[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / tools / llvm-stress / llvm-stress.cpp
blob5f36a785332b53c03a03160a781655ccd1844b05
1 //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that generates random .ll files to stress-test
10 // different components in LLVM.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/IRPrintingPasses.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/IR/Verifier.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/FileSystem.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/PrettyStackTrace.h"
43 #include "llvm/Support/ToolOutputFile.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <memory>
50 #include <string>
51 #include <system_error>
52 #include <vector>
54 namespace llvm {
56 static cl::opt<unsigned> SeedCL("seed",
57 cl::desc("Seed used for randomness"), cl::init(0));
59 static cl::opt<unsigned> SizeCL("size",
60 cl::desc("The estimated size of the generated function (# of instrs)"),
61 cl::init(100));
63 static cl::opt<std::string>
64 OutputFilename("o", cl::desc("Override output filename"),
65 cl::value_desc("filename"));
67 static LLVMContext Context;
69 namespace cl {
71 template <> class parser<Type*> final : public basic_parser<Type*> {
72 public:
73 parser(Option &O) : basic_parser(O) {}
75 // Parse options as IR types. Return true on error.
76 bool parse(Option &O, StringRef, StringRef Arg, Type *&Value) {
77 if (Arg == "half") Value = Type::getHalfTy(Context);
78 else if (Arg == "fp128") Value = Type::getFP128Ty(Context);
79 else if (Arg == "x86_fp80") Value = Type::getX86_FP80Ty(Context);
80 else if (Arg == "ppc_fp128") Value = Type::getPPC_FP128Ty(Context);
81 else if (Arg == "x86_mmx") Value = Type::getX86_MMXTy(Context);
82 else if (Arg.startswith("i")) {
83 unsigned N = 0;
84 Arg.drop_front().getAsInteger(10, N);
85 if (N > 0)
86 Value = Type::getIntNTy(Context, N);
89 if (!Value)
90 return O.error("Invalid IR scalar type: '" + Arg + "'!");
91 return false;
94 StringRef getValueName() const override { return "IR scalar type"; }
97 } // end namespace cl
99 static cl::list<Type*> AdditionalScalarTypes("types", cl::CommaSeparated,
100 cl::desc("Additional IR scalar types "
101 "(always includes i1, i8, i16, i32, i64, float and double)"));
103 namespace {
105 /// A utility class to provide a pseudo-random number generator which is
106 /// the same across all platforms. This is somewhat close to the libc
107 /// implementation. Note: This is not a cryptographically secure pseudorandom
108 /// number generator.
109 class Random {
110 public:
111 /// C'tor
112 Random(unsigned _seed):Seed(_seed) {}
114 /// Return a random integer, up to a
115 /// maximum of 2**19 - 1.
116 uint32_t Rand() {
117 uint32_t Val = Seed + 0x000b07a1;
118 Seed = (Val * 0x3c7c0ac1);
119 // Only lowest 19 bits are random-ish.
120 return Seed & 0x7ffff;
123 /// Return a random 64 bit integer.
124 uint64_t Rand64() {
125 uint64_t Val = Rand() & 0xffff;
126 Val |= uint64_t(Rand() & 0xffff) << 16;
127 Val |= uint64_t(Rand() & 0xffff) << 32;
128 Val |= uint64_t(Rand() & 0xffff) << 48;
129 return Val;
132 /// Rand operator for STL algorithms.
133 ptrdiff_t operator()(ptrdiff_t y) {
134 return Rand64() % y;
137 /// Make this like a C++11 random device
138 using result_type = uint32_t ;
140 static constexpr result_type min() { return 0; }
141 static constexpr result_type max() { return 0x7ffff; }
143 uint32_t operator()() {
144 uint32_t Val = Rand();
145 assert(Val <= max() && "Random value out of range");
146 return Val;
149 private:
150 unsigned Seed;
153 /// Generate an empty function with a default argument list.
154 Function *GenEmptyFunction(Module *M) {
155 // Define a few arguments
156 LLVMContext &Context = M->getContext();
157 Type* ArgsTy[] = {
158 Type::getInt8PtrTy(Context),
159 Type::getInt32PtrTy(Context),
160 Type::getInt64PtrTy(Context),
161 Type::getInt32Ty(Context),
162 Type::getInt64Ty(Context),
163 Type::getInt8Ty(Context)
166 auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false);
167 // Pick a unique name to describe the input parameters
168 Twine Name = "autogen_SD" + Twine{SeedCL};
169 auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M);
170 Func->setCallingConv(CallingConv::C);
171 return Func;
174 /// A base class, implementing utilities needed for
175 /// modifying and adding new random instructions.
