Fix uninitialized variable
[llvm-core.git] / lib / Analysis / LoopInfo.cpp
blob4b174b66d1e12aa55122d17bfdae7286bcb1444b
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IRPrintingPasses.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 using namespace llvm;
40 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
41 template class llvm::LoopBase<BasicBlock, Loop>;
42 template class llvm::LoopInfoBase<BasicBlock, Loop>;
44 // Always verify loopinfo if expensive checking is enabled.
45 #ifdef EXPENSIVE_CHECKS
46 bool llvm::VerifyLoopInfo = true;
47 #else
48 bool llvm::VerifyLoopInfo = false;
49 #endif
50 static cl::opt<bool, true>
51 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
52 cl::Hidden, cl::desc("Verify loop info (time consuming)"));
54 //===----------------------------------------------------------------------===//
55 // Loop implementation
58 bool Loop::isLoopInvariant(const Value *V) const {
59 if (const Instruction *I = dyn_cast<Instruction>(V))
60 return !contains(I);
61 return true; // All non-instructions are loop invariant
64 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
65 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
68 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
69 Instruction *InsertPt) const {
70 if (Instruction *I = dyn_cast<Instruction>(V))
71 return makeLoopInvariant(I, Changed, InsertPt);
72 return true; // All non-instructions are loop-invariant.
75 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
76 Instruction *InsertPt) const {
77 // Test if the value is already loop-invariant.
78 if (isLoopInvariant(I))
79 return true;
80 if (!isSafeToSpeculativelyExecute(I))
81 return false;
82 if (I->mayReadFromMemory())
83 return false;
84 // EH block instructions are immobile.
85 if (I->isEHPad())
86 return false;
87 // Determine the insertion point, unless one was given.
88 if (!InsertPt) {
89 BasicBlock *Preheader = getLoopPreheader();
90 // Without a preheader, hoisting is not feasible.
91 if (!Preheader)
92 return false;
93 InsertPt = Preheader->getTerminator();
95 // Don't hoist instructions with loop-variant operands.
96 for (Value *Operand : I->operands())
97 if (!makeLoopInvariant(Operand, Changed, InsertPt))
98 return false;
100 // Hoist.
101 I->moveBefore(InsertPt);
103 // There is possibility of hoisting this instruction above some arbitrary
104 // condition. Any metadata defined on it can be control dependent on this
105 // condition. Conservatively strip it here so that we don't give any wrong
106 // information to the optimizer.
107 I->dropUnknownNonDebugMetadata();
109 Changed = true;
110 return true;
113 PHINode *Loop::getCanonicalInductionVariable() const {
114 BasicBlock *H = getHeader();
116 BasicBlock *Incoming = nullptr, *Backedge = nullptr;
117 pred_iterator PI = pred_begin(H);
118 assert(PI != pred_end(H) && "Loop must have at least one backedge!");
119 Backedge = *PI++;
120 if (PI == pred_end(H))
121 return nullptr; // dead loop
122 Incoming = *PI++;
123 if (PI != pred_end(H))
124 return nullptr; // multiple backedges?
126 if (contains(Incoming)) {
127 if (contains(Backedge))
128 return nullptr;
129 std::swap(Incoming, Backedge);
130 } else if (!contains(Backedge))
131 return nullptr;
133 // Loop over all of the PHI nodes, looking for a canonical indvar.
134 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
135 PHINode *PN = cast<PHINode>(I);
136 if (ConstantInt *CI =
137 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
138 if (CI->isZero())
139 if (Instruction *Inc =
140 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
141 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
142 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
143 if (CI->isOne())
144 return PN;
146 return nullptr;
149 // Check that 'BB' doesn't have any uses outside of the 'L'
150 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
151 DominatorTree &DT) {
152 for (const Instruction &I : BB) {
153 // Tokens can't be used in PHI nodes and live-out tokens prevent loop
154 // optimizations, so for the purposes of considered LCSSA form, we
155 // can ignore them.
156 if (I.getType()->isTokenTy())
157 continue;
159 for (const Use &U : I.uses()) {
160 const Instruction *UI = cast<Instruction>(U.getUser());
161 const BasicBlock *UserBB = UI->getParent();
162 if (const PHINode *P = dyn_cast<PHINode>(UI))
163 UserBB = P->getIncomingBlock(U);
165 // Check the current block, as a fast-path, before checking whether
166 // the use is anywhere in the loop. Most values are used in the same
167 // block they are defined in. Also, blocks not reachable from the
168 // entry are special; uses in them don't need to go through PHIs.
