUser(BasicBlockEdge(BB
, TrueSuccessor
)))
1884 UpdateRangeFromCondition(BI
->getCondition(), /*TrueDest=*/true);
1886 if (DominatesNarrowUser(BasicBlockEdge(BB
, FalseSuccessor
)))
1887 UpdateRangeFromCondition(BI
->getCondition(), /*TrueDest=*/false);
1891 /// Calculates PostIncRangeInfos map for the given IV
1892 void WidenIV::calculatePostIncRanges(PHINode
*OrigPhi
) {
1893 SmallPtrSet
<Instruction
*, 16> Visited
;
1894 SmallVector
<Instruction
*, 6> Worklist
;
1895 Worklist
.push_back(OrigPhi
);
1896 Visited
.insert(OrigPhi
);
1898 while (!Worklist
.empty()) {
1899 Instruction
*NarrowDef
= Worklist
.pop_back_val();
1901 for (Use
&U
: NarrowDef
->uses()) {
1902 auto *NarrowUser
= cast
<Instruction
>(U
.getUser());
1904 // Don't go looking outside the current loop.
1905 auto *NarrowUserLoop
= (*LI
)[NarrowUser
->getParent()];
1906 if (!NarrowUserLoop
|| !L
->contains(NarrowUserLoop
))
1909 if (!Visited
.insert(NarrowUser
).second
)
1912 Worklist
.push_back(NarrowUser
);
1914 calculatePostIncRange(NarrowDef
, NarrowUser
);
1919 //===----------------------------------------------------------------------===//
1920 // Live IV Reduction - Minimize IVs live across the loop.
1921 //===----------------------------------------------------------------------===//
1923 //===----------------------------------------------------------------------===//
1924 // Simplification of IV users based on SCEV evaluation.
1925 //===----------------------------------------------------------------------===//
1929 class IndVarSimplifyVisitor
: public IVVisitor
{
1930 ScalarEvolution
*SE
;
1931 const TargetTransformInfo
*TTI
;
1937 IndVarSimplifyVisitor(PHINode
*IV
, ScalarEvolution
*SCEV
,
1938 const TargetTransformInfo
*TTI
,
1939 const DominatorTree
*DTree
)
1940 : SE(SCEV
), TTI(TTI
), IVPhi(IV
) {
1942 WI
.NarrowIV
= IVPhi
;
1945 // Implement the interface used by simplifyUsersOfIV.
1946 void visitCast(CastInst
*Cast
) override
{ visitIVCast(Cast
, WI
, SE
, TTI
); }
1949 } // end anonymous namespace
1951 /// Iteratively perform simplification on a worklist of IV users. Each
1952 /// successive simplification may push more users which may themselves be
1953 /// candidates for simplification.
1955 /// Sign/Zero extend elimination is interleaved with IV simplification.
1956 bool IndVarSimplify::simplifyAndExtend(Loop
*L
,
1957 SCEVExpander
&Rewriter
,
1959 SmallVector
<WideIVInfo
, 8> WideIVs
;
1961 auto *GuardDecl
= L
->getBlocks()[0]->getModule()->getFunction(
1962 Intrinsic::getName(Intrinsic::experimental_guard
));
1963 bool HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
1965 SmallVector
<PHINode
*, 8> LoopPhis
;
1966 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
) {
1967 LoopPhis
.push_back(cast
<PHINode
>(I
));
1969 // Each round of simplification iterates through the SimplifyIVUsers worklist
1970 // for all current phis, then determines whether any IVs can be
1971 // widened. Widening adds new phis to LoopPhis, inducing another round of
1972 // simplification on the wide IVs.
1973 bool Changed
= false;
1974 while (!LoopPhis
.empty()) {
1975 // Evaluate as many IV expressions as possible before widening any IVs. This
1976 // forces SCEV to set no-wrap flags before evaluating sign/zero
1977 // extension. The first time SCEV attempts to normalize sign/zero extension,
1978 // the result becomes final. So for the most predictable results, we delay
1979 // evaluation of sign/zero extend evaluation until needed, and avoid running
1980 // other SCEV based analysis prior to simplifyAndExtend.
1982 PHINode
*CurrIV
= LoopPhis
.pop_back_val();
1984 // Information about sign/zero extensions of CurrIV.
1985 IndVarSimplifyVisitor
Visitor(CurrIV
, SE
, TTI
, DT
);
1988 simplifyUsersOfIV(CurrIV
, SE
, DT
, LI
, DeadInsts
, Rewriter
, &Visitor
);
1990 if (Visitor
.WI
.WidestNativeType
) {
1991 WideIVs
.push_back(Visitor
.WI
);
1993 } while(!LoopPhis
.empty());
1995 for (; !WideIVs
.empty(); WideIVs
.pop_back()) {
1996 WidenIV
Widener(WideIVs
.back(), LI
, SE
, DT
, DeadInsts
, HasGuards
);
1997 if (PHINode
*WidePhi
= Widener
.createWideIV(Rewriter
)) {
1999 LoopPhis
.push_back(WidePhi
);
2006 //===----------------------------------------------------------------------===//
2007 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
2008 //===----------------------------------------------------------------------===//
2010 /// Given an Value which is hoped to be part of an add recurance in the given
2011 /// loop, return the associated Phi node if so. Otherwise, return null. Note
2012 /// that this is less general than SCEVs AddRec checking.
2013 static PHINode
*getLoopPhiForCounter(Value
*IncV
, Loop
*L
) {
2014 Instruction
*IncI
= dyn_cast
<Instruction
>(IncV
);
2018 switch (IncI
->getOpcode()) {
2019 case Instruction::Add
:
2020 case Instruction::Sub
:
2022 case Instruction::GetElementPtr
:
2023 // An IV counter must preserve its type.