176 struct Modifier {
177 /// Used to store the randomly generated values.
178 using PieceTable = std::vector<Value *>;
180 public:
181 /// C'tor
182 Modifier(BasicBlock *Block, PieceTable *PT, Random *R)
183 : BB(Block), PT(PT), Ran(R), Context(BB->getContext()) {}
185 /// virtual D'tor to silence warnings.
186 virtual ~Modifier() = default;
188 /// Add a new instruction.
189 virtual void Act() = 0;
191 /// Add N new instructions,
192 virtual void ActN(unsigned n) {
193 for (unsigned i=0; i<n; ++i)
194 Act();
197 protected:
198 /// Return a random integer.
199 uint32_t getRandom() {
200 return Ran->Rand();
203 /// Return a random value from the list of known values.
204 Value *getRandomVal() {
205 assert(PT->size());
206 return PT->at(getRandom() % PT->size());
209 Constant *getRandomConstant(Type *Tp) {
210 if (Tp->isIntegerTy()) {
211 if (getRandom() & 1)
212 return ConstantInt::getAllOnesValue(Tp);
213 return ConstantInt::getNullValue(Tp);
214 } else if (Tp->isFloatingPointTy()) {
215 if (getRandom() & 1)
216 return ConstantFP::getAllOnesValue(Tp);
217 return ConstantFP::getNullValue(Tp);
219 return UndefValue::get(Tp);
222 /// Return a random value with a known type.
223 Value *getRandomValue(Type *Tp) {
224 unsigned index = getRandom();
225 for (unsigned i=0; i<PT->size(); ++i) {
226 Value *V = PT->at((index + i) % PT->size());
227 if (V->getType() == Tp)
228 return V;
231 // If the requested type was not found, generate a constant value.
232 if (Tp->isIntegerTy()) {
233 if (getRandom() & 1)
234 return ConstantInt::getAllOnesValue(Tp);
235 return ConstantInt::getNullValue(Tp);
236 } else if (Tp->isFloatingPointTy()) {
237 if (getRandom() & 1)
238 return ConstantFP::getAllOnesValue(Tp);
239 return ConstantFP::getNullValue(Tp);
240 } else if (Tp->isVectorTy()) {
241 VectorType *VTp = cast<VectorType>(Tp);
243 std::vector<Constant*> TempValues;
244 TempValues.reserve(VTp->getNumElements());
245 for (unsigned i = 0; i < VTp->getNumElements(); ++i)
246 TempValues.push_back(getRandomConstant(VTp->getScalarType()));
248 ArrayRef<Constant*> VectorValue(TempValues);
249 return ConstantVector::get(VectorValue);
252 return UndefValue::get(Tp);
255 /// Return a random value of any pointer type.
256 Value *getRandomPointerValue() {
257 unsigned index = getRandom();
258 for (unsigned i=0; i<PT->size(); ++i) {
259 Value *V = PT->at((index + i) % PT->size());
260 if (V->getType()->isPointerTy())
261 return V;
263 return UndefValue::get(pickPointerType());
266 /// Return a random value of any vector type.
267 Value *getRandomVectorValue() {
268 unsigned index = getRandom();
269 for (unsigned i=0; i<PT->size(); ++i) {
270 Value *V = PT->at((index + i) % PT->size());
271 if (V->getType()->isVectorTy())
272 return V;
274 return UndefValue::get(pickVectorType());
277 /// Pick a random type.
278 Type *pickType() {
279 return (getRandom() & 1) ? pickVectorType() : pickScalarType();
282 /// Pick a random pointer type.
283 Type *pickPointerType() {
284 Type *Ty = pickType();
285 return PointerType::get(Ty, 0);
288 /// Pick a random vector type.
289 Type *pickVectorType(unsigned len = (unsigned)-1) {
290 // Pick a random vector width in the range 2**0 to 2**4.
291 // by adding two randoms we are generating a normal-like distribution
292 // around 2**3.
293 unsigned width = 1<<((getRandom() % 3) + (getRandom() % 3));
294 Type *Ty;
296 // Vectors of x86mmx are illegal; keep trying till we get something else.
297 do {
298 Ty = pickScalarType();
299 } while (Ty->isX86_MMXTy());
301 if (len != (unsigned)-1)
302 width = len;
303 return VectorType::get(Ty, width);
306 /// Pick a random scalar type.
