1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IRPrintingPasses.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
40 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
41 template class llvm::LoopBase
<BasicBlock
, Loop
>;
42 template class llvm::LoopInfoBase
<BasicBlock
, Loop
>;
44 // Always verify loopinfo if expensive checking is enabled.
45 #ifdef EXPENSIVE_CHECKS
46 bool llvm::VerifyLoopInfo
= true;
48 bool llvm::VerifyLoopInfo
= false;
50 static cl::opt
<bool, true>
51 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo
),
52 cl::Hidden
, cl::desc("Verify loop info (time consuming)"));
54 //===----------------------------------------------------------------------===//
55 // Loop implementation
58 bool Loop::isLoopInvariant(const Value
*V
) const {
59 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
61 return true; // All non-instructions are loop invariant
64 bool Loop::hasLoopInvariantOperands(const Instruction
*I
) const {
65 return all_of(I
->operands(), [this](Value
*V
) { return isLoopInvariant(V
); });
68 bool Loop::makeLoopInvariant(Value
*V
, bool &Changed
,
69 Instruction
*InsertPt
) const {
70 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
71 return makeLoopInvariant(I
, Changed
, InsertPt
);
72 return true; // All non-instructions are loop-invariant.
75 bool Loop::makeLoopInvariant(Instruction
*I
, bool &Changed
,
76 Instruction
*InsertPt
) const {
77 // Test if the value is already loop-invariant.
78 if (isLoopInvariant(I
))
80 if (!isSafeToSpeculativelyExecute(I
))
82 if (I
->mayReadFromMemory())
84 // EH block instructions are immobile.
87 // Determine the insertion point, unless one was given.
89 BasicBlock
*Preheader
= getLoopPreheader();
90 // Without a preheader, hoisting is not feasible.
93 InsertPt
= Preheader
->getTerminator();
95 // Don't hoist instructions with loop-variant operands.
96 for (Value
*Operand
: I
->operands())
97 if (!makeLoopInvariant(Operand
, Changed
, InsertPt
))
101 I
->moveBefore(InsertPt
);
103 // There is possibility of hoisting this instruction above some arbitrary
104 // condition. Any metadata defined on it can be control dependent on this
105 // condition. Conservatively strip it here so that we don't give any wrong
106 // information to the optimizer.
107 I
->dropUnknownNonDebugMetadata();
113 PHINode
*Loop::getCanonicalInductionVariable() const {
114 BasicBlock
*H
= getHeader();
116 BasicBlock
*Incoming
= nullptr, *Backedge
= nullptr;
117 pred_iterator PI
= pred_begin(H
);
118 assert(PI
!= pred_end(H
) && "Loop must have at least one backedge!");
120 if (PI
== pred_end(H
))
121 return nullptr; // dead loop
123 if (PI
!= pred_end(H
))
124 return nullptr; // multiple backedges?
126 if (contains(Incoming
)) {
127 if (contains(Backedge
))
129 std::swap(Incoming
, Backedge
);
130 } else if (!contains(Backedge
))
133 // Loop over all of the PHI nodes, looking for a canonical indvar.
134 for (BasicBlock::iterator I
= H
->begin(); isa
<PHINode
>(I
); ++I
) {
135 PHINode
*PN
= cast
<PHINode
>(I
);
136 if (ConstantInt
*CI
=
137 dyn_cast
<ConstantInt
>(PN
->getIncomingValueForBlock(Incoming
)))
139 if (Instruction
*Inc
=
140 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(Backedge
)))
141 if (Inc
->getOpcode() == Instruction::Add
&& Inc
->getOperand(0) == PN
)
142 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Inc
->getOperand(1)))
149 // Check that 'BB' doesn't have any uses outside of the 'L'
150 static bool isBlockInLCSSAForm(const Loop
&L
, const BasicBlock
&BB
,
152 for (const Instruction
&I
: BB
) {
153 // Tokens can't be used in PHI nodes and live-out tokens prevent loop
154 // optimizations, so for the purposes of considered LCSSA form, we
156 if (I
.getType()->isTokenTy())
159 for (const Use
&U
: I
.uses()) {
160 const Instruction
*UI
= cast
<Instruction
>(U
.getUser());
161 const BasicBlock
*UserBB
= UI
->getParent();
162 if (const PHINode
*P
= dyn_cast
<PHINode
>(UI
))
163 UserBB
= P
->getIncomingBlock(U
);
165 // Check the current block, as a fast-path, before checking whether
166 // the use is anywhere in the loop. Most values are used in the same
167 // block they are defined in. Also, blocks not reachable from the
168 // entry are special; uses in them don't need to go through PHIs.