2024 if (IncI
->getNumOperands() == 2)
2031 PHINode
*Phi
= dyn_cast
<PHINode
>(IncI
->getOperand(0));
2032 if (Phi
&& Phi
->getParent() == L
->getHeader()) {
2033 if (L
->isLoopInvariant(IncI
->getOperand(1)))
2037 if (IncI
->getOpcode() == Instruction::GetElementPtr
)
2040 // Allow add/sub to be commuted.
2041 Phi
= dyn_cast
<PHINode
>(IncI
->getOperand(1));
2042 if (Phi
&& Phi
->getParent() == L
->getHeader()) {
2043 if (L
->isLoopInvariant(IncI
->getOperand(0)))
2049 /// Whether the current loop exit test is based on this value. Currently this
2050 /// is limited to a direct use in the loop condition.
2051 static bool isLoopExitTestBasedOn(Value
*V
, BasicBlock
*ExitingBB
) {
2052 BranchInst
*BI
= cast
<BranchInst
>(ExitingBB
->getTerminator());
2053 ICmpInst
*ICmp
= dyn_cast
<ICmpInst
>(BI
->getCondition());
2054 // TODO: Allow non-icmp loop test.
2058 // TODO: Allow indirect use.
2059 return ICmp
->getOperand(0) == V
|| ICmp
->getOperand(1) == V
;
2062 /// linearFunctionTestReplace policy. Return true unless we can show that the
2063 /// current exit test is already sufficiently canonical.
2064 static bool needsLFTR(Loop
*L
, BasicBlock
*ExitingBB
) {
2065 assert(L
->getLoopLatch() && "Must be in simplified form");
2067 // Avoid converting a constant or loop invariant test back to a runtime
2068 // test. This is critical for when SCEV's cached ExitCount is less precise
2069 // than the current IR (such as after we've proven a particular exit is
2070 // actually dead and thus the BE count never reaches our ExitCount.)
2071 BranchInst
*BI
= cast
<BranchInst
>(ExitingBB
->getTerminator());
2072 if (L
->isLoopInvariant(BI
->getCondition()))
2075 // Do LFTR to simplify the exit condition to an ICMP.
2076 ICmpInst
*Cond
= dyn_cast
<ICmpInst
>(BI
->getCondition());
2080 // Do LFTR to simplify the exit ICMP to EQ/NE
2081 ICmpInst::Predicate Pred
= Cond
->getPredicate();
2082 if (Pred
!= ICmpInst::ICMP_NE
&& Pred
!= ICmpInst::ICMP_EQ
)
2085 // Look for a loop invariant RHS
2086 Value
*LHS
= Cond
->getOperand(0);
2087 Value
*RHS
= Cond
->getOperand(1);
2088 if (!L
->isLoopInvariant(RHS
)) {
2089 if (!L
->isLoopInvariant(LHS
))
2091 std::swap(LHS
, RHS
);
2093 // Look for a simple IV counter LHS
2094 PHINode
*Phi
= dyn_cast
<PHINode
>(LHS
);
2096 Phi
= getLoopPhiForCounter(LHS
, L
);
2101 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2102 int Idx
= Phi
->getBasicBlockIndex(L
->getLoopLatch());
2106 // Do LFTR if the exit condition's IV is *not* a simple counter.
2107 Value
*IncV
= Phi
->getIncomingValue(Idx
);
2108 return Phi
!= getLoopPhiForCounter(IncV
, L
);
2111 /// Return true if undefined behavior would provable be executed on the path to
2112 /// OnPathTo if Root produced a posion result. Note that this doesn't say
2113 /// anything about whether OnPathTo is actually executed or whether Root is
2114 /// actually poison. This can be used to assess whether a new use of Root can
2115 /// be added at a location which is control equivalent with OnPathTo (such as
2116 /// immediately before it) without introducing UB which didn't previously
2117 /// exist. Note that a false result conveys no information.
2118 static bool mustExecuteUBIfPoisonOnPathTo(Instruction
*Root
,
2119 Instruction
*OnPathTo
,
2120 DominatorTree
*DT
) {
2121 // Basic approach is to assume Root is poison, propagate poison forward
2122 // through all users we can easily track, and then check whether any of those
2123 // users are provable UB and must execute before out exiting block might
2126 // The set of all recursive users we've visited (which are assumed to all be
2127 // poison because of said visit)
2128 SmallSet
<const Value
*, 16> KnownPoison
;
2129 SmallVector
<const Instruction
*, 16> Worklist
;
2130 Worklist
.push_back(Root
);
2131 while (!Worklist
.empty()) {
2132 const Instruction
*I
= Worklist
.pop_back_val();
2134 // If we know this must trigger UB on a path leading our target.
2135 if (mustTriggerUB(I
, KnownPoison
) && DT
->dominates(I
, OnPathTo
))
2138 // If we can't analyze propagation through this instruction, just skip it
2139 // and transitive users. Safe as false is a conservative result.
2140 if (!propagatesFullPoison(I
) && I
!= Root
)
2143 if (KnownPoison
.insert(I
).second
)
2144 for (const User
*User
: I
->users())
2145 Worklist
.push_back(cast
<Instruction
>(User
));
2148 // Might be non-UB, or might have a path we couldn't prove must execute on
2149 // way to exiting bb.
2153 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2154 /// down to checking that all operands are constant and listing instructions
2155 /// that may hide undef.
2156 static bool hasConcreteDefImpl(Value
*V
, SmallPtrSetImpl
<Value
*> &Visited
,
2158 if (isa
<Constant
>(V
))
2159 return !isa
<UndefValue
>(V
);
2164 // Conservatively handle non-constant non-instructions. For example, Arguments
2166 Instruction
*I
= dyn_cast
<Instruction
>(V
);
2170 // Load and return values may be undef.
