1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Scalar/LoopPassManager.h"
35 #include "llvm/Transforms/Utils.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #define DEBUG_TYPE "loop-simplifycfg"
43 static cl::opt
<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
46 STATISTIC(NumTerminatorsFolded
,
47 "Number of terminators folded to unconditional branches");
48 STATISTIC(NumLoopBlocksDeleted
,
49 "Number of loop blocks deleted");
50 STATISTIC(NumLoopExitsDeleted
,
51 "Number of loop exiting edges deleted");
53 /// If \p BB is a switch or a conditional branch, but only one of its successors
54 /// can be reached from this block in runtime, return this successor. Otherwise,
56 static BasicBlock
*getOnlyLiveSuccessor(BasicBlock
*BB
) {
57 Instruction
*TI
= BB
->getTerminator();
58 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
59 if (BI
->isUnconditional())
61 if (BI
->getSuccessor(0) == BI
->getSuccessor(1))
62 return BI
->getSuccessor(0);
63 ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition());
66 return Cond
->isZero() ? BI
->getSuccessor(1) : BI
->getSuccessor(0);
69 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
70 auto *CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
73 for (auto Case
: SI
->cases())
74 if (Case
.getCaseValue() == CI
)
75 return Case
.getCaseSuccessor();
76 return SI
->getDefaultDest();
82 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
83 static void removeBlockFromLoops(BasicBlock
*BB
, Loop
*FirstLoop
,
84 Loop
*LastLoop
= nullptr) {
85 assert((!LastLoop
|| LastLoop
->contains(FirstLoop
->getHeader())) &&
86 "First loop is supposed to be inside of last loop!");
87 assert(FirstLoop
->contains(BB
) && "Must be a loop block!");
88 for (Loop
*Current
= FirstLoop
; Current
!= LastLoop
;
89 Current
= Current
->getParentLoop())
90 Current
->removeBlockFromLoop(BB
);
93 /// Find innermost loop that contains at least one block from \p BBs and
94 /// contains the header of loop \p L.
95 static Loop
*getInnermostLoopFor(SmallPtrSetImpl
<BasicBlock
*> &BBs
,
96 Loop
&L
, LoopInfo
&LI
) {
97 Loop
*Innermost
= nullptr;
98 for (BasicBlock
*BB
: BBs
) {
99 Loop
*BBL
= LI
.getLoopFor(BB
);
100 while (BBL
&& !BBL
->contains(L
.getHeader()))
101 BBL
= BBL
->getParentLoop();
103 BBL
= BBL
->getParentLoop();
106 if (!Innermost
|| BBL
->getLoopDepth() > Innermost
->getLoopDepth())
113 /// Helper class that can turn branches and switches with constant conditions
114 /// into unconditional branches.
115 class ConstantTerminatorFoldingImpl
{
121 MemorySSAUpdater
*MSSAU
;
124 SmallVector
<DominatorTree::UpdateType
, 16> DTUpdates
;
126 // Whether or not the current loop has irreducible CFG.
127 bool HasIrreducibleCFG
= false;
128 // Whether or not the current loop will still exist after terminator constant
129 // folding will be done. In theory, there are two ways how it can happen:
130 // 1. Loop's latch(es) become unreachable from loop header;
131 // 2. Loop's header becomes unreachable from method entry.
132 // In practice, the second situation is impossible because we only modify the
133 // current loop and its preheader and do not affect preheader's reachibility
134 // from any other block. So this variable set to true means that loop's latch
135 // has become unreachable from loop header.
136 bool DeleteCurrentLoop
= false;
138 // The blocks of the original loop that will still be reachable from entry
139 // after the constant folding.
140 SmallPtrSet
<BasicBlock
*, 8> LiveLoopBlocks
;
141 // The blocks of the original loop that will become unreachable from entry
142 // after the constant folding.
143 SmallVector
<BasicBlock
*, 8> DeadLoopBlocks
;
144 // The exits of the original loop that will still be reachable from entry
145 // after the constant folding.