169 if (UserBB
!= &BB
&& !L
.contains(UserBB
) &&
170 DT
.isReachableFromEntry(UserBB
))
177 bool Loop::isLCSSAForm(DominatorTree
&DT
) const {
178 // For each block we check that it doesn't have any uses outside of this loop.
179 return all_of(this->blocks(), [&](const BasicBlock
*BB
) {
180 return isBlockInLCSSAForm(*this, *BB
, DT
);
184 bool Loop::isRecursivelyLCSSAForm(DominatorTree
&DT
, const LoopInfo
&LI
) const {
185 // For each block we check that it doesn't have any uses outside of its
186 // innermost loop. This process will transitively guarantee that the current
187 // loop and all of the nested loops are in LCSSA form.
188 return all_of(this->blocks(), [&](const BasicBlock
*BB
) {
189 return isBlockInLCSSAForm(*LI
.getLoopFor(BB
), *BB
, DT
);
193 bool Loop::isLoopSimplifyForm() const {
194 // Normal-form loops have a preheader, a single backedge, and all of their
195 // exits have all their predecessors inside the loop.
196 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
199 // Routines that reform the loop CFG and split edges often fail on indirectbr.
200 bool Loop::isSafeToClone() const {
201 // Return false if any loop blocks contain indirectbrs, or there are any calls
202 // to noduplicate functions.
203 for (BasicBlock
*BB
: this->blocks()) {
204 if (isa
<IndirectBrInst
>(BB
->getTerminator()))
207 for (Instruction
&I
: *BB
)
208 if (auto CS
= CallSite(&I
))
209 if (CS
.cannotDuplicate())
215 MDNode
*Loop::getLoopID() const {
216 MDNode
*LoopID
= nullptr;
218 // Go through the latch blocks and check the terminator for the metadata.
219 SmallVector
<BasicBlock
*, 4> LatchesBlocks
;
220 getLoopLatches(LatchesBlocks
);
221 for (BasicBlock
*BB
: LatchesBlocks
) {
222 Instruction
*TI
= BB
->getTerminator();
223 MDNode
*MD
= TI
->getMetadata(LLVMContext::MD_loop
);
230 else if (MD
!= LoopID
)
233 if (!LoopID
|| LoopID
->getNumOperands() == 0 ||
234 LoopID
->getOperand(0) != LoopID
)
239 void Loop::setLoopID(MDNode
*LoopID
) const {
240 assert(LoopID
&& "Loop ID should not be null");
241 assert(LoopID
->getNumOperands() > 0 && "Loop ID needs at least one operand");
242 assert(LoopID
->getOperand(0) == LoopID
&& "Loop ID should refer to itself");
244 if (BasicBlock
*Latch
= getLoopLatch()) {
245 Latch
->getTerminator()->setMetadata(LLVMContext::MD_loop
, LoopID
);
249 assert(!getLoopLatch() &&
250 "The loop should have no single latch at this point");
251 BasicBlock
*H
= getHeader();
252 for (BasicBlock
*BB
: this->blocks()) {
253 Instruction
*TI
= BB
->getTerminator();
254 for (BasicBlock
*Successor
: successors(TI
)) {
256 TI
->setMetadata(LLVMContext::MD_loop
, LoopID
);
261 void Loop::setLoopAlreadyUnrolled() {
262 MDNode
*LoopID
= getLoopID();
263 // First remove any existing loop unrolling metadata.
264 SmallVector
<Metadata
*, 4> MDs
;
265 // Reserve first location for self reference to the LoopID metadata node.