2171 if(I
->mayReadFromMemory() || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
))
2174 // Optimistically handle other instructions.
2175 for (Value
*Op
: I
->operands()) {
2176 if (!Visited
.insert(Op
).second
)
2178 if (!hasConcreteDefImpl(Op
, Visited
, Depth
+1))
2184 /// Return true if the given value is concrete. We must prove that undef can
2187 /// TODO: If we decide that this is a good approach to checking for undef, we
2188 /// may factor it into a common location.
2189 static bool hasConcreteDef(Value
*V
) {
2190 SmallPtrSet
<Value
*, 8> Visited
;
2192 return hasConcreteDefImpl(V
, Visited
, 0);
2195 /// Return true if this IV has any uses other than the (soon to be rewritten)
2197 static bool AlmostDeadIV(PHINode
*Phi
, BasicBlock
*LatchBlock
, Value
*Cond
) {
2198 int LatchIdx
= Phi
->getBasicBlockIndex(LatchBlock
);
2199 Value
*IncV
= Phi
->getIncomingValue(LatchIdx
);
2201 for (User
*U
: Phi
->users())
2202 if (U
!= Cond
&& U
!= IncV
) return false;
2204 for (User
*U
: IncV
->users())
2205 if (U
!= Cond
&& U
!= Phi
) return false;
2209 /// Return true if the given phi is a "counter" in L. A counter is an
2210 /// add recurance (of integer or pointer type) with an arbitrary start, and a
2211 /// step of 1. Note that L must have exactly one latch.
2212 static bool isLoopCounter(PHINode
* Phi
, Loop
*L
,
2213 ScalarEvolution
*SE
) {
2214 assert(Phi
->getParent() == L
->getHeader());
2215 assert(L
->getLoopLatch());
2217 if (!SE
->isSCEVable(Phi
->getType()))
2220 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(Phi
));
2221 if (!AR
|| AR
->getLoop() != L
|| !AR
->isAffine())
2224 const SCEV
*Step
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*SE
));
2225 if (!Step
|| !Step
->isOne())
2228 int LatchIdx
= Phi
->getBasicBlockIndex(L
->getLoopLatch());
2229 Value
*IncV
= Phi
->getIncomingValue(LatchIdx
);
2230 return (getLoopPhiForCounter(IncV
, L
) == Phi
);
2233 /// Search the loop header for a loop counter (anadd rec w/step of one)
2234 /// suitable for use by LFTR. If multiple counters are available, select the
2235 /// "best" one based profitable heuristics.
2237 /// BECount may be an i8* pointer type. The pointer difference is already
2238 /// valid count without scaling the address stride, so it remains a pointer
2239 /// expression as far as SCEV is concerned.
2240 static PHINode
*FindLoopCounter(Loop
*L
, BasicBlock
*ExitingBB
,
2241 const SCEV
*BECount
,
2242 ScalarEvolution
*SE
, DominatorTree
*DT
) {
2243 uint64_t BCWidth
= SE
->getTypeSizeInBits(BECount
->getType());
2245 Value
*Cond
= cast
<BranchInst
>(ExitingBB
->getTerminator())->getCondition();
2247 // Loop over all of the PHI nodes, looking for a simple counter.
2248 PHINode
*BestPhi
= nullptr;
2249 const SCEV
*BestInit
= nullptr;
2250 BasicBlock
*LatchBlock
= L
->getLoopLatch();
2251 assert(LatchBlock
&& "Must be in simplified form");
2252 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
2254 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
) {
2255 PHINode
*Phi
= cast
<PHINode
>(I
);
2256 if (!isLoopCounter(Phi
, L
, SE
))
2259 // Avoid comparing an integer IV against a pointer Limit.
2260 if (BECount
->getType()->isPointerTy() && !Phi
->getType()->isPointerTy())
2263 const auto *AR
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(Phi
));
2265 // AR may be a pointer type, while BECount is an integer type.
2266 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2267 // AR may not be a narrower type, or we may never exit.
2268 uint64_t PhiWidth
= SE
->getTypeSizeInBits(AR
->getType());
2269 if (PhiWidth
< BCWidth
|| !DL
.isLegalInteger(PhiWidth
))
2272 // Avoid reusing a potentially undef value to compute other values that may
2273 // have originally had a concrete definition.
2274 if (!hasConcreteDef(Phi
)) {
2275 // We explicitly allow unknown phis as long as they are already used by
2276 // the loop exit test. This is legal since performing LFTR could not
2277 // increase the number of undef users.
2278 Value
*IncPhi
= Phi
->getIncomingValueForBlock(LatchBlock
);
2279 if (!isLoopExitTestBasedOn(Phi
, ExitingBB
) &&
2280 !isLoopExitTestBasedOn(IncPhi
, ExitingBB
))
2284 // Avoid introducing undefined behavior due to poison which didn't exist in
2285 // the original program. (Annoyingly, the rules for poison and undef
2286 // propagation are distinct, so this does NOT cover the undef case above.)
2287 // We have to ensure that we don't introduce UB by introducing a use on an
2288 // iteration where said IV produces poison. Our strategy here differs for
2289 // pointers and integer IVs. For integers, we strip and reinfer as needed,
2290 // see code in linearFunctionTestReplace. For pointers, we restrict
2291 // transforms as there is no good way to reinfer inbounds once lost.
2292 if (!Phi
->getType()->isIntegerTy() &&
2293 !mustExecuteUBIfPoisonOnPathTo(Phi
, ExitingBB
->getTerminator(), DT
))
2296 const SCEV
*Init
= AR
->getStart();
2298 if (BestPhi
&& !AlmostDeadIV(BestPhi
, LatchBlock
, Cond
)) {
2299 // Don't force a live loop counter if another IV can be used.
