Fix uninitialized variable
[llvm-core.git] / lib / Target / Mips / MipsAsmPrinter.cpp
blob2e0c25de2bc89ffaf26b7c5069bacf43a785fa74
1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
13 //===----------------------------------------------------------------------===//
15 #include "MipsAsmPrinter.h"
16 #include "InstPrinter/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsABIInfo.h"
18 #include "MCTargetDesc/MipsBaseInfo.h"
19 #include "MCTargetDesc/MipsMCNaCl.h"
20 #include "MCTargetDesc/MipsMCTargetDesc.h"
21 #include "Mips.h"
22 #include "MipsMCInstLower.h"
23 #include "MipsMachineFunction.h"
24 #include "MipsSubtarget.h"
25 #include "MipsTargetMachine.h"
26 #include "MipsTargetStreamer.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCExpr.h"
49 #include "llvm/MC/MCInst.h"
50 #include "llvm/MC/MCInstBuilder.h"
51 #include "llvm/MC/MCObjectFileInfo.h"
52 #include "llvm/MC/MCSectionELF.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/MC/MCSymbolELF.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetMachine.h"
60 #include <cassert>
61 #include <cstdint>
62 #include <map>
63 #include <memory>
64 #include <string>
65 #include <vector>
67 using namespace llvm;
69 #define DEBUG_TYPE "mips-asm-printer"
71 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
72 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
75 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
76 Subtarget = &MF.getSubtarget<MipsSubtarget>();
78 MipsFI = MF.getInfo<MipsFunctionInfo>();
79 if (Subtarget->inMips16Mode())
80 for (std::map<
81 const char *,
82 const Mips16HardFloatInfo::FuncSignature *>::const_iterator
83 it = MipsFI->StubsNeeded.begin();
84 it != MipsFI->StubsNeeded.end(); ++it) {
85 const char *Symbol = it->first;
86 const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
87 if (StubsNeeded.find(Symbol) == StubsNeeded.end())
88 StubsNeeded[Symbol] = Signature;
90 MCP = MF.getConstantPool();
92 // In NaCl, all indirect jump targets must be aligned to bundle size.
93 if (Subtarget->isTargetNaCl())
94 NaClAlignIndirectJumpTargets(MF);
96 AsmPrinter::runOnMachineFunction(MF);
98 emitXRayTable();
100 return true;
103 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
104 MCOp = MCInstLowering.LowerOperand(MO);
105 return MCOp.isValid();
108 #include "MipsGenMCPseudoLowering.inc"
110 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
111 // JALR, or JALR64 as appropriate for the target.
112 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
113 const MachineInstr *MI) {
114 bool HasLinkReg = false;
115 bool InMicroMipsMode = Subtarget->inMicroMipsMode();
116 MCInst TmpInst0;
118 if (Subtarget->hasMips64r6()) {
119 // MIPS64r6 should use (JALR64 ZERO_64, $rs)
120 TmpInst0.setOpcode(Mips::JALR64);
121 HasLinkReg = true;
122 } else if (Subtarget->hasMips32r6()) {
123 // MIPS32r6 should use (JALR ZERO, $rs)
124 if (InMicroMipsMode)
125 TmpInst0.setOpcode(Mips::JRC16_MMR6);
126 else {
127 TmpInst0.setOpcode(Mips::JALR);
128 HasLinkReg = true;
130 } else if (Subtarget->inMicroMipsMode())
131 // microMIPS should use (JR_MM $rs)
132 TmpInst0.setOpcode(Mips::JR_MM);
133 else {
134 // Everything else should use (JR $rs)
135 TmpInst0.setOpcode(Mips::JR);
138 MCOperand MCOp;
140 if (HasLinkReg) {
141 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
142 TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
145 lowerOperand(MI->getOperand(0), MCOp);
146 TmpInst0.addOperand(MCOp);
148 EmitToStreamer(OutStreamer, TmpInst0);
151 void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
152 MipsTargetStreamer &TS = getTargetStreamer();
153 unsigned Opc = MI->getOpcode();
154 TS.forbidModuleDirective();
156 if (MI->isDebugValue()) {
157 SmallString<128> Str;
158 raw_svector_ostream OS(Str);
160 PrintDebugValueComment(MI, OS);
161 return;
163 if (MI->isDebugLabel())
164 return;
166 // If we just ended a constant pool, mark it as such.
167 if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) {
168 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
169 InConstantPool = false;
171 if (Opc == Mips::CONSTPOOL_ENTRY) {
172 // CONSTPOOL_ENTRY - This instruction represents a floating
173 // constant pool in the function. The first operand is the ID#
174 // for this instruction, the second is the index into the
175 // MachineConstantPool that this is, the third is the size in
176 // bytes of this constant pool entry.
