Fix uninitialized variable
[llvm-core.git] / lib / Analysis / DemandedBits.cpp
blob35af4be485f821f3320e583b0ed262aef18480d7
1 //===- DemandedBits.cpp - Determine demanded bits -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a demanded bits analysis. A demanded bit is one that
11 // contributes to a result; bits that are not demanded can be either zero or
12 // one without affecting control or data flow. For example in this sequence:
14 // %1 = add i32 %x, %y
15 // %2 = trunc i32 %1 to i16
17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
18 // trunc.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Analysis/DemandedBits.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/KnownBits.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cstdint>
52 using namespace llvm;
54 #define DEBUG_TYPE "demanded-bits"
56 char DemandedBitsWrapperPass::ID = 0;
58 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
59 "Demanded bits analysis", false, false)
60 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
61 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
62 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
63 "Demanded bits analysis", false, false)
65 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
66 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
69 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
70 AU.setPreservesCFG();
71 AU.addRequired<AssumptionCacheTracker>();
72 AU.addRequired<DominatorTreeWrapperPass>();
73 AU.setPreservesAll();
76 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
77 DB->print(OS);
80 static bool isAlwaysLive(Instruction *I) {
81 return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
82 I->mayHaveSideEffects();
85 void DemandedBits::determineLiveOperandBits(
86 const Instruction *UserI, const Instruction *I, unsigned OperandNo,
87 const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) {
88 unsigned BitWidth = AB.getBitWidth();
90 // We're called once per operand, but for some instructions, we need to
91 // compute known bits of both operands in order to determine the live bits of
92 // either (when both operands are instructions themselves). We don't,
93 // however, want to do this twice, so we cache the result in APInts that live
94 // in the caller. For the two-relevant-operands case, both operand values are
95 // provided here.
96 auto ComputeKnownBits =
97 [&](unsigned BitWidth, const Value *V1, const Value *V2) {
98 const DataLayout &DL = I->getModule()->getDataLayout();
99 Known = KnownBits(BitWidth);
100 computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
102 if (V2) {
103 Known2 = KnownBits(BitWidth);
104 computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
108 switch (UserI->getOpcode()) {
109 default: break;
110 case Instruction::Call:
111 case Instruction::Invoke:
112 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
113 switch (II->getIntrinsicID()) {
114 default: break;
115 case Intrinsic::bswap:
116 // The alive bits of the input are the swapped alive bits of
117 // the output.
118 AB = AOut.byteSwap();
119 break;
120 case Intrinsic::bitreverse:
121 // The alive bits of the input are the reversed alive bits of
122 // the output.
123 AB = AOut.reverseBits();
124 break;
125 case Intrinsic::ctlz:
126 if (OperandNo == 0) {
127 // We need some output bits, so we need all bits of the
128 // input to the left of, and including, the leftmost bit
129 // known to be one.
130 ComputeKnownBits(BitWidth, I, nullptr);
131 AB = APInt::getHighBitsSet(BitWidth,
132 std::min(BitWidth, Known.countMaxLeadingZeros()+1));
134 break;
135 case Intrinsic::cttz:
136 if (OperandNo == 0) {
137 // We need some output bits, so we need all bits of the
138 // input to the right of, and including, the rightmost bit
139 // known to be one.
140 ComputeKnownBits(BitWidth, I, nullptr);
141 AB = APInt::getLowBitsSet(BitWidth,
142 std::min(BitWidth, Known.countMaxTrailingZeros()+1));
144 break;
146 break;
147 case Instruction::Add:
148 case Instruction::Sub:
149 case Instruction::Mul:
150 // Find the highest live output bit. We don't need any more input
151 // bits than that (adds, and thus subtracts, ripple only to the
152 // left).
153 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
154 break;
155 case Instruction::Shl:
156 if (OperandNo == 0)
157 if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
158 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
159 AB = AOut.lshr(ShiftAmt);
161 // If the shift is nuw/nsw, then the high bits are not dead
162 // (because we've promised that they *must* be zero).
163 const ShlOperator *S = cast<ShlOperator>(UserI);
164 if (S->hasNoSignedWrap())
165 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
166 else if (S->hasNoUnsignedWrap())
167 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
169 break;
170 case Instruction::LShr:
171 if (OperandNo == 0)
172 if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
173 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
174 AB = AOut.shl(ShiftAmt);
176 // If the shift is exact, then the low bits are not dead
177 // (they must be zero).
178 if (cast<LShrOperator>(UserI)->isExact())
179 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
181 break;
182 case Instruction::AShr:
183 if (OperandNo == 0)
184 if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
185 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
186 AB = AOut.shl(ShiftAmt);
187 // Because the high input bit is replicated into the
188 // high-order bits of the result, if we need any of those
189 // bits, then we must keep the highest input bit.
190 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
191 .getBoolValue())
192 AB.setSignBit();
194 // If the shift is exact, then the low bits are not dead
195 // (they must be zero).
196 if (cast<AShrOperator>(UserI)->isExact())
197 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
199 break;
200 case Instruction::And:
201 AB = AOut;
203 // For bits that are known zero, the corresponding bits in the
204 // other operand are dead (unless they're both zero, in which
205 // case they can't both be dead, so just mark the LHS bits as
206 // dead).
207 if (OperandNo == 0) {
208 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
209 AB &= ~Known2.Zero;
210 } else {
211 if (!isa<Instruction>(UserI->getOperand(0)))
212 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
213 AB &= ~(Known.Zero & ~Known2.Zero);
215 break;
216 case Instruction::Or:
217 AB = AOut;
219 // For bits that are known one, the corresponding bits in the
220 // other operand are dead (unless they're both one, in which
221 // case they can't both be dead, so just mark the LHS bits as
222 // dead).