146 SmallPtrSet
<BasicBlock
*, 8> LiveExitBlocks
;
147 // The exits of the original loop that will become unreachable from entry
148 // after the constant folding.
149 SmallVector
<BasicBlock
*, 8> DeadExitBlocks
;
150 // The blocks that will still be a part of the current loop after folding.
151 SmallPtrSet
<BasicBlock
*, 8> BlocksInLoopAfterFolding
;
152 // The blocks that have terminators with constant condition that can be
153 // folded. Note: fold candidates should be in L but not in any of its
154 // subloops to avoid complex LI updates.
155 SmallVector
<BasicBlock
*, 8> FoldCandidates
;
158 dbgs() << "Constant terminator folding for loop " << L
<< "\n";
159 dbgs() << "After terminator constant-folding, the loop will";
160 if (!DeleteCurrentLoop
)
162 dbgs() << " be destroyed\n";
163 auto PrintOutVector
= [&](const char *Message
,
164 const SmallVectorImpl
<BasicBlock
*> &S
) {
165 dbgs() << Message
<< "\n";
166 for (const BasicBlock
*BB
: S
)
167 dbgs() << "\t" << BB
->getName() << "\n";
169 auto PrintOutSet
= [&](const char *Message
,
170 const SmallPtrSetImpl
<BasicBlock
*> &S
) {
171 dbgs() << Message
<< "\n";
172 for (const BasicBlock
*BB
: S
)
173 dbgs() << "\t" << BB
->getName() << "\n";
175 PrintOutVector("Blocks in which we can constant-fold terminator:",
177 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks
);
178 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks
);
179 PrintOutSet("Live exit blocks:", LiveExitBlocks
);
180 PrintOutVector("Dead exit blocks:", DeadExitBlocks
);
181 if (!DeleteCurrentLoop
)
182 PrintOutSet("The following blocks will still be part of the loop:",
183 BlocksInLoopAfterFolding
);
186 /// Whether or not the current loop has irreducible CFG.
187 bool hasIrreducibleCFG(LoopBlocksDFS
&DFS
) {
188 assert(DFS
.isComplete() && "DFS is expected to be finished");
189 // Index of a basic block in RPO traversal.
190 DenseMap
<const BasicBlock
*, unsigned> RPO
;
191 unsigned Current
= 0;
192 for (auto I
= DFS
.beginRPO(), E
= DFS
.endRPO(); I
!= E
; ++I
)
195 for (auto I
= DFS
.beginRPO(), E
= DFS
.endRPO(); I
!= E
; ++I
) {
197 for (auto *Succ
: successors(BB
))
198 if (L
.contains(Succ
) && !LI
.isLoopHeader(Succ
) && RPO
[BB
] > RPO
[Succ
])
199 // If an edge goes from a block with greater order number into a block
200 // with lesses number, and it is not a loop backedge, then it can only
201 // be a part of irreducible non-loop cycle.
207 /// Fill all information about status of blocks and exits of the current loop
208 /// if constant folding of all branches will be done.
211 assert(DFS
.isComplete() && "DFS is expected to be finished");
213 // TODO: The algorithm below relies on both RPO and Postorder traversals.
214 // When the loop has only reducible CFG inside, then the invariant "all
215 // predecessors of X are processed before X in RPO" is preserved. However
216 // an irreducible loop can break this invariant (e.g. latch does not have to
217 // be the last block in the traversal in this case, and the algorithm relies
218 // on this). We can later decide to support such cases by altering the
219 // algorithms, but so far we just give up analyzing them.
220 if (hasIrreducibleCFG(DFS
)) {
221 HasIrreducibleCFG
= true;
225 // Collect live and dead loop blocks and exits.
226 LiveLoopBlocks
.insert(L
.getHeader());
227 for (auto I
= DFS
.beginRPO(), E
= DFS
.endRPO(); I
!= E
; ++I
) {
230 // If a loop block wasn't marked as live so far, then it's dead.
