[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Transforms / Scalar / LoopDistribute.cpp
blobf45e5fd0f50b4fd3b21f074bb86caccf43550c7e
1 //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop Distribution Pass. Its main focus is to
10 // distribute loops that cannot be vectorized due to dependence cycles. It
11 // tries to isolate the offending dependences into a new loop allowing
12 // vectorization of the remaining parts.
14 // For dependence analysis, the pass uses the LoopVectorizer's
15 // LoopAccessAnalysis. Because this analysis presumes no change in the order of
16 // memory operations, special care is taken to preserve the lexical order of
17 // these operations.
19 // Similarly to the Vectorizer, the pass also supports loop versioning to
20 // run-time disambiguate potentially overlapping arrays.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Transforms/Scalar/LoopDistribute.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/EquivalenceClasses.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/AssumptionCache.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/LoopAccessAnalysis.h"
40 #include "llvm/Analysis/LoopAnalysisManager.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DiagnosticInfo.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/PassManager.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/LoopUtils.h"
67 #include "llvm/Transforms/Utils/LoopVersioning.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <cassert>
70 #include <functional>
71 #include <list>
72 #include <tuple>
73 #include <utility>
75 using namespace llvm;
77 #define LDIST_NAME "loop-distribute"
78 #define DEBUG_TYPE LDIST_NAME
80 /// @{
81 /// Metadata attribute names
82 static const char *const LLVMLoopDistributeFollowupAll =
83 "llvm.loop.distribute.followup_all";
84 static const char *const LLVMLoopDistributeFollowupCoincident =
85 "llvm.loop.distribute.followup_coincident";
86 static const char *const LLVMLoopDistributeFollowupSequential =
87 "llvm.loop.distribute.followup_sequential";
88 static const char *const LLVMLoopDistributeFollowupFallback =
89 "llvm.loop.distribute.followup_fallback";
90 /// @}
92 static cl::opt<bool>
93 LDistVerify("loop-distribute-verify", cl::Hidden,
94 cl::desc("Turn on DominatorTree and LoopInfo verification "
95 "after Loop Distribution"),
96 cl::init(false));
98 static cl::opt<bool> DistributeNonIfConvertible(
99 "loop-distribute-non-if-convertible", cl::Hidden,
100 cl::desc("Whether to distribute into a loop that may not be "
101 "if-convertible by the loop vectorizer"),
102 cl::init(false));
104 static cl::opt<unsigned> DistributeSCEVCheckThreshold(
105 "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
106 cl::desc("The maximum number of SCEV checks allowed for Loop "
107 "Distribution"));
109 static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
110 "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
111 cl::Hidden,
112 cl::desc(
113 "The maximum number of SCEV checks allowed for Loop "
114 "Distribution for loop marked with #pragma loop distribute(enable)"));
116 static cl::opt<bool> EnableLoopDistribute(
117 "enable-loop-distribute", cl::Hidden,
118 cl::desc("Enable the new, experimental LoopDistribution Pass"),
119 cl::init(false));
121 STATISTIC(NumLoopsDistributed, "Number of loops distributed");
123 namespace {
125 /// Maintains the set of instructions of the loop for a partition before
126 /// cloning. After cloning, it hosts the new loop.
127 class InstPartition {
128 using InstructionSet = SmallPtrSet<Instruction *, 8>;
130 public:
131 InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
132 : DepCycle(DepCycle), OrigLoop(L) {
133 Set.insert(I);
136 /// Returns whether this partition contains a dependence cycle.
137 bool hasDepCycle() const { return DepCycle; }
139 /// Adds an instruction to this partition.
140 void add(Instruction *I) { Set.insert(I); }
142 /// Collection accessors.
143 InstructionSet::iterator begin() { return Set.begin(); }
144 InstructionSet::iterator end() { return Set.end(); }
145 InstructionSet::const_iterator begin() const { return Set.begin(); }
146 InstructionSet::const_iterator end() const { return Set.end(); }
147 bool empty() const { return Set.empty(); }
149 /// Moves this partition into \p Other. This partition becomes empty
150 /// after this.
151 void moveTo(InstPartition &Other) {
152 Other.Set.insert(Set.begin(), Set.end());
153 Set.clear();
154 Other.DepCycle |= DepCycle;
157 /// Populates the partition with a transitive closure of all the
158 /// instructions that the seeded instructions dependent on.