169 if (UserBB != &BB && !L.contains(UserBB) &&
170 DT.isReachableFromEntry(UserBB))
171 return false;
174 return true;
177 bool Loop::isLCSSAForm(DominatorTree &DT) const {
178 // For each block we check that it doesn't have any uses outside of this loop.
179 return all_of(this->blocks(), [&](const BasicBlock *BB) {
180 return isBlockInLCSSAForm(*this, *BB, DT);
184 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
185 // For each block we check that it doesn't have any uses outside of its
186 // innermost loop. This process will transitively guarantee that the current
187 // loop and all of the nested loops are in LCSSA form.
188 return all_of(this->blocks(), [&](const BasicBlock *BB) {
189 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
193 bool Loop::isLoopSimplifyForm() const {
194 // Normal-form loops have a preheader, a single backedge, and all of their
195 // exits have all their predecessors inside the loop.
196 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
199 // Routines that reform the loop CFG and split edges often fail on indirectbr.
200 bool Loop::isSafeToClone() const {
201 // Return false if any loop blocks contain indirectbrs, or there are any calls
202 // to noduplicate functions.
203 for (BasicBlock *BB : this->blocks()) {
204 if (isa<IndirectBrInst>(BB->getTerminator()))
205 return false;
207 for (Instruction &I : *BB)
208 if (auto CS = CallSite(&I))
209 if (CS.cannotDuplicate())
210 return false;
212 return true;
215 MDNode *Loop::getLoopID() const {
216 MDNode *LoopID = nullptr;
218 // Go through the latch blocks and check the terminator for the metadata.
219 SmallVector<BasicBlock *, 4> LatchesBlocks;
220 getLoopLatches(LatchesBlocks);
221 for (BasicBlock *BB : LatchesBlocks) {
222 Instruction *TI = BB->getTerminator();
223 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
225 if (!MD)
226 return nullptr;
228 if (!LoopID)
229 LoopID = MD;
230 else if (MD != LoopID)
231 return nullptr;
233 if (!LoopID || LoopID->getNumOperands() == 0 ||
234 LoopID->getOperand(0) != LoopID)
235 return nullptr;
236 return LoopID;
239 void Loop::setLoopID(MDNode *LoopID) const {
240 assert(LoopID && "Loop ID should not be null");
241 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
242 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
244 if (BasicBlock *Latch = getLoopLatch()) {
245 Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
246 return;
249 assert(!getLoopLatch() &&
250 "The loop should have no single latch at this point");
251 BasicBlock *H = getHeader();
252 for (BasicBlock *BB : this->blocks()) {
253 Instruction *TI = BB->getTerminator();
254 for (BasicBlock *Successor : successors(TI)) {
255 if (Successor == H)
256 TI->setMetadata(LLVMContext::MD_loop, LoopID);
261 void Loop::setLoopAlreadyUnrolled() {
262 MDNode *LoopID = getLoopID();
263 // First remove any existing loop unrolling metadata.
264 SmallVector<Metadata *, 4> MDs;
265 // Reserve first location for self reference to the LoopID metadata node.
266 MDs.push_back(nullptr);
268 if (LoopID) {
269 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
270 bool IsUnrollMetadata = false;
271 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
272 if (MD) {
273 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
274 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
276 if (!IsUnrollMetadata)
277 MDs.push_back(LoopID->getOperand(i));
281 // Add unroll(disable) metadata to disable future unrolling.
282 LLVMContext &Context = getHeader()->getContext();
283 SmallVector<Metadata *, 1> DisableOperands;
284 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
285 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
286 MDs.push_back(DisableNode);
288 MDNode *NewLoopID = MDNode::get(Context, MDs);
289 // Set operand 0 to refer to the loop id itself.
290 NewLoopID->replaceOperandWith(0, NewLoopID);
291 setLoopID(NewLoopID);
294 bool Loop::isAnnotatedParallel() const {
295 MDNode *DesiredLoopIdMetadata = getLoopID();
297 if (!DesiredLoopIdMetadata)
298 return false;
300 // The loop branch contains the parallel loop metadata. In order to ensure
301 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
302 // dependencies (thus converted the loop back to a sequential loop), check
303 // that all the memory instructions in the loop contain parallelism metadata
304 // that point to the same unique "loop id metadata" the loop branch does.
