1 //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
13 //===----------------------------------------------------------------------===//
15 #include "MipsAsmPrinter.h"
16 #include "InstPrinter/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsABIInfo.h"
18 #include "MCTargetDesc/MipsBaseInfo.h"
19 #include "MCTargetDesc/MipsMCNaCl.h"
20 #include "MCTargetDesc/MipsMCTargetDesc.h"
22 #include "MipsMCInstLower.h"
23 #include "MipsMachineFunction.h"
24 #include "MipsSubtarget.h"
25 #include "MipsTargetMachine.h"
26 #include "MipsTargetStreamer.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCExpr.h"
49 #include "llvm/MC/MCInst.h"
50 #include "llvm/MC/MCInstBuilder.h"
51 #include "llvm/MC/MCObjectFileInfo.h"
52 #include "llvm/MC/MCSectionELF.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/MC/MCSymbolELF.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetMachine.h"
69 #define DEBUG_TYPE "mips-asm-printer"
71 MipsTargetStreamer
&MipsAsmPrinter::getTargetStreamer() const {
72 return static_cast<MipsTargetStreamer
&>(*OutStreamer
->getTargetStreamer());
75 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction
&MF
) {
76 Subtarget
= &MF
.getSubtarget
<MipsSubtarget
>();
78 MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
79 if (Subtarget
->inMips16Mode())
82 const Mips16HardFloatInfo::FuncSignature
*>::const_iterator
83 it
= MipsFI
->StubsNeeded
.begin();
84 it
!= MipsFI
->StubsNeeded
.end(); ++it
) {
85 const char *Symbol
= it
->first
;
86 const Mips16HardFloatInfo::FuncSignature
*Signature
= it
->second
;
87 if (StubsNeeded
.find(Symbol
) == StubsNeeded
.end())
88 StubsNeeded
[Symbol
] = Signature
;
90 MCP
= MF
.getConstantPool();
92 // In NaCl, all indirect jump targets must be aligned to bundle size.
93 if (Subtarget
->isTargetNaCl())
94 NaClAlignIndirectJumpTargets(MF
);
96 AsmPrinter::runOnMachineFunction(MF
);
103 bool MipsAsmPrinter::lowerOperand(const MachineOperand
&MO
, MCOperand
&MCOp
) {
104 MCOp
= MCInstLowering
.LowerOperand(MO
);
105 return MCOp
.isValid();
108 #include "MipsGenMCPseudoLowering.inc"
110 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
111 // JALR, or JALR64 as appropriate for the target.
112 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer
&OutStreamer
,
113 const MachineInstr
*MI
) {
114 bool HasLinkReg
= false;
115 bool InMicroMipsMode
= Subtarget
->inMicroMipsMode();
118 if (Subtarget
->hasMips64r6()) {
119 // MIPS64r6 should use (JALR64 ZERO_64, $rs)
120 TmpInst0
.setOpcode(Mips::JALR64
);
122 } else if (Subtarget
->hasMips32r6()) {
123 // MIPS32r6 should use (JALR ZERO, $rs)
125 TmpInst0
.setOpcode(Mips::JRC16_MMR6
);
127 TmpInst0
.setOpcode(Mips::JALR
);
130 } else if (Subtarget
->inMicroMipsMode())
131 // microMIPS should use (JR_MM $rs)
132 TmpInst0
.setOpcode(Mips::JR_MM
);
134 // Everything else should use (JR $rs)
135 TmpInst0
.setOpcode(Mips::JR
);
141 unsigned ZeroReg
= Subtarget
->isGP64bit() ? Mips::ZERO_64
: Mips::ZERO
;
142 TmpInst0
.addOperand(MCOperand::createReg(ZeroReg
));
145 lowerOperand(MI
->getOperand(0), MCOp
);
146 TmpInst0
.addOperand(MCOp
);
148 EmitToStreamer(OutStreamer
, TmpInst0
);
151 void MipsAsmPrinter::EmitInstruction(const MachineInstr
*MI
) {
152 MipsTargetStreamer
&TS
= getTargetStreamer();
153 unsigned Opc
= MI
->getOpcode();
154 TS
.forbidModuleDirective();
156 if (MI
->isDebugValue()) {
157 SmallString
<128> Str
;
158 raw_svector_ostream
OS(Str
);
160 PrintDebugValueComment(MI
, OS
);
163 if (MI
->isDebugLabel())
166 // If we just ended a constant pool, mark it as such.
167 if (InConstantPool
&& Opc
!= Mips::CONSTPOOL_ENTRY
) {
168 OutStreamer
->EmitDataRegion(MCDR_DataRegionEnd
);
169 InConstantPool
= false;
171 if (Opc
== Mips::CONSTPOOL_ENTRY
) {
172 // CONSTPOOL_ENTRY - This instruction represents a floating
173 // constant pool in the function. The first operand is the ID#
174 // for this instruction, the second is the index into the
175 // MachineConstantPool that this is, the third is the size in
176 // bytes of this constant pool entry.
177 // The required alignment is specified on the basic block holding this MI.
179 unsigned LabelId
= (unsigned)MI
->getOperand(0).getImm();
180 unsigned CPIdx
= (unsigned)MI
->getOperand(1).getIndex();
182 // If this is the first entry of the pool, mark it.