2300 if (AlmostDeadIV(Phi
, LatchBlock
, Cond
))
2303 // Prefer to count-from-zero. This is a more "canonical" counter form. It
2304 // also prefers integer to pointer IVs.
2305 if (BestInit
->isZero() != Init
->isZero()) {
2306 if (BestInit
->isZero())
2309 // If two IVs both count from zero or both count from nonzero then the
2310 // narrower is likely a dead phi that has been widened. Use the wider phi
2311 // to allow the other to be eliminated.
2312 else if (PhiWidth
<= SE
->getTypeSizeInBits(BestPhi
->getType()))
2321 /// Insert an IR expression which computes the value held by the IV IndVar
2322 /// (which must be an loop counter w/unit stride) after the backedge of loop L
2323 /// is taken ExitCount times.
2324 static Value
*genLoopLimit(PHINode
*IndVar
, BasicBlock
*ExitingBB
,
2325 const SCEV
*ExitCount
, bool UsePostInc
, Loop
*L
,
2326 SCEVExpander
&Rewriter
, ScalarEvolution
*SE
) {
2327 assert(isLoopCounter(IndVar
, L
, SE
));
2328 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(SE
->getSCEV(IndVar
));
2329 const SCEV
*IVInit
= AR
->getStart();
2331 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
2332 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
2333 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2334 // the existing GEPs whenever possible.
2335 if (IndVar
->getType()->isPointerTy() &&
2336 !ExitCount
->getType()->isPointerTy()) {
2337 // IVOffset will be the new GEP offset that is interpreted by GEP as a
2338 // signed value. ExitCount on the other hand represents the loop trip count,
2339 // which is an unsigned value. FindLoopCounter only allows induction
2340 // variables that have a positive unit stride of one. This means we don't
2341 // have to handle the case of negative offsets (yet) and just need to zero
2342 // extend ExitCount.
2343 Type
*OfsTy
= SE
->getEffectiveSCEVType(IVInit
->getType());
2344 const SCEV
*IVOffset
= SE
->getTruncateOrZeroExtend(ExitCount
, OfsTy
);
2346 IVOffset
= SE
->getAddExpr(IVOffset
, SE
->getOne(OfsTy
));
2348 // Expand the code for the iteration count.
2349 assert(SE
->isLoopInvariant(IVOffset
, L
) &&
2350 "Computed iteration count is not loop invariant!");
2352 // We could handle pointer IVs other than i8*, but we need to compensate for
2353 // gep index scaling.
2354 assert(SE
->getSizeOfExpr(IntegerType::getInt64Ty(IndVar
->getContext()),
2355 cast
<PointerType
>(IndVar
->getType())
2356 ->getElementType())->isOne() &&
2357 "unit stride pointer IV must be i8*");
2359 const SCEV
*IVLimit
= SE
->getAddExpr(IVInit
, IVOffset
);
2360 BranchInst
*BI
= cast
<BranchInst
>(ExitingBB
->getTerminator());
2361 return Rewriter
.expandCodeFor(IVLimit
, IndVar
->getType(), BI
);
2363 // In any other case, convert both IVInit and ExitCount to integers before
2364 // comparing. This may result in SCEV expansion of pointers, but in practice
2365 // SCEV will fold the pointer arithmetic away as such:
2366 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2368 // Valid Cases: (1) both integers is most common; (2) both may be pointers
2369 // for simple memset-style loops.
2371 // IVInit integer and ExitCount pointer would only occur if a canonical IV
2372 // were generated on top of case #2, which is not expected.
2374 assert(AR
->getStepRecurrence(*SE
)->isOne() && "only handles unit stride");
2375 // For unit stride, IVCount = Start + ExitCount with 2's complement
2378 // For integer IVs, truncate the IV before computing IVInit + BECount,
2379 // unless we know apriori that the limit must be a constant when evaluated
2380 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate
2381 // of the IV in the loop over a (potentially) expensive expansion of the
2382 // widened exit count add(zext(add)) expression.
2383 if (SE
->getTypeSizeInBits(IVInit
->getType())
2384 > SE
->getTypeSizeInBits(ExitCount
->getType())) {
2385 if (isa
<SCEVConstant
>(IVInit
) && isa
<SCEVConstant
>(ExitCount
))
2386 ExitCount
= SE
->getZeroExtendExpr(ExitCount
, IVInit
->getType());
2388 IVInit
= SE
->getTruncateExpr(IVInit
, ExitCount
->getType());
2391 const SCEV
*IVLimit
= SE
->getAddExpr(IVInit
, ExitCount
);
2394 IVLimit
= SE
->getAddExpr(IVLimit
, SE
->getOne(IVLimit
->getType()));
2396 // Expand the code for the iteration count.
2397 assert(SE
->isLoopInvariant(IVLimit
, L
) &&
2398 "Computed iteration count is not loop invariant!");
2399 // Ensure that we generate the same type as IndVar, or a smaller integer
2400 // type. In the presence of null pointer values, we have an integer type
2401 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2402 Type
*LimitTy
= ExitCount
->getType()->isPointerTy() ?
2403 IndVar
->getType() : ExitCount
->getType();
2404 BranchInst
*BI
= cast
<BranchInst
>(ExitingBB
->getTerminator());
2405 return Rewriter
.expandCodeFor(IVLimit
, LimitTy
, BI
);
2409 /// This method rewrites the exit condition of the loop to be a canonical !=
2410 /// comparison against the incremented loop induction variable. This pass is
2411 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2412 /// determine a loop-invariant trip count of the loop, which is actually a much
2413 /// broader range than just linear tests.
