[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / tools / llvm-mca / Views / BottleneckAnalysis.h
blob7564b1a482068b37761a6e40cf6c77cfaff27e1f
1 //===--------------------- BottleneckAnalysis.h -----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the bottleneck analysis view.
11 ///
12 /// This view internally observes backend pressure increase events in order to
13 /// identify problematic data dependencies and processor resource interferences.
14 ///
15 /// Example of bottleneck analysis report for a dot-product on X86 btver2:
16 ///
17 /// Cycles with backend pressure increase [ 40.76% ]
18 /// Throughput Bottlenecks:
19 /// Resource Pressure [ 39.34% ]
20 /// - JFPA [ 39.34% ]
21 /// - JFPU0 [ 39.34% ]
22 /// Data Dependencies: [ 1.42% ]
23 /// - Register Dependencies [ 1.42% ]
24 /// - Memory Dependencies [ 0.00% ]
25 ///
26 /// According to the example, backend pressure increased during the 40.76% of
27 /// the simulated cycles. In particular, the major cause of backend pressure
28 /// increases was the contention on floating point adder JFPA accessible from
29 /// pipeline resource JFPU0.
30 ///
31 /// At the end of each cycle, if pressure on the simulated out-of-order buffers
32 /// has increased, a backend pressure event is reported.
33 /// In particular, this occurs when there is a delta between the number of uOps
34 /// dispatched and the number of uOps issued to the underlying pipelines.
35 ///
36 /// The bottleneck analysis view is also responsible for identifying and printing
37 /// the most "critical" sequence of dependent instructions according to the
38 /// simulated run.
39 ///
40 /// Below is the critical sequence computed for the dot-product example on
41 /// btver2:
42 ///
43 /// Instruction Dependency Information
44 /// +----< 2. vhaddps %xmm3, %xmm3, %xmm4
45 /// |
46 /// | < loop carried >
47 /// |
48 /// | 0. vmulps %xmm0, %xmm0, %xmm2
49 /// +----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [ probability: 73% ]
50 /// +----> 2. vhaddps %xmm3, %xmm3, %xmm4 ## REGISTER dependency: %xmm3
51 /// |
52 /// | < loop carried >
53 /// |
54 /// +----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [ probability: 73% ]
55 ///
56 ///
57 /// The algorithm that computes the critical sequence is very similar to a
58 /// critical path analysis.
59 ///
60 /// A dependency graph is used internally to track dependencies between nodes.
61 /// Nodes of the graph represent instructions from the input assembly sequence,
62 /// and edges of the graph represent data dependencies or processor resource
63 /// interferences.
64 ///
65 /// Edges are dynamically 'discovered' by observing instruction state transitions
66 /// and backend pressure increase events. Edges are internally ranked based on
67 /// their "criticality". A dependency is considered to be critical if it takes a
68 /// long time to execute, and if it contributes to backend pressure increases.
69 /// Criticality is internally measured in terms of cycles; it is computed for
70 /// every edge in the graph as a function of the edge latency and the number of
71 /// backend pressure increase cycles contributed by that edge.
72 ///
73 /// At the end of simulation, costs are propagated to nodes through the edges of
74 /// the graph, and the most expensive path connecting the root-set (a
75 /// set of nodes with no predecessors) to a leaf node is reported as critical
76 /// sequence.
78 //===----------------------------------------------------------------------===//
80 #ifndef LLVM_TOOLS_LLVM_MCA_BOTTLENECK_ANALYSIS_H
81 #define LLVM_TOOLS_LLVM_MCA_BOTTLENECK_ANALYSIS_H
83 #include "Views/View.h"
84 #include "llvm/ADT/DenseMap.h"
85 #include "llvm/ADT/SmallVector.h"
86 #include "llvm/MC/MCInstPrinter.h"
87 #include "llvm/MC/MCSchedule.h"
88 #include "llvm/MC/MCSubtargetInfo.h"
89 #include "llvm/Support/raw_ostream.h"
91 namespace llvm {
92 namespace mca {
94 class PressureTracker {
95 const MCSchedModel &SM;
97 // Resource pressure distribution. There is an element for every processor
98 // resource declared by the scheduling model. Quantities are number of cycles.
99 SmallVector<unsigned, 4> ResourcePressureDistribution;
101 // Each processor resource is associated with a so-called processor resource
102 // mask. This vector allows to correlate processor resource IDs with processor
103 // resource masks. There is exactly one element per each processor resource
104 // declared by the scheduling model.
105 SmallVector<uint64_t, 4> ProcResID2Mask;
107 // Maps processor resource state indices (returned by calls to
108 // `getResourceStateIndex(Mask)` to processor resource identifiers.