183 if (!InConstantPool
) {
184 OutStreamer
->EmitDataRegion(MCDR_DataRegion
);
185 InConstantPool
= true;
188 OutStreamer
->EmitLabel(GetCPISymbol(LabelId
));
190 const MachineConstantPoolEntry
&MCPE
= MCP
->getConstants()[CPIdx
];
191 if (MCPE
.isMachineConstantPoolEntry())
192 EmitMachineConstantPoolValue(MCPE
.Val
.MachineCPVal
);
194 EmitGlobalConstant(MF
->getDataLayout(), MCPE
.Val
.ConstVal
);
199 case Mips::PATCHABLE_FUNCTION_ENTER
:
200 LowerPATCHABLE_FUNCTION_ENTER(*MI
);
202 case Mips::PATCHABLE_FUNCTION_EXIT
:
203 LowerPATCHABLE_FUNCTION_EXIT(*MI
);
205 case Mips::PATCHABLE_TAIL_CALL
:
206 LowerPATCHABLE_TAIL_CALL(*MI
);
210 MachineBasicBlock::const_instr_iterator I
= MI
->getIterator();
211 MachineBasicBlock::const_instr_iterator E
= MI
->getParent()->instr_end();
214 // Do any auto-generated pseudo lowerings.
215 if (emitPseudoExpansionLowering(*OutStreamer
, &*I
))
218 if (I
->getOpcode() == Mips::PseudoReturn
||
219 I
->getOpcode() == Mips::PseudoReturn64
||
220 I
->getOpcode() == Mips::PseudoIndirectBranch
||
221 I
->getOpcode() == Mips::PseudoIndirectBranch64
||
222 I
->getOpcode() == Mips::TAILCALLREG
||
223 I
->getOpcode() == Mips::TAILCALLREG64
) {
224 emitPseudoIndirectBranch(*OutStreamer
, &*I
);
228 // The inMips16Mode() test is not permanent.
229 // Some instructions are marked as pseudo right now which
230 // would make the test fail for the wrong reason but
231 // that will be fixed soon. We need this here because we are
232 // removing another test for this situation downstream in the
235 if (I
->isPseudo() && !Subtarget
->inMips16Mode()
236 && !isLongBranchPseudo(I
->getOpcode()))
237 llvm_unreachable("Pseudo opcode found in EmitInstruction()");
240 MCInstLowering
.Lower(&*I
, TmpInst0
);
241 EmitToStreamer(*OutStreamer
, TmpInst0
);
242 } while ((++I
!= E
) && I
->isInsideBundle()); // Delay slot check
245 //===----------------------------------------------------------------------===//
247 // Mips Asm Directives
249 // -- Frame directive "frame Stackpointer, Stacksize, RARegister"
250 // Describe the stack frame.
252 // -- Mask directives "(f)mask bitmask, offset"
253 // Tells the assembler which registers are saved and where.
254 // bitmask - contain a little endian bitset indicating which registers are
255 // saved on function prologue (e.g. with a 0x80000000 mask, the
256 // assembler knows the register 31 (RA) is saved at prologue.
257 // offset - the position before stack pointer subtraction indicating where
258 // the first saved register on prologue is located. (e.g. with a
260 // Consider the following function prologue:
263 // .mask 0xc0000000,-8
264 // addiu $sp, $sp, -48
268 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
269 // 30 (FP) are saved at prologue. As the save order on prologue is from
270 // left to right, RA is saved first. A -8 offset means that after the
271 // stack pointer subtration, the first register in the mask (RA) will be
272 // saved at address 48-8=40.
274 //===----------------------------------------------------------------------===//
276 //===----------------------------------------------------------------------===//
278 //===----------------------------------------------------------------------===//
280 // Create a bitmask with all callee saved registers for CPU or Floating Point
281 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
282 void MipsAsmPrinter::printSavedRegsBitmask() {
283 // CPU and FPU Saved Registers Bitmasks
284 unsigned CPUBitmask
= 0, FPUBitmask
= 0;
285 int CPUTopSavedRegOff
, FPUTopSavedRegOff
;
287 // Set the CPU and FPU Bitmasks
288 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
289 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
290 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
291 // size of stack area to which FP callee-saved regs are saved.
292 unsigned CPURegSize
= TRI
->getRegSizeInBits(Mips::GPR32RegClass
) / 8;
293 unsigned FGR32RegSize
= TRI
->getRegSizeInBits(Mips::FGR32RegClass
) / 8;
294 unsigned AFGR64RegSize
= TRI
->getRegSizeInBits(Mips::AFGR64RegClass
) / 8;
295 bool HasAFGR64Reg
= false;
296 unsigned CSFPRegsSize
= 0;
298 for (const auto &I
: CSI
) {
299 unsigned Reg
= I
.getReg();
300 unsigned RegNum
= TRI
->getEncodingValue(Reg
);
302 // If it's a floating point register, set the FPU Bitmask.
303 // If it's a general purpose register, set the CPU Bitmask.
304 if (Mips::FGR32RegClass
.contains(Reg
)) {
305 FPUBitmask
|= (1 << RegNum
);
306 CSFPRegsSize
+= FGR32RegSize
;
307 } else if (Mips::AFGR64RegClass
.contains(Reg
)) {
308 FPUBitmask
|= (3 << RegNum
);
309 CSFPRegsSize
+= AFGR64RegSize
;
311 } else if (Mips::GPR32RegClass
.contains(Reg
))
312 CPUBitmask
|= (1 << RegNum
);
315 // FP Regs are saved right below where the virtual frame pointer points to.
316 FPUTopSavedRegOff
= FPUBitmask
?