231 if (!LiveLoopBlocks
.count(BB
)) {
232 DeadLoopBlocks
.push_back(BB
);
236 BasicBlock
*TheOnlySucc
= getOnlyLiveSuccessor(BB
);
238 // If a block has only one live successor, it's a candidate on constant
239 // folding. Only handle blocks from current loop: branches in child loops
240 // are skipped because if they can be folded, they should be folded during
241 // the processing of child loops.
242 bool TakeFoldCandidate
= TheOnlySucc
&& LI
.getLoopFor(BB
) == &L
;
243 if (TakeFoldCandidate
)
244 FoldCandidates
.push_back(BB
);
246 // Handle successors.
247 for (BasicBlock
*Succ
: successors(BB
))
248 if (!TakeFoldCandidate
|| TheOnlySucc
== Succ
) {
249 if (L
.contains(Succ
))
250 LiveLoopBlocks
.insert(Succ
);
252 LiveExitBlocks
.insert(Succ
);
256 // Sanity check: amount of dead and live loop blocks should match the total
257 // number of blocks in loop.
258 assert(L
.getNumBlocks() == LiveLoopBlocks
.size() + DeadLoopBlocks
.size() &&
259 "Malformed block sets?");
261 // Now, all exit blocks that are not marked as live are dead.
262 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
263 L
.getExitBlocks(ExitBlocks
);
264 SmallPtrSet
<BasicBlock
*, 8> UniqueDeadExits
;
265 for (auto *ExitBlock
: ExitBlocks
)
266 if (!LiveExitBlocks
.count(ExitBlock
) &&
267 UniqueDeadExits
.insert(ExitBlock
).second
)
268 DeadExitBlocks
.push_back(ExitBlock
);
270 // Whether or not the edge From->To will still be present in graph after the
272 auto IsEdgeLive
= [&](BasicBlock
*From
, BasicBlock
*To
) {
273 if (!LiveLoopBlocks
.count(From
))
275 BasicBlock
*TheOnlySucc
= getOnlyLiveSuccessor(From
);
276 return !TheOnlySucc
|| TheOnlySucc
== To
|| LI
.getLoopFor(From
) != &L
;
279 // The loop will not be destroyed if its latch is live.
280 DeleteCurrentLoop
= !IsEdgeLive(L
.getLoopLatch(), L
.getHeader());
282 // If we are going to delete the current loop completely, no extra analysis
284 if (DeleteCurrentLoop
)
287 // Otherwise, we should check which blocks will still be a part of the
288 // current loop after the transform.
289 BlocksInLoopAfterFolding
.insert(L
.getLoopLatch());
290 // If the loop is live, then we should compute what blocks are still in
291 // loop after all branch folding has been done. A block is in loop if
292 // it has a live edge to another block that is in the loop; by definition,
293 // latch is in the loop.
294 auto BlockIsInLoop
= [&](BasicBlock
*BB
) {
295 return any_of(successors(BB
), [&](BasicBlock
*Succ
) {
296 return BlocksInLoopAfterFolding
.count(Succ
) && IsEdgeLive(BB
, Succ
);
299 for (auto I
= DFS
.beginPostorder(), E
= DFS
.endPostorder(); I
!= E
; ++I
) {
301 if (BlockIsInLoop(BB
))
302 BlocksInLoopAfterFolding
.insert(BB
);
305 // Sanity check: header must be in loop.
306 assert(BlocksInLoopAfterFolding
.count(L
.getHeader()) &&
307 "Header not in loop?");
308 assert(BlocksInLoopAfterFolding
.size() <= LiveLoopBlocks
.size() &&
309 "All blocks that stay in loop should be live!");
312 /// We need to preserve static reachibility of all loop exit blocks (this is)
313 /// required by loop pass manager. In order to do it, we make the following
318 /// br label %loop_header
322 /// br i1 false, label %dead_exit, label %loop_block
325 /// We cannot simply remove edge from the loop to dead exit because in this
326 /// case dead_exit (and its successors) may become unreachable. To avoid that,
327 /// we insert the following fictive preheader:
331 /// switch i32 0, label %preheader-split,
332 /// [i32 1, label %dead_exit_1],
333 /// [i32 2, label %dead_exit_2],
335 /// [i32 N, label %dead_exit_N],
338 /// br label %loop_header
342 /// br i1 false, label %dead_exit_N, label %loop_block
345 /// Doing so, we preserve static reachibility of all dead exits and can later
346 /// remove edges from the loop to these blocks.