266 MDs
.push_back(nullptr);
269 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
270 bool IsUnrollMetadata
= false;
271 MDNode
*MD
= dyn_cast
<MDNode
>(LoopID
->getOperand(i
));
273 const MDString
*S
= dyn_cast
<MDString
>(MD
->getOperand(0));
274 IsUnrollMetadata
= S
&& S
->getString().startswith("llvm.loop.unroll.");
276 if (!IsUnrollMetadata
)
277 MDs
.push_back(LoopID
->getOperand(i
));
281 // Add unroll(disable) metadata to disable future unrolling.
282 LLVMContext
&Context
= getHeader()->getContext();
283 SmallVector
<Metadata
*, 1> DisableOperands
;
284 DisableOperands
.push_back(MDString::get(Context
, "llvm.loop.unroll.disable"));
285 MDNode
*DisableNode
= MDNode::get(Context
, DisableOperands
);
286 MDs
.push_back(DisableNode
);
288 MDNode
*NewLoopID
= MDNode::get(Context
, MDs
);
289 // Set operand 0 to refer to the loop id itself.
290 NewLoopID
->replaceOperandWith(0, NewLoopID
);
291 setLoopID(NewLoopID
);
294 bool Loop::isAnnotatedParallel() const {
295 MDNode
*DesiredLoopIdMetadata
= getLoopID();
297 if (!DesiredLoopIdMetadata
)
300 // The loop branch contains the parallel loop metadata. In order to ensure
301 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
302 // dependencies (thus converted the loop back to a sequential loop), check
303 // that all the memory instructions in the loop contain parallelism metadata
304 // that point to the same unique "loop id metadata" the loop branch does.
305 for (BasicBlock
*BB
: this->blocks()) {
306 for (Instruction
&I
: *BB
) {
307 if (!I
.mayReadOrWriteMemory())
310 // The memory instruction can refer to the loop identifier metadata
311 // directly or indirectly through another list metadata (in case of
312 // nested parallel loops). The loop identifier metadata refers to
313 // itself so we can check both cases with the same routine.
315 I
.getMetadata(LLVMContext::MD_mem_parallel_loop_access
);
320 bool LoopIdMDFound
= false;
321 for (const MDOperand
&MDOp
: LoopIdMD
->operands()) {
322 if (MDOp
== DesiredLoopIdMetadata
) {
323 LoopIdMDFound
= true;
335 DebugLoc
Loop::getStartLoc() const { return getLocRange().getStart(); }
337 Loop::LocRange
Loop::getLocRange() const {
338 // If we have a debug location in the loop ID, then use it.
339 if (MDNode
*LoopID
= getLoopID()) {
341 // We use the first DebugLoc in the header as the start location of the loop
342 // and if there is a second DebugLoc in the header we use it as end location
344 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
345 if (DILocation
*L
= dyn_cast
<DILocation
>(LoopID
->getOperand(i
))) {
349 return LocRange(Start
, DebugLoc(L
));
354 return LocRange(Start
);
357 // Try the pre-header first.
358 if (BasicBlock
*PHeadBB
= getLoopPreheader())
359 if (DebugLoc DL
= PHeadBB
->getTerminator()->getDebugLoc())
362 // If we have no pre-header or there are no instructions with debug
363 // info in it, try the header.
364 if (BasicBlock
*HeadBB
= getHeader())
365 return LocRange(HeadBB
->getTerminator()->getDebugLoc());
370 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
371 LLVM_DUMP_METHOD
void Loop::dump() const { print(dbgs()); }
373 LLVM_DUMP_METHOD
void Loop::dumpVerbose() const {
374 print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
378 //===----------------------------------------------------------------------===//
379 // UnloopUpdater implementation
383 /// Find the new parent loop for all blocks within the "unloop" whose last
384 /// backedges has just been removed.
385 class UnloopUpdater
{
391 // Map unloop's immediate subloops to their nearest reachable parents. Nested
392 // loops within these subloops will not change parents. However, an immediate
393 // subloop's new parent will be the nearest loop reachable from either its own
394 // exits *or* any of its nested loop's exits.
395 DenseMap
<Loop
*, Loop
*> SubloopParents
;
397 // Flag the presence of an irreducible backedge whose destination is a block
398 // directly contained by the original unloop.