317 (HasAFGR64Reg
? -AFGR64RegSize
: -FGR32RegSize
) : 0;
319 // CPU Regs are saved below FP Regs.
320 CPUTopSavedRegOff
= CPUBitmask
? -CSFPRegsSize
- CPURegSize
: 0;
322 MipsTargetStreamer
&TS
= getTargetStreamer();
324 TS
.emitMask(CPUBitmask
, CPUTopSavedRegOff
);
327 TS
.emitFMask(FPUBitmask
, FPUTopSavedRegOff
);
330 //===----------------------------------------------------------------------===//
331 // Frame and Set directives
332 //===----------------------------------------------------------------------===//
335 void MipsAsmPrinter::emitFrameDirective() {
336 const TargetRegisterInfo
&RI
= *MF
->getSubtarget().getRegisterInfo();
338 unsigned stackReg
= RI
.getFrameRegister(*MF
);
339 unsigned returnReg
= RI
.getRARegister();
340 unsigned stackSize
= MF
->getFrameInfo().getStackSize();
342 getTargetStreamer().emitFrame(stackReg
, stackSize
, returnReg
);
345 /// Emit Set directives.
346 const char *MipsAsmPrinter::getCurrentABIString() const {
347 switch (static_cast<MipsTargetMachine
&>(TM
).getABI().GetEnumValue()) {
348 case MipsABIInfo::ABI::O32
: return "abi32";
349 case MipsABIInfo::ABI::N32
: return "abiN32";
350 case MipsABIInfo::ABI::N64
: return "abi64";
351 default: llvm_unreachable("Unknown Mips ABI");
355 void MipsAsmPrinter::EmitFunctionEntryLabel() {
356 MipsTargetStreamer
&TS
= getTargetStreamer();
358 // NaCl sandboxing requires that indirect call instructions are masked.
359 // This means that function entry points should be bundle-aligned.
360 if (Subtarget
->isTargetNaCl())
361 EmitAlignment(std::max(MF
->getAlignment(), MIPS_NACL_BUNDLE_ALIGN
));
363 if (Subtarget
->inMicroMipsMode()) {
364 TS
.emitDirectiveSetMicroMips();
365 TS
.setUsesMicroMips();
366 TS
.updateABIInfo(*Subtarget
);
368 TS
.emitDirectiveSetNoMicroMips();
370 if (Subtarget
->inMips16Mode())
371 TS
.emitDirectiveSetMips16();
373 TS
.emitDirectiveSetNoMips16();
375 TS
.emitDirectiveEnt(*CurrentFnSym
);
376 OutStreamer
->EmitLabel(CurrentFnSym
);
379 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
380 /// the first basic block in the function.
381 void MipsAsmPrinter::EmitFunctionBodyStart() {
382 MipsTargetStreamer
&TS
= getTargetStreamer();
384 MCInstLowering
.Initialize(&MF
->getContext());
386 bool IsNakedFunction
= MF
->getFunction().hasFnAttribute(Attribute::Naked
);
387 if (!IsNakedFunction
)
388 emitFrameDirective();
390 if (!IsNakedFunction
)
391 printSavedRegsBitmask();
393 if (!Subtarget
->inMips16Mode()) {
394 TS
.emitDirectiveSetNoReorder();
395 TS
.emitDirectiveSetNoMacro();
396 TS
.emitDirectiveSetNoAt();
400 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
401 /// the last basic block in the function.
402 void MipsAsmPrinter::EmitFunctionBodyEnd() {
403 MipsTargetStreamer
&TS
= getTargetStreamer();
405 // There are instruction for this macros, but they must
406 // always be at the function end, and we can't emit and
407 // break with BB logic.
408 if (!Subtarget
->inMips16Mode()) {
409 TS
.emitDirectiveSetAt();
410 TS
.emitDirectiveSetMacro();
411 TS
.emitDirectiveSetReorder();
413 TS
.emitDirectiveEnd(CurrentFnSym
->getName());
414 // Make sure to terminate any constant pools that were at the end
418 InConstantPool
= false;
419 OutStreamer
->EmitDataRegion(MCDR_DataRegionEnd
);
422 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock
&MBB
) {
423 AsmPrinter::EmitBasicBlockEnd(MBB
);
424 MipsTargetStreamer
&TS
= getTargetStreamer();
426 TS
.emitDirectiveInsn();
429 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
430 /// exactly one predecessor and the control transfer mechanism between
431 /// the predecessor and this block is a fall-through.
432 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock
*
434 // The predecessor has to be immediately before this block.
435 const MachineBasicBlock
*Pred
= *MBB
->pred_begin();
437 // If the predecessor is a switch statement, assume a jump table
438 // implementation, so it is not a fall through.
439 if (const BasicBlock
*bb
= Pred
->getBasicBlock())
440 if (isa
<SwitchInst
>(bb
->getTerminator()))
443 // If this is a landing pad, it isn't a fall through. If it has no preds,
444 // then nothing falls through to it.
445 if (MBB
->isEHPad() || MBB
->pred_empty())
448 // If there isn't exactly one predecessor, it can't be a fall through.
449 MachineBasicBlock::const_pred_iterator PI
= MBB
->pred_begin(), PI2
= PI
;
452 if (PI2
!= MBB
->pred_end())
455 // The predecessor has to be immediately before this block.
456 if (!Pred
->isLayoutSuccessor(MBB
))
459 // If the block is completely empty, then it definitely does fall through.
463 // Otherwise, check the last instruction.
