[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Transforms / Scalar / LoopSimplifyCFG.cpp
blob299f3fc5fb1958e04169ba4ded3b7927a5cfe163
1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Scalar/LoopPassManager.h"
35 #include "llvm/Transforms/Utils.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 using namespace llvm;
41 #define DEBUG_TYPE "loop-simplifycfg"
43 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
44 cl::init(true));
46 STATISTIC(NumTerminatorsFolded,
47 "Number of terminators folded to unconditional branches");
48 STATISTIC(NumLoopBlocksDeleted,
49 "Number of loop blocks deleted");
50 STATISTIC(NumLoopExitsDeleted,
51 "Number of loop exiting edges deleted");
53 /// If \p BB is a switch or a conditional branch, but only one of its successors
54 /// can be reached from this block in runtime, return this successor. Otherwise,
55 /// return nullptr.
56 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
57 Instruction *TI = BB->getTerminator();
58 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
59 if (BI->isUnconditional())
60 return nullptr;
61 if (BI->getSuccessor(0) == BI->getSuccessor(1))
62 return BI->getSuccessor(0);
63 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
64 if (!Cond)
65 return nullptr;
66 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
69 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
70 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
71 if (!CI)
72 return nullptr;
73 for (auto Case : SI->cases())
74 if (Case.getCaseValue() == CI)
75 return Case.getCaseSuccessor();
76 return SI->getDefaultDest();
79 return nullptr;
82 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
83 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
84 Loop *LastLoop = nullptr) {
85 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
86 "First loop is supposed to be inside of last loop!");
87 assert(FirstLoop->contains(BB) && "Must be a loop block!");
88 for (Loop *Current = FirstLoop; Current != LastLoop;
89 Current = Current->getParentLoop())
90 Current->removeBlockFromLoop(BB);
93 /// Find innermost loop that contains at least one block from \p BBs and
94 /// contains the header of loop \p L.
95 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
96 Loop &L, LoopInfo &LI) {
97 Loop *Innermost = nullptr;
98 for (BasicBlock *BB : BBs) {
99 Loop *BBL = LI.getLoopFor(BB);
100 while (BBL && !BBL->contains(L.getHeader()))
101 BBL = BBL->getParentLoop();
102 if (BBL == &L)
103 BBL = BBL->getParentLoop();
104 if (!BBL)
105 continue;
106 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
107 Innermost = BBL;
109 return Innermost;
112 namespace {
113 /// Helper class that can turn branches and switches with constant conditions
114 /// into unconditional branches.
115 class ConstantTerminatorFoldingImpl {
116 private:
117 Loop &L;
118 LoopInfo &LI;
119 DominatorTree &DT;
120 ScalarEvolution &SE;
121 MemorySSAUpdater *MSSAU;
122 LoopBlocksDFS DFS;
123 DomTreeUpdater DTU;
124 SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
126 // Whether or not the current loop has irreducible CFG.
127 bool HasIrreducibleCFG = false;
128 // Whether or not the current loop will still exist after terminator constant
129 // folding will be done. In theory, there are two ways how it can happen:
130 // 1. Loop's latch(es) become unreachable from loop header;
131 // 2. Loop's header becomes unreachable from method entry.
132 // In practice, the second situation is impossible because we only modify the
133 // current loop and its preheader and do not affect preheader's reachibility
134 // from any other block. So this variable set to true means that loop's latch
135 // has become unreachable from loop header.
136 bool DeleteCurrentLoop = false;
138 // The blocks of the original loop that will still be reachable from entry
139 // after the constant folding.
140 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
141 // The blocks of the original loop that will become unreachable from entry
142 // after the constant folding.
143 SmallVector<BasicBlock *, 8> DeadLoopBlocks;
144 // The exits of the original loop that will still be reachable from entry
145 // after the constant folding.
146 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
147 // The exits of the original loop that will become unreachable from entry
148 // after the constant folding.