159 void populateUsedSet() {
160 // FIXME: We currently don't use control-dependence but simply include all
161 // blocks (possibly empty at the end) and let simplifycfg mostly clean this
162 // up.
163 for (auto *B : OrigLoop->getBlocks())
164 Set.insert(B->getTerminator());
166 // Follow the use-def chains to form a transitive closure of all the
167 // instructions that the originally seeded instructions depend on.
168 SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
169 while (!Worklist.empty()) {
170 Instruction *I = Worklist.pop_back_val();
171 // Insert instructions from the loop that we depend on.
172 for (Value *V : I->operand_values()) {
173 auto *I = dyn_cast<Instruction>(V);
174 if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
175 Worklist.push_back(I);
180 /// Clones the original loop.
182 /// Updates LoopInfo and DominatorTree using the information that block \p
183 /// LoopDomBB dominates the loop.
184 Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
185 unsigned Index, LoopInfo *LI,
186 DominatorTree *DT) {
187 ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
188 VMap, Twine(".ldist") + Twine(Index),
189 LI, DT, ClonedLoopBlocks);
190 return ClonedLoop;
193 /// The cloned loop. If this partition is mapped to the original loop,
194 /// this is null.
195 const Loop *getClonedLoop() const { return ClonedLoop; }
197 /// Returns the loop where this partition ends up after distribution.
198 /// If this partition is mapped to the original loop then use the block from
199 /// the loop.
200 Loop *getDistributedLoop() const {
201 return ClonedLoop ? ClonedLoop : OrigLoop;
204 /// The VMap that is populated by cloning and then used in
205 /// remapinstruction to remap the cloned instructions.
206 ValueToValueMapTy &getVMap() { return VMap; }
208 /// Remaps the cloned instructions using VMap.
209 void remapInstructions() {
210 remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
213 /// Based on the set of instructions selected for this partition,
214 /// removes the unnecessary ones.
215 void removeUnusedInsts() {
216 SmallVector<Instruction *, 8> Unused;
218 for (auto *Block : OrigLoop->getBlocks())
219 for (auto &Inst : *Block)
220 if (!Set.count(&Inst)) {
221 Instruction *NewInst = &Inst;
222 if (!VMap.empty())
223 NewInst = cast<Instruction>(VMap[NewInst]);
225 assert(!isa<BranchInst>(NewInst) &&
226 "Branches are marked used early on");
227 Unused.push_back(NewInst);
230 // Delete the instructions backwards, as it has a reduced likelihood of
231 // having to update as many def-use and use-def chains.
232 for (auto *Inst : reverse(Unused)) {
233 if (!Inst->use_empty())
234 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
235 Inst->eraseFromParent();
239 void print() const {
240 if (DepCycle)
241 dbgs() << " (cycle)\n";
242 for (auto *I : Set)
243 // Prefix with the block name.
244 dbgs() << " " << I->getParent()->getName() << ":" << *I << "\n";
247 void printBlocks() const {
248 for (auto *BB : getDistributedLoop()->getBlocks())
249 dbgs() << *BB;
252 private:
253 /// Instructions from OrigLoop selected for this partition.
254 InstructionSet Set;
256 /// Whether this partition contains a dependence cycle.
257 bool DepCycle;
259 /// The original loop.
260 Loop *OrigLoop;
262 /// The cloned loop. If this partition is mapped to the original loop,
263 /// this is null.
264 Loop *ClonedLoop = nullptr;
266 /// The blocks of ClonedLoop including the preheader. If this
267 /// partition is mapped to the original loop, this is empty.
268 SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
270 /// These gets populated once the set of instructions have been
271 /// finalized. If this partition is mapped to the original loop, these are not
272 /// set.
273 ValueToValueMapTy VMap;
276 /// Holds the set of Partitions. It populates them, merges them and then
277 /// clones the loops.
278 class InstPartitionContainer {
279 using InstToPartitionIdT = DenseMap<Instruction *, int>;
281 public:
282 InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
283 : L(L), LI(LI), DT(DT) {}
285 /// Returns the number of partitions.
286 unsigned getSize() const { return PartitionContainer.size(); }
288 /// Adds \p Inst into the current partition if that is marked to
289 /// contain cycles. Otherwise start a new partition for it.
290 void addToCyclicPartition(Instruction *Inst) {
291 // If the current partition is non-cyclic. Start a new one.