464 // Check if the last terminator is an unconditional branch.
465 MachineBasicBlock::const_iterator I
= Pred
->end();
466 while (I
!= Pred
->begin() && !(--I
)->isTerminator()) ;
468 return !I
->isBarrier();
471 // Print out an operand for an inline asm expression.
472 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr
*MI
, unsigned OpNum
,
473 unsigned AsmVariant
, const char *ExtraCode
,
475 // Does this asm operand have a single letter operand modifier?
476 if (ExtraCode
&& ExtraCode
[0]) {
477 if (ExtraCode
[1] != 0) return true; // Unknown modifier.
479 const MachineOperand
&MO
= MI
->getOperand(OpNum
);
480 switch (ExtraCode
[0]) {
482 // See if this is a generic print operand
483 return AsmPrinter::PrintAsmOperand(MI
,OpNum
,AsmVariant
,ExtraCode
,O
);
484 case 'X': // hex const int
485 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
487 O
<< "0x" << Twine::utohexstr(MO
.getImm());
489 case 'x': // hex const int (low 16 bits)
490 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
492 O
<< "0x" << Twine::utohexstr(MO
.getImm() & 0xffff);
494 case 'd': // decimal const int
495 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
499 case 'm': // decimal const int minus 1
500 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
502 O
<< MO
.getImm() - 1;
504 case 'y': // exact log2
505 if ((MO
.getType()) != MachineOperand::MO_Immediate
)
507 if (!isPowerOf2_64(MO
.getImm()))
509 O
<< Log2_64(MO
.getImm());
512 // $0 if zero, regular printing otherwise
513 if (MO
.getType() == MachineOperand::MO_Immediate
&& MO
.getImm() == 0) {
517 // If not, call printOperand as normal.
519 case 'D': // Second part of a double word register operand
520 case 'L': // Low order register of a double word register operand
521 case 'M': // High order register of a double word register operand
525 const MachineOperand
&FlagsOP
= MI
->getOperand(OpNum
- 1);
526 if (!FlagsOP
.isImm())
528 unsigned Flags
= FlagsOP
.getImm();
529 unsigned NumVals
= InlineAsm::getNumOperandRegisters(Flags
);
530 // Number of registers represented by this operand. We are looking
531 // for 2 for 32 bit mode and 1 for 64 bit mode.
533 if (Subtarget
->isGP64bit() && NumVals
== 1 && MO
.isReg()) {
534 unsigned Reg
= MO
.getReg();
535 O
<< '$' << MipsInstPrinter::getRegisterName(Reg
);
541 unsigned RegOp
= OpNum
;
542 if (!Subtarget
->isGP64bit()){
543 // Endianness reverses which register holds the high or low value
545 switch(ExtraCode
[0]) {
547 RegOp
= (Subtarget
->isLittle()) ? OpNum
+ 1 : OpNum
;
550 RegOp
= (Subtarget
->isLittle()) ? OpNum
: OpNum
+ 1;
552 case 'D': // Always the second part
555 if (RegOp
>= MI
->getNumOperands())
557 const MachineOperand
&MO
= MI
->getOperand(RegOp
);
560 unsigned Reg
= MO
.getReg();
561 O
<< '$' << MipsInstPrinter::getRegisterName(Reg
);
566 // Print MSA registers for the 'f' constraint
567 // In LLVM, the 'w' modifier doesn't need to do anything.
568 // We can just call printOperand as normal.
573 printOperand(MI
, OpNum
, O
);
577 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr
*MI
,
578 unsigned OpNum
, unsigned AsmVariant
,
579 const char *ExtraCode
,
581 assert(OpNum
+ 1 < MI
->getNumOperands() && "Insufficient operands");
582 const MachineOperand
&BaseMO
= MI
->getOperand(OpNum
);
583 const MachineOperand
&OffsetMO
= MI
->getOperand(OpNum
+ 1);
584 assert(BaseMO
.isReg() && "Unexpected base pointer for inline asm memory operand.");
585 assert(OffsetMO
.isImm() && "Unexpected offset for inline asm memory operand.");
586 int Offset
= OffsetMO
.getImm();
588 // Currently we are expecting either no ExtraCode or 'D','M','L'.
590 switch (ExtraCode
[0]) {
595 if (Subtarget
->isLittle())
599 if (!Subtarget
->isLittle())
603 return true; // Unknown modifier.