177 // The required alignment is specified on the basic block holding this MI.
179 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
180 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
182 // If this is the first entry of the pool, mark it.
183 if (!InConstantPool) {
184 OutStreamer->EmitDataRegion(MCDR_DataRegion);
185 InConstantPool = true;
188 OutStreamer->EmitLabel(GetCPISymbol(LabelId));
190 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
191 if (MCPE.isMachineConstantPoolEntry())
192 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
193 else
194 EmitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
195 return;
198 switch (Opc) {
199 case Mips::PATCHABLE_FUNCTION_ENTER:
200 LowerPATCHABLE_FUNCTION_ENTER(*MI);
201 return;
202 case Mips::PATCHABLE_FUNCTION_EXIT:
203 LowerPATCHABLE_FUNCTION_EXIT(*MI);
204 return;
205 case Mips::PATCHABLE_TAIL_CALL:
206 LowerPATCHABLE_TAIL_CALL(*MI);
207 return;
210 MachineBasicBlock::const_instr_iterator I = MI->getIterator();
211 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
213 do {
214 // Do any auto-generated pseudo lowerings.
215 if (emitPseudoExpansionLowering(*OutStreamer, &*I))
216 continue;
218 if (I->getOpcode() == Mips::PseudoReturn ||
219 I->getOpcode() == Mips::PseudoReturn64 ||
220 I->getOpcode() == Mips::PseudoIndirectBranch ||
221 I->getOpcode() == Mips::PseudoIndirectBranch64 ||
222 I->getOpcode() == Mips::TAILCALLREG ||
223 I->getOpcode() == Mips::TAILCALLREG64) {
224 emitPseudoIndirectBranch(*OutStreamer, &*I);
225 continue;
228 // The inMips16Mode() test is not permanent.
229 // Some instructions are marked as pseudo right now which
230 // would make the test fail for the wrong reason but
231 // that will be fixed soon. We need this here because we are
232 // removing another test for this situation downstream in the
233 // callchain.
235 if (I->isPseudo() && !Subtarget->inMips16Mode()
236 && !isLongBranchPseudo(I->getOpcode()))
237 llvm_unreachable("Pseudo opcode found in EmitInstruction()");
239 MCInst TmpInst0;
240 MCInstLowering.Lower(&*I, TmpInst0);
241 EmitToStreamer(*OutStreamer, TmpInst0);
242 } while ((++I != E) && I->isInsideBundle()); // Delay slot check
245 //===----------------------------------------------------------------------===//
247 // Mips Asm Directives
249 // -- Frame directive "frame Stackpointer, Stacksize, RARegister"
250 // Describe the stack frame.
252 // -- Mask directives "(f)mask bitmask, offset"
253 // Tells the assembler which registers are saved and where.
254 // bitmask - contain a little endian bitset indicating which registers are
255 // saved on function prologue (e.g. with a 0x80000000 mask, the
256 // assembler knows the register 31 (RA) is saved at prologue.
257 // offset - the position before stack pointer subtraction indicating where
258 // the first saved register on prologue is located. (e.g. with a
260 // Consider the following function prologue:
262 // .frame $fp,48,$ra
263 // .mask 0xc0000000,-8
264 // addiu $sp, $sp, -48
265 // sw $ra, 40($sp)
266 // sw $fp, 36($sp)
268 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
269 // 30 (FP) are saved at prologue. As the save order on prologue is from
270 // left to right, RA is saved first. A -8 offset means that after the
271 // stack pointer subtration, the first register in the mask (RA) will be
272 // saved at address 48-8=40.
274 //===----------------------------------------------------------------------===//
276 //===----------------------------------------------------------------------===//
277 // Mask directives
278 //===----------------------------------------------------------------------===//
280 // Create a bitmask with all callee saved registers for CPU or Floating Point
281 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
282 void MipsAsmPrinter::printSavedRegsBitmask() {
283 // CPU and FPU Saved Registers Bitmasks
284 unsigned CPUBitmask = 0, FPUBitmask = 0;
285 int CPUTopSavedRegOff, FPUTopSavedRegOff;
287 // Set the CPU and FPU Bitmasks
288 const MachineFrameInfo &MFI = MF->getFrameInfo();
289 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
290 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
291 // size of stack area to which FP callee-saved regs are saved.
292 unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8;
293 unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8;
294 unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8;
295 bool HasAFGR64Reg = false;
296 unsigned CSFPRegsSize = 0;
298 for (const auto &I : CSI) {
299 unsigned Reg = I.getReg();
300 unsigned RegNum = TRI->getEncodingValue(Reg);
302 // If it's a floating point register, set the FPU Bitmask.
303 // If it's a general purpose register, set the CPU Bitmask.