347 void handleDeadExits() {
348 // If no dead exits, nothing to do.
349 if (DeadExitBlocks
.empty())
352 // Construct split preheader and the dummy switch to thread edges from it to
354 BasicBlock
*Preheader
= L
.getLoopPreheader();
355 BasicBlock
*NewPreheader
= llvm::SplitBlock(
356 Preheader
, Preheader
->getTerminator(), &DT
, &LI
, MSSAU
);
358 IRBuilder
<> Builder(Preheader
->getTerminator());
359 SwitchInst
*DummySwitch
=
360 Builder
.CreateSwitch(Builder
.getInt32(0), NewPreheader
);
361 Preheader
->getTerminator()->eraseFromParent();
363 unsigned DummyIdx
= 1;
364 for (BasicBlock
*BB
: DeadExitBlocks
) {
365 SmallVector
<Instruction
*, 4> DeadPhis
;
366 for (auto &PN
: BB
->phis())
367 DeadPhis
.push_back(&PN
);
369 // Eliminate all Phis from dead exits.
370 for (Instruction
*PN
: DeadPhis
) {
371 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
372 PN
->eraseFromParent();
374 assert(DummyIdx
!= 0 && "Too many dead exits!");
375 DummySwitch
->addCase(Builder
.getInt32(DummyIdx
++), BB
);
376 DTUpdates
.push_back({DominatorTree::Insert
, Preheader
, BB
});
377 ++NumLoopExitsDeleted
;
380 assert(L
.getLoopPreheader() == NewPreheader
&& "Malformed CFG?");
381 if (Loop
*OuterLoop
= LI
.getLoopFor(Preheader
)) {
382 // When we break dead edges, the outer loop may become unreachable from
383 // the current loop. We need to fix loop info accordingly. For this, we
384 // find the most nested loop that still contains L and remove L from all
385 // loops that are inside of it.
386 Loop
*StillReachable
= getInnermostLoopFor(LiveExitBlocks
, L
, LI
);
388 // Okay, our loop is no longer in the outer loop (and maybe not in some of
389 // its parents as well). Make the fixup.
390 if (StillReachable
!= OuterLoop
) {
391 LI
.changeLoopFor(NewPreheader
, StillReachable
);
392 removeBlockFromLoops(NewPreheader
, OuterLoop
, StillReachable
);
393 for (auto *BB
: L
.blocks())
394 removeBlockFromLoops(BB
, OuterLoop
, StillReachable
);
395 OuterLoop
->removeChildLoop(&L
);
397 StillReachable
->addChildLoop(&L
);
399 LI
.addTopLevelLoop(&L
);
401 // Some values from loops in [OuterLoop, StillReachable) could be used
402 // in the current loop. Now it is not their child anymore, so such uses
403 // require LCSSA Phis.
404 Loop
*FixLCSSALoop
= OuterLoop
;
405 while (FixLCSSALoop
->getParentLoop() != StillReachable
)
406 FixLCSSALoop
= FixLCSSALoop
->getParentLoop();
407 assert(FixLCSSALoop
&& "Should be a loop!");
408 // We need all DT updates to be done before forming LCSSA.
409 DTU
.applyUpdates(DTUpdates
);
411 MSSAU
->applyUpdates(DTUpdates
, DT
);
413 formLCSSARecursively(*FixLCSSALoop
, DT
, &LI
, &SE
);
418 // Clear all updates now. Facilitates deletes that follow.