607 O
<< Offset
<< "($" << MipsInstPrinter::getRegisterName(BaseMO
.getReg())
613 void MipsAsmPrinter::printOperand(const MachineInstr
*MI
, int opNum
,
615 const MachineOperand
&MO
= MI
->getOperand(opNum
);
618 if (MO
.getTargetFlags())
621 switch(MO
.getTargetFlags()) {
622 case MipsII::MO_GPREL
: O
<< "%gp_rel("; break;
623 case MipsII::MO_GOT_CALL
: O
<< "%call16("; break;
624 case MipsII::MO_GOT
: O
<< "%got("; break;
625 case MipsII::MO_ABS_HI
: O
<< "%hi("; break;
626 case MipsII::MO_ABS_LO
: O
<< "%lo("; break;
627 case MipsII::MO_HIGHER
: O
<< "%higher("; break;
628 case MipsII::MO_HIGHEST
: O
<< "%highest(("; break;
629 case MipsII::MO_TLSGD
: O
<< "%tlsgd("; break;
630 case MipsII::MO_GOTTPREL
: O
<< "%gottprel("; break;
631 case MipsII::MO_TPREL_HI
: O
<< "%tprel_hi("; break;
632 case MipsII::MO_TPREL_LO
: O
<< "%tprel_lo("; break;
633 case MipsII::MO_GPOFF_HI
: O
<< "%hi(%neg(%gp_rel("; break;
634 case MipsII::MO_GPOFF_LO
: O
<< "%lo(%neg(%gp_rel("; break;
635 case MipsII::MO_GOT_DISP
: O
<< "%got_disp("; break;
636 case MipsII::MO_GOT_PAGE
: O
<< "%got_page("; break;
637 case MipsII::MO_GOT_OFST
: O
<< "%got_ofst("; break;
640 switch (MO
.getType()) {
641 case MachineOperand::MO_Register
:
643 << StringRef(MipsInstPrinter::getRegisterName(MO
.getReg())).lower();
646 case MachineOperand::MO_Immediate
:
650 case MachineOperand::MO_MachineBasicBlock
:
651 MO
.getMBB()->getSymbol()->print(O
, MAI
);
654 case MachineOperand::MO_GlobalAddress
:
655 getSymbol(MO
.getGlobal())->print(O
, MAI
);
658 case MachineOperand::MO_BlockAddress
: {
659 MCSymbol
*BA
= GetBlockAddressSymbol(MO
.getBlockAddress());
664 case MachineOperand::MO_ConstantPoolIndex
:
665 O
<< getDataLayout().getPrivateGlobalPrefix() << "CPI"
666 << getFunctionNumber() << "_" << MO
.getIndex();
668 O
<< "+" << MO
.getOffset();
672 llvm_unreachable("<unknown operand type>");
675 if (closeP
) O
<< ")";
678 void MipsAsmPrinter::
679 printMemOperand(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
) {
680 // Load/Store memory operands -- imm($reg)
681 // If PIC target the target is loaded as the
682 // pattern lw $25,%call16($28)
684 // opNum can be invalid if instruction has reglist as operand.
685 // MemOperand is always last operand of instruction (base + offset).
686 switch (MI
->getOpcode()) {
691 opNum
= MI
->getNumOperands() - 2;
695 printOperand(MI
, opNum
+1, O
);
697 printOperand(MI
, opNum
, O
);
701 void MipsAsmPrinter::
702 printMemOperandEA(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
) {
703 // when using stack locations for not load/store instructions
704 // print the same way as all normal 3 operand instructions.
705 printOperand(MI
, opNum
, O
);
707 printOperand(MI
, opNum
+1, O
);
710 void MipsAsmPrinter::
711 printFCCOperand(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
,
712 const char *Modifier
) {
713 const MachineOperand
&MO
= MI
->getOperand(opNum
);
714 O
<< Mips::MipsFCCToString((Mips::CondCode
)MO
.getImm());
717 void MipsAsmPrinter::
718 printRegisterList(const MachineInstr
*MI
, int opNum
, raw_ostream
&O
) {
719 for (int i
= opNum
, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
720 if (i
!= opNum
) O
<< ", ";
721 printOperand(MI
, i
, O
);
725 void MipsAsmPrinter::EmitStartOfAsmFile(Module
&M
) {
726 MipsTargetStreamer
&TS
= getTargetStreamer();
728 // MipsTargetStreamer has an initialization order problem when emitting an
729 // object file directly (see MipsTargetELFStreamer for full details). Work
730 // around it by re-initializing the PIC state here.
731 TS
.setPic(OutContext
.getObjectFileInfo()->isPositionIndependent());
733 // Compute MIPS architecture attributes based on the default subtarget
734 // that we'd have constructed. Module level directives aren't LTO
736 // FIXME: For ifunc related functions we could iterate over and look
737 // for a feature string that doesn't match the default one.
738 const Triple
&TT
= TM
.getTargetTriple();
739 StringRef CPU
= MIPS_MC::selectMipsCPU(TT
, TM
.getTargetCPU());
740 StringRef FS
= TM
.getTargetFeatureString();
741 const MipsTargetMachine
&MTM
= static_cast<const MipsTargetMachine
&>(TM
);
742 const MipsSubtarget
STI(TT
, CPU
, FS
, MTM
.isLittleEndian(), MTM
, 0);
744 bool IsABICalls
= STI
.isABICalls();
745 const MipsABIInfo
&ABI
= MTM
.getABI();
747 TS
.emitDirectiveAbiCalls();
748 // FIXME: This condition should be a lot more complicated that it is here.
749 // Ideally it should test for properties of the ABI and not the ABI
751 // For the moment, I'm only correcting enough to make MIPS-IV work.
752 if (!isPositionIndependent() && STI
.hasSym32())
753 TS
.emitDirectiveOptionPic0();
756 // Tell the assembler which ABI we are using
757 std::string SectionName
= std::string(".mdebug.") + getCurrentABIString();
758 OutStreamer
->SwitchSection(
759 OutContext
.getELFSection(SectionName
, ELF::SHT_PROGBITS
, 0));
761 // NaN: At the moment we only support:
762 // 1. .nan legacy (default)
764 STI
.isNaN2008() ? TS
.emitDirectiveNaN2008()
765 : TS
.emitDirectiveNaNLegacy();
767 // TODO: handle O64 ABI
769 TS
.updateABIInfo(STI
);
771 // We should always emit a '.module fp=...' but binutils 2.24 does not accept
772 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
773 // -mfp64) and omit it otherwise.