304 if (Mips::FGR32RegClass.contains(Reg)) {
305 FPUBitmask |= (1 << RegNum);
306 CSFPRegsSize += FGR32RegSize;
307 } else if (Mips::AFGR64RegClass.contains(Reg)) {
308 FPUBitmask |= (3 << RegNum);
309 CSFPRegsSize += AFGR64RegSize;
310 HasAFGR64Reg = true;
311 } else if (Mips::GPR32RegClass.contains(Reg))
312 CPUBitmask |= (1 << RegNum);
315 // FP Regs are saved right below where the virtual frame pointer points to.
316 FPUTopSavedRegOff = FPUBitmask ?
317 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
319 // CPU Regs are saved below FP Regs.
320 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
322 MipsTargetStreamer &TS = getTargetStreamer();
323 // Print CPUBitmask
324 TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
326 // Print FPUBitmask
327 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
330 //===----------------------------------------------------------------------===//
331 // Frame and Set directives
332 //===----------------------------------------------------------------------===//
334 /// Frame Directive
335 void MipsAsmPrinter::emitFrameDirective() {
336 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
338 unsigned stackReg = RI.getFrameRegister(*MF);
339 unsigned returnReg = RI.getRARegister();
340 unsigned stackSize = MF->getFrameInfo().getStackSize();
342 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
345 /// Emit Set directives.
346 const char *MipsAsmPrinter::getCurrentABIString() const {
347 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
348 case MipsABIInfo::ABI::O32: return "abi32";
349 case MipsABIInfo::ABI::N32: return "abiN32";
350 case MipsABIInfo::ABI::N64: return "abi64";
351 default: llvm_unreachable("Unknown Mips ABI");
355 void MipsAsmPrinter::EmitFunctionEntryLabel() {
356 MipsTargetStreamer &TS = getTargetStreamer();
358 // NaCl sandboxing requires that indirect call instructions are masked.
359 // This means that function entry points should be bundle-aligned.
360 if (Subtarget->isTargetNaCl())
361 EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
363 if (Subtarget->inMicroMipsMode()) {
364 TS.emitDirectiveSetMicroMips();
365 TS.setUsesMicroMips();
366 TS.updateABIInfo(*Subtarget);
367 } else
368 TS.emitDirectiveSetNoMicroMips();
370 if (Subtarget->inMips16Mode())
371 TS.emitDirectiveSetMips16();
372 else
373 TS.emitDirectiveSetNoMips16();
375 TS.emitDirectiveEnt(*CurrentFnSym);
376 OutStreamer->EmitLabel(CurrentFnSym);
379 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
380 /// the first basic block in the function.
381 void MipsAsmPrinter::EmitFunctionBodyStart() {
382 MipsTargetStreamer &TS = getTargetStreamer();
384 MCInstLowering.Initialize(&MF->getContext());
386 bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked);
387 if (!IsNakedFunction)
388 emitFrameDirective();
390 if (!IsNakedFunction)
391 printSavedRegsBitmask();
393 if (!Subtarget->inMips16Mode()) {
394 TS.emitDirectiveSetNoReorder();
395 TS.emitDirectiveSetNoMacro();
396 TS.emitDirectiveSetNoAt();
400 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
401 /// the last basic block in the function.
402 void MipsAsmPrinter::EmitFunctionBodyEnd() {
403 MipsTargetStreamer &TS = getTargetStreamer();
405 // There are instruction for this macros, but they must
406 // always be at the function end, and we can't emit and
407 // break with BB logic.
408 if (!Subtarget->inMips16Mode()) {
409 TS.emitDirectiveSetAt();
410 TS.emitDirectiveSetMacro();
411 TS.emitDirectiveSetReorder();
413 TS.emitDirectiveEnd(CurrentFnSym->getName());
414 // Make sure to terminate any constant pools that were at the end
415 // of the function.
416 if (!InConstantPool)
417 return;
418 InConstantPool = false;
419 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
422 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
423 AsmPrinter::EmitBasicBlockEnd(MBB);
424 MipsTargetStreamer &TS = getTargetStreamer();
425 if (MBB.empty())
426 TS.emitDirectiveInsn();
429 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
430 /// exactly one predecessor and the control transfer mechanism between
431 /// the predecessor and this block is a fall-through.
432 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
433 MBB) const {
434 // The predecessor has to be immediately before this block.
435 const MachineBasicBlock *Pred = *MBB->pred_begin();
437 // If the predecessor is a switch statement, assume a jump table
438 // implementation, so it is not a fall through.
439 if (const BasicBlock *bb = Pred->getBasicBlock())
440 if (isa<SwitchInst>(bb->getTerminator()))
441 return false;
443 // If this is a landing pad, it isn't a fall through. If it has no preds,
444 // then nothing falls through to it.