307 Type *pickScalarType() {
308 static std::vector<Type*> ScalarTypes;
309 if (ScalarTypes.empty()) {
310 ScalarTypes.assign({
311 Type::getInt1Ty(Context),
312 Type::getInt8Ty(Context),
313 Type::getInt16Ty(Context),
314 Type::getInt32Ty(Context),
315 Type::getInt64Ty(Context),
316 Type::getFloatTy(Context),
317 Type::getDoubleTy(Context)
319 ScalarTypes.insert(ScalarTypes.end(),
320 AdditionalScalarTypes.begin(), AdditionalScalarTypes.end());
323 return ScalarTypes[getRandom() % ScalarTypes.size()];
326 /// Basic block to populate
327 BasicBlock *BB;
329 /// Value table
330 PieceTable *PT;
332 /// Random number generator
333 Random *Ran;
335 /// Context
336 LLVMContext &Context;
339 struct LoadModifier: public Modifier {
340 LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R)
341 : Modifier(BB, PT, R) {}
343 void Act() override {
344 // Try to use predefined pointers. If non-exist, use undef pointer value;
345 Value *Ptr = getRandomPointerValue();
346 Value *V = new LoadInst(Ptr, "L", BB->getTerminator());
347 PT->push_back(V);
351 struct StoreModifier: public Modifier {
352 StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R)
353 : Modifier(BB, PT, R) {}
355 void Act() override {
356 // Try to use predefined pointers. If non-exist, use undef pointer value;
357 Value *Ptr = getRandomPointerValue();
358 PointerType *Tp = cast<PointerType>(Ptr->getType());
359 Value *Val = getRandomValue(Tp->getElementType());
360 Type *ValTy = Val->getType();
362 // Do not store vectors of i1s because they are unsupported
363 // by the codegen.
364 if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
365 return;
367 new StoreInst(Val, Ptr, BB->getTerminator());
371 struct BinModifier: public Modifier {
372 BinModifier(BasicBlock *BB, PieceTable *PT, Random *R)
373 : Modifier(BB, PT, R) {}
375 void Act() override {
376 Value *Val0 = getRandomVal();
377 Value *Val1 = getRandomValue(Val0->getType());
379 // Don't handle pointer types.
380 if (Val0->getType()->isPointerTy() ||
381 Val1->getType()->isPointerTy())
382 return;
384 // Don't handle i1 types.
385 if (Val0->getType()->getScalarSizeInBits() == 1)
386 return;
388 bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
389 Instruction* Term = BB->getTerminator();
390 unsigned R = getRandom() % (isFloat ? 7 : 13);
391 Instruction::BinaryOps Op;
393 switch (R) {
394 default: llvm_unreachable("Invalid BinOp");
395 case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
396 case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
397 case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
398 case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
399 case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
400 case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
401 case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
402 case 7: {Op = Instruction::Shl; break; }
403 case 8: {Op = Instruction::LShr; break; }
404 case 9: {Op = Instruction::AShr; break; }
405 case 10:{Op = Instruction::And; break; }
406 case 11:{Op = Instruction::Or; break; }
407 case 12:{Op = Instruction::Xor; break; }
410 PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
414 /// Generate constant values.
415 struct ConstModifier: public Modifier {
416 ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R)
417 : Modifier(BB, PT, R) {}
419 void Act() override {
420 Type *Ty = pickType();
422 if (Ty->isVectorTy()) {
423 switch (getRandom() % 2) {
424 case 0: if (Ty->isIntOrIntVectorTy())
425 return PT->push_back(ConstantVector::getAllOnesValue(Ty));
426 break;
427 case 1: if (Ty->isIntOrIntVectorTy())
428 return PT->push_back(ConstantVector::getNullValue(Ty));
432 if (Ty->isFloatingPointTy()) {
433 // Generate 128 random bits, the size of the (currently)
434 // largest floating-point types.