774 if (ABI
.IsO32() && (STI
.isABI_FPXX() || STI
.isFP64bit()))
775 TS
.emitDirectiveModuleFP();
777 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
778 // accept it. We therefore emit it when it contradicts the default or an
779 // option has changed the default (i.e. FPXX) and omit it otherwise.
780 if (ABI
.IsO32() && (!STI
.useOddSPReg() || STI
.isABI_FPXX()))
781 TS
.emitDirectiveModuleOddSPReg();
784 void MipsAsmPrinter::emitInlineAsmStart() const {
785 MipsTargetStreamer
&TS
= getTargetStreamer();
787 // GCC's choice of assembler options for inline assembly code ('at', 'macro'
788 // and 'reorder') is different from LLVM's choice for generated code ('noat',
789 // 'nomacro' and 'noreorder').
790 // In order to maintain compatibility with inline assembly code which depends
791 // on GCC's assembler options being used, we have to switch to those options
792 // for the duration of the inline assembly block and then switch back.
793 TS
.emitDirectiveSetPush();
794 TS
.emitDirectiveSetAt();
795 TS
.emitDirectiveSetMacro();
796 TS
.emitDirectiveSetReorder();
797 OutStreamer
->AddBlankLine();
800 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo
&StartInfo
,
801 const MCSubtargetInfo
*EndInfo
) const {
802 OutStreamer
->AddBlankLine();
803 getTargetStreamer().emitDirectiveSetPop();
806 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo
&STI
, MCSymbol
*Symbol
) {
808 I
.setOpcode(Mips::JAL
);
810 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol
, OutContext
)));
811 OutStreamer
->EmitInstruction(I
, STI
);
814 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo
&STI
, unsigned Opcode
,
818 I
.addOperand(MCOperand::createReg(Reg
));
819 OutStreamer
->EmitInstruction(I
, STI
);
822 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo
&STI
,
823 unsigned Opcode
, unsigned Reg1
,
827 // Because of the current td files for Mips32, the operands for MTC1
828 // appear backwards from their normal assembly order. It's not a trivial
829 // change to fix this in the td file so we adjust for it here.
831 if (Opcode
== Mips::MTC1
) {
832 unsigned Temp
= Reg1
;
837 I
.addOperand(MCOperand::createReg(Reg1
));
838 I
.addOperand(MCOperand::createReg(Reg2
));
839 OutStreamer
->EmitInstruction(I
, STI
);
842 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo
&STI
,
843 unsigned Opcode
, unsigned Reg1
,
844 unsigned Reg2
, unsigned Reg3
) {
847 I
.addOperand(MCOperand::createReg(Reg1
));
848 I
.addOperand(MCOperand::createReg(Reg2
));
849 I
.addOperand(MCOperand::createReg(Reg3
));
850 OutStreamer
->EmitInstruction(I
, STI
);
853 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo
&STI
,
854 unsigned MovOpc
, unsigned Reg1
,
855 unsigned Reg2
, unsigned FPReg1
,
856 unsigned FPReg2
, bool LE
) {
858 unsigned temp
= Reg1
;
862 EmitInstrRegReg(STI
, MovOpc
, Reg1
, FPReg1
);
863 EmitInstrRegReg(STI
, MovOpc
, Reg2
, FPReg2
);
866 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo
&STI
,
867 Mips16HardFloatInfo::FPParamVariant PV
,
868 bool LE
, bool ToFP
) {
869 using namespace Mips16HardFloatInfo
;
871 unsigned MovOpc
= ToFP
? Mips::MTC1
: Mips::MFC1
;
874 EmitInstrRegReg(STI
, MovOpc
, Mips::A0
, Mips::F12
);
877 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F14
, LE
);
880 EmitInstrRegReg(STI
, MovOpc
, Mips::A0
, Mips::F12
);
881 EmitMovFPIntPair(STI
, MovOpc
, Mips::A2
, Mips::A3
, Mips::F14
, Mips::F15
, LE
);
884 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F13
, LE
);
887 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F13
, LE
);
888 EmitMovFPIntPair(STI
, MovOpc
, Mips::A2
, Mips::A3
, Mips::F14
, Mips::F15
, LE
);
891 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F12
, Mips::F13
, LE
);
892 EmitInstrRegReg(STI
, MovOpc
, Mips::A2
, Mips::F14
);
899 void MipsAsmPrinter::EmitSwapFPIntRetval(
900 const MCSubtargetInfo
&STI
, Mips16HardFloatInfo::FPReturnVariant RV
,
902 using namespace Mips16HardFloatInfo
;
904 unsigned MovOpc
= Mips::MFC1
;
907 EmitInstrRegReg(STI
, MovOpc
, Mips::V0
, Mips::F0
);
910 EmitMovFPIntPair(STI
, MovOpc
, Mips::V0
, Mips::V1
, Mips::F0
, Mips::F1
, LE
);
913 EmitMovFPIntPair(STI
, MovOpc
, Mips::V0
, Mips::V1
, Mips::F0
, Mips::F1
, LE
);
916 EmitMovFPIntPair(STI
, MovOpc
, Mips::V0
, Mips::V1
, Mips::F0
, Mips::F1
, LE
);
917 EmitMovFPIntPair(STI
, MovOpc
, Mips::A0
, Mips::A1
, Mips::F2
, Mips::F3
, LE
);
924 void MipsAsmPrinter::EmitFPCallStub(
925 const char *Symbol
, const Mips16HardFloatInfo::FuncSignature
*Signature
) {
926 using namespace Mips16HardFloatInfo
;
928 MCSymbol
*MSymbol
= OutContext
.getOrCreateSymbol(StringRef(Symbol
));
929 bool LE
= getDataLayout().isLittleEndian();
930 // Construct a local MCSubtargetInfo here.