402 UnloopUpdater(Loop
*UL
, LoopInfo
*LInfo
)
403 : Unloop(*UL
), LI(LInfo
), DFS(UL
), FoundIB(false) {}
405 void updateBlockParents();
407 void removeBlocksFromAncestors();
409 void updateSubloopParents();
412 Loop
*getNearestLoop(BasicBlock
*BB
, Loop
*BBLoop
);
414 } // end anonymous namespace
416 /// Update the parent loop for all blocks that are directly contained within the
417 /// original "unloop".
418 void UnloopUpdater::updateBlockParents() {
419 if (Unloop
.getNumBlocks()) {
420 // Perform a post order CFG traversal of all blocks within this loop,
421 // propagating the nearest loop from successors to predecessors.
422 LoopBlocksTraversal
Traversal(DFS
, LI
);
423 for (BasicBlock
*POI
: Traversal
) {
425 Loop
*L
= LI
->getLoopFor(POI
);
426 Loop
*NL
= getNearestLoop(POI
, L
);
429 // For reducible loops, NL is now an ancestor of Unloop.
430 assert((NL
!= &Unloop
&& (!NL
|| NL
->contains(&Unloop
))) &&
431 "uninitialized successor");
432 LI
->changeLoopFor(POI
, NL
);
434 // Or the current block is part of a subloop, in which case its parent
436 assert((FoundIB
|| Unloop
.contains(L
)) && "uninitialized successor");
440 // Each irreducible loop within the unloop induces a round of iteration using
441 // the DFS result cached by Traversal.
442 bool Changed
= FoundIB
;
443 for (unsigned NIters
= 0; Changed
; ++NIters
) {
444 assert(NIters
< Unloop
.getNumBlocks() && "runaway iterative algorithm");
446 // Iterate over the postorder list of blocks, propagating the nearest loop
447 // from successors to predecessors as before.
449 for (LoopBlocksDFS::POIterator POI
= DFS
.beginPostorder(),
450 POE
= DFS
.endPostorder();
453 Loop
*L
= LI
->getLoopFor(*POI
);
454 Loop
*NL
= getNearestLoop(*POI
, L
);
456 assert(NL
!= &Unloop
&& (!NL
|| NL
->contains(&Unloop
)) &&
457 "uninitialized successor");
458 LI
->changeLoopFor(*POI
, NL
);
465 /// Remove unloop's blocks from all ancestors below their new parents.
466 void UnloopUpdater::removeBlocksFromAncestors() {
467 // Remove all unloop's blocks (including those in nested subloops) from
468 // ancestors below the new parent loop.
469 for (Loop::block_iterator BI
= Unloop
.block_begin(), BE
= Unloop
.block_end();
471 Loop
*OuterParent
= LI
->getLoopFor(*BI
);
472 if (Unloop
.contains(OuterParent
)) {
473 while (OuterParent
->getParentLoop() != &Unloop
)
474 OuterParent
= OuterParent
->getParentLoop();
475 OuterParent
= SubloopParents
[OuterParent
];
477 // Remove blocks from former Ancestors except Unloop itself which will be
479 for (Loop
*OldParent
= Unloop
.getParentLoop(); OldParent
!= OuterParent
;
480 OldParent
= OldParent
->getParentLoop()) {
481 assert(OldParent
&& "new loop is not an ancestor of the original");
482 OldParent
->removeBlockFromLoop(*BI
);
487 /// Update the parent loop for all subloops directly nested within unloop.
488 void UnloopUpdater::updateSubloopParents() {
489 while (!Unloop
.empty()) {
490 Loop
*Subloop
= *std::prev(Unloop
.end());
491 Unloop
.removeChildLoop(std::prev(Unloop
.end()));
493 assert(SubloopParents
.count(Subloop
) && "DFS failed to visit subloop");
494 if (Loop
*Parent
= SubloopParents
[Subloop
])
495 Parent
->addChildLoop(Subloop
);
497 LI
->addTopLevelLoop(Subloop
);
501 /// Return the nearest parent loop among this block's successors. If a successor
502 /// is a subloop header, consider its parent to be the nearest parent of the
505 /// For subloop blocks, simply update SubloopParents and return NULL.