292 if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
293 PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
294 else
295 PartitionContainer.back().add(Inst);
298 /// Adds \p Inst into a partition that is not marked to contain
299 /// dependence cycles.
301 // Initially we isolate memory instructions into as many partitions as
302 // possible, then later we may merge them back together.
303 void addToNewNonCyclicPartition(Instruction *Inst) {
304 PartitionContainer.emplace_back(Inst, L);
307 /// Merges adjacent non-cyclic partitions.
309 /// The idea is that we currently only want to isolate the non-vectorizable
310 /// partition. We could later allow more distribution among these partition
311 /// too.
312 void mergeAdjacentNonCyclic() {
313 mergeAdjacentPartitionsIf(
314 [](const InstPartition *P) { return !P->hasDepCycle(); });
317 /// If a partition contains only conditional stores, we won't vectorize
318 /// it. Try to merge it with a previous cyclic partition.
319 void mergeNonIfConvertible() {
320 mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
321 if (Partition->hasDepCycle())
322 return true;
324 // Now, check if all stores are conditional in this partition.
325 bool seenStore = false;
327 for (auto *Inst : *Partition)
328 if (isa<StoreInst>(Inst)) {
329 seenStore = true;
330 if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
331 return false;
333 return seenStore;
337 /// Merges the partitions according to various heuristics.
338 void mergeBeforePopulating() {
339 mergeAdjacentNonCyclic();
340 if (!DistributeNonIfConvertible)
341 mergeNonIfConvertible();
344 /// Merges partitions in order to ensure that no loads are duplicated.
346 /// We can't duplicate loads because that could potentially reorder them.
347 /// LoopAccessAnalysis provides dependency information with the context that
348 /// the order of memory operation is preserved.
350 /// Return if any partitions were merged.
351 bool mergeToAvoidDuplicatedLoads() {
352 using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
353 using ToBeMergedT = EquivalenceClasses<InstPartition *>;
355 LoadToPartitionT LoadToPartition;
356 ToBeMergedT ToBeMerged;
358 // Step through the partitions and create equivalence between partitions
359 // that contain the same load. Also put partitions in between them in the
360 // same equivalence class to avoid reordering of memory operations.
361 for (PartitionContainerT::iterator I = PartitionContainer.begin(),
362 E = PartitionContainer.end();
363 I != E; ++I) {
364 auto *PartI = &*I;
366 // If a load occurs in two partitions PartI and PartJ, merge all
367 // partitions (PartI, PartJ] into PartI.
368 for (Instruction *Inst : *PartI)
369 if (isa<LoadInst>(Inst)) {
370 bool NewElt;
371 LoadToPartitionT::iterator LoadToPart;
373 std::tie(LoadToPart, NewElt) =
374 LoadToPartition.insert(std::make_pair(Inst, PartI));
375 if (!NewElt) {
376 LLVM_DEBUG(dbgs()
377 << "Merging partitions due to this load in multiple "
378 << "partitions: " << PartI << ", " << LoadToPart->second
379 << "\n"
380 << *Inst << "\n");
382 auto PartJ = I;
383 do {
384 --PartJ;
385 ToBeMerged.unionSets(PartI, &*PartJ);
386 } while (&*PartJ != LoadToPart->second);
390 if (ToBeMerged.empty())
391 return false;
393 // Merge the member of an equivalence class into its class leader. This
394 // makes the members empty.
395 for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
396 I != E; ++I) {
397 if (!I->isLeader())
398 continue;
400 auto PartI = I->getData();
401 for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
402 ToBeMerged.member_end())) {
403 PartJ->moveTo(*PartI);
407 // Remove the empty partitions.
408 PartitionContainer.remove_if(
409 [](const InstPartition &P) { return P.empty(); });
411 return true;
414 /// Sets up the mapping between instructions to partitions. If the
415 /// instruction is duplicated across multiple partitions, set the entry to -1.
416 void setupPartitionIdOnInstructions() {
417 int PartitionID = 0;
418 for (const auto &Partition : PartitionContainer) {
419 for (Instruction *Inst : Partition) {
420 bool NewElt;
421 InstToPartitionIdT::iterator Iter;
423 std::tie(Iter, NewElt) =
424 InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
425 if (!NewElt)
426 Iter->second = -1;
428 ++PartitionID;
432 /// Populates the partition with everything that the seeding
433 /// instructions require.