2414 bool IndVarSimplify::
2415 linearFunctionTestReplace(Loop
*L
, BasicBlock
*ExitingBB
,
2416 const SCEV
*ExitCount
,
2417 PHINode
*IndVar
, SCEVExpander
&Rewriter
) {
2418 assert(L
->getLoopLatch() && "Loop no longer in simplified form?");
2419 assert(isLoopCounter(IndVar
, L
, SE
));
2420 Instruction
* const IncVar
=
2421 cast
<Instruction
>(IndVar
->getIncomingValueForBlock(L
->getLoopLatch()));
2423 // Initialize CmpIndVar to the preincremented IV.
2424 Value
*CmpIndVar
= IndVar
;
2425 bool UsePostInc
= false;
2427 // If the exiting block is the same as the backedge block, we prefer to
2428 // compare against the post-incremented value, otherwise we must compare
2429 // against the preincremented value.
2430 if (ExitingBB
== L
->getLoopLatch()) {
2431 // For pointer IVs, we chose to not strip inbounds which requires us not
2432 // to add a potentially UB introducing use. We need to either a) show
2433 // the loop test we're modifying is already in post-inc form, or b) show
2434 // that adding a use must not introduce UB.
2435 bool SafeToPostInc
=
2436 IndVar
->getType()->isIntegerTy() ||
2437 isLoopExitTestBasedOn(IncVar
, ExitingBB
) ||
2438 mustExecuteUBIfPoisonOnPathTo(IncVar
, ExitingBB
->getTerminator(), DT
);
2439 if (SafeToPostInc
) {
2445 // It may be necessary to drop nowrap flags on the incrementing instruction
2446 // if either LFTR moves from a pre-inc check to a post-inc check (in which
2447 // case the increment might have previously been poison on the last iteration
2448 // only) or if LFTR switches to a different IV that was previously dynamically
2449 // dead (and as such may be arbitrarily poison). We remove any nowrap flags
2450 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
2451 // check), because the pre-inc addrec flags may be adopted from the original
2452 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
2453 // TODO: This handling is inaccurate for one case: If we switch to a
2454 // dynamically dead IV that wraps on the first loop iteration only, which is
2455 // not covered by the post-inc addrec. (If the new IV was not dynamically
2456 // dead, it could not be poison on the first iteration in the first place.)
2457 if (auto *BO
= dyn_cast
<BinaryOperator
>(IncVar
)) {
2458 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(SE
->getSCEV(IncVar
));
2459 if (BO
->hasNoUnsignedWrap())
2460 BO
->setHasNoUnsignedWrap(AR
->hasNoUnsignedWrap());
2461 if (BO
->hasNoSignedWrap())
2462 BO
->setHasNoSignedWrap(AR
->hasNoSignedWrap());
2465 Value
*ExitCnt
= genLoopLimit(
2466 IndVar
, ExitingBB
, ExitCount
, UsePostInc
, L
, Rewriter
, SE
);
2467 assert(ExitCnt
->getType()->isPointerTy() ==
2468 IndVar
->getType()->isPointerTy() &&
2469 "genLoopLimit missed a cast");
2471 // Insert a new icmp_ne or icmp_eq instruction before the branch.
2472 BranchInst
*BI
= cast
<BranchInst
>(ExitingBB
->getTerminator());
2473 ICmpInst::Predicate P
;
2474 if (L
->contains(BI
->getSuccessor(0)))
2475 P
= ICmpInst::ICMP_NE
;
2477 P
= ICmpInst::ICMP_EQ
;
2479 IRBuilder
<> Builder(BI
);
2481 // The new loop exit condition should reuse the debug location of the
2482 // original loop exit condition.
2483 if (auto *Cond
= dyn_cast
<Instruction
>(BI
->getCondition()))
2484 Builder
.SetCurrentDebugLocation(Cond
->getDebugLoc());
2486 // For integer IVs, if we evaluated the limit in the narrower bitwidth to
2487 // avoid the expensive expansion of the limit expression in the wider type,
2488 // emit a truncate to narrow the IV to the ExitCount type. This is safe
2489 // since we know (from the exit count bitwidth), that we can't self-wrap in
2490 // the narrower type.
2491 unsigned CmpIndVarSize
= SE
->getTypeSizeInBits(CmpIndVar
->getType());
2492 unsigned ExitCntSize
= SE
->getTypeSizeInBits(ExitCnt
->getType());
2493 if (CmpIndVarSize
> ExitCntSize
) {
2494 assert(!CmpIndVar
->getType()->isPointerTy() &&
2495 !ExitCnt
->getType()->isPointerTy());
2497 // Before resorting to actually inserting the truncate, use the same
2498 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
2499 // the other side of the comparison instead. We still evaluate the limit
2500 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
2501 // a truncate within in.
2502 bool Extended
= false;
2503 const SCEV
*IV
= SE
->getSCEV(CmpIndVar
);
2504 const SCEV
*TruncatedIV
= SE
->getTruncateExpr(SE
->getSCEV(CmpIndVar
),
2505 ExitCnt
->getType());
2506 const SCEV
*ZExtTrunc
=
2507 SE
->getZeroExtendExpr(TruncatedIV
, CmpIndVar
->getType());
2509 if (ZExtTrunc
== IV
) {
2511 ExitCnt
= Builder
.CreateZExt(ExitCnt
, IndVar
->getType(),
2514 const SCEV
*SExtTrunc
=
2515 SE
->getSignExtendExpr(TruncatedIV
, CmpIndVar
->getType());
2516 if (SExtTrunc
== IV
) {
2518 ExitCnt
= Builder
.CreateSExt(ExitCnt
, IndVar
->getType(),
2525 L
->makeLoopInvariant(ExitCnt
, Discard
);
2527 CmpIndVar
= Builder
.CreateTrunc(CmpIndVar
, ExitCnt
->getType(),
2530 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2531 << " LHS:" << *CmpIndVar
<< '\n'
2532 << " op:\t" << (P
== ICmpInst::ICMP_NE
? "!=" : "==")
2534 << " RHS:\t" << *ExitCnt
<< "\n"
2535 << "ExitCount:\t" << *ExitCount
<< "\n"
2536 << " was: " << *BI
->getCondition() << "\n");
2538 Value
*Cond
= Builder
.CreateICmp(P
, CmpIndVar
, ExitCnt
, "exitcond");
2539 Value
*OrigCond
= BI
->getCondition();
2540 // It's tempting to use replaceAllUsesWith here to fully replace the old
2541 // comparison, but that's not immediately safe, since users of the old
2542 // comparison may not be dominated by the new comparison. Instead, just
2543 // update the branch to use the new comparison; in the common case this
2544 // will make old comparison dead.