419 DTU
.applyUpdates(DTUpdates
);
420 MSSAU
->applyUpdates(DTUpdates
, DT
);
423 MSSAU
->getMemorySSA()->verifyMemorySSA();
427 /// Delete loop blocks that have become unreachable after folding. Make all
428 /// relevant updates to DT and LI.
429 void deleteDeadLoopBlocks() {
431 SmallSetVector
<BasicBlock
*, 8> DeadLoopBlocksSet(DeadLoopBlocks
.begin(),
432 DeadLoopBlocks
.end());
433 MSSAU
->removeBlocks(DeadLoopBlocksSet
);
436 // The function LI.erase has some invariants that need to be preserved when
437 // it tries to remove a loop which is not the top-level loop. In particular,
438 // it requires loop's preheader to be strictly in loop's parent. We cannot
439 // just remove blocks one by one, because after removal of preheader we may
440 // break this invariant for the dead loop. So we detatch and erase all dead
442 for (auto *BB
: DeadLoopBlocks
)
443 if (LI
.isLoopHeader(BB
)) {
444 assert(LI
.getLoopFor(BB
) != &L
&& "Attempt to remove current loop!");
445 Loop
*DL
= LI
.getLoopFor(BB
);
446 if (DL
->getParentLoop()) {
447 for (auto *PL
= DL
->getParentLoop(); PL
; PL
= PL
->getParentLoop())
448 for (auto *BB
: DL
->getBlocks())
449 PL
->removeBlockFromLoop(BB
);
450 DL
->getParentLoop()->removeChildLoop(DL
);
451 LI
.addTopLevelLoop(DL
);
456 for (auto *BB
: DeadLoopBlocks
) {
457 assert(BB
!= L
.getHeader() &&
458 "Header of the current loop cannot be dead!");
459 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB
->getName()
464 DetatchDeadBlocks(DeadLoopBlocks
, &DTUpdates
, /*KeepOneInputPHIs*/true);
465 DTU
.applyUpdates(DTUpdates
);
467 for (auto *BB
: DeadLoopBlocks
)
470 NumLoopBlocksDeleted
+= DeadLoopBlocks
.size();
473 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
474 /// unconditional branches.
475 void foldTerminators() {
476 for (BasicBlock
*BB
: FoldCandidates
) {
477 assert(LI
.getLoopFor(BB
) == &L
&& "Should be a loop block!");
478 BasicBlock
*TheOnlySucc
= getOnlyLiveSuccessor(BB
);
479 assert(TheOnlySucc
&& "Should have one live successor!");
481 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB
->getName()
482 << " with an unconditional branch to the block "
483 << TheOnlySucc
->getName() << "\n");
485 SmallPtrSet
<BasicBlock
*, 2> DeadSuccessors
;
486 // Remove all BB's successors except for the live one.
487 unsigned TheOnlySuccDuplicates
= 0;
488 for (auto *Succ
: successors(BB
))
489 if (Succ
!= TheOnlySucc
) {
490 DeadSuccessors
.insert(Succ
);
491 // If our successor lies in a different loop, we don't want to remove
492 // the one-input Phi because it is a LCSSA Phi.
493 bool PreserveLCSSAPhi
= !L
.contains(Succ
);
494 Succ
->removePredecessor(BB
, PreserveLCSSAPhi
);
496 MSSAU
->removeEdge(BB
, Succ
);
498 ++TheOnlySuccDuplicates
;
500 assert(TheOnlySuccDuplicates
> 0 && "Should be!");
501 // If TheOnlySucc was BB's successor more than once, after transform it
502 // will be its successor only once. Remove redundant inputs from
503 // TheOnlySucc's Phis.