434 void populateUsedSet() {
435 for (auto &P : PartitionContainer)
436 P.populateUsedSet();
439 /// This performs the main chunk of the work of cloning the loops for
440 /// the partitions.
441 void cloneLoops() {
442 BasicBlock *OrigPH = L->getLoopPreheader();
443 // At this point the predecessor of the preheader is either the memcheck
444 // block or the top part of the original preheader.
445 BasicBlock *Pred = OrigPH->getSinglePredecessor();
446 assert(Pred && "Preheader does not have a single predecessor");
447 BasicBlock *ExitBlock = L->getExitBlock();
448 assert(ExitBlock && "No single exit block");
449 Loop *NewLoop;
451 assert(!PartitionContainer.empty() && "at least two partitions expected");
452 // We're cloning the preheader along with the loop so we already made sure
453 // it was empty.
454 assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
455 "preheader not empty");
457 // Preserve the original loop ID for use after the transformation.
458 MDNode *OrigLoopID = L->getLoopID();
460 // Create a loop for each partition except the last. Clone the original
461 // loop before PH along with adding a preheader for the cloned loop. Then
462 // update PH to point to the newly added preheader.
463 BasicBlock *TopPH = OrigPH;
464 unsigned Index = getSize() - 1;
465 for (auto I = std::next(PartitionContainer.rbegin()),
466 E = PartitionContainer.rend();
467 I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
468 auto *Part = &*I;
470 NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
472 Part->getVMap()[ExitBlock] = TopPH;
473 Part->remapInstructions();
474 setNewLoopID(OrigLoopID, Part);
476 Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
478 // Also set a new loop ID for the last loop.
479 setNewLoopID(OrigLoopID, &PartitionContainer.back());
481 // Now go in forward order and update the immediate dominator for the
482 // preheaders with the exiting block of the previous loop. Dominance
483 // within the loop is updated in cloneLoopWithPreheader.
484 for (auto Curr = PartitionContainer.cbegin(),
485 Next = std::next(PartitionContainer.cbegin()),
486 E = PartitionContainer.cend();
487 Next != E; ++Curr, ++Next)
488 DT->changeImmediateDominator(
489 Next->getDistributedLoop()->getLoopPreheader(),
490 Curr->getDistributedLoop()->getExitingBlock());
493 /// Removes the dead instructions from the cloned loops.
494 void removeUnusedInsts() {
495 for (auto &Partition : PartitionContainer)
496 Partition.removeUnusedInsts();
499 /// For each memory pointer, it computes the partitionId the pointer is
500 /// used in.
502 /// This returns an array of int where the I-th entry corresponds to I-th
503 /// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple
504 /// partitions its entry is set to -1.
505 SmallVector<int, 8>
506 computePartitionSetForPointers(const LoopAccessInfo &LAI) {
507 const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
509 unsigned N = RtPtrCheck->Pointers.size();
510 SmallVector<int, 8> PtrToPartitions(N);
511 for (unsigned I = 0; I < N; ++I) {
512 Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
513 auto Instructions =
514 LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
516 int &Partition = PtrToPartitions[I];
517 // First set it to uninitialized.
518 Partition = -2;
519 for (Instruction *Inst : Instructions) {
520 // Note that this could be -1 if Inst is duplicated across multiple
521 // partitions.
522 int ThisPartition = this->InstToPartitionId[Inst];
523 if (Partition == -2)
524 Partition = ThisPartition;
525 // -1 means belonging to multiple partitions.
526 else if (Partition == -1)
527 break;
528 else if (Partition != (int)ThisPartition)
529 Partition = -1;
531 assert(Partition != -2 && "Pointer not belonging to any partition");
534 return PtrToPartitions;
537 void print(raw_ostream &OS) const {
538 unsigned Index = 0;
539 for (const auto &P : PartitionContainer) {
540 OS << "Partition " << Index++ << " (" << &P << "):\n";
541 P.print();
545 void dump() const { print(dbgs()); }
547 #ifndef NDEBUG
548 friend raw_ostream &operator<<(raw_ostream &OS,
549 const InstPartitionContainer &Partitions) {
550 Partitions.print(OS);
551 return OS;
553 #endif
555 void printBlocks() const {
556 unsigned Index = 0;
557 for (const auto &P : PartitionContainer) {
558 dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
559 P.printBlocks();
563 private:
564 using PartitionContainerT = std::list<InstPartition>;
566 /// List of partitions.