223 if (OperandNo == 0) {
224 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
225 AB &= ~Known2.One;
226 } else {
227 if (!isa<Instruction>(UserI->getOperand(0)))
228 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
229 AB &= ~(Known.One & ~Known2.One);
231 break;
232 case Instruction::Xor:
233 case Instruction::PHI:
234 AB = AOut;
235 break;
236 case Instruction::Trunc:
237 AB = AOut.zext(BitWidth);
238 break;
239 case Instruction::ZExt:
240 AB = AOut.trunc(BitWidth);
241 break;
242 case Instruction::SExt:
243 AB = AOut.trunc(BitWidth);
244 // Because the high input bit is replicated into the
245 // high-order bits of the result, if we need any of those
246 // bits, then we must keep the highest input bit.
247 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
248 AOut.getBitWidth() - BitWidth))
249 .getBoolValue())
250 AB.setSignBit();
251 break;
252 case Instruction::Select:
253 if (OperandNo != 0)
254 AB = AOut;
255 break;
259 bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
260 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
261 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
262 DB.emplace(F, AC, DT);
263 return false;
266 void DemandedBitsWrapperPass::releaseMemory() {
267 DB.reset();
270 void DemandedBits::performAnalysis() {
271 if (Analyzed)
272 // Analysis already completed for this function.
273 return;
274 Analyzed = true;
276 Visited.clear();
277 AliveBits.clear();
279 SmallVector<Instruction*, 128> Worklist;
281 // Collect the set of "root" instructions that are known live.
282 for (Instruction &I : instructions(F)) {
283 if (!isAlwaysLive(&I))
284 continue;
286 LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
287 // For integer-valued instructions, set up an initial empty set of alive
288 // bits and add the instruction to the work list. For other instructions
289 // add their operands to the work list (for integer values operands, mark
290 // all bits as live).
291 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
292 if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second)
293 Worklist.push_back(&I);
295 continue;
298 // Non-integer-typed instructions...
299 for (Use &OI : I.operands()) {
300 if (Instruction *J = dyn_cast<Instruction>(OI)) {
301 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
302 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
303 Worklist.push_back(J);
306 // To save memory, we don't add I to the Visited set here. Instead, we
307 // check isAlwaysLive on every instruction when searching for dead
308 // instructions later (we need to check isAlwaysLive for the
309 // integer-typed instructions anyway).
312 // Propagate liveness backwards to operands.
313 while (!Worklist.empty()) {
314 Instruction *UserI = Worklist.pop_back_val();
316 LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
317 APInt AOut;
318 if (UserI->getType()->isIntegerTy()) {
319 AOut = AliveBits[UserI];
320 LLVM_DEBUG(dbgs() << " Alive Out: " << AOut);
322 LLVM_DEBUG(dbgs() << "\n");
324 if (!UserI->getType()->isIntegerTy())
325 Visited.insert(UserI);
327 KnownBits Known, Known2;
328 // Compute the set of alive bits for each operand. These are anded into the
329 // existing set, if any, and if that changes the set of alive bits, the
330 // operand is added to the work-list.
331 for (Use &OI : UserI->operands()) {
332 if (Instruction *I = dyn_cast<Instruction>(OI)) {
333 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
334 unsigned BitWidth = IT->getBitWidth();
335 APInt AB = APInt::getAllOnesValue(BitWidth);
336 if (UserI->getType()->isIntegerTy() && !AOut &&
337 !isAlwaysLive(UserI)) {
338 AB = APInt(BitWidth, 0);
339 } else {
340 // If all bits of the output are dead, then all bits of the input
341 // Bits of each operand that are used to compute alive bits of the
342 // output are alive, all others are dead.
343 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
344 Known, Known2);
347 // If we've added to the set of alive bits (or the operand has not
348 // been previously visited), then re-queue the operand to be visited
349 // again.
350 APInt ABPrev(BitWidth, 0);
351 auto ABI = AliveBits.find(I);
352 if (ABI != AliveBits.end())
353 ABPrev = ABI->second;
355 APInt ABNew = AB | ABPrev;
356 if (ABNew != ABPrev || ABI == AliveBits.end()) {
357 AliveBits[I] = std::move(ABNew);
358 Worklist.push_back(I);
360 } else if (!Visited.count(I)) {
361 Worklist.push_back(I);
368 APInt DemandedBits::getDemandedBits(Instruction *I) {
369 performAnalysis();
371 const DataLayout &DL = I->getModule()->getDataLayout();
372 auto Found = AliveBits.find(I);
373 if (Found != AliveBits.end())
374 return Found->second;
375 return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
378 bool DemandedBits::isInstructionDead(Instruction *I) {
379 performAnalysis();
381 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
382 !isAlwaysLive(I);
385 void DemandedBits::print(raw_ostream &OS) {
386 performAnalysis();
387 for (auto &KV : AliveBits) {
388 OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
389 << " for " << *KV.first << '\n';
393 FunctionPass *llvm::createDemandedBitsWrapperPass() {
394 return new DemandedBitsWrapperPass();
397 AnalysisKey DemandedBitsAnalysis::Key;
399 DemandedBits DemandedBitsAnalysis::run(Function &F,
400 FunctionAnalysisManager &AM) {
401 auto &AC = AM.getResult<AssumptionAnalysis>(F);
402 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
403 return DemandedBits(F, AC, DT);
406 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
407 FunctionAnalysisManager &AM) {
408 AM.getResult<DemandedBitsAnalysis>(F).print(OS);
409 return PreservedAnalyses::all();