445 if (MBB->isEHPad() || MBB->pred_empty())
446 return false;
448 // If there isn't exactly one predecessor, it can't be a fall through.
449 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
450 ++PI2;
452 if (PI2 != MBB->pred_end())
453 return false;
455 // The predecessor has to be immediately before this block.
456 if (!Pred->isLayoutSuccessor(MBB))
457 return false;
459 // If the block is completely empty, then it definitely does fall through.
460 if (Pred->empty())
461 return true;
463 // Otherwise, check the last instruction.
464 // Check if the last terminator is an unconditional branch.
465 MachineBasicBlock::const_iterator I = Pred->end();
466 while (I != Pred->begin() && !(--I)->isTerminator()) ;
468 return !I->isBarrier();
471 // Print out an operand for an inline asm expression.
472 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
473 unsigned AsmVariant, const char *ExtraCode,
474 raw_ostream &O) {
475 // Does this asm operand have a single letter operand modifier?
476 if (ExtraCode && ExtraCode[0]) {
477 if (ExtraCode[1] != 0) return true; // Unknown modifier.
479 const MachineOperand &MO = MI->getOperand(OpNum);
480 switch (ExtraCode[0]) {
481 default:
482 // See if this is a generic print operand
483 return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O);
484 case 'X': // hex const int
485 if ((MO.getType()) != MachineOperand::MO_Immediate)
486 return true;
487 O << "0x" << Twine::utohexstr(MO.getImm());
488 return false;
489 case 'x': // hex const int (low 16 bits)
490 if ((MO.getType()) != MachineOperand::MO_Immediate)
491 return true;
492 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
493 return false;
494 case 'd': // decimal const int
495 if ((MO.getType()) != MachineOperand::MO_Immediate)
496 return true;
497 O << MO.getImm();
498 return false;
499 case 'm': // decimal const int minus 1
500 if ((MO.getType()) != MachineOperand::MO_Immediate)
501 return true;
502 O << MO.getImm() - 1;
503 return false;
504 case 'y': // exact log2
505 if ((MO.getType()) != MachineOperand::MO_Immediate)
506 return true;
507 if (!isPowerOf2_64(MO.getImm()))
508 return true;
509 O << Log2_64(MO.getImm());
510 return false;
511 case 'z':
512 // $0 if zero, regular printing otherwise
513 if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
514 O << "$0";
515 return false;
517 // If not, call printOperand as normal.
518 break;
519 case 'D': // Second part of a double word register operand
520 case 'L': // Low order register of a double word register operand
521 case 'M': // High order register of a double word register operand
523 if (OpNum == 0)
524 return true;
525 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
526 if (!FlagsOP.isImm())
527 return true;
528 unsigned Flags = FlagsOP.getImm();
529 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
530 // Number of registers represented by this operand. We are looking
531 // for 2 for 32 bit mode and 1 for 64 bit mode.
532 if (NumVals != 2) {
533 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
534 unsigned Reg = MO.getReg();
535 O << '$' << MipsInstPrinter::getRegisterName(Reg);
536 return false;
538 return true;
541 unsigned RegOp = OpNum;
542 if (!Subtarget->isGP64bit()){
543 // Endianness reverses which register holds the high or low value
544 // between M and L.
545 switch(ExtraCode[0]) {
546 case 'M':
547 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
548 break;
549 case 'L':
550 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
551 break;
552 case 'D': // Always the second part
553 RegOp = OpNum + 1;
555 if (RegOp >= MI->getNumOperands())
556 return true;
557 const MachineOperand &MO = MI->getOperand(RegOp);
558 if (!MO.isReg())
559 return true;
560 unsigned Reg = MO.getReg();
561 O << '$' << MipsInstPrinter::getRegisterName(Reg);
562 return false;
565 case 'w':
566 // Print MSA registers for the 'f' constraint
567 // In LLVM, the 'w' modifier doesn't need to do anything.
568 // We can just call printOperand as normal.
569 break;
573 printOperand(MI, OpNum, O);
574 return false;
577 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
578 unsigned OpNum, unsigned AsmVariant,
579 const char *ExtraCode,
580 raw_ostream &O) {
581 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
582 const MachineOperand &BaseMO = MI->getOperand(OpNum);
583 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
584 assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand.");
585 assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand.");
586 int Offset = OffsetMO.getImm();
588 // Currently we are expecting either no ExtraCode or 'D','M','L'.
589 if (ExtraCode) {
590 switch (ExtraCode[0]) {
591 case 'D':
592 Offset += 4;
593 break;
594 case 'M':
595 if (Subtarget->isLittle())
596 Offset += 4;
597 break;
598 case 'L':
599 if (!Subtarget->isLittle())
600 Offset += 4;
601 break;
602 default:
603 return true; // Unknown modifier.