567 PartitionContainerT PartitionContainer;
569 /// Mapping from Instruction to partition Id. If the instruction
570 /// belongs to multiple partitions the entry contains -1.
571 InstToPartitionIdT InstToPartitionId;
573 Loop *L;
574 LoopInfo *LI;
575 DominatorTree *DT;
577 /// The control structure to merge adjacent partitions if both satisfy
578 /// the \p Predicate.
579 template <class UnaryPredicate>
580 void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
581 InstPartition *PrevMatch = nullptr;
582 for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
583 auto DoesMatch = Predicate(&*I);
584 if (PrevMatch == nullptr && DoesMatch) {
585 PrevMatch = &*I;
586 ++I;
587 } else if (PrevMatch != nullptr && DoesMatch) {
588 I->moveTo(*PrevMatch);
589 I = PartitionContainer.erase(I);
590 } else {
591 PrevMatch = nullptr;
592 ++I;
597 /// Assign new LoopIDs for the partition's cloned loop.
598 void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) {
599 Optional<MDNode *> PartitionID = makeFollowupLoopID(
600 OrigLoopID,
601 {LLVMLoopDistributeFollowupAll,
602 Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential
603 : LLVMLoopDistributeFollowupCoincident});
604 if (PartitionID.hasValue()) {
605 Loop *NewLoop = Part->getDistributedLoop();
606 NewLoop->setLoopID(PartitionID.getValue());
611 /// For each memory instruction, this class maintains difference of the
612 /// number of unsafe dependences that start out from this instruction minus
613 /// those that end here.
615 /// By traversing the memory instructions in program order and accumulating this
616 /// number, we know whether any unsafe dependence crosses over a program point.
617 class MemoryInstructionDependences {
618 using Dependence = MemoryDepChecker::Dependence;
620 public:
621 struct Entry {
622 Instruction *Inst;
623 unsigned NumUnsafeDependencesStartOrEnd = 0;
625 Entry(Instruction *Inst) : Inst(Inst) {}
628 using AccessesType = SmallVector<Entry, 8>;
630 AccessesType::const_iterator begin() const { return Accesses.begin(); }
631 AccessesType::const_iterator end() const { return Accesses.end(); }
633 MemoryInstructionDependences(
634 const SmallVectorImpl<Instruction *> &Instructions,
635 const SmallVectorImpl<Dependence> &Dependences) {
636 Accesses.append(Instructions.begin(), Instructions.end());
638 LLVM_DEBUG(dbgs() << "Backward dependences:\n");
639 for (auto &Dep : Dependences)
640 if (Dep.isPossiblyBackward()) {
641 // Note that the designations source and destination follow the program
642 // order, i.e. source is always first. (The direction is given by the
643 // DepType.)
644 ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
645 --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
647 LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions));
651 private:
652 AccessesType Accesses;
655 /// The actual class performing the per-loop work.
656 class LoopDistributeForLoop {
657 public:
658 LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
659 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE)
660 : L(L), F(F), LI(LI), DT(DT), SE(SE), ORE(ORE) {
661 setForced();
664 /// Try to distribute an inner-most loop.
665 bool processLoop(std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
666 assert(L->empty() && "Only process inner loops.");
668 LLVM_DEBUG(dbgs() << "\nLDist: In \""
669 << L->getHeader()->getParent()->getName()
670 << "\" checking " << *L << "\n");
672 if (!L->getExitBlock())
673 return fail("MultipleExitBlocks", "multiple exit blocks");
674 if (!L->isLoopSimplifyForm())
675 return fail("NotLoopSimplifyForm",
676 "loop is not in loop-simplify form");
678 BasicBlock *PH = L->getLoopPreheader();
680 // LAA will check that we only have a single exiting block.
681 LAI = &GetLAA(*L);
683 // Currently, we only distribute to isolate the part of the loop with
684 // dependence cycles to enable partial vectorization.
685 if (LAI->canVectorizeMemory())
686 return fail("MemOpsCanBeVectorized",
687 "memory operations are safe for vectorization");
689 auto *Dependences = LAI->getDepChecker().getDependences();
690 if (!Dependences || Dependences->empty())
691 return fail("NoUnsafeDeps", "no unsafe dependences to isolate");
693 InstPartitionContainer Partitions(L, LI, DT);
695 // First, go through each memory operation and assign them to consecutive
696 // partitions (the order of partitions follows program order). Put those
697 // with unsafe dependences into "cyclic" partition otherwise put each store
698 // in its own "non-cyclic" partition (we'll merge these later).