504 bool PreserveLCSSAPhi
= !L
.contains(TheOnlySucc
);
505 for (unsigned Dup
= 1; Dup
< TheOnlySuccDuplicates
; ++Dup
)
506 TheOnlySucc
->removePredecessor(BB
, PreserveLCSSAPhi
);
507 if (MSSAU
&& TheOnlySuccDuplicates
> 1)
508 MSSAU
->removeDuplicatePhiEdgesBetween(BB
, TheOnlySucc
);
510 IRBuilder
<> Builder(BB
->getContext());
511 Instruction
*Term
= BB
->getTerminator();
512 Builder
.SetInsertPoint(Term
);
513 Builder
.CreateBr(TheOnlySucc
);
514 Term
->eraseFromParent();
516 for (auto *DeadSucc
: DeadSuccessors
)
517 DTUpdates
.push_back({DominatorTree::Delete
, BB
, DeadSucc
});
519 ++NumTerminatorsFolded
;
524 ConstantTerminatorFoldingImpl(Loop
&L
, LoopInfo
&LI
, DominatorTree
&DT
,
526 MemorySSAUpdater
*MSSAU
)
527 : L(L
), LI(LI
), DT(DT
), SE(SE
), MSSAU(MSSAU
), DFS(&L
),
528 DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
) {}
530 assert(L
.getLoopLatch() && "Should be single latch!");
532 // Collect all available information about status of blocks after constant
535 BasicBlock
*Header
= L
.getHeader();
538 LLVM_DEBUG(dbgs() << "In function " << Header
->getParent()->getName()
541 if (HasIrreducibleCFG
) {
542 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
546 // Nothing to constant-fold.
547 if (FoldCandidates
.empty()) {
549 dbgs() << "No constant terminator folding candidates found in loop "
550 << Header
->getName() << "\n");
554 // TODO: Support deletion of the current loop.
555 if (DeleteCurrentLoop
) {
558 << "Give up constant terminator folding in loop " << Header
->getName()
559 << ": we don't currently support deletion of the current loop.\n");
563 // TODO: Support blocks that are not dead, but also not in loop after the
565 if (BlocksInLoopAfterFolding
.size() + DeadLoopBlocks
.size() !=
568 dbgs() << "Give up constant terminator folding in loop "
569 << Header
->getName() << ": we don't currently"
570 " support blocks that are not dead, but will stop "
571 "being a part of the loop after constant-folding.\n");
575 SE
.forgetTopmostLoop(&L
);
576 // Dump analysis results.
579 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates
.size()
580 << " terminators in loop " << Header
->getName() << "\n");
582 // Make the actual transforms.
586 if (!DeadLoopBlocks
.empty()) {
587 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks
.size()
588 << " dead blocks in loop " << Header
->getName() << "\n");
589 deleteDeadLoopBlocks();
591 // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
592 DTU
.applyUpdates(DTUpdates
);
596 if (MSSAU
&& VerifyMemorySSA
)
597 MSSAU
->getMemorySSA()->verifyMemorySSA();
600 // Make sure that we have preserved all data structures after the transform.
601 #if defined(EXPENSIVE_CHECKS)
602 assert(DT
.verify(DominatorTree::VerificationLevel::Full
) &&
603 "DT broken after transform!");
605 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
) &&
606 "DT broken after transform!");
608 assert(DT
.isReachableFromEntry(Header
));
615 bool foldingBreaksCurrentLoop() const {
616 return DeleteCurrentLoop
;
621 /// Turn branches and switches with known constant conditions into unconditional
623 static bool constantFoldTerminators(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
625 MemorySSAUpdater
*MSSAU
,
626 bool &IsLoopDeleted
) {
627 if (!EnableTermFolding
)
630 // To keep things simple, only process loops with single latch. We
631 // canonicalize most loops to this form. We can support multi-latch if needed.
632 if (!L
.getLoopLatch())
635 ConstantTerminatorFoldingImpl
BranchFolder(L
, LI
, DT
, SE
, MSSAU
);
636 bool Changed
= BranchFolder
.run();
637 IsLoopDeleted
= Changed
&& BranchFolder
.foldingBreaksCurrentLoop();
641 static bool mergeBlocksIntoPredecessors(Loop
&L
, DominatorTree
&DT
,
642 LoopInfo
&LI
, MemorySSAUpdater
*MSSAU
) {
643 bool Changed
= false;
644 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
645 // Copy blocks into a temporary array to avoid iterator invalidation issues
646 // as we remove them.