607 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg())
608 << ")";
610 return false;
613 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
614 raw_ostream &O) {
615 const MachineOperand &MO = MI->getOperand(opNum);
616 bool closeP = false;
618 if (MO.getTargetFlags())
619 closeP = true;
621 switch(MO.getTargetFlags()) {
622 case MipsII::MO_GPREL: O << "%gp_rel("; break;
623 case MipsII::MO_GOT_CALL: O << "%call16("; break;
624 case MipsII::MO_GOT: O << "%got("; break;
625 case MipsII::MO_ABS_HI: O << "%hi("; break;
626 case MipsII::MO_ABS_LO: O << "%lo("; break;
627 case MipsII::MO_HIGHER: O << "%higher("; break;
628 case MipsII::MO_HIGHEST: O << "%highest(("; break;
629 case MipsII::MO_TLSGD: O << "%tlsgd("; break;
630 case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
631 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
632 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
633 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
634 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
635 case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
636 case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
637 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
640 switch (MO.getType()) {
641 case MachineOperand::MO_Register:
642 O << '$'
643 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
644 break;
646 case MachineOperand::MO_Immediate:
647 O << MO.getImm();
648 break;
650 case MachineOperand::MO_MachineBasicBlock:
651 MO.getMBB()->getSymbol()->print(O, MAI);
652 return;
654 case MachineOperand::MO_GlobalAddress:
655 getSymbol(MO.getGlobal())->print(O, MAI);
656 break;
658 case MachineOperand::MO_BlockAddress: {
659 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
660 O << BA->getName();
661 break;
664 case MachineOperand::MO_ConstantPoolIndex:
665 O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
666 << getFunctionNumber() << "_" << MO.getIndex();
667 if (MO.getOffset())
668 O << "+" << MO.getOffset();
669 break;
671 default:
672 llvm_unreachable("<unknown operand type>");
675 if (closeP) O << ")";
678 void MipsAsmPrinter::
679 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
680 // Load/Store memory operands -- imm($reg)
681 // If PIC target the target is loaded as the
682 // pattern lw $25,%call16($28)
684 // opNum can be invalid if instruction has reglist as operand.
685 // MemOperand is always last operand of instruction (base + offset).
686 switch (MI->getOpcode()) {
687 default:
688 break;
689 case Mips::SWM32_MM:
690 case Mips::LWM32_MM:
691 opNum = MI->getNumOperands() - 2;
692 break;
695 printOperand(MI, opNum+1, O);
696 O << "(";
697 printOperand(MI, opNum, O);
698 O << ")";
701 void MipsAsmPrinter::
702 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
703 // when using stack locations for not load/store instructions
704 // print the same way as all normal 3 operand instructions.
705 printOperand(MI, opNum, O);
706 O << ", ";
707 printOperand(MI, opNum+1, O);
710 void MipsAsmPrinter::
711 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
712 const char *Modifier) {
713 const MachineOperand &MO = MI->getOperand(opNum);
714 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
717 void MipsAsmPrinter::
718 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
719 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
720 if (i != opNum) O << ", ";
721 printOperand(MI, i, O);
725 void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
726 MipsTargetStreamer &TS = getTargetStreamer();
728 // MipsTargetStreamer has an initialization order problem when emitting an
729 // object file directly (see MipsTargetELFStreamer for full details). Work
730 // around it by re-initializing the PIC state here.
731 TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent());
733 // Compute MIPS architecture attributes based on the default subtarget
734 // that we'd have constructed. Module level directives aren't LTO
735 // clean anyhow.
736 // FIXME: For ifunc related functions we could iterate over and look
737 // for a feature string that doesn't match the default one.
738 const Triple &TT = TM.getTargetTriple();
739 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
740 StringRef FS = TM.getTargetFeatureString();
741 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
742 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, 0);
744 bool IsABICalls = STI.isABICalls();
745 const MipsABIInfo &ABI = MTM.getABI();
746 if (IsABICalls) {
747 TS.emitDirectiveAbiCalls();
748 // FIXME: This condition should be a lot more complicated that it is here.
749 // Ideally it should test for properties of the ABI and not the ABI
750 // itself.
751 // For the moment, I'm only correcting enough to make MIPS-IV work.
752 if (!isPositionIndependent() && STI.hasSym32())
753 TS.emitDirectiveOptionPic0();
756 // Tell the assembler which ABI we are using
757 std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
758 OutStreamer->SwitchSection(
759 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
761 // NaN: At the moment we only support:
762 // 1. .nan legacy (default)
763 // 2. .nan 2008
764 STI.isNaN2008() ? TS.emitDirectiveNaN2008()
765 : TS.emitDirectiveNaNLegacy();
767 // TODO: handle O64 ABI
769 TS.updateABIInfo(STI);
771 // We should always emit a '.module fp=...' but binutils 2.24 does not accept
772 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
773 // -mfp64) and omit it otherwise.