435 uint64_t RandomBits[2];
436 for (unsigned i = 0; i < 2; ++i)
437 RandomBits[i] = Ran->Rand64();
439 APInt RandomInt(Ty->getPrimitiveSizeInBits(), makeArrayRef(RandomBits));
440 APFloat RandomFloat(Ty->getFltSemantics(), RandomInt);
442 if (getRandom() & 1)
443 return PT->push_back(ConstantFP::getNullValue(Ty));
444 return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat));
447 if (Ty->isIntegerTy()) {
448 switch (getRandom() % 7) {
449 case 0:
450 return PT->push_back(ConstantInt::get(
451 Ty, APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits())));
452 case 1:
453 return PT->push_back(ConstantInt::get(
454 Ty, APInt::getNullValue(Ty->getPrimitiveSizeInBits())));
455 case 2:
456 case 3:
457 case 4:
458 case 5:
459 case 6:
460 PT->push_back(ConstantInt::get(Ty, getRandom()));
466 struct AllocaModifier: public Modifier {
467 AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R)
468 : Modifier(BB, PT, R) {}
470 void Act() override {
471 Type *Tp = pickType();
472 const DataLayout &DL = BB->getModule()->getDataLayout();
473 PT->push_back(new AllocaInst(Tp, DL.getAllocaAddrSpace(),
474 "A", BB->getFirstNonPHI()));
478 struct ExtractElementModifier: public Modifier {
479 ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
480 : Modifier(BB, PT, R) {}
482 void Act() override {
483 Value *Val0 = getRandomVectorValue();
484 Value *V = ExtractElementInst::Create(Val0,
485 ConstantInt::get(Type::getInt32Ty(BB->getContext()),
486 getRandom() % cast<VectorType>(Val0->getType())->getNumElements()),
487 "E", BB->getTerminator());
488 return PT->push_back(V);
492 struct ShuffModifier: public Modifier {
493 ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R)
494 : Modifier(BB, PT, R) {}
496 void Act() override {
497 Value *Val0 = getRandomVectorValue();
498 Value *Val1 = getRandomValue(Val0->getType());
500 unsigned Width = cast<VectorType>(Val0->getType())->getNumElements();
501 std::vector<Constant*> Idxs;
503 Type *I32 = Type::getInt32Ty(BB->getContext());
504 for (unsigned i=0; i<Width; ++i) {
505 Constant *CI = ConstantInt::get(I32, getRandom() % (Width*2));
506 // Pick some undef values.
507 if (!(getRandom() % 5))
508 CI = UndefValue::get(I32);
509 Idxs.push_back(CI);
512 Constant *Mask = ConstantVector::get(Idxs);
514 Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
515 BB->getTerminator());
516 PT->push_back(V);
520 struct InsertElementModifier: public Modifier {
521 InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
522 : Modifier(BB, PT, R) {}
524 void Act() override {
525 Value *Val0 = getRandomVectorValue();
526 Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
528 Value *V = InsertElementInst::Create(Val0, Val1,
529 ConstantInt::get(Type::getInt32Ty(BB->getContext()),
530 getRandom() % cast<VectorType>(Val0->getType())->getNumElements()),
531 "I", BB->getTerminator());
532 return PT->push_back(V);
536 struct CastModifier: public Modifier {
537 CastModifier(BasicBlock *BB, PieceTable *PT, Random *R)
538 : Modifier(BB, PT, R) {}
540 void Act() override {
541 Value *V = getRandomVal();
542 Type *VTy = V->getType();
543 Type *DestTy = pickScalarType();
545 // Handle vector casts vectors.
546 if (VTy->isVectorTy()) {
547 VectorType *VecTy = cast<VectorType>(VTy);
548 DestTy = pickVectorType(VecTy->getNumElements());
551 // no need to cast.
552 if (VTy == DestTy) return;
554 // Pointers:
555 if (VTy->isPointerTy()) {
556 if (!DestTy->isPointerTy())
557 DestTy = PointerType::get(DestTy, 0);
558 return PT->push_back(
559 new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
562 unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits();
563 unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits();
565 // Generate lots of bitcasts.
566 if ((getRandom() & 1) && VSize == DestSize) {
567 return PT->push_back(
568 new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
571 // Both types are integers:
572 if (VTy->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy()) {
573 if (VSize > DestSize) {
574 return PT->push_back(
575 new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
576 } else {
577 assert(VSize < DestSize && "Different int types with the same size?");
578 if (getRandom() & 1)
579 return PT->push_back(
580 new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
581 return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
585 // Fp to int.
586 if (VTy->isFPOrFPVectorTy() && DestTy->isIntOrIntVectorTy()) {
587 if (getRandom() & 1)
588 return PT->push_back(
589 new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
590 return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
593 // Int to fp.
594 if (VTy->isIntOrIntVectorTy() && DestTy->isFPOrFPVectorTy()) {
595 if (getRandom() & 1)
596 return PT->push_back(
597 new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
598 return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
601 // Both floats.
602 if (VTy->isFPOrFPVectorTy() && DestTy->isFPOrFPVectorTy()) {
603 if (VSize > DestSize) {
604 return PT->push_back(
605 new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
606 } else if (VSize < DestSize) {
607 return PT->push_back(
608 new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
610 // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
611 // for which there is no defined conversion. So do nothing.
616 struct SelectModifier: public Modifier {
617 SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R)
618 : Modifier(BB, PT, R) {}
620 void Act() override {
621 // Try a bunch of different select configuration until a valid one is found.