149 SmallVector<BasicBlock *, 8> DeadExitBlocks;
150 // The blocks that will still be a part of the current loop after folding.
151 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
152 // The blocks that have terminators with constant condition that can be
153 // folded. Note: fold candidates should be in L but not in any of its
154 // subloops to avoid complex LI updates.
155 SmallVector<BasicBlock *, 8> FoldCandidates;
157 void dump() const {
158 dbgs() << "Constant terminator folding for loop " << L << "\n";
159 dbgs() << "After terminator constant-folding, the loop will";
160 if (!DeleteCurrentLoop)
161 dbgs() << " not";
162 dbgs() << " be destroyed\n";
163 auto PrintOutVector = [&](const char *Message,
164 const SmallVectorImpl<BasicBlock *> &S) {
165 dbgs() << Message << "\n";
166 for (const BasicBlock *BB : S)
167 dbgs() << "\t" << BB->getName() << "\n";
169 auto PrintOutSet = [&](const char *Message,
170 const SmallPtrSetImpl<BasicBlock *> &S) {
171 dbgs() << Message << "\n";
172 for (const BasicBlock *BB : S)
173 dbgs() << "\t" << BB->getName() << "\n";
175 PrintOutVector("Blocks in which we can constant-fold terminator:",
176 FoldCandidates);
177 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
178 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
179 PrintOutSet("Live exit blocks:", LiveExitBlocks);
180 PrintOutVector("Dead exit blocks:", DeadExitBlocks);
181 if (!DeleteCurrentLoop)
182 PrintOutSet("The following blocks will still be part of the loop:",
183 BlocksInLoopAfterFolding);
186 /// Whether or not the current loop has irreducible CFG.
187 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
188 assert(DFS.isComplete() && "DFS is expected to be finished");
189 // Index of a basic block in RPO traversal.
190 DenseMap<const BasicBlock *, unsigned> RPO;
191 unsigned Current = 0;
192 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
193 RPO[*I] = Current++;
195 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
196 BasicBlock *BB = *I;
197 for (auto *Succ : successors(BB))
198 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
199 // If an edge goes from a block with greater order number into a block
200 // with lesses number, and it is not a loop backedge, then it can only
201 // be a part of irreducible non-loop cycle.
202 return true;
204 return false;
207 /// Fill all information about status of blocks and exits of the current loop
208 /// if constant folding of all branches will be done.
209 void analyze() {
210 DFS.perform(&LI);
211 assert(DFS.isComplete() && "DFS is expected to be finished");
213 // TODO: The algorithm below relies on both RPO and Postorder traversals.
214 // When the loop has only reducible CFG inside, then the invariant "all
215 // predecessors of X are processed before X in RPO" is preserved. However
216 // an irreducible loop can break this invariant (e.g. latch does not have to
217 // be the last block in the traversal in this case, and the algorithm relies
218 // on this). We can later decide to support such cases by altering the
219 // algorithms, but so far we just give up analyzing them.
220 if (hasIrreducibleCFG(DFS)) {
221 HasIrreducibleCFG = true;
222 return;
225 // Collect live and dead loop blocks and exits.
226 LiveLoopBlocks.insert(L.getHeader());
227 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
228 BasicBlock *BB = *I;
230 // If a loop block wasn't marked as live so far, then it's dead.
231 if (!LiveLoopBlocks.count(BB)) {
232 DeadLoopBlocks.push_back(BB);
233 continue;
236 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
238 // If a block has only one live successor, it's a candidate on constant
239 // folding. Only handle blocks from current loop: branches in child loops
240 // are skipped because if they can be folded, they should be folded during
241 // the processing of child loops.
242 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
243 if (TakeFoldCandidate)
244 FoldCandidates.push_back(BB);
246 // Handle successors.