774 if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit()))
775 TS.emitDirectiveModuleFP();
777 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
778 // accept it. We therefore emit it when it contradicts the default or an
779 // option has changed the default (i.e. FPXX) and omit it otherwise.
780 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
781 TS.emitDirectiveModuleOddSPReg();
784 void MipsAsmPrinter::emitInlineAsmStart() const {
785 MipsTargetStreamer &TS = getTargetStreamer();
787 // GCC's choice of assembler options for inline assembly code ('at', 'macro'
788 // and 'reorder') is different from LLVM's choice for generated code ('noat',
789 // 'nomacro' and 'noreorder').
790 // In order to maintain compatibility with inline assembly code which depends
791 // on GCC's assembler options being used, we have to switch to those options
792 // for the duration of the inline assembly block and then switch back.
793 TS.emitDirectiveSetPush();
794 TS.emitDirectiveSetAt();
795 TS.emitDirectiveSetMacro();
796 TS.emitDirectiveSetReorder();
797 OutStreamer->AddBlankLine();
800 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
801 const MCSubtargetInfo *EndInfo) const {
802 OutStreamer->AddBlankLine();
803 getTargetStreamer().emitDirectiveSetPop();
806 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
807 MCInst I;
808 I.setOpcode(Mips::JAL);
809 I.addOperand(
810 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
811 OutStreamer->EmitInstruction(I, STI);
814 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
815 unsigned Reg) {
816 MCInst I;
817 I.setOpcode(Opcode);
818 I.addOperand(MCOperand::createReg(Reg));
819 OutStreamer->EmitInstruction(I, STI);
822 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
823 unsigned Opcode, unsigned Reg1,
824 unsigned Reg2) {
825 MCInst I;
827 // Because of the current td files for Mips32, the operands for MTC1
828 // appear backwards from their normal assembly order. It's not a trivial
829 // change to fix this in the td file so we adjust for it here.
831 if (Opcode == Mips::MTC1) {
832 unsigned Temp = Reg1;
833 Reg1 = Reg2;
834 Reg2 = Temp;
836 I.setOpcode(Opcode);
837 I.addOperand(MCOperand::createReg(Reg1));
838 I.addOperand(MCOperand::createReg(Reg2));
839 OutStreamer->EmitInstruction(I, STI);
842 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
843 unsigned Opcode, unsigned Reg1,
844 unsigned Reg2, unsigned Reg3) {
845 MCInst I;
846 I.setOpcode(Opcode);
847 I.addOperand(MCOperand::createReg(Reg1));
848 I.addOperand(MCOperand::createReg(Reg2));
849 I.addOperand(MCOperand::createReg(Reg3));
850 OutStreamer->EmitInstruction(I, STI);
853 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
854 unsigned MovOpc, unsigned Reg1,
855 unsigned Reg2, unsigned FPReg1,
856 unsigned FPReg2, bool LE) {
857 if (!LE) {
858 unsigned temp = Reg1;
859 Reg1 = Reg2;
860 Reg2 = temp;
862 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
863 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
866 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
867 Mips16HardFloatInfo::FPParamVariant PV,
868 bool LE, bool ToFP) {
869 using namespace Mips16HardFloatInfo;
871 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
872 switch (PV) {
873 case FSig:
874 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
875 break;
876 case FFSig:
877 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
878 break;
879 case FDSig:
880 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
881 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
882 break;
883 case DSig:
884 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
885 break;
886 case DDSig:
887 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
888 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
889 break;
890 case DFSig:
891 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
892 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
893 break;
894 case NoSig:
895 return;
899 void MipsAsmPrinter::EmitSwapFPIntRetval(
900 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
901 bool LE) {
902 using namespace Mips16HardFloatInfo;
904 unsigned MovOpc = Mips::MFC1;
905 switch (RV) {
906 case FRet:
907 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
908 break;
909 case DRet:
910 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
911 break;
912 case CFRet:
913 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
914 break;
915 case CDRet:
916 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
917 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
918 break;
919 case NoFPRet:
920 break;
924 void MipsAsmPrinter::EmitFPCallStub(
925 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
926 using namespace Mips16HardFloatInfo;
928 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
929 bool LE = getDataLayout().isLittleEndian();
930 // Construct a local MCSubtargetInfo here.
931 // This is because the MachineFunction won't exist (but have not yet been
932 // freed) and since we're at the global level we can use the default
933 // constructed subtarget.