305 for (BasicBlock *BB : this->blocks()) {
306 for (Instruction &I : *BB) {
307 if (!I.mayReadOrWriteMemory())
308 continue;
310 // The memory instruction can refer to the loop identifier metadata
311 // directly or indirectly through another list metadata (in case of
312 // nested parallel loops). The loop identifier metadata refers to
313 // itself so we can check both cases with the same routine.
314 MDNode *LoopIdMD =
315 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
317 if (!LoopIdMD)
318 return false;
320 bool LoopIdMDFound = false;
321 for (const MDOperand &MDOp : LoopIdMD->operands()) {
322 if (MDOp == DesiredLoopIdMetadata) {
323 LoopIdMDFound = true;
324 break;
328 if (!LoopIdMDFound)
329 return false;
332 return true;
335 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
337 Loop::LocRange Loop::getLocRange() const {
338 // If we have a debug location in the loop ID, then use it.
339 if (MDNode *LoopID = getLoopID()) {
340 DebugLoc Start;
341 // We use the first DebugLoc in the header as the start location of the loop
342 // and if there is a second DebugLoc in the header we use it as end location
343 // of the loop.
344 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
345 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
346 if (!Start)
347 Start = DebugLoc(L);
348 else
349 return LocRange(Start, DebugLoc(L));
353 if (Start)
354 return LocRange(Start);
357 // Try the pre-header first.
358 if (BasicBlock *PHeadBB = getLoopPreheader())
359 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
360 return LocRange(DL);
362 // If we have no pre-header or there are no instructions with debug
363 // info in it, try the header.
364 if (BasicBlock *HeadBB = getHeader())
365 return LocRange(HeadBB->getTerminator()->getDebugLoc());
367 return LocRange();
370 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
371 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
373 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
374 print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
376 #endif
378 //===----------------------------------------------------------------------===//
379 // UnloopUpdater implementation
382 namespace {
383 /// Find the new parent loop for all blocks within the "unloop" whose last
384 /// backedges has just been removed.
385 class UnloopUpdater {
386 Loop &Unloop;
387 LoopInfo *LI;
389 LoopBlocksDFS DFS;
391 // Map unloop's immediate subloops to their nearest reachable parents. Nested
392 // loops within these subloops will not change parents. However, an immediate
393 // subloop's new parent will be the nearest loop reachable from either its own
394 // exits *or* any of its nested loop's exits.
395 DenseMap<Loop *, Loop *> SubloopParents;
397 // Flag the presence of an irreducible backedge whose destination is a block
398 // directly contained by the original unloop.
399 bool FoundIB;
401 public:
402 UnloopUpdater(Loop *UL, LoopInfo *LInfo)
403 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
405 void updateBlockParents();
407 void removeBlocksFromAncestors();
409 void updateSubloopParents();
411 protected:
412 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
414 } // end anonymous namespace
416 /// Update the parent loop for all blocks that are directly contained within the
417 /// original "unloop".
418 void UnloopUpdater::updateBlockParents() {
419 if (Unloop.getNumBlocks()) {
420 // Perform a post order CFG traversal of all blocks within this loop,
421 // propagating the nearest loop from successors to predecessors.
422 LoopBlocksTraversal Traversal(DFS, LI);
423 for (BasicBlock *POI : Traversal) {
425 Loop *L = LI->getLoopFor(POI);
426 Loop *NL = getNearestLoop(POI, L);
428 if (NL != L) {
429 // For reducible loops, NL is now an ancestor of Unloop.
430 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
431 "uninitialized successor");
432 LI->changeLoopFor(POI, NL);
433 } else {
434 // Or the current block is part of a subloop, in which case its parent
435 // is unchanged.
436 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
440 // Each irreducible loop within the unloop induces a round of iteration using
441 // the DFS result cached by Traversal.
442 bool Changed = FoundIB;
443 for (unsigned NIters = 0; Changed; ++NIters) {
444 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
446 // Iterate over the postorder list of blocks, propagating the nearest loop
447 // from successors to predecessors as before.
448 Changed = false;
449 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
450 POE = DFS.endPostorder();
451 POI != POE; ++POI) {
453 Loop *L = LI->getLoopFor(*POI);
454 Loop *NL = getNearestLoop(*POI, L);
455 if (NL != L) {
456 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
457 "uninitialized successor");
458 LI->changeLoopFor(*POI, NL);
459 Changed = true;
465 /// Remove unloop's blocks from all ancestors below their new parents.
