[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / tools / llvm-exegesis / lib / Clustering.h
blob18ef30fbef945d3d37f1f9a7292e1ce300bd15ff
1 //===-- Clustering.h --------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Utilities to compute benchmark result clusters.
11 ///
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
15 #define LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
17 #include "BenchmarkResult.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/Support/Error.h"
20 #include <limits>
21 #include <vector>
23 namespace llvm {
24 namespace exegesis {
26 class InstructionBenchmarkClustering {
27 public:
28 enum ModeE { Dbscan, Naive };
30 // Clusters `Points` using DBSCAN with the given parameters. See the cc file
31 // for more explanations on the algorithm.
32 static llvm::Expected<InstructionBenchmarkClustering>
33 create(const std::vector<InstructionBenchmark> &Points, ModeE Mode,
34 size_t DbscanMinPts, double AnalysisClusteringEpsilon,
35 llvm::Optional<unsigned> NumOpcodes = llvm::None);
37 class ClusterId {
38 public:
39 static ClusterId noise() { return ClusterId(kNoise); }
40 static ClusterId error() { return ClusterId(kError); }
41 static ClusterId makeValid(size_t Id, bool IsUnstable = false) {
42 return ClusterId(Id, IsUnstable);
44 static ClusterId makeValidUnstable(size_t Id) {
45 return makeValid(Id, /*IsUnstable=*/true);
48 ClusterId() : Id_(kUndef), IsUnstable_(false) {}
50 // Compare id's, ignoring the 'unstability' bit.
51 bool operator==(const ClusterId &O) const { return Id_ == O.Id_; }
52 bool operator<(const ClusterId &O) const { return Id_ < O.Id_; }
54 bool isValid() const { return Id_ <= kMaxValid; }
55 bool isUnstable() const { return IsUnstable_; }
56 bool isNoise() const { return Id_ == kNoise; }
57 bool isError() const { return Id_ == kError; }
58 bool isUndef() const { return Id_ == kUndef; }
60 // Precondition: isValid().
61 size_t getId() const {
62 assert(isValid());
63 return Id_;
66 private:
67 ClusterId(size_t Id, bool IsUnstable = false)
68 : Id_(Id), IsUnstable_(IsUnstable) {}
70 static constexpr const size_t kMaxValid =
71 (std::numeric_limits<size_t>::max() >> 1) - 4;
72 static constexpr const size_t kNoise = kMaxValid + 1;
73 static constexpr const size_t kError = kMaxValid + 2;
74 static constexpr const size_t kUndef = kMaxValid + 3;
76 size_t Id_ : (std::numeric_limits<size_t>::digits - 1);
77 size_t IsUnstable_ : 1;
79 static_assert(sizeof(ClusterId) == sizeof(size_t), "should be a bit field.");
81 struct Cluster {
82 Cluster() = delete;
83 explicit Cluster(const ClusterId &Id) : Id(Id) {}
85 const ClusterId Id;
86 // Indices of benchmarks within the cluster.
87 std::vector<int> PointIndices;
90 ClusterId getClusterIdForPoint(size_t P) const {
91 return ClusterIdForPoint_[P];
94 const std::vector<InstructionBenchmark> &getPoints() const { return Points_; }
96 const Cluster &getCluster(ClusterId Id) const {
97 assert(!Id.isUndef() && "unlabeled cluster");
98 if (Id.isNoise()) {
99 return NoiseCluster_;
101 if (Id.isError()) {
102 return ErrorCluster_;
104 return Clusters_[Id.getId()];
107 const std::vector<Cluster> &getValidClusters() const { return Clusters_; }
109 // Returns true if the given point is within a distance Epsilon of each other.
110 bool isNeighbour(const std::vector<BenchmarkMeasure> &P,
111 const std::vector<BenchmarkMeasure> &Q,
112 const double EpsilonSquared_) const {
113 double DistanceSquared = 0.0;
114 for (size_t I = 0, E = P.size(); I < E; ++I) {
115 const auto Diff = P[I].PerInstructionValue - Q[I].PerInstructionValue;
116 DistanceSquared += Diff * Diff;
118 return DistanceSquared <= EpsilonSquared_;
121 private:
122 InstructionBenchmarkClustering(
123 const std::vector<InstructionBenchmark> &Points,
124 double AnalysisClusteringEpsilonSquared);
126 llvm::Error validateAndSetup();
128 void clusterizeDbScan(size_t MinPts);
129 void clusterizeNaive(unsigned NumOpcodes);
131 // Stabilization is only needed if dbscan was used to clusterize.
132 void stabilize(unsigned NumOpcodes);
134 void rangeQuery(size_t Q, std::vector<size_t> &Scratchpad) const;
136 bool areAllNeighbours(ArrayRef<size_t> Pts) const;
138 const std::vector<InstructionBenchmark> &Points_;
139 const double AnalysisClusteringEpsilonSquared_;
141 int NumDimensions_ = 0;
142 // ClusterForPoint_[P] is the cluster id for Points[P].
143 std::vector<ClusterId> ClusterIdForPoint_;
144 std::vector<Cluster> Clusters_;
145 Cluster NoiseCluster_;
146 Cluster ErrorCluster_;
149 class SchedClassClusterCentroid {
150 public:
151 const std::vector<PerInstructionStats> &getStats() const {
152 return Representative;
155 std::vector<BenchmarkMeasure> getAsPoint() const;
157 void addPoint(ArrayRef<BenchmarkMeasure> Point);
159 bool validate(InstructionBenchmark::ModeE Mode) const;
161 private:
162 // Measurement stats for the points in the SchedClassCluster.
163 std::vector<PerInstructionStats> Representative;
166 } // namespace exegesis
167 } // namespace llvm
169 #endif // LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H