247 for (BasicBlock *Succ : successors(BB))
248 if (!TakeFoldCandidate || TheOnlySucc == Succ) {
249 if (L.contains(Succ))
250 LiveLoopBlocks.insert(Succ);
251 else
252 LiveExitBlocks.insert(Succ);
256 // Sanity check: amount of dead and live loop blocks should match the total
257 // number of blocks in loop.
258 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
259 "Malformed block sets?");
261 // Now, all exit blocks that are not marked as live are dead.
262 SmallVector<BasicBlock *, 8> ExitBlocks;
263 L.getExitBlocks(ExitBlocks);
264 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
265 for (auto *ExitBlock : ExitBlocks)
266 if (!LiveExitBlocks.count(ExitBlock) &&
267 UniqueDeadExits.insert(ExitBlock).second)
268 DeadExitBlocks.push_back(ExitBlock);
270 // Whether or not the edge From->To will still be present in graph after the
271 // folding.
272 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
273 if (!LiveLoopBlocks.count(From))
274 return false;
275 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
276 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
279 // The loop will not be destroyed if its latch is live.
280 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
282 // If we are going to delete the current loop completely, no extra analysis
283 // is needed.
284 if (DeleteCurrentLoop)
285 return;
287 // Otherwise, we should check which blocks will still be a part of the
288 // current loop after the transform.
289 BlocksInLoopAfterFolding.insert(L.getLoopLatch());
290 // If the loop is live, then we should compute what blocks are still in
291 // loop after all branch folding has been done. A block is in loop if
292 // it has a live edge to another block that is in the loop; by definition,
293 // latch is in the loop.
294 auto BlockIsInLoop = [&](BasicBlock *BB) {
295 return any_of(successors(BB), [&](BasicBlock *Succ) {
296 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
299 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
300 BasicBlock *BB = *I;
301 if (BlockIsInLoop(BB))
302 BlocksInLoopAfterFolding.insert(BB);
305 // Sanity check: header must be in loop.
306 assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
307 "Header not in loop?");
308 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
309 "All blocks that stay in loop should be live!");
312 /// We need to preserve static reachibility of all loop exit blocks (this is)
313 /// required by loop pass manager. In order to do it, we make the following
314 /// trick:
316 /// preheader:
317 /// <preheader code>
318 /// br label %loop_header
320 /// loop_header:
321 /// ...
322 /// br i1 false, label %dead_exit, label %loop_block
323 /// ...
325 /// We cannot simply remove edge from the loop to dead exit because in this
326 /// case dead_exit (and its successors) may become unreachable. To avoid that,
327 /// we insert the following fictive preheader:
329 /// preheader:
330 /// <preheader code>
331 /// switch i32 0, label %preheader-split,
332 /// [i32 1, label %dead_exit_1],
333 /// [i32 2, label %dead_exit_2],
334 /// ...
335 /// [i32 N, label %dead_exit_N],
337 /// preheader-split:
338 /// br label %loop_header
340 /// loop_header:
341 /// ...
342 /// br i1 false, label %dead_exit_N, label %loop_block
343 /// ...
345 /// Doing so, we preserve static reachibility of all dead exits and can later
346 /// remove edges from the loop to these blocks.
347 void handleDeadExits() {
348 // If no dead exits, nothing to do.
349 if (DeadExitBlocks.empty())
350 return;
352 // Construct split preheader and the dummy switch to thread edges from it to
353 // dead exits.
354 BasicBlock *Preheader = L.getLoopPreheader();
355 BasicBlock *NewPreheader = llvm::SplitBlock(
356 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
358 IRBuilder<> Builder(Preheader->getTerminator());
359 SwitchInst *DummySwitch =
360 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
361 Preheader->getTerminator()->eraseFromParent();
363 unsigned DummyIdx = 1;
364 for (BasicBlock *BB : DeadExitBlocks) {
365 SmallVector<Instruction *, 4> DeadPhis;
366 for (auto &PN : BB->phis())
367 DeadPhis.push_back(&PN);
369 // Eliminate all Phis from dead exits.
