1 //===-- SparcCallingConv.td - Calling Conventions Sparc ----*- tablegen -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This describes the calling conventions for the Sparc architectures.
12 //===----------------------------------------------------------------------===//
14 //===----------------------------------------------------------------------===//
16 //===----------------------------------------------------------------------===//
18 def CC_Sparc32 : CallingConv<[
19 // Custom assign SRet to [sp+64].
20 CCIfSRet<CCCustom<"CC_Sparc_Assign_SRet">>,
21 // i32 f32 arguments get passed in integer registers if there is space.
22 CCIfType<[i32, f32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
23 // f64 arguments are split and passed through registers or through stack.
24 CCIfType<[f64], CCCustom<"CC_Sparc_Assign_Split_64">>,
25 // As are v2i32 arguments (this would be the default behavior for
26 // v2i32 if it wasn't allocated to the IntPair register-class)
27 CCIfType<[v2i32], CCCustom<"CC_Sparc_Assign_Split_64">>,
30 // Alternatively, they are assigned to the stack in 4-byte aligned units.
34 def RetCC_Sparc32 : CallingConv<[
35 CCIfType<[i32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
36 CCIfType<[f32], CCAssignToReg<[F0, F1, F2, F3]>>,
37 CCIfType<[f64], CCAssignToReg<[D0, D1]>>,
38 CCIfType<[v2i32], CCCustom<"CC_Sparc_Assign_Ret_Split_64">>
42 //===----------------------------------------------------------------------===//
44 //===----------------------------------------------------------------------===//
46 // The 64-bit ABI conceptually assigns all function arguments to a parameter
47 // array starting at [%fp+BIAS+128] in the callee's stack frame. All arguments
48 // occupy a multiple of 8 bytes in the array. Integer arguments are extended to
49 // 64 bits by the caller. Floats are right-aligned in their 8-byte slot, the
50 // first 4 bytes in the slot are undefined.
52 // The integer registers %i0 to %i5 shadow the first 48 bytes of the parameter
53 // array at fixed offsets. Integer arguments are promoted to registers when
56 // The floating point registers %f0 to %f31 shadow the first 128 bytes of the
57 // parameter array at fixed offsets. Float and double parameters are promoted
58 // to these registers when possible.
60 // Structs up to 16 bytes in size are passed by value. They are right-aligned
61 // in one or two 8-byte slots in the parameter array. Struct members are
62 // promoted to both floating point and integer registers when possible. A
63 // struct containing two floats would thus be passed in %f0 and %f1, while two
64 // float function arguments would occupy 8 bytes each, and be passed in %f1 and
67 // When a struct { int, float } is passed by value, the int goes in the high
68 // bits of an integer register while the float goes in a floating point
71 // The difference is encoded in LLVM IR using the inreg atttribute on function
74 // C: void f(float, float);
75 // IR: declare void f(float %f1, float %f3)
77 // C: void f(struct { float f0, f1; });
78 // IR: declare void f(float inreg %f0, float inreg %f1)
80 // C: void f(int, float);
81 // IR: declare void f(int signext %i0, float %f3)
83 // C: void f(struct { int i0high; float f1; });
84 // IR: declare void f(i32 inreg %i0high, float inreg %f1)
86 // Two ints in a struct are simply coerced to i64:
88 // C: void f(struct { int i0high, i0low; });
89 // IR: declare void f(i64 %i0.coerced)
91 // The frontend and backend divide the task of producing ABI compliant code for
92 // C functions. The C frontend will:
94 // - Annotate integer arguments with zeroext or signext attributes.
96 // - Split structs into one or two 64-bit sized chunks, or 32-bit chunks with
99 // - Pass structs larger than 16 bytes indirectly with an explicit pointer
100 // argument. The byval attribute is not used.
104 // - Assign all arguments to 64-bit aligned stack slots, 32-bits for inreg.
106 // - Promote to integer or floating point registers depending on type.
108 // Function return values are passed exactly like function arguments, except a
109 // struct up to 32 bytes in size can be returned in registers.
111 // Function arguments AND most return values.
112 def CC_Sparc64 : CallingConv<[
113 // The frontend uses the inreg flag to indicate i32 and float arguments from
114 // structs. These arguments are not promoted to 64 bits, but they can still
115 // be assigned to integer and float registers.
116 CCIfInReg<CCIfType<[i32, f32], CCCustom<"CC_Sparc64_Half">>>,
118 // All integers are promoted to i64 by the caller.
119 CCIfType<[i32], CCPromoteToType<i64>>,
121 // Custom assignment is required because stack space is reserved for all
122 // arguments whether they are passed in registers or not.
123 CCCustom<"CC_Sparc64_Full">
126 def RetCC_Sparc64 : CallingConv<[
127 // A single f32 return value always goes in %f0. The ABI doesn't specify what
128 // happens to multiple f32 return values outside a struct.
129 CCIfType<[f32], CCCustom<"CC_Sparc64_Half">>,
131 // Otherwise, return values are passed exactly like arguments.
132 CCDelegateTo<CC_Sparc64>
135 // Callee-saved registers are handled by the register window mechanism.
136 def CSR : CalleeSavedRegs<(add)> {
137 let OtherPreserved = (add (sequence "I%u", 0, 7),
138 (sequence "L%u", 0, 7));
141 // Callee-saved registers for calls with ReturnsTwice attribute.
142 def RTCSR : CalleeSavedRegs<(add)> {
143 let OtherPreserved = (add I6, I7);