622 Value *Val0 = getRandomVal();
623 Value *Val1 = getRandomValue(Val0->getType());
625 Type *CondTy = Type::getInt1Ty(Context);
627 // If the value type is a vector, and we allow vector select, then in 50%
628 // of the cases generate a vector select.
629 if (Val0->getType()->isVectorTy() && (getRandom() % 1)) {
630 unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements();
631 CondTy = VectorType::get(CondTy, NumElem);
634 Value *Cond = getRandomValue(CondTy);
635 Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
636 return PT->push_back(V);
640 struct CmpModifier: public Modifier {
641 CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R)
642 : Modifier(BB, PT, R) {}
644 void Act() override {
645 Value *Val0 = getRandomVal();
646 Value *Val1 = getRandomValue(Val0->getType());
648 if (Val0->getType()->isPointerTy()) return;
649 bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
651 int op;
652 if (fp) {
653 op = getRandom() %
654 (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
655 CmpInst::FIRST_FCMP_PREDICATE;
656 } else {
657 op = getRandom() %
658 (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
659 CmpInst::FIRST_ICMP_PREDICATE;
662 Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
663 (CmpInst::Predicate)op, Val0, Val1, "Cmp",
664 BB->getTerminator());
665 return PT->push_back(V);
669 } // end anonymous namespace
671 static void FillFunction(Function *F, Random &R) {
672 // Create a legal entry block.
673 BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
674 ReturnInst::Create(F->getContext(), BB);
676 // Create the value table.
677 Modifier::PieceTable PT;
679 // Consider arguments as legal values.
680 for (auto &arg : F->args())
681 PT.push_back(&arg);
683 // List of modifiers which add new random instructions.
684 std::vector<std::unique_ptr<Modifier>> Modifiers;
685 Modifiers.emplace_back(new LoadModifier(BB, &PT, &R));
686 Modifiers.emplace_back(new StoreModifier(BB, &PT, &R));
687 auto SM = Modifiers.back().get();
688 Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R));
689 Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R));
690 Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R));
691 Modifiers.emplace_back(new BinModifier(BB, &PT, &R));
692 Modifiers.emplace_back(new CastModifier(BB, &PT, &R));
693 Modifiers.emplace_back(new SelectModifier(BB, &PT, &R));
694 Modifiers.emplace_back(new CmpModifier(BB, &PT, &R));
696 // Generate the random instructions
697 AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas
698 ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants
700 for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i)
701 for (auto &Mod : Modifiers)
702 Mod->Act();
704 SM->ActN(5); // Throw in a few stores.
707 static void IntroduceControlFlow(Function *F, Random &R) {
708 std::vector<Instruction*> BoolInst;
709 for (auto &Instr : F->front()) {
710 if (Instr.getType() == IntegerType::getInt1Ty(F->getContext()))
711 BoolInst.push_back(&Instr);
714 std::shuffle(BoolInst.begin(), BoolInst.end(), R);
716 for (auto *Instr : BoolInst) {
717 BasicBlock *Curr = Instr->getParent();
718 BasicBlock::iterator Loc = Instr->getIterator();
719 BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
720 Instr->moveBefore(Curr->getTerminator());
721 if (Curr != &F->getEntryBlock()) {
722 BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
723 Curr->getTerminator()->eraseFromParent();
728 } // end namespace llvm
730 int main(int argc, char **argv) {
731 using namespace llvm;
733 // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
734 PrettyStackTraceProgram X(argc, argv);
735 cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
736 llvm_shutdown_obj Y;
738 auto M = std::make_unique<Module>("/tmp/autogen.bc", Context);
739 Function *F = GenEmptyFunction(M.get());
741 // Pick an initial seed value
742 Random R(SeedCL);
743 // Generate lots of random instructions inside a single basic block.
744 FillFunction(F, R);
745 // Break the basic block into many loops.
746 IntroduceControlFlow(F, R);
748 // Figure out what stream we are supposed to write to...
749 std::unique_ptr<ToolOutputFile> Out;
750 // Default to standard output.
751 if (OutputFilename.empty())
752 OutputFilename = "-";
754 std::error_code EC;
755 Out.reset(new ToolOutputFile(OutputFilename, EC, sys::fs::OF_None));
756 if (EC) {
757 errs() << EC.message() << '\n';
758 return 1;
761 legacy::PassManager Passes;
762 Passes.add(createVerifierPass());
763 Passes.add(createPrintModulePass(Out->os()));
764 Passes.run(*M.get());
765 Out->keep();
767 return 0;