647 SmallVector
<WeakTrackingVH
, 16> Blocks(L
.blocks());
649 for (auto &Block
: Blocks
) {
650 // Attempt to merge blocks in the trivial case. Don't modify blocks which
651 // belong to other loops.
652 BasicBlock
*Succ
= cast_or_null
<BasicBlock
>(Block
);
656 BasicBlock
*Pred
= Succ
->getSinglePredecessor();
657 if (!Pred
|| !Pred
->getSingleSuccessor() || LI
.getLoopFor(Pred
) != &L
)
660 // Merge Succ into Pred and delete it.
661 MergeBlockIntoPredecessor(Succ
, &DTU
, &LI
, MSSAU
);
669 static bool simplifyLoopCFG(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
670 ScalarEvolution
&SE
, MemorySSAUpdater
*MSSAU
,
671 bool &isLoopDeleted
) {
672 bool Changed
= false;
674 // Constant-fold terminators with known constant conditions.
675 Changed
|= constantFoldTerminators(L
, DT
, LI
, SE
, MSSAU
, isLoopDeleted
);
680 // Eliminate unconditional branches by merging blocks into their predecessors.
681 Changed
|= mergeBlocksIntoPredecessors(L
, DT
, LI
, MSSAU
);
684 SE
.forgetTopmostLoop(&L
);
689 PreservedAnalyses
LoopSimplifyCFGPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
690 LoopStandardAnalysisResults
&AR
,
692 Optional
<MemorySSAUpdater
> MSSAU
;
694 MSSAU
= MemorySSAUpdater(AR
.MSSA
);
695 bool DeleteCurrentLoop
= false;
696 if (!simplifyLoopCFG(L
, AR
.DT
, AR
.LI
, AR
.SE
,
697 MSSAU
.hasValue() ? MSSAU
.getPointer() : nullptr,
699 return PreservedAnalyses::all();
701 if (DeleteCurrentLoop
)
702 LPMU
.markLoopAsDeleted(L
, "loop-simplifycfg");
704 auto PA
= getLoopPassPreservedAnalyses();
706 PA
.preserve
<MemorySSAAnalysis
>();
711 class LoopSimplifyCFGLegacyPass
: public LoopPass
{
713 static char ID
; // Pass ID, replacement for typeid
714 LoopSimplifyCFGLegacyPass() : LoopPass(ID
) {
715 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
718 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
722 DominatorTree
&DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
723 LoopInfo
&LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
724 ScalarEvolution
&SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
725 Optional
<MemorySSAUpdater
> MSSAU
;
726 if (EnableMSSALoopDependency
) {
727 MemorySSA
*MSSA
= &getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
728 MSSAU
= MemorySSAUpdater(MSSA
);
730 MSSA
->verifyMemorySSA();
732 bool DeleteCurrentLoop
= false;
733 bool Changed
= simplifyLoopCFG(
734 *L
, DT
, LI
, SE
, MSSAU
.hasValue() ? MSSAU
.getPointer() : nullptr,
736 if (DeleteCurrentLoop
)
737 LPM
.markLoopAsDeleted(*L
);
741 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
742 if (EnableMSSALoopDependency
) {
743 AU
.addRequired
<MemorySSAWrapperPass
>();
744 AU
.addPreserved
<MemorySSAWrapperPass
>();
746 AU
.addPreserved
<DependenceAnalysisWrapperPass
>();
747 getLoopAnalysisUsage(AU
);
752 char LoopSimplifyCFGLegacyPass::ID
= 0;
753 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass
, "loop-simplifycfg",
754 "Simplify loop CFG", false, false)
755 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
756 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
757 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass
, "loop-simplifycfg",
758 "Simplify loop CFG", false, false)
760 Pass
*llvm::createLoopSimplifyCFGPass() {
761 return new LoopSimplifyCFGLegacyPass();