2545 BI
->setCondition(Cond
);
2546 DeadInsts
.push_back(OrigCond
);
2552 //===----------------------------------------------------------------------===//
2553 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2554 //===----------------------------------------------------------------------===//
2556 /// If there's a single exit block, sink any loop-invariant values that
2557 /// were defined in the preheader but not used inside the loop into the
2558 /// exit block to reduce register pressure in the loop.
2559 bool IndVarSimplify::sinkUnusedInvariants(Loop
*L
) {
2560 BasicBlock
*ExitBlock
= L
->getExitBlock();
2561 if (!ExitBlock
) return false;
2563 BasicBlock
*Preheader
= L
->getLoopPreheader();
2564 if (!Preheader
) return false;
2566 bool MadeAnyChanges
= false;
2567 BasicBlock::iterator InsertPt
= ExitBlock
->getFirstInsertionPt();
2568 BasicBlock::iterator
I(Preheader
->getTerminator());
2569 while (I
!= Preheader
->begin()) {
2571 // New instructions were inserted at the end of the preheader.
2572 if (isa
<PHINode
>(I
))
2575 // Don't move instructions which might have side effects, since the side
2576 // effects need to complete before instructions inside the loop. Also don't
2577 // move instructions which might read memory, since the loop may modify
2578 // memory. Note that it's okay if the instruction might have undefined
2579 // behavior: LoopSimplify guarantees that the preheader dominates the exit
2581 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory())
2584 // Skip debug info intrinsics.
2585 if (isa
<DbgInfoIntrinsic
>(I
))
2588 // Skip eh pad instructions.
2592 // Don't sink alloca: we never want to sink static alloca's out of the
2593 // entry block, and correctly sinking dynamic alloca's requires
2594 // checks for stacksave/stackrestore intrinsics.
2595 // FIXME: Refactor this check somehow?
2596 if (isa
<AllocaInst
>(I
))
2599 // Determine if there is a use in or before the loop (direct or
2601 bool UsedInLoop
= false;
2602 for (Use
&U
: I
->uses()) {
2603 Instruction
*User
= cast
<Instruction
>(U
.getUser());
2604 BasicBlock
*UseBB
= User
->getParent();
2605 if (PHINode
*P
= dyn_cast
<PHINode
>(User
)) {
2607 PHINode::getIncomingValueNumForOperand(U
.getOperandNo());
2608 UseBB
= P
->getIncomingBlock(i
);
2610 if (UseBB
== Preheader
|| L
->contains(UseBB
)) {
2616 // If there is, the def must remain in the preheader.
2620 // Otherwise, sink it to the exit block.
2621 Instruction
*ToMove
= &*I
;
2624 if (I
!= Preheader
->begin()) {
2625 // Skip debug info intrinsics.
2628 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= Preheader
->begin());
2630 if (isa
<DbgInfoIntrinsic
>(I
) && I
== Preheader
->begin())
2636 MadeAnyChanges
= true;
2637 ToMove
->moveBefore(*ExitBlock
, InsertPt
);
2639 InsertPt
= ToMove
->getIterator();
2642 return MadeAnyChanges
;
2645 bool IndVarSimplify::optimizeLoopExits(Loop
*L
) {
2646 SmallVector
<BasicBlock
*, 16> ExitingBlocks
;
2647 L
->getExitingBlocks(ExitingBlocks
);
2649 // Form an expression for the maximum exit count possible for this loop. We
2650 // merge the max and exact information to approximate a version of
2651 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
2652 // TODO: factor this out as a version of getConstantMaxBackedgeTakenCount which
2653 // isn't guaranteed to return a constant.
2654 SmallVector
<const SCEV
*, 4> ExitCounts
;
2655 const SCEV
*MaxConstEC
= SE
->getConstantMaxBackedgeTakenCount(L
);
2656 if (!isa
<SCEVCouldNotCompute
>(MaxConstEC
))
2657 ExitCounts
.push_back(MaxConstEC
);
2658 for (BasicBlock
*ExitingBB
: ExitingBlocks
) {
2659 const SCEV
*ExitCount
= SE
->getExitCount(L
, ExitingBB
);
2660 if (!isa
<SCEVCouldNotCompute
>(ExitCount
)) {
2661 assert(DT
->dominates(ExitingBB
, L
->getLoopLatch()) &&
2662 "We should only have known counts for exiting blocks that "
2664 ExitCounts
.push_back(ExitCount
);
2667 if (ExitCounts
.empty())
2669 const SCEV
*MaxExitCount
= SE
->getUMinFromMismatchedTypes(ExitCounts
);
2671 bool Changed
= false;
2672 for (BasicBlock
*ExitingBB
: ExitingBlocks
) {
2673 // If our exitting block exits multiple loops, we can only rewrite the
2674 // innermost one. Otherwise, we're changing how many times the innermost
2675 // loop runs before it exits.
2676 if (LI
->getLoopFor(ExitingBB
) != L
)
2679 // Can't rewrite non-branch yet.