506 Loop
*UnloopUpdater::getNearestLoop(BasicBlock
*BB
, Loop
*BBLoop
) {
508 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
509 // is considered uninitialized.
510 Loop
*NearLoop
= BBLoop
;
512 Loop
*Subloop
= nullptr;
513 if (NearLoop
!= &Unloop
&& Unloop
.contains(NearLoop
)) {
515 // Find the subloop ancestor that is directly contained within Unloop.
516 while (Subloop
->getParentLoop() != &Unloop
) {
517 Subloop
= Subloop
->getParentLoop();
518 assert(Subloop
&& "subloop is not an ancestor of the original loop");
520 // Get the current nearest parent of the Subloop exits, initially Unloop.
521 NearLoop
= SubloopParents
.insert({Subloop
, &Unloop
}).first
->second
;
524 succ_iterator I
= succ_begin(BB
), E
= succ_end(BB
);
526 assert(!Subloop
&& "subloop blocks must have a successor");
527 NearLoop
= nullptr; // unloop blocks may now exit the function.
529 for (; I
!= E
; ++I
) {
531 continue; // self loops are uninteresting
533 Loop
*L
= LI
->getLoopFor(*I
);
535 // This successor has not been processed. This path must lead to an
536 // irreducible backedge.
537 assert((FoundIB
|| !DFS
.hasPostorder(*I
)) && "should have seen IB");
540 if (L
!= &Unloop
&& Unloop
.contains(L
)) {
541 // Successor is in a subloop.
543 continue; // Branching within subloops. Ignore it.
545 // BB branches from the original into a subloop header.
546 assert(L
->getParentLoop() == &Unloop
&& "cannot skip into nested loops");
548 // Get the current nearest parent of the Subloop's exits.
549 L
= SubloopParents
[L
];
550 // L could be Unloop if the only exit was an irreducible backedge.
555 // Handle critical edges from Unloop into a sibling loop.
556 if (L
&& !L
->contains(&Unloop
)) {
557 L
= L
->getParentLoop();
559 // Remember the nearest parent loop among successors or subloop exits.
560 if (NearLoop
== &Unloop
|| !NearLoop
|| NearLoop
->contains(L
))
564 SubloopParents
[Subloop
] = NearLoop
;
570 LoopInfo::LoopInfo(const DomTreeBase
<BasicBlock
> &DomTree
) { analyze(DomTree
); }
572 bool LoopInfo::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
573 FunctionAnalysisManager::Invalidator
&) {
574 // Check whether the analysis, all analyses on functions, or the function's
575 // CFG have been preserved.
576 auto PAC
= PA
.getChecker
<LoopAnalysis
>();
577 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>() ||
578 PAC
.preservedSet
<CFGAnalyses
>());
581 void LoopInfo::erase(Loop
*Unloop
) {
582 assert(!Unloop
->isInvalid() && "Loop has already been erased!");
584 auto InvalidateOnExit
= make_scope_exit([&]() { destroy(Unloop
); });
586 // First handle the special case of no parent loop to simplify the algorithm.
587 if (!Unloop
->getParentLoop()) {
588 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
589 for (Loop::block_iterator I
= Unloop
->block_begin(),
590 E
= Unloop
->block_end();
593 // Don't reparent blocks in subloops.
594 if (getLoopFor(*I
) != Unloop
)
597 // Blocks no longer have a parent but are still referenced by Unloop until
598 // the Unloop object is deleted.
599 changeLoopFor(*I
, nullptr);
602 // Remove the loop from the top-level LoopInfo object.
603 for (iterator I
= begin();; ++I
) {
604 assert(I
!= end() && "Couldn't find loop");
611 // Move all of the subloops to the top-level.
612 while (!Unloop
->empty())
613 addTopLevelLoop(Unloop
->removeChildLoop(std::prev(Unloop
->end())));
618 // Update the parent loop for all blocks within the loop. Blocks within
619 // subloops will not change parents.
620 UnloopUpdater
Updater(Unloop
, this);
621 Updater
.updateBlockParents();
623 // Remove blocks from former ancestor loops.