109 SmallVector<unsigned, 4> ResIdx2ProcResID;
111 // Maps Processor Resource identifiers to ResourceUsers indices.
112 SmallVector<unsigned, 4> ProcResID2ResourceUsersIndex;
114 // Identifies the last user of a processor resource unit.
115 // This vector is updated on every instruction issued event.
116 // There is one entry for every processor resource unit declared by the
117 // processor model. An all_ones value is treated like an invalid instruction
118 // identifier.
119 using User = std::pair<unsigned, unsigned>;
120 SmallVector<User, 4> ResourceUsers;
122 struct InstructionPressureInfo {
123 unsigned RegisterPressureCycles;
124 unsigned MemoryPressureCycles;
125 unsigned ResourcePressureCycles;
127 DenseMap<unsigned, InstructionPressureInfo> IPI;
129 void updateResourcePressureDistribution(uint64_t CumulativeMask);
131 User getResourceUser(unsigned ProcResID, unsigned UnitID) const {
132 unsigned Index = ProcResID2ResourceUsersIndex[ProcResID];
133 return ResourceUsers[Index + UnitID];
136 public:
137 PressureTracker(const MCSchedModel &Model);
139 ArrayRef<unsigned> getResourcePressureDistribution() const {
140 return ResourcePressureDistribution;
143 void getResourceUsers(uint64_t ResourceMask,
144 SmallVectorImpl<User> &Users) const;
146 unsigned getRegisterPressureCycles(unsigned IID) const {
147 assert(IPI.find(IID) != IPI.end() && "Instruction is not tracked!");
148 const InstructionPressureInfo &Info = IPI.find(IID)->second;
149 return Info.RegisterPressureCycles;
152 unsigned getMemoryPressureCycles(unsigned IID) const {
153 assert(IPI.find(IID) != IPI.end() && "Instruction is not tracked!");
154 const InstructionPressureInfo &Info = IPI.find(IID)->second;
155 return Info.MemoryPressureCycles;
158 unsigned getResourcePressureCycles(unsigned IID) const {
159 assert(IPI.find(IID) != IPI.end() && "Instruction is not tracked!");
160 const InstructionPressureInfo &Info = IPI.find(IID)->second;
161 return Info.ResourcePressureCycles;
164 const char *resolveResourceName(uint64_t ResourceMask) const {
165 unsigned Index = getResourceStateIndex(ResourceMask);
166 unsigned ProcResID = ResIdx2ProcResID[Index];
167 const MCProcResourceDesc &PRDesc = *SM.getProcResource(ProcResID);
168 return PRDesc.Name;
171 void onInstructionDispatched(unsigned IID);
172 void onInstructionExecuted(unsigned IID);
174 void handlePressureEvent(const HWPressureEvent &Event);
175 void handleInstructionIssuedEvent(const HWInstructionIssuedEvent &Event);
178 // A dependency edge.
179 struct DependencyEdge {
180 enum DependencyType { DT_INVALID, DT_REGISTER, DT_MEMORY, DT_RESOURCE };
182 // Dependency edge descriptor.
184 // It specifies the dependency type, as well as the edge cost in cycles.
185 struct Dependency {
186 DependencyType Type;
187 uint64_t ResourceOrRegID;
188 uint64_t Cost;
190 Dependency Dep;
192 unsigned FromIID;
193 unsigned ToIID;
195 // Used by the bottleneck analysis to compute the interference
196 // probability for processor resources.
197 unsigned Frequency;
200 // A dependency graph used by the bottleneck analysis to describe data
201 // dependencies and processor resource interferences between instructions.
203 // There is a node (an instance of struct DGNode) for every instruction in the
204 // input assembly sequence. Edges of the graph represent dependencies between
205 // instructions.
207 // Each edge of the graph is associated with a cost value which is used
208 // internally to rank dependency based on their impact on the runtime
209 // performance (see field DependencyEdge::Dependency::Cost). In general, the
210 // higher the cost of an edge, the higher the impact on performance.
212 // The cost of a dependency is a function of both the latency and the number of
213 // cycles where the dependency has been seen as critical (i.e. contributing to
214 // back-pressure increases).
216 // Loop carried dependencies are carefully expanded by the bottleneck analysis
217 // to guarantee that the graph stays acyclic. To this end, extra nodes are
218 // pre-allocated at construction time to describe instructions from "past and
219 // future" iterations. The graph is kept acyclic mainly because it simplifies the
220 // complexity of the algorithm that computes the critical sequence.