934 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
935 TM.getTargetTriple().str(), TM.getTargetCPU(),
936 TM.getTargetFeatureString()));
939 // .global xxxx
941 OutStreamer->EmitSymbolAttribute(MSymbol, MCSA_Global);
942 const char *RetType;
944 // make the comment field identifying the return and parameter
945 // types of the floating point stub
946 // # Stub function to call rettype xxxx (params)
948 switch (Signature->RetSig) {
949 case FRet:
950 RetType = "float";
951 break;
952 case DRet:
953 RetType = "double";
954 break;
955 case CFRet:
956 RetType = "complex";
957 break;
958 case CDRet:
959 RetType = "double complex";
960 break;
961 case NoFPRet:
962 RetType = "";
963 break;
965 const char *Parms;
966 switch (Signature->ParamSig) {
967 case FSig:
968 Parms = "float";
969 break;
970 case FFSig:
971 Parms = "float, float";
972 break;
973 case FDSig:
974 Parms = "float, double";
975 break;
976 case DSig:
977 Parms = "double";
978 break;
979 case DDSig:
980 Parms = "double, double";
981 break;
982 case DFSig:
983 Parms = "double, float";
984 break;
985 case NoSig:
986 Parms = "";
987 break;
989 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
990 Twine(Symbol) + " (" + Twine(Parms) + ")");
992 // probably not necessary but we save and restore the current section state
994 OutStreamer->PushSection();
996 // .section mips16.call.fpxxxx,"ax",@progbits
998 MCSectionELF *M = OutContext.getELFSection(
999 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
1000 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
1001 OutStreamer->SwitchSection(M, nullptr);
1003 // .align 2
1005 OutStreamer->EmitValueToAlignment(4);
1006 MipsTargetStreamer &TS = getTargetStreamer();
1008 // .set nomips16
1009 // .set nomicromips
1011 TS.emitDirectiveSetNoMips16();
1012 TS.emitDirectiveSetNoMicroMips();
1014 // .ent __call_stub_fp_xxxx
1015 // .type __call_stub_fp_xxxx,@function
1016 // __call_stub_fp_xxxx:
1018 std::string x = "__call_stub_fp_" + std::string(Symbol);
1019 MCSymbolELF *Stub =
1020 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
1021 TS.emitDirectiveEnt(*Stub);
1022 MCSymbol *MType =
1023 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
1024 OutStreamer->EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
1025 OutStreamer->EmitLabel(Stub);
1027 // Only handle non-pic for now.
1028 assert(!isPositionIndependent() &&
1029 "should not be here if we are compiling pic");
1030 TS.emitDirectiveSetReorder();
1032 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1033 // stubs without raw text but this current patch is for compiler generated
1034 // functions and they all return some value.
1035 // The calling sequence for non pic is different in that case and we need
1036 // to implement %lo and %hi in order to handle the case of no return value
1037 // See the corresponding method in Mips16HardFloat for details.
1039 // mov the return address to S2.
1040 // we have no stack space to store it and we are about to make another call.
1041 // We need to make sure that the enclosing function knows to save S2
1042 // This should have already been handled.
1044 // Mov $18, $31
1046 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);
1048 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1050 // Jal xxxx
1052 EmitJal(*STI, MSymbol);
1054 // fix return values
1055 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1057 // do the return
1058 // if (Signature->RetSig == NoFPRet)
1059 // llvm_unreachable("should not be any stubs here with no return value");
1060 // else
1061 EmitInstrReg(*STI, Mips::JR, Mips::S2);
1063 MCSymbol *Tmp = OutContext.createTempSymbol();
1064 OutStreamer->EmitLabel(Tmp);
1065 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
1066 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
1067 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
1068 OutStreamer->emitELFSize(Stub, T_min_E);
1069 TS.emitDirectiveEnd(x);
1070 OutStreamer->PopSection();
1073 void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) {
1074 // Emit needed stubs
1076 for (std::map<
1077 const char *,
1078 const Mips16HardFloatInfo::FuncSignature *>::const_iterator
1079 it = StubsNeeded.begin();
1080 it != StubsNeeded.end(); ++it) {
1081 const char *Symbol = it->first;
1082 const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1083 EmitFPCallStub(Symbol, Signature);
1085 // return to the text section
1086 OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
1089 void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) {
1090 const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11;
1091 // For mips32 we want to emit the following pattern:
1093 // .Lxray_sled_N:
1094 // ALIGN
1095 // B .tmpN
1096 // 11 NOP instructions (44 bytes)
1097 // ADDIU T9, T9, 52
1098 // .tmpN
1100 // We need the 44 bytes (11 instructions) because at runtime, we'd
1101 // be patching over the full 48 bytes (12 instructions) with the following
1102 // pattern:
1104 // ADDIU SP, SP, -8
1105 // NOP
1106 // SW RA, 4(SP)
1107 // SW T9, 0(SP)
1108 // LUI T9, %hi(__xray_FunctionEntry/Exit)
1109 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1110 // LUI T0, %hi(function_id)
1111 // JALR T9
1112 // ORI T0, T0, %lo(function_id)
1113 // LW T9, 0(SP)
1114 // LW RA, 4(SP)
1115 // ADDIU SP, SP, 8
1117 // We add 52 bytes to t9 because we want to adjust the function pointer to
1118 // the actual start of function i.e. the address just after the noop sled.