700 // Note that a memory operation (e.g. Load2 below) at a program point that
701 // has an unsafe dependence (Store3->Load1) spanning over it must be
702 // included in the same cyclic partition as the dependent operations. This
703 // is to preserve the original program order after distribution. E.g.:
705 // NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive
706 // Load1 -. 1 0->1
707 // Load2 | /Unsafe/ 0 1
708 // Store3 -' -1 1->0
709 // Load4 0 0
711 // NumUnsafeDependencesActive > 0 indicates this situation and in this case
712 // we just keep assigning to the same cyclic partition until
713 // NumUnsafeDependencesActive reaches 0.
714 const MemoryDepChecker &DepChecker = LAI->getDepChecker();
715 MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
716 *Dependences);
718 int NumUnsafeDependencesActive = 0;
719 for (auto &InstDep : MID) {
720 Instruction *I = InstDep.Inst;
721 // We update NumUnsafeDependencesActive post-instruction, catch the
722 // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
723 if (NumUnsafeDependencesActive ||
724 InstDep.NumUnsafeDependencesStartOrEnd > 0)
725 Partitions.addToCyclicPartition(I);
726 else
727 Partitions.addToNewNonCyclicPartition(I);
728 NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
729 assert(NumUnsafeDependencesActive >= 0 &&
730 "Negative number of dependences active");
733 // Add partitions for values used outside. These partitions can be out of
734 // order from the original program order. This is OK because if the
735 // partition uses a load we will merge this partition with the original
736 // partition of the load that we set up in the previous loop (see
737 // mergeToAvoidDuplicatedLoads).
738 auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
739 for (auto *Inst : DefsUsedOutside)
740 Partitions.addToNewNonCyclicPartition(Inst);
742 LLVM_DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
743 if (Partitions.getSize() < 2)
744 return fail("CantIsolateUnsafeDeps",
745 "cannot isolate unsafe dependencies");
747 // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
748 // should be able to vectorize these together.
749 Partitions.mergeBeforePopulating();
750 LLVM_DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
751 if (Partitions.getSize() < 2)
752 return fail("CantIsolateUnsafeDeps",
753 "cannot isolate unsafe dependencies");
755 // Now, populate the partitions with non-memory operations.
756 Partitions.populateUsedSet();
757 LLVM_DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
759 // In order to preserve original lexical order for loads, keep them in the
760 // partition that we set up in the MemoryInstructionDependences loop.
761 if (Partitions.mergeToAvoidDuplicatedLoads()) {
762 LLVM_DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
763 << Partitions);
764 if (Partitions.getSize() < 2)
765 return fail("CantIsolateUnsafeDeps",
766 "cannot isolate unsafe dependencies");
769 // Don't distribute the loop if we need too many SCEV run-time checks, or
770 // any if it's illegal.
771 const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate();
772 if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) {
773 return fail("RuntimeCheckWithConvergent",
774 "may not insert runtime check with convergent operation");
777 if (Pred.getComplexity() > (IsForced.getValueOr(false)
778 ? PragmaDistributeSCEVCheckThreshold
779 : DistributeSCEVCheckThreshold))
780 return fail("TooManySCEVRuntimeChecks",
781 "too many SCEV run-time checks needed.\n");
783 if (!IsForced.getValueOr(false) && hasDisableAllTransformsHint(L))
784 return fail("HeuristicDisabled", "distribution heuristic disabled");
786 LLVM_DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
787 // We're done forming the partitions set up the reverse mapping from
788 // instructions to partitions.
789 Partitions.setupPartitionIdOnInstructions();
791 // To keep things simple have an empty preheader before we version or clone
792 // the loop. (Also split if this has no predecessor, i.e. entry, because we
793 // rely on PH having a predecessor.)
794 if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
795 SplitBlock(PH, PH->getTerminator(), DT, LI);
797 // If we need run-time checks, version the loop now.