2680 BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBB
->getTerminator());
2684 // If already constant, nothing to do.
2685 if (isa
<Constant
>(BI
->getCondition()))
2688 const SCEV
*ExitCount
= SE
->getExitCount(L
, ExitingBB
);
2689 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
2692 // If we know we'd exit on the first iteration, rewrite the exit to
2693 // reflect this. This does not imply the loop must exit through this
2694 // exit; there may be an earlier one taken on the first iteration.
2695 // TODO: Given we know the backedge can't be taken, we should go ahead
2696 // and break it. Or at least, kill all the header phis and simplify.
2697 if (ExitCount
->isZero()) {
2698 bool ExitIfTrue
= !L
->contains(*succ_begin(ExitingBB
));
2699 auto *OldCond
= BI
->getCondition();
2700 auto *NewCond
= ExitIfTrue
? ConstantInt::getTrue(OldCond
->getType()) :
2701 ConstantInt::getFalse(OldCond
->getType());
2702 BI
->setCondition(NewCond
);
2703 if (OldCond
->use_empty())
2704 DeadInsts
.push_back(OldCond
);
2709 // If we end up with a pointer exit count, bail. Note that we can end up
2710 // with a pointer exit count for one exiting block, and not for another in
2712 if (!ExitCount
->getType()->isIntegerTy() ||
2713 !MaxExitCount
->getType()->isIntegerTy())
2717 SE
->getWiderType(MaxExitCount
->getType(), ExitCount
->getType());
2718 ExitCount
= SE
->getNoopOrZeroExtend(ExitCount
, WiderType
);
2719 MaxExitCount
= SE
->getNoopOrZeroExtend(MaxExitCount
, WiderType
);
2720 assert(MaxExitCount
->getType() == ExitCount
->getType());
2722 // Can we prove that some other exit must be taken strictly before this
2723 // one? TODO: handle cases where ule is known, and equality is covered
2724 // by a dominating exit
2725 if (SE
->isLoopEntryGuardedByCond(L
, CmpInst::ICMP_ULT
,
2726 MaxExitCount
, ExitCount
)) {
2727 bool ExitIfTrue
= !L
->contains(*succ_begin(ExitingBB
));
2728 auto *OldCond
= BI
->getCondition();
2729 auto *NewCond
= ExitIfTrue
? ConstantInt::getFalse(OldCond
->getType()) :
2730 ConstantInt::getTrue(OldCond
->getType());
2731 BI
->setCondition(NewCond
);
2732 if (OldCond
->use_empty())
2733 DeadInsts
.push_back(OldCond
);
2738 // TODO: If we can prove that the exiting iteration is equal to the exit
2739 // count for this exit and that no previous exit oppurtunities exist within
2740 // the loop, then we can discharge all other exits. (May fall out of
2743 // TODO: If we can't prove any relation between our exit count and the
2744 // loops exit count, but taking this exit doesn't require actually running
2745 // the loop (i.e. no side effects, no computed values used in exit), then
2746 // we can replace the exit test with a loop invariant test which exits on
2747 // the first iteration.
2752 //===----------------------------------------------------------------------===//
2753 // IndVarSimplify driver. Manage several subpasses of IV simplification.
2754 //===----------------------------------------------------------------------===//
2756 bool IndVarSimplify::run(Loop
*L
) {
2757 // We need (and expect!) the incoming loop to be in LCSSA.
2758 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
2759 "LCSSA required to run indvars!");
2760 bool Changed
= false;
2762 // If LoopSimplify form is not available, stay out of trouble. Some notes:
2763 // - LSR currently only supports LoopSimplify-form loops. Indvars'
2764 // canonicalization can be a pessimization without LSR to "clean up"
2766 // - We depend on having a preheader; in particular,
2767 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
2768 // and we're in trouble if we can't find the induction variable even when
2769 // we've manually inserted one.
2770 // - LFTR relies on having a single backedge.
2771 if (!L
->isLoopSimplifyForm())
2774 // If there are any floating-point recurrences, attempt to
2775 // transform them to use integer recurrences.
2776 Changed
|= rewriteNonIntegerIVs(L
);
2779 // Used below for a consistency check only
2780 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2783 // Create a rewriter object which we'll use to transform the code with.
2784 SCEVExpander
Rewriter(*SE
, DL
, "indvars");
2786 Rewriter
.setDebugType(DEBUG_TYPE
);
2789 // Eliminate redundant IV users.
2791 // Simplification works best when run before other consumers of SCEV. We
2792 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2793 // other expressions involving loop IVs have been evaluated. This helps SCEV
2794 // set no-wrap flags before normalizing sign/zero extension.
2795 Rewriter
.disableCanonicalMode();
2796 Changed
|= simplifyAndExtend(L
, Rewriter
, LI
);
2798 // Check to see if we can compute the final value of any expressions
2799 // that are recurrent in the loop, and substitute the exit values from the
2800 // loop into any instructions outside of the loop that use the final values
2801 // of the current expressions.
2802 if (ReplaceExitValue
!= NeverRepl
)
2803 Changed
|= rewriteLoopExitValues(L
, Rewriter
);
2805 // Eliminate redundant IV cycles.
2806 NumElimIV
+= Rewriter
.replaceCongruentIVs(L
, DT
, DeadInsts
);
2808 Changed
|= optimizeLoopExits(L
);
2810 // If we have a trip count expression, rewrite the loop's exit condition
2813 SmallVector
<BasicBlock
*, 16> ExitingBlocks
;
2814 L
->getExitingBlocks(ExitingBlocks
);
2815 for (BasicBlock
*ExitingBB
: ExitingBlocks
) {
2816 // Can't rewrite non-branch yet.