931 // This is because the MachineFunction won't exist (but have not yet been
932 // freed) and since we're at the global level we can use the default
933 // constructed subtarget.
934 std::unique_ptr
<MCSubtargetInfo
> STI(TM
.getTarget().createMCSubtargetInfo(
935 TM
.getTargetTriple().str(), TM
.getTargetCPU(),
936 TM
.getTargetFeatureString()));
941 OutStreamer
->EmitSymbolAttribute(MSymbol
, MCSA_Global
);
944 // make the comment field identifying the return and parameter
945 // types of the floating point stub
946 // # Stub function to call rettype xxxx (params)
948 switch (Signature
->RetSig
) {
959 RetType
= "double complex";
966 switch (Signature
->ParamSig
) {
971 Parms
= "float, float";
974 Parms
= "float, double";
980 Parms
= "double, double";
983 Parms
= "double, float";
989 OutStreamer
->AddComment("\t# Stub function to call " + Twine(RetType
) + " " +
990 Twine(Symbol
) + " (" + Twine(Parms
) + ")");
992 // probably not necessary but we save and restore the current section state
994 OutStreamer
->PushSection();
996 // .section mips16.call.fpxxxx,"ax",@progbits
998 MCSectionELF
*M
= OutContext
.getELFSection(
999 ".mips16.call.fp." + std::string(Symbol
), ELF::SHT_PROGBITS
,
1000 ELF::SHF_ALLOC
| ELF::SHF_EXECINSTR
);
1001 OutStreamer
->SwitchSection(M
, nullptr);
1005 OutStreamer
->EmitValueToAlignment(4);
1006 MipsTargetStreamer
&TS
= getTargetStreamer();
1011 TS
.emitDirectiveSetNoMips16();
1012 TS
.emitDirectiveSetNoMicroMips();
1014 // .ent __call_stub_fp_xxxx
1015 // .type __call_stub_fp_xxxx,@function
1016 // __call_stub_fp_xxxx:
1018 std::string x
= "__call_stub_fp_" + std::string(Symbol
);
1020 cast
<MCSymbolELF
>(OutContext
.getOrCreateSymbol(StringRef(x
)));
1021 TS
.emitDirectiveEnt(*Stub
);
1023 OutContext
.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol
));
1024 OutStreamer
->EmitSymbolAttribute(MType
, MCSA_ELF_TypeFunction
);
1025 OutStreamer
->EmitLabel(Stub
);
1027 // Only handle non-pic for now.
1028 assert(!isPositionIndependent() &&
1029 "should not be here if we are compiling pic");
1030 TS
.emitDirectiveSetReorder();
1032 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
1033 // stubs without raw text but this current patch is for compiler generated
1034 // functions and they all return some value.
1035 // The calling sequence for non pic is different in that case and we need
1036 // to implement %lo and %hi in order to handle the case of no return value
1037 // See the corresponding method in Mips16HardFloat for details.
1039 // mov the return address to S2.
1040 // we have no stack space to store it and we are about to make another call.
1041 // We need to make sure that the enclosing function knows to save S2
1042 // This should have already been handled.
1046 EmitInstrRegRegReg(*STI
, Mips::OR
, Mips::S2
, Mips::RA
, Mips::ZERO
);
1048 EmitSwapFPIntParams(*STI
, Signature
->ParamSig
, LE
, true);
1052 EmitJal(*STI
, MSymbol
);
1054 // fix return values
1055 EmitSwapFPIntRetval(*STI
, Signature
->RetSig
, LE
);
1058 // if (Signature->RetSig == NoFPRet)
1059 // llvm_unreachable("should not be any stubs here with no return value");
1061 EmitInstrReg(*STI
, Mips::JR
, Mips::S2
);
1063 MCSymbol
*Tmp
= OutContext
.createTempSymbol();
1064 OutStreamer
->EmitLabel(Tmp
);
1065 const MCSymbolRefExpr
*E
= MCSymbolRefExpr::create(Stub
, OutContext
);
1066 const MCSymbolRefExpr
*T
= MCSymbolRefExpr::create(Tmp
, OutContext
);
1067 const MCExpr
*T_min_E
= MCBinaryExpr::createSub(T
, E
, OutContext
);
1068 OutStreamer
->emitELFSize(Stub
, T_min_E
);
1069 TS
.emitDirectiveEnd(x
);
1070 OutStreamer
->PopSection();
1073 void MipsAsmPrinter::EmitEndOfAsmFile(Module
&M
) {
1074 // Emit needed stubs
1078 const Mips16HardFloatInfo::FuncSignature
*>::const_iterator
1079 it
= StubsNeeded
.begin();
1080 it
!= StubsNeeded
.end(); ++it
) {
1081 const char *Symbol
= it
->first
;
1082 const Mips16HardFloatInfo::FuncSignature
*Signature
= it
->second
;
1083 EmitFPCallStub(Symbol
, Signature
);
1085 // return to the text section
1086 OutStreamer
->SwitchSection(OutContext
.getObjectFileInfo()->getTextSection());
1089 void MipsAsmPrinter::EmitSled(const MachineInstr
&MI
, SledKind Kind
) {
1090 const uint8_t NoopsInSledCount
= Subtarget
->isGP64bit() ? 15 : 11;
1091 // For mips32 we want to emit the following pattern:
1096 // 11 NOP instructions (44 bytes)
1100 // We need the 44 bytes (11 instructions) because at runtime, we'd
1101 // be patching over the full 48 bytes (12 instructions) with the following
1108 // LUI T9, %hi(__xray_FunctionEntry/Exit)
1109 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1110 // LUI T0, %hi(function_id)
1112 // ORI T0, T0, %lo(function_id)
1117 // We add 52 bytes to t9 because we want to adjust the function pointer to
1118 // the actual start of function i.e. the address just after the noop sled.