370 for (Instruction *PN : DeadPhis) {
371 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
372 PN->eraseFromParent();
374 assert(DummyIdx != 0 && "Too many dead exits!");
375 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
376 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
377 ++NumLoopExitsDeleted;
380 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
381 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
382 // When we break dead edges, the outer loop may become unreachable from
383 // the current loop. We need to fix loop info accordingly. For this, we
384 // find the most nested loop that still contains L and remove L from all
385 // loops that are inside of it.
386 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
388 // Okay, our loop is no longer in the outer loop (and maybe not in some of
389 // its parents as well). Make the fixup.
390 if (StillReachable != OuterLoop) {
391 LI.changeLoopFor(NewPreheader, StillReachable);
392 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
393 for (auto *BB : L.blocks())
394 removeBlockFromLoops(BB, OuterLoop, StillReachable);
395 OuterLoop->removeChildLoop(&L);
396 if (StillReachable)
397 StillReachable->addChildLoop(&L);
398 else
399 LI.addTopLevelLoop(&L);
401 // Some values from loops in [OuterLoop, StillReachable) could be used
402 // in the current loop. Now it is not their child anymore, so such uses
403 // require LCSSA Phis.
404 Loop *FixLCSSALoop = OuterLoop;
405 while (FixLCSSALoop->getParentLoop() != StillReachable)
406 FixLCSSALoop = FixLCSSALoop->getParentLoop();
407 assert(FixLCSSALoop && "Should be a loop!");
408 // We need all DT updates to be done before forming LCSSA.
409 DTU.applyUpdates(DTUpdates);
410 if (MSSAU)
411 MSSAU->applyUpdates(DTUpdates, DT);
412 DTUpdates.clear();
413 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
417 if (MSSAU) {
418 // Clear all updates now. Facilitates deletes that follow.
419 DTU.applyUpdates(DTUpdates);
420 MSSAU->applyUpdates(DTUpdates, DT);
421 DTUpdates.clear();
422 if (VerifyMemorySSA)
423 MSSAU->getMemorySSA()->verifyMemorySSA();
427 /// Delete loop blocks that have become unreachable after folding. Make all
428 /// relevant updates to DT and LI.
429 void deleteDeadLoopBlocks() {
430 if (MSSAU) {
431 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
432 DeadLoopBlocks.end());
433 MSSAU->removeBlocks(DeadLoopBlocksSet);
436 // The function LI.erase has some invariants that need to be preserved when
437 // it tries to remove a loop which is not the top-level loop. In particular,
438 // it requires loop's preheader to be strictly in loop's parent. We cannot
439 // just remove blocks one by one, because after removal of preheader we may
440 // break this invariant for the dead loop. So we detatch and erase all dead
441 // loops beforehand.
442 for (auto *BB : DeadLoopBlocks)
443 if (LI.isLoopHeader(BB)) {
444 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
445 Loop *DL = LI.getLoopFor(BB);
446 if (DL->getParentLoop()) {
447 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
448 for (auto *BB : DL->getBlocks())
449 PL->removeBlockFromLoop(BB);
450 DL->getParentLoop()->removeChildLoop(DL);
451 LI.addTopLevelLoop(DL);
453 LI.erase(DL);
456 for (auto *BB : DeadLoopBlocks) {
457 assert(BB != L.getHeader() &&
458 "Header of the current loop cannot be dead!");
459 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
460 << "\n");
461 LI.removeBlock(BB);
464 DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
465 DTU.applyUpdates(DTUpdates);
466 DTUpdates.clear();
467 for (auto *BB : DeadLoopBlocks)
468 DTU.deleteBB(BB);
470 NumLoopBlocksDeleted += DeadLoopBlocks.size();
473 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
474 /// unconditional branches.
475 void foldTerminators() {
476 for (BasicBlock *BB : FoldCandidates) {
477 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
478 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
479 assert(TheOnlySucc && "Should have one live successor!");
481 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
482 << " with an unconditional branch to the block "
483 << TheOnlySucc->getName() << "\n");
485 SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
486 // Remove all BB's successors except for the live one.