2817 if (!isa
<BranchInst
>(ExitingBB
->getTerminator()))
2820 // If our exitting block exits multiple loops, we can only rewrite the
2821 // innermost one. Otherwise, we're changing how many times the innermost
2822 // loop runs before it exits.
2823 if (LI
->getLoopFor(ExitingBB
) != L
)
2826 if (!needsLFTR(L
, ExitingBB
))
2829 const SCEV
*ExitCount
= SE
->getExitCount(L
, ExitingBB
);
2830 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
2833 // This was handled above, but as we form SCEVs, we can sometimes refine
2834 // existing ones; this allows exit counts to be folded to zero which
2835 // weren't when optimizeLoopExits saw them. Arguably, we should iterate
2836 // until stable to handle cases like this better.
2837 if (ExitCount
->isZero())
2840 PHINode
*IndVar
= FindLoopCounter(L
, ExitingBB
, ExitCount
, SE
, DT
);
2844 // Avoid high cost expansions. Note: This heuristic is questionable in
2845 // that our definition of "high cost" is not exactly principled.
2846 if (Rewriter
.isHighCostExpansion(ExitCount
, L
))
2849 // Check preconditions for proper SCEVExpander operation. SCEV does not
2850 // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2851 // any pass that uses the SCEVExpander must do it. This does not work
2852 // well for loop passes because SCEVExpander makes assumptions about
2853 // all loops, while LoopPassManager only forces the current loop to be
2856 // FIXME: SCEV expansion has no way to bail out, so the caller must
2857 // explicitly check any assumptions made by SCEV. Brittle.
2858 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(ExitCount
);
2859 if (!AR
|| AR
->getLoop()->getLoopPreheader())
2860 Changed
|= linearFunctionTestReplace(L
, ExitingBB
,
2865 // Clear the rewriter cache, because values that are in the rewriter's cache
2866 // can be deleted in the loop below, causing the AssertingVH in the cache to
2870 // Now that we're done iterating through lists, clean up any instructions
2871 // which are now dead.
2872 while (!DeadInsts
.empty())
2873 if (Instruction
*Inst
=
2874 dyn_cast_or_null
<Instruction
>(DeadInsts
.pop_back_val()))
2875 Changed
|= RecursivelyDeleteTriviallyDeadInstructions(Inst
, TLI
);
2877 // The Rewriter may not be used from this point on.
2879 // Loop-invariant instructions in the preheader that aren't used in the
2880 // loop may be sunk below the loop to reduce register pressure.
2881 Changed
|= sinkUnusedInvariants(L
);
2883 // rewriteFirstIterationLoopExitValues does not rely on the computation of
2884 // trip count and therefore can further simplify exit values in addition to
2885 // rewriteLoopExitValues.
2886 Changed
|= rewriteFirstIterationLoopExitValues(L
);
2888 // Clean up dead instructions.
2889 Changed
|= DeleteDeadPHIs(L
->getHeader(), TLI
);
2891 // Check a post-condition.
2892 assert(L
->isRecursivelyLCSSAForm(*DT
, *LI
) &&
2893 "Indvars did not preserve LCSSA!");
2895 // Verify that LFTR, and any other change have not interfered with SCEV's
2896 // ability to compute trip count.
2898 if (VerifyIndvars
&& !isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
)) {
2900 const SCEV
*NewBECount
= SE
->getBackedgeTakenCount(L
);
2901 if (SE
->getTypeSizeInBits(BackedgeTakenCount
->getType()) <
2902 SE
->getTypeSizeInBits(NewBECount
->getType()))
2903 NewBECount
= SE
->getTruncateOrNoop(NewBECount
,
2904 BackedgeTakenCount
->getType());
2906 BackedgeTakenCount
= SE
->getTruncateOrNoop(BackedgeTakenCount
,
2907 NewBECount
->getType());
2908 assert(BackedgeTakenCount
== NewBECount
&& "indvars must preserve SCEV");
2915 PreservedAnalyses
IndVarSimplifyPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
2916 LoopStandardAnalysisResults
&AR
,
2918 Function
*F
= L
.getHeader()->getParent();
2919 const DataLayout
&DL
= F
->getParent()->getDataLayout();
2921 IndVarSimplify
IVS(&AR
.LI
, &AR
.SE
, &AR
.DT
, DL
, &AR
.TLI
, &AR
.TTI
);
2923 return PreservedAnalyses::all();
2925 auto PA
= getLoopPassPreservedAnalyses();
2926 PA
.preserveSet
<CFGAnalyses
>();
2932 struct IndVarSimplifyLegacyPass
: public LoopPass
{
2933 static char ID
; // Pass identification, replacement for typeid
2935 IndVarSimplifyLegacyPass() : LoopPass(ID
) {
2936 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2939 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
2943 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
2944 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
2945 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2946 auto *TLIP
= getAnalysisIfAvailable
<TargetLibraryInfoWrapperPass
>();
2947 auto *TLI
= TLIP
? &TLIP
->getTLI() : nullptr;
2948 auto *TTIP
= getAnalysisIfAvailable
<TargetTransformInfoWrapperPass
>();
2949 auto *TTI
= TTIP
? &TTIP
->getTTI(*L
->getHeader()->getParent()) : nullptr;
2950 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
2952 IndVarSimplify
IVS(LI
, SE
, DT
, DL
, TLI
, TTI
);
2956 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
2957 AU
.setPreservesCFG();
2958 getLoopAnalysisUsage(AU
);
2962 } // end anonymous namespace
2964 char IndVarSimplifyLegacyPass::ID
= 0;
2966 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass
, "indvars",
2967 "Induction Variable Simplification", false, false)
2968 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
2969 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass
, "indvars",
2970 "Induction Variable Simplification", false, false)
2972 Pass
*llvm::createIndVarSimplifyPass() {
2973 return new IndVarSimplifyLegacyPass();