466 void UnloopUpdater::removeBlocksFromAncestors() {
467 // Remove all unloop's blocks (including those in nested subloops) from
468 // ancestors below the new parent loop.
469 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
470 BI != BE; ++BI) {
471 Loop *OuterParent = LI->getLoopFor(*BI);
472 if (Unloop.contains(OuterParent)) {
473 while (OuterParent->getParentLoop() != &Unloop)
474 OuterParent = OuterParent->getParentLoop();
475 OuterParent = SubloopParents[OuterParent];
477 // Remove blocks from former Ancestors except Unloop itself which will be
478 // deleted.
479 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
480 OldParent = OldParent->getParentLoop()) {
481 assert(OldParent && "new loop is not an ancestor of the original");
482 OldParent->removeBlockFromLoop(*BI);
487 /// Update the parent loop for all subloops directly nested within unloop.
488 void UnloopUpdater::updateSubloopParents() {
489 while (!Unloop.empty()) {
490 Loop *Subloop = *std::prev(Unloop.end());
491 Unloop.removeChildLoop(std::prev(Unloop.end()));
493 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
494 if (Loop *Parent = SubloopParents[Subloop])
495 Parent->addChildLoop(Subloop);
496 else
497 LI->addTopLevelLoop(Subloop);
501 /// Return the nearest parent loop among this block's successors. If a successor
502 /// is a subloop header, consider its parent to be the nearest parent of the
503 /// subloop's exits.
505 /// For subloop blocks, simply update SubloopParents and return NULL.
506 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
508 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
509 // is considered uninitialized.
510 Loop *NearLoop = BBLoop;
512 Loop *Subloop = nullptr;
513 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
514 Subloop = NearLoop;
515 // Find the subloop ancestor that is directly contained within Unloop.
516 while (Subloop->getParentLoop() != &Unloop) {
517 Subloop = Subloop->getParentLoop();
518 assert(Subloop && "subloop is not an ancestor of the original loop");
520 // Get the current nearest parent of the Subloop exits, initially Unloop.
521 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
524 succ_iterator I = succ_begin(BB), E = succ_end(BB);
525 if (I == E) {
526 assert(!Subloop && "subloop blocks must have a successor");
527 NearLoop = nullptr; // unloop blocks may now exit the function.
529 for (; I != E; ++I) {
530 if (*I == BB)
531 continue; // self loops are uninteresting
533 Loop *L = LI->getLoopFor(*I);
534 if (L == &Unloop) {
535 // This successor has not been processed. This path must lead to an
536 // irreducible backedge.
537 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
538 FoundIB = true;
540 if (L != &Unloop && Unloop.contains(L)) {
541 // Successor is in a subloop.
542 if (Subloop)
543 continue; // Branching within subloops. Ignore it.
545 // BB branches from the original into a subloop header.
546 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
548 // Get the current nearest parent of the Subloop's exits.
549 L = SubloopParents[L];
550 // L could be Unloop if the only exit was an irreducible backedge.
552 if (L == &Unloop) {
553 continue;
555 // Handle critical edges from Unloop into a sibling loop.
556 if (L && !L->contains(&Unloop)) {
557 L = L->getParentLoop();
559 // Remember the nearest parent loop among successors or subloop exits.
560 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
561 NearLoop = L;
563 if (Subloop) {
564 SubloopParents[Subloop] = NearLoop;
565 return BBLoop;
567 return NearLoop;
570 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
572 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
573 FunctionAnalysisManager::Invalidator &) {
574 // Check whether the analysis, all analyses on functions, or the function's
575 // CFG have been preserved.
576 auto PAC = PA.getChecker<LoopAnalysis>();
577 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
578 PAC.preservedSet<CFGAnalyses>());
581 void LoopInfo::erase(Loop *Unloop) {
582 assert(!Unloop->isInvalid() && "Loop has already been erased!");
584 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
586 // First handle the special case of no parent loop to simplify the algorithm.
587 if (!Unloop->getParentLoop()) {
588 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
589 for (Loop::block_iterator I = Unloop->block_begin(),
590 E = Unloop->block_end();
591 I != E; ++I) {
593 // Don't reparent blocks in subloops.
594 if (getLoopFor(*I) != Unloop)
595 continue;
597 // Blocks no longer have a parent but are still referenced by Unloop until
598 // the Unloop object is deleted.