487 unsigned TheOnlySuccDuplicates = 0;
488 for (auto *Succ : successors(BB))
489 if (Succ != TheOnlySucc) {
490 DeadSuccessors.insert(Succ);
491 // If our successor lies in a different loop, we don't want to remove
492 // the one-input Phi because it is a LCSSA Phi.
493 bool PreserveLCSSAPhi = !L.contains(Succ);
494 Succ->removePredecessor(BB, PreserveLCSSAPhi);
495 if (MSSAU)
496 MSSAU->removeEdge(BB, Succ);
497 } else
498 ++TheOnlySuccDuplicates;
500 assert(TheOnlySuccDuplicates > 0 && "Should be!");
501 // If TheOnlySucc was BB's successor more than once, after transform it
502 // will be its successor only once. Remove redundant inputs from
503 // TheOnlySucc's Phis.
504 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
505 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
506 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
507 if (MSSAU && TheOnlySuccDuplicates > 1)
508 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
510 IRBuilder<> Builder(BB->getContext());
511 Instruction *Term = BB->getTerminator();
512 Builder.SetInsertPoint(Term);
513 Builder.CreateBr(TheOnlySucc);
514 Term->eraseFromParent();
516 for (auto *DeadSucc : DeadSuccessors)
517 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
519 ++NumTerminatorsFolded;
523 public:
524 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
525 ScalarEvolution &SE,
526 MemorySSAUpdater *MSSAU)
527 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
528 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
529 bool run() {
530 assert(L.getLoopLatch() && "Should be single latch!");
532 // Collect all available information about status of blocks after constant
533 // folding.
534 analyze();
535 BasicBlock *Header = L.getHeader();
536 (void)Header;
538 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
539 << ": ");
541 if (HasIrreducibleCFG) {
542 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
543 return false;
546 // Nothing to constant-fold.
547 if (FoldCandidates.empty()) {
548 LLVM_DEBUG(
549 dbgs() << "No constant terminator folding candidates found in loop "
550 << Header->getName() << "\n");
551 return false;
554 // TODO: Support deletion of the current loop.
555 if (DeleteCurrentLoop) {
556 LLVM_DEBUG(
557 dbgs()
558 << "Give up constant terminator folding in loop " << Header->getName()
559 << ": we don't currently support deletion of the current loop.\n");
560 return false;
563 // TODO: Support blocks that are not dead, but also not in loop after the
564 // folding.
565 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
566 L.getNumBlocks()) {
567 LLVM_DEBUG(
568 dbgs() << "Give up constant terminator folding in loop "
569 << Header->getName() << ": we don't currently"
570 " support blocks that are not dead, but will stop "
571 "being a part of the loop after constant-folding.\n");
572 return false;
575 SE.forgetTopmostLoop(&L);
576 // Dump analysis results.
577 LLVM_DEBUG(dump());
579 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
580 << " terminators in loop " << Header->getName() << "\n");
582 // Make the actual transforms.
583 handleDeadExits();
584 foldTerminators();
586 if (!DeadLoopBlocks.empty()) {
587 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
588 << " dead blocks in loop " << Header->getName() << "\n");
589 deleteDeadLoopBlocks();
590 } else {
591 // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
592 DTU.applyUpdates(DTUpdates);
593 DTUpdates.clear();
596 if (MSSAU && VerifyMemorySSA)
597 MSSAU->getMemorySSA()->verifyMemorySSA();
599 #ifndef NDEBUG
600 // Make sure that we have preserved all data structures after the transform.
601 #if defined(EXPENSIVE_CHECKS)
602 assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
603 "DT broken after transform!");
604 #else
605 assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
606 "DT broken after transform!");
607 #endif
608 assert(DT.isReachableFromEntry(Header));
609 LI.verify(DT);
610 #endif
612 return true;
615 bool foldingBreaksCurrentLoop() const {
616 return DeleteCurrentLoop;
619 } // namespace
621 /// Turn branches and switches with known constant conditions into unconditional
622 /// branches.