798 auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
799 const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
800 const auto &AllChecks = RtPtrChecking->getChecks();
801 auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
802 RtPtrChecking);
804 if (LAI->hasConvergentOp() && !Checks.empty()) {
805 return fail("RuntimeCheckWithConvergent",
806 "may not insert runtime check with convergent operation");
809 if (!Pred.isAlwaysTrue() || !Checks.empty()) {
810 assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning");
812 MDNode *OrigLoopID = L->getLoopID();
814 LLVM_DEBUG(dbgs() << "\nPointers:\n");
815 LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
816 LoopVersioning LVer(*LAI, L, LI, DT, SE, false);
817 LVer.setAliasChecks(std::move(Checks));
818 LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate());
819 LVer.versionLoop(DefsUsedOutside);
820 LVer.annotateLoopWithNoAlias();
822 // The unversioned loop will not be changed, so we inherit all attributes
823 // from the original loop, but remove the loop distribution metadata to
824 // avoid to distribute it again.
825 MDNode *UnversionedLoopID =
826 makeFollowupLoopID(OrigLoopID,
827 {LLVMLoopDistributeFollowupAll,
828 LLVMLoopDistributeFollowupFallback},
829 "llvm.loop.distribute.", true)
830 .getValue();
831 LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID);
834 // Create identical copies of the original loop for each partition and hook
835 // them up sequentially.
836 Partitions.cloneLoops();
838 // Now, we remove the instruction from each loop that don't belong to that
839 // partition.
840 Partitions.removeUnusedInsts();
841 LLVM_DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
842 LLVM_DEBUG(Partitions.printBlocks());
844 if (LDistVerify) {
845 LI->verify(*DT);
846 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
849 ++NumLoopsDistributed;
850 // Report the success.
851 ORE->emit([&]() {
852 return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
853 L->getHeader())
854 << "distributed loop";
856 return true;
859 /// Provide diagnostics then \return with false.
860 bool fail(StringRef RemarkName, StringRef Message) {
861 LLVMContext &Ctx = F->getContext();
862 bool Forced = isForced().getValueOr(false);
864 LLVM_DEBUG(dbgs() << "Skipping; " << Message << "\n");
866 // With Rpass-missed report that distribution failed.
867 ORE->emit([&]() {
868 return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
869 L->getStartLoc(), L->getHeader())
870 << "loop not distributed: use -Rpass-analysis=loop-distribute for "
871 "more "
872 "info";
875 // With Rpass-analysis report why. This is on by default if distribution
876 // was requested explicitly.
877 ORE->emit(OptimizationRemarkAnalysis(
878 Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
879 RemarkName, L->getStartLoc(), L->getHeader())
880 << "loop not distributed: " << Message);
882 // Also issue a warning if distribution was requested explicitly but it
883 // failed.
884 if (Forced)
885 Ctx.diagnose(DiagnosticInfoOptimizationFailure(
886 *F, L->getStartLoc(), "loop not distributed: failed "
887 "explicitly specified loop distribution"));
889 return false;
892 /// Return if distribution forced to be enabled/disabled for the loop.
894 /// If the optional has a value, it indicates whether distribution was forced
895 /// to be enabled (true) or disabled (false). If the optional has no value
896 /// distribution was not forced either way.
897 const Optional<bool> &isForced() const { return IsForced; }
899 private:
900 /// Filter out checks between pointers from the same partition.
902 /// \p PtrToPartition contains the partition number for pointers. Partition
903 /// number -1 means that the pointer is used in multiple partitions. In this
904 /// case we can't safely omit the check.
905 SmallVector<RuntimePointerChecking::PointerCheck, 4>
906 includeOnlyCrossPartitionChecks(
907 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
908 const SmallVectorImpl<int> &PtrToPartition,
909 const RuntimePointerChecking *RtPtrChecking) {
910 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
912 copy_if(AllChecks, std::back_inserter(Checks),
913 [&](const RuntimePointerChecking::PointerCheck &Check) {
914 for (unsigned PtrIdx1 : Check.first->Members)
915 for (unsigned PtrIdx2 : Check.second->Members)
916 // Only include this check if there is a pair of pointers
917 // that require checking and the pointers fall into
918 // separate partitions.
920 // (Note that we already know at this point that the two
921 // pointer groups need checking but it doesn't follow
922 // that each pair of pointers within the two groups need
923 // checking as well.
925 // In other words we don't want to include a check just
926 // because there is a pair of pointers between the two
927 // pointer groups that require checks and a different
928 // pair whose pointers fall into different partitions.)
929 if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
930 !RuntimePointerChecking::arePointersInSamePartition(
931 PtrToPartition, PtrIdx1, PtrIdx2))
932 return true;
933 return false;
936 return Checks;
939 /// Check whether the loop metadata is forcing distribution to be
940 /// enabled/disabled.