599 changeLoopFor(*I, nullptr);
602 // Remove the loop from the top-level LoopInfo object.
603 for (iterator I = begin();; ++I) {
604 assert(I != end() && "Couldn't find loop");
605 if (*I == Unloop) {
606 removeLoop(I);
607 break;
611 // Move all of the subloops to the top-level.
612 while (!Unloop->empty())
613 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
615 return;
618 // Update the parent loop for all blocks within the loop. Blocks within
619 // subloops will not change parents.
620 UnloopUpdater Updater(Unloop, this);
621 Updater.updateBlockParents();
623 // Remove blocks from former ancestor loops.
624 Updater.removeBlocksFromAncestors();
626 // Add direct subloops as children in their new parent loop.
627 Updater.updateSubloopParents();
629 // Remove unloop from its parent loop.
630 Loop *ParentLoop = Unloop->getParentLoop();
631 for (Loop::iterator I = ParentLoop->begin();; ++I) {
632 assert(I != ParentLoop->end() && "Couldn't find loop");
633 if (*I == Unloop) {
634 ParentLoop->removeChildLoop(I);
635 break;
640 AnalysisKey LoopAnalysis::Key;
642 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
643 // FIXME: Currently we create a LoopInfo from scratch for every function.
644 // This may prove to be too wasteful due to deallocating and re-allocating
645 // memory each time for the underlying map and vector datastructures. At some
646 // point it may prove worthwhile to use a freelist and recycle LoopInfo
647 // objects. I don't want to add that kind of complexity until the scope of
648 // the problem is better understood.
649 LoopInfo LI;
650 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
651 return LI;
654 PreservedAnalyses LoopPrinterPass::run(Function &F,
655 FunctionAnalysisManager &AM) {
656 AM.getResult<LoopAnalysis>(F).print(OS);
657 return PreservedAnalyses::all();
660 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
662 if (forcePrintModuleIR()) {
663 // handling -print-module-scope
664 OS << Banner << " (loop: ";
665 L.getHeader()->printAsOperand(OS, false);
666 OS << ")\n";
668 // printing whole module
669 OS << *L.getHeader()->getModule();
670 return;
673 OS << Banner;
675 auto *PreHeader = L.getLoopPreheader();
676 if (PreHeader) {
677 OS << "\n; Preheader:";
678 PreHeader->print(OS);
679 OS << "\n; Loop:";
682 for (auto *Block : L.blocks())
683 if (Block)
684 Block->print(OS);
685 else
686 OS << "Printing <null> block";
688 SmallVector<BasicBlock *, 8> ExitBlocks;
689 L.getExitBlocks(ExitBlocks);
690 if (!ExitBlocks.empty()) {
691 OS << "\n; Exit blocks";
692 for (auto *Block : ExitBlocks)
693 if (Block)
694 Block->print(OS);
695 else
696 OS << "Printing <null> block";
700 //===----------------------------------------------------------------------===//
701 // LoopInfo implementation
704 char LoopInfoWrapperPass::ID = 0;
705 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
706 true, true)
707 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
708 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
709 true, true)
711 bool LoopInfoWrapperPass::runOnFunction(Function &) {
712 releaseMemory();
713 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
714 return false;
717 void LoopInfoWrapperPass::verifyAnalysis() const {
718 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
719 // function each time verifyAnalysis is called is very expensive. The
720 // -verify-loop-info option can enable this. In order to perform some
721 // checking by default, LoopPass has been taught to call verifyLoop manually
722 // during loop pass sequences.
723 if (VerifyLoopInfo) {
724 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
725 LI.verify(DT);
729 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
730 AU.setPreservesAll();
731 AU.addRequired<DominatorTreeWrapperPass>();
734 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
735 LI.print(OS);
738 PreservedAnalyses LoopVerifierPass::run(Function &F,
739 FunctionAnalysisManager &AM) {
740 LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
741 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
742 LI.verify(DT);
743 return PreservedAnalyses::all();
746 //===----------------------------------------------------------------------===//
747 // LoopBlocksDFS implementation
750 /// Traverse the loop blocks and store the DFS result.
751 /// Useful for clients that just want the final DFS result and don't need to
752 /// visit blocks during the initial traversal.
753 void LoopBlocksDFS::perform(LoopInfo *LI) {
754 LoopBlocksTraversal Traversal(*this, LI);
755 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
756 POE = Traversal.end();
757 POI != POE; ++POI)