623 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
624 ScalarEvolution &SE,
625 MemorySSAUpdater *MSSAU,
626 bool &IsLoopDeleted) {
627 if (!EnableTermFolding)
628 return false;
630 // To keep things simple, only process loops with single latch. We
631 // canonicalize most loops to this form. We can support multi-latch if needed.
632 if (!L.getLoopLatch())
633 return false;
635 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
636 bool Changed = BranchFolder.run();
637 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
638 return Changed;
641 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
642 LoopInfo &LI, MemorySSAUpdater *MSSAU) {
643 bool Changed = false;
644 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
645 // Copy blocks into a temporary array to avoid iterator invalidation issues
646 // as we remove them.
647 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
649 for (auto &Block : Blocks) {
650 // Attempt to merge blocks in the trivial case. Don't modify blocks which
651 // belong to other loops.
652 BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
653 if (!Succ)
654 continue;
656 BasicBlock *Pred = Succ->getSinglePredecessor();
657 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
658 continue;
660 // Merge Succ into Pred and delete it.
661 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
663 Changed = true;
666 return Changed;
669 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
670 ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
671 bool &isLoopDeleted) {
672 bool Changed = false;
674 // Constant-fold terminators with known constant conditions.
675 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, isLoopDeleted);
677 if (isLoopDeleted)
678 return true;
680 // Eliminate unconditional branches by merging blocks into their predecessors.
681 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
683 if (Changed)
684 SE.forgetTopmostLoop(&L);
686 return Changed;
689 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
690 LoopStandardAnalysisResults &AR,
691 LPMUpdater &LPMU) {
692 Optional<MemorySSAUpdater> MSSAU;
693 if (AR.MSSA)
694 MSSAU = MemorySSAUpdater(AR.MSSA);
695 bool DeleteCurrentLoop = false;
696 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
697 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
698 DeleteCurrentLoop))
699 return PreservedAnalyses::all();
701 if (DeleteCurrentLoop)
702 LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
704 auto PA = getLoopPassPreservedAnalyses();
705 if (AR.MSSA)
706 PA.preserve<MemorySSAAnalysis>();
707 return PA;
710 namespace {
711 class LoopSimplifyCFGLegacyPass : public LoopPass {
712 public:
713 static char ID; // Pass ID, replacement for typeid
714 LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
715 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
718 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
719 if (skipLoop(L))
720 return false;
722 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
723 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
724 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
725 Optional<MemorySSAUpdater> MSSAU;
726 if (EnableMSSALoopDependency) {
727 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
728 MSSAU = MemorySSAUpdater(MSSA);
729 if (VerifyMemorySSA)
730 MSSA->verifyMemorySSA();
732 bool DeleteCurrentLoop = false;
733 bool Changed = simplifyLoopCFG(
734 *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
735 DeleteCurrentLoop);
736 if (DeleteCurrentLoop)
737 LPM.markLoopAsDeleted(*L);
738 return Changed;
741 void getAnalysisUsage(AnalysisUsage &AU) const override {
742 if (EnableMSSALoopDependency) {
743 AU.addRequired<MemorySSAWrapperPass>();
744 AU.addPreserved<MemorySSAWrapperPass>();
746 AU.addPreserved<DependenceAnalysisWrapperPass>();
747 getLoopAnalysisUsage(AU);
752 char LoopSimplifyCFGLegacyPass::ID = 0;
753 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
754 "Simplify loop CFG", false, false)
755 INITIALIZE_PASS_DEPENDENCY(LoopPass)
756 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
757 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
758 "Simplify loop CFG", false, false)
760 Pass *llvm::createLoopSimplifyCFGPass() {
761 return new LoopSimplifyCFGLegacyPass();