941 void setForced() {
942 Optional<const MDOperand *> Value =
943 findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
944 if (!Value)
945 return;
947 const MDOperand *Op = *Value;
948 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
949 IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
952 Loop *L;
953 Function *F;
955 // Analyses used.
956 LoopInfo *LI;
957 const LoopAccessInfo *LAI = nullptr;
958 DominatorTree *DT;
959 ScalarEvolution *SE;
960 OptimizationRemarkEmitter *ORE;
962 /// Indicates whether distribution is forced to be enabled/disabled for
963 /// the loop.
965 /// If the optional has a value, it indicates whether distribution was forced
966 /// to be enabled (true) or disabled (false). If the optional has no value
967 /// distribution was not forced either way.
968 Optional<bool> IsForced;
971 } // end anonymous namespace
973 /// Shared implementation between new and old PMs.
974 static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
975 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
976 std::function<const LoopAccessInfo &(Loop &)> &GetLAA) {
977 // Build up a worklist of inner-loops to vectorize. This is necessary as the
978 // act of distributing a loop creates new loops and can invalidate iterators
979 // across the loops.
980 SmallVector<Loop *, 8> Worklist;
982 for (Loop *TopLevelLoop : *LI)
983 for (Loop *L : depth_first(TopLevelLoop))
984 // We only handle inner-most loops.
985 if (L->empty())
986 Worklist.push_back(L);
988 // Now walk the identified inner loops.
989 bool Changed = false;
990 for (Loop *L : Worklist) {
991 LoopDistributeForLoop LDL(L, &F, LI, DT, SE, ORE);
993 // If distribution was forced for the specific loop to be
994 // enabled/disabled, follow that. Otherwise use the global flag.
995 if (LDL.isForced().getValueOr(EnableLoopDistribute))
996 Changed |= LDL.processLoop(GetLAA);
999 // Process each loop nest in the function.
1000 return Changed;
1003 namespace {
1005 /// The pass class.
1006 class LoopDistributeLegacy : public FunctionPass {
1007 public:
1008 static char ID;
1010 LoopDistributeLegacy() : FunctionPass(ID) {
1011 // The default is set by the caller.
1012 initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
1015 bool runOnFunction(Function &F) override {
1016 if (skipFunction(F))
1017 return false;
1019 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1020 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1021 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1022 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1023 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1024 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1025 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1027 return runImpl(F, LI, DT, SE, ORE, GetLAA);
1030 void getAnalysisUsage(AnalysisUsage &AU) const override {
1031 AU.addRequired<ScalarEvolutionWrapperPass>();
1032 AU.addRequired<LoopInfoWrapperPass>();
1033 AU.addPreserved<LoopInfoWrapperPass>();
1034 AU.addRequired<LoopAccessLegacyAnalysis>();
1035 AU.addRequired<DominatorTreeWrapperPass>();
1036 AU.addPreserved<DominatorTreeWrapperPass>();
1037 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1038 AU.addPreserved<GlobalsAAWrapperPass>();
1042 } // end anonymous namespace
1044 PreservedAnalyses LoopDistributePass::run(Function &F,
1045 FunctionAnalysisManager &AM) {
1046 auto &LI = AM.getResult<LoopAnalysis>(F);
1047 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1048 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1049 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1051 // We don't directly need these analyses but they're required for loop
1052 // analyses so provide them below.
1053 auto &AA = AM.getResult<AAManager>(F);
1054 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1055 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1056 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1058 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
1059 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1060 [&](Loop &L) -> const LoopAccessInfo & {
1061 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
1062 return LAM.getResult<LoopAccessAnalysis>(L, AR);
1065 bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, GetLAA);
1066 if (!Changed)
1067 return PreservedAnalyses::all();
1068 PreservedAnalyses PA;
1069 PA.preserve<LoopAnalysis>();
1070 PA.preserve<DominatorTreeAnalysis>();
1071 PA.preserve<GlobalsAA>();
1072 return PA;
1075 char LoopDistributeLegacy::ID;
1077 static const char ldist_name[] = "Loop Distribution";
1079 INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
1080 false)
1081 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1082 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
1083 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1084 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1085 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1086 INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)
1088 FunctionPass *llvm::createLoopDistributePass() { return new LoopDistributeLegacy(); }