624 Updater
.removeBlocksFromAncestors();
626 // Add direct subloops as children in their new parent loop.
627 Updater
.updateSubloopParents();
629 // Remove unloop from its parent loop.
630 Loop
*ParentLoop
= Unloop
->getParentLoop();
631 for (Loop::iterator I
= ParentLoop
->begin();; ++I
) {
632 assert(I
!= ParentLoop
->end() && "Couldn't find loop");
634 ParentLoop
->removeChildLoop(I
);
640 AnalysisKey
LoopAnalysis::Key
;
642 LoopInfo
LoopAnalysis::run(Function
&F
, FunctionAnalysisManager
&AM
) {
643 // FIXME: Currently we create a LoopInfo from scratch for every function.
644 // This may prove to be too wasteful due to deallocating and re-allocating
645 // memory each time for the underlying map and vector datastructures. At some
646 // point it may prove worthwhile to use a freelist and recycle LoopInfo
647 // objects. I don't want to add that kind of complexity until the scope of
648 // the problem is better understood.
650 LI
.analyze(AM
.getResult
<DominatorTreeAnalysis
>(F
));
654 PreservedAnalyses
LoopPrinterPass::run(Function
&F
,
655 FunctionAnalysisManager
&AM
) {
656 AM
.getResult
<LoopAnalysis
>(F
).print(OS
);
657 return PreservedAnalyses::all();
660 void llvm::printLoop(Loop
&L
, raw_ostream
&OS
, const std::string
&Banner
) {
662 if (forcePrintModuleIR()) {
663 // handling -print-module-scope
664 OS
<< Banner
<< " (loop: ";
665 L
.getHeader()->printAsOperand(OS
, false);
668 // printing whole module
669 OS
<< *L
.getHeader()->getModule();
675 auto *PreHeader
= L
.getLoopPreheader();
677 OS
<< "\n; Preheader:";
678 PreHeader
->print(OS
);
682 for (auto *Block
: L
.blocks())
686 OS
<< "Printing <null> block";
688 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
689 L
.getExitBlocks(ExitBlocks
);
690 if (!ExitBlocks
.empty()) {
691 OS
<< "\n; Exit blocks";
692 for (auto *Block
: ExitBlocks
)
696 OS
<< "Printing <null> block";
700 //===----------------------------------------------------------------------===//
701 // LoopInfo implementation
704 char LoopInfoWrapperPass::ID
= 0;
705 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass
, "loops", "Natural Loop Information",
707 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
708 INITIALIZE_PASS_END(LoopInfoWrapperPass
, "loops", "Natural Loop Information",
711 bool LoopInfoWrapperPass::runOnFunction(Function
&) {
713 LI
.analyze(getAnalysis
<DominatorTreeWrapperPass
>().getDomTree());
717 void LoopInfoWrapperPass::verifyAnalysis() const {
718 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
719 // function each time verifyAnalysis is called is very expensive. The
720 // -verify-loop-info option can enable this. In order to perform some
721 // checking by default, LoopPass has been taught to call verifyLoop manually
722 // during loop pass sequences.
723 if (VerifyLoopInfo
) {
724 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
729 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
730 AU
.setPreservesAll();
731 AU
.addRequired
<DominatorTreeWrapperPass
>();
734 void LoopInfoWrapperPass::print(raw_ostream
&OS
, const Module
*) const {
738 PreservedAnalyses
LoopVerifierPass::run(Function
&F
,
739 FunctionAnalysisManager
&AM
) {
740 LoopInfo
&LI
= AM
.getResult
<LoopAnalysis
>(F
);
741 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
743 return PreservedAnalyses::all();
746 //===----------------------------------------------------------------------===//
747 // LoopBlocksDFS implementation
750 /// Traverse the loop blocks and store the DFS result.
751 /// Useful for clients that just want the final DFS result and don't need to
752 /// visit blocks during the initial traversal.
753 void LoopBlocksDFS::perform(LoopInfo
*LI
) {
754 LoopBlocksTraversal
Traversal(*this, LI
);
755 for (LoopBlocksTraversal::POTIterator POI
= Traversal
.begin(),
756 POE
= Traversal
.end();