1119 // We do this because gp displacement relocation is emitted at the start of
1120 // of the function i.e after the nop sled and to correctly calculate the
1121 // global offset table address, t9 must hold the address of the instruction
1122 // containing the gp displacement relocation.
1123 // FIXME: Is this correct for the static relocation model?
1125 // For mips64 we want to emit the following pattern:
1130 // 15 NOP instructions (60 bytes)
1133 // We need the 60 bytes (15 instructions) because at runtime, we'd
1134 // be patching over the full 64 bytes (16 instructions) with the following
1137 // DADDIU SP, SP, -16
1141 // LUI T9, %highest(__xray_FunctionEntry/Exit)
1142 // ORI T9, T9, %higher(__xray_FunctionEntry/Exit)
1144 // ORI T9, T9, %hi(__xray_FunctionEntry/Exit)
1146 // ORI T9, T9, %lo(__xray_FunctionEntry/Exit)
1147 // LUI T0, %hi(function_id)
1149 // ADDIU T0, T0, %lo(function_id)
1152 // DADDIU SP, SP, 16
1154 OutStreamer
->EmitCodeAlignment(4);
1155 auto CurSled
= OutContext
.createTempSymbol("xray_sled_", true);
1156 OutStreamer
->EmitLabel(CurSled
);
1157 auto Target
= OutContext
.createTempSymbol();
1159 // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
1160 // start of function
1161 const MCExpr
*TargetExpr
= MCSymbolRefExpr::create(
1162 Target
, MCSymbolRefExpr::VariantKind::VK_None
, OutContext
);
1163 EmitToStreamer(*OutStreamer
, MCInstBuilder(Mips::BEQ
)
1166 .addExpr(TargetExpr
));
1168 for (int8_t I
= 0; I
< NoopsInSledCount
; I
++)
1169 EmitToStreamer(*OutStreamer
, MCInstBuilder(Mips::SLL
)
1174 OutStreamer
->EmitLabel(Target
);
1176 if (!Subtarget
->isGP64bit()) {
1177 EmitToStreamer(*OutStreamer
,
1178 MCInstBuilder(Mips::ADDiu
)
1184 recordSled(CurSled
, MI
, Kind
);
1187 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr
&MI
) {
1188 EmitSled(MI
, SledKind::FUNCTION_ENTER
);
1191 void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr
&MI
) {
1192 EmitSled(MI
, SledKind::FUNCTION_EXIT
);
1195 void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr
&MI
) {
1196 EmitSled(MI
, SledKind::TAIL_CALL
);
1199 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr
*MI
,
1204 // Emit .dtprelword or .dtpreldword directive
1205 // and value for debug thread local expression.
1206 void MipsAsmPrinter::EmitDebugThreadLocal(const MCExpr
*Value
,
1207 unsigned Size
) const {
1210 OutStreamer
->EmitDTPRel32Value(Value
);
1213 OutStreamer
->EmitDTPRel64Value(Value
);
1216 llvm_unreachable("Unexpected size of expression value.");
1220 // Align all targets of indirect branches on bundle size. Used only if target
1222 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction
&MF
) {
1223 // Align all blocks that are jumped to through jump table.
1224 if (MachineJumpTableInfo
*JtInfo
= MF
.getJumpTableInfo()) {
1225 const std::vector
<MachineJumpTableEntry
> &JT
= JtInfo
->getJumpTables();
1226 for (unsigned I
= 0; I
< JT
.size(); ++I
) {
1227 const std::vector
<MachineBasicBlock
*> &MBBs
= JT
[I
].MBBs
;
1229 for (unsigned J
= 0; J
< MBBs
.size(); ++J
)
1230 MBBs
[J
]->setAlignment(MIPS_NACL_BUNDLE_ALIGN
);
1234 // If basic block address is taken, block can be target of indirect branch.
1235 for (auto &MBB
: MF
) {
1236 if (MBB
.hasAddressTaken())
1237 MBB
.setAlignment(MIPS_NACL_BUNDLE_ALIGN
);
1241 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode
) const {
1242 return (Opcode
== Mips::LONG_BRANCH_LUi
1243 || Opcode
== Mips::LONG_BRANCH_ADDiu
1244 || Opcode
== Mips::LONG_BRANCH_DADDiu
);
1247 // Force static initialization.
1248 extern "C" void LLVMInitializeMipsAsmPrinter() {
1249 RegisterAsmPrinter
<MipsAsmPrinter
> X(getTheMipsTarget());
1250 RegisterAsmPrinter
<MipsAsmPrinter
> Y(getTheMipselTarget());
1251 RegisterAsmPrinter
<MipsAsmPrinter
> A(getTheMips64Target());
1252 RegisterAsmPrinter
<MipsAsmPrinter
> B(getTheMips64elTarget());