221 class DependencyGraph {
222 struct DGNode {
223 unsigned NumPredecessors;
224 unsigned NumVisitedPredecessors;
225 uint64_t Cost;
226 unsigned Depth;
228 DependencyEdge CriticalPredecessor;
229 SmallVector<DependencyEdge, 8> OutgoingEdges;
231 SmallVector<DGNode, 16> Nodes;
233 DependencyGraph(const DependencyGraph &) = delete;
234 DependencyGraph &operator=(const DependencyGraph &) = delete;
236 void addDependency(unsigned From, unsigned To,
237 DependencyEdge::Dependency &&DE);
239 void initializeRootSet(SmallVectorImpl<unsigned> &RootSet) const;
240 void propagateThroughEdges(SmallVectorImpl<unsigned> &RootSet);
242 #ifndef NDEBUG
243 void dumpDependencyEdge(raw_ostream &OS, const DependencyEdge &DE,
244 MCInstPrinter &MCIP) const;
245 #endif
247 public:
248 DependencyGraph(unsigned Size) : Nodes(Size) {}
250 void addRegisterDep(unsigned From, unsigned To, unsigned RegID,
251 unsigned Cost) {
252 addDependency(From, To, {DependencyEdge::DT_REGISTER, RegID, Cost});
255 void addMemoryDep(unsigned From, unsigned To, unsigned Cost) {
256 addDependency(From, To, {DependencyEdge::DT_MEMORY, /* unused */ 0, Cost});
259 void addResourceDep(unsigned From, unsigned To, uint64_t Mask,
260 unsigned Cost) {
261 addDependency(From, To, {DependencyEdge::DT_RESOURCE, Mask, Cost});
264 // Called by the bottleneck analysis at the end of simulation to propagate
265 // costs through the edges of the graph, and compute a critical path.
266 void finalizeGraph() {
267 SmallVector<unsigned, 16> RootSet;
268 initializeRootSet(RootSet);
269 propagateThroughEdges(RootSet);
272 // Returns a sequence of edges representing the critical sequence based on the
273 // simulated run. It assumes that the graph has already been finalized (i.e.
274 // method `finalizeGraph()` has already been called on this graph).
275 void getCriticalSequence(SmallVectorImpl<const DependencyEdge *> &Seq) const;
277 #ifndef NDEBUG
278 void dump(raw_ostream &OS, MCInstPrinter &MCIP) const;
279 #endif
282 /// A view that collects and prints a few performance numbers.
283 class BottleneckAnalysis : public View {
284 const MCSubtargetInfo &STI;
285 MCInstPrinter &MCIP;
286 PressureTracker Tracker;
287 DependencyGraph DG;
289 ArrayRef<MCInst> Source;
290 unsigned Iterations;
291 unsigned TotalCycles;
293 bool PressureIncreasedBecauseOfResources;
294 bool PressureIncreasedBecauseOfRegisterDependencies;
295 bool PressureIncreasedBecauseOfMemoryDependencies;
296 // True if throughput was affected by dispatch stalls.
297 bool SeenStallCycles;
299 struct BackPressureInfo {
300 // Cycles where backpressure increased.
301 unsigned PressureIncreaseCycles;
302 // Cycles where backpressure increased because of pipeline pressure.
303 unsigned ResourcePressureCycles;
304 // Cycles where backpressure increased because of data dependencies.
305 unsigned DataDependencyCycles;
306 // Cycles where backpressure increased because of register dependencies.
307 unsigned RegisterDependencyCycles;
308 // Cycles where backpressure increased because of memory dependencies.
309 unsigned MemoryDependencyCycles;
311 BackPressureInfo BPI;
313 // Used to populate the dependency graph DG.
314 void addRegisterDep(unsigned From, unsigned To, unsigned RegID, unsigned Cy);
315 void addMemoryDep(unsigned From, unsigned To, unsigned Cy);
316 void addResourceDep(unsigned From, unsigned To, uint64_t Mask, unsigned Cy);
318 // Prints a bottleneck message to OS.
319 void printBottleneckHints(raw_ostream &OS) const;
320 void printCriticalSequence(raw_ostream &OS) const;
322 public:
323 BottleneckAnalysis(const MCSubtargetInfo &STI, MCInstPrinter &MCIP,
324 ArrayRef<MCInst> Sequence, unsigned Iterations);
326 void onCycleEnd() override;
327 void onEvent(const HWStallEvent &Event) override { SeenStallCycles = true; }
328 void onEvent(const HWPressureEvent &Event) override;
329 void onEvent(const HWInstructionEvent &Event) override;
331 void printView(raw_ostream &OS) const override;
333 #ifndef NDEBUG
334 void dump(raw_ostream &OS, MCInstPrinter &MCIP) const { DG.dump(OS, MCIP); }
335 #endif
338 } // namespace mca
339 } // namespace llvm
341 #endif