1119 // We do this because gp displacement relocation is emitted at the start of
1120 // of the function i.e after the nop sled and to correctly calculate the
1121 // global offset table address, t9 must hold the address of the instruction
1122 // containing the gp displacement relocation.
1123 // FIXME: Is this correct for the static relocation model?
1125 // For mips64 we want to emit the following pattern:
1127 // .Lxray_sled_N:
1128 // ALIGN
1129 // B .tmpN
1130 // 15 NOP instructions (60 bytes)
1131 // .tmpN
1133 // We need the 60 bytes (15 instructions) because at runtime, we'd
1134 // be patching over the full 64 bytes (16 instructions) with the following
1135 // pattern:
1137 // DADDIU SP, SP, -16
1138 // NOP
1139 // SD RA, 8(SP)
1140 // SD T9, 0(SP)
1141 // LUI T9, %highest(__xray_FunctionEntry/Exit)
1142 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit)
1143 // DSLL T9, T9, 16
1144 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit)
1145 // DSLL T9, T9, 16
1146 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1147 // LUI T0, %hi(function_id)
1148 // JALR T9
1149 // ADDIU T0, T0, %lo(function_id)
1150 // LD T9, 0(SP)
1151 // LD RA, 8(SP)
1152 // DADDIU SP, SP, 16
1154 OutStreamer->EmitCodeAlignment(4);
1155 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1156 OutStreamer->EmitLabel(CurSled);
1157 auto Target = OutContext.createTempSymbol();
1159 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1160 // start of function
1161 const MCExpr *TargetExpr = MCSymbolRefExpr::create(
1162 Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext);
1163 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ)
1164 .addReg(Mips::ZERO)
1165 .addReg(Mips::ZERO)
1166 .addExpr(TargetExpr));
1168 for (int8_t I = 0; I < NoopsInSledCount; I++)
1169 EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL)
1170 .addReg(Mips::ZERO)
1171 .addReg(Mips::ZERO)
1172 .addImm(0));
1174 OutStreamer->EmitLabel(Target);
1176 if (!Subtarget->isGP64bit()) {
1177 EmitToStreamer(*OutStreamer,
1178 MCInstBuilder(Mips::ADDiu)
1179 .addReg(Mips::T9)
1180 .addReg(Mips::T9)
1181 .addImm(0x34));
1184 recordSled(CurSled, MI, Kind);
1187 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) {
1188 EmitSled(MI, SledKind::FUNCTION_ENTER);
1191 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
1192 EmitSled(MI, SledKind::FUNCTION_EXIT);
1195 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
1196 EmitSled(MI, SledKind::TAIL_CALL);
1199 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1200 raw_ostream &OS) {
1201 // TODO: implement
1204 // Emit .dtprelword or .dtpreldword directive
1205 // and value for debug thread local expression.
1206 void MipsAsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
1207 unsigned Size) const {
1208 switch (Size) {
1209 case 4:
1210 OutStreamer->EmitDTPRel32Value(Value);
1211 break;
1212 case 8:
1213 OutStreamer->EmitDTPRel64Value(Value);
1214 break;
1215 default:
1216 llvm_unreachable("Unexpected size of expression value.");
1220 // Align all targets of indirect branches on bundle size. Used only if target
1221 // is NaCl.
1222 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1223 // Align all blocks that are jumped to through jump table.
1224 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1225 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1226 for (unsigned I = 0; I < JT.size(); ++I) {
1227 const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
1229 for (unsigned J = 0; J < MBBs.size(); ++J)
1230 MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1234 // If basic block address is taken, block can be target of indirect branch.
1235 for (auto &MBB : MF) {
1236 if (MBB.hasAddressTaken())
1237 MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1241 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1242 return (Opcode == Mips::LONG_BRANCH_LUi
1243 || Opcode == Mips::LONG_BRANCH_ADDiu
1244 || Opcode == Mips::LONG_BRANCH_DADDiu);
1247 // Force static initialization.
1248 extern "C" void LLVMInitializeMipsAsmPrinter() {
1249 RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget());
1250 RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget());
1251 RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target());
1252 RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget());