1 //===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains instruction definitions and patterns needed for 64-bit
11 // code generation on SPARC v9.
13 // Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
14 // also be used in 32-bit code running on a SPARC v9 CPU.
16 //===----------------------------------------------------------------------===//
18 let Predicates = [Is64Bit] in {
19 // The same integer registers are used for i32 and i64 values.
20 // When registers hold i32 values, the high bits are don't care.
21 // This give us free trunc and anyext.
22 def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
23 def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
25 } // Predicates = [Is64Bit]
28 //===----------------------------------------------------------------------===//
29 // 64-bit Shift Instructions.
30 //===----------------------------------------------------------------------===//
32 // The 32-bit shift instructions are still available. The left shift srl
33 // instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
35 // The srl instructions only shift the low 32 bits and clear the high 32 bits.
36 // Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
38 let Predicates = [Is64Bit] in {
40 def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
41 def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
43 def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
44 def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
46 defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
47 defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
48 defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
50 } // Predicates = [Is64Bit]
53 //===----------------------------------------------------------------------===//
55 //===----------------------------------------------------------------------===//
57 // All 32-bit immediates can be materialized with sethi+or, but 64-bit
58 // immediates may require more code. There may be a point where it is
59 // preferable to use a constant pool load instead, depending on the
62 // Single-instruction patterns.
64 // The ALU instructions want their simm13 operands as i32 immediates.
65 def as_i32imm : SDNodeXForm<imm, [{
66 return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
68 def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
69 def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
71 // Double-instruction patterns.
73 // All unsigned i32 immediates can be handled by sethi+or.
74 def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
75 def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
78 // All negative i33 immediates can be handled by sethi+xor.
79 def nimm33 : PatLeaf<(imm), [{
80 int64_t Imm = N->getSExtValue();
81 return Imm < 0 && isInt<33>(Imm);
83 // Bits 10-31 inverted. Same as assembler's %hix.
84 def HIX22 : SDNodeXForm<imm, [{
85 uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
86 return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
88 // Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
89 def LOX10 : SDNodeXForm<imm, [{
90 return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), SDLoc(N),
93 def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
96 // More possible patterns:
103 // (xor (sllx sethi), simm13)
104 // (sllx (xor sethi, simm13))
108 // (or sethi, (sllx sethi))
109 // (xnor sethi, (sllx sethi))
113 // (or (sllx sethi), (or sethi, simm13))
114 // (xnor (sllx sethi), (or sethi, simm13))
115 // (or (sllx sethi), (sllx sethi))
116 // (xnor (sllx sethi), (sllx sethi))
118 // Worst case is 6 instrs:
120 // (or (sllx (or sethi, simmm13)), (or sethi, simm13))
122 // Bits 42-63, same as assembler's %hh.
123 def HH22 : SDNodeXForm<imm, [{
124 uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
125 return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
127 // Bits 32-41, same as assembler's %hm.
128 def HM10 : SDNodeXForm<imm, [{
129 uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
130 return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
132 def : Pat<(i64 imm:$val),
133 (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
134 (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
138 //===----------------------------------------------------------------------===//
139 // 64-bit Integer Arithmetic and Logic.
140 //===----------------------------------------------------------------------===//
142 let Predicates = [Is64Bit] in {
144 // Register-register instructions.
145 let isCodeGenOnly = 1 in {
146 defm ANDX : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
147 defm ORX : F3_12<"or", 0b000010, or, I64Regs, i64, i64imm>;
148 defm XORX : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;
150 def ANDXNrr : F3_1<2, 0b000101,
151 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
153 [(set i64:$dst, (and i64:$b, (not i64:$c)))]>;
154 def ORXNrr : F3_1<2, 0b000110,
155 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
157 [(set i64:$dst, (or i64:$b, (not i64:$c)))]>;
158 def XNORXrr : F3_1<2, 0b000111,
159 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
161 [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>;
163 defm ADDX : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
164 defm SUBX : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;
166 def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
167 (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym),
168 "add $rs1, $rs2, $rd, $sym",
170 (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;
173 def LEAX_ADDri : F3_2<2, 0b000000,
174 (outs I64Regs:$dst), (ins MEMri:$addr),
175 "add ${addr:arith}, $dst",
176 [(set iPTR:$dst, ADDRri:$addr)]>;
179 def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
180 def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
181 def : Pat<(ctpop i64:$src), (POPCrr $src)>;
183 } // Predicates = [Is64Bit]
186 //===----------------------------------------------------------------------===//
187 // 64-bit Integer Multiply and Divide.
188 //===----------------------------------------------------------------------===//
190 let Predicates = [Is64Bit] in {
192 def MULXrr : F3_1<2, 0b001001,
193 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
194 "mulx $rs1, $rs2, $rd",
195 [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
196 def MULXri : F3_2<2, 0b001001,
197 (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
198 "mulx $rs1, $simm13, $rd",
199 [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>;
201 // Division can trap.
202 let hasSideEffects = 1 in {
203 def SDIVXrr : F3_1<2, 0b101101,
204 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
205 "sdivx $rs1, $rs2, $rd",
206 [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
207 def SDIVXri : F3_2<2, 0b101101,
208 (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
209 "sdivx $rs1, $simm13, $rd",
210 [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>;
212 def UDIVXrr : F3_1<2, 0b001101,
213 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
214 "udivx $rs1, $rs2, $rd",
215 [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
216 def UDIVXri : F3_2<2, 0b001101,
217 (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
218 "udivx $rs1, $simm13, $rd",
219 [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>;
220 } // hasSideEffects = 1
222 } // Predicates = [Is64Bit]
225 //===----------------------------------------------------------------------===//
226 // 64-bit Loads and Stores.
227 //===----------------------------------------------------------------------===//
229 // All the 32-bit loads and stores are available. The extending loads are sign
230 // or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
231 // zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
234 // SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
236 let Predicates = [Is64Bit] in {
239 let DecoderMethod = "DecodeLoadInt" in
240 defm LDX : Load<"ldx", 0b001011, load, I64Regs, i64>;
242 let mayLoad = 1, isAsmParserOnly = 1 in
243 def TLS_LDXrr : F3_1<3, 0b001011,
244 (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
245 "ldx [$addr], $dst, $sym",
247 (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
249 // Extending loads to i64.
250 def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
251 def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
252 def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
253 def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
255 def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
256 def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
257 def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
258 def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
259 def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
260 def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
262 def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
263 def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
264 def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
265 def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
266 def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
267 def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
269 def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
270 def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
271 def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
272 def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
274 // Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
275 let DecoderMethod = "DecodeLoadInt" in
276 defm LDSW : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>;
279 let DecoderMethod = "DecodeStoreInt" in
280 defm STX : Store<"stx", 0b001110, store, I64Regs, i64>;
282 // Truncating stores from i64 are identical to the i32 stores.
283 def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
284 def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
285 def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
286 def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
287 def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>;
288 def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>;
290 // store 0, addr -> store %g0, addr
291 def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
292 def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
294 } // Predicates = [Is64Bit]
297 //===----------------------------------------------------------------------===//
298 // 64-bit Conditionals.
299 //===----------------------------------------------------------------------===//
302 // Flag-setting instructions like subcc and addcc set both icc and xcc flags.
303 // The icc flags correspond to the 32-bit result, and the xcc are for the
304 // full 64-bit result.
306 // We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
307 // 64-bit compares. See LowerBR_CC.
309 let Predicates = [Is64Bit] in {
311 let Uses = [ICC], cc = 0b10 in
312 defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>;
314 // Conditional moves on %xcc.
315 let Uses = [ICC], Constraints = "$f = $rd" in {
316 let intcc = 1, cc = 0b10 in {
317 def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd),
318 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
319 "mov$cond %xcc, $rs2, $rd",
321 (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
322 def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd),
323 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
324 "mov$cond %xcc, $simm11, $rd",
326 (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>;
329 let intcc = 1, opf_cc = 0b10 in {
330 def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
331 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
332 "fmovs$cond %xcc, $rs2, $rd",
334 (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
335 def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
336 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
337 "fmovd$cond %xcc, $rs2, $rd",
339 (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
340 def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
341 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
342 "fmovq$cond %xcc, $rs2, $rd",
344 (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>;
346 } // Uses, Constraints
348 // Branch On integer register with Prediction (BPr).
349 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in
350 multiclass BranchOnReg<bits<3> cond, string OpcStr> {
351 def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
352 !strconcat(OpcStr, " $rs1, $imm16"), []>;
353 def apt : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
354 !strconcat(OpcStr, ",a $rs1, $imm16"), []>;
355 def napn : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
356 !strconcat(OpcStr, ",pn $rs1, $imm16"), []>;
357 def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
358 !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>;
361 multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> {
362 def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"),
363 (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>;
364 def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"),
365 (APT I64Regs:$rs1, bprtarget16:$imm16), 0>;
368 defm BPZ : BranchOnReg<0b001, "brz">;
369 defm BPLEZ : BranchOnReg<0b010, "brlez">;
370 defm BPLZ : BranchOnReg<0b011, "brlz">;
371 defm BPNZ : BranchOnReg<0b101, "brnz">;
372 defm BPGZ : BranchOnReg<0b110, "brgz">;
373 defm BPGEZ : BranchOnReg<0b111, "brgez">;
375 defm : bpr_alias<"brz", BPZnapt, BPZapt >;
376 defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>;
377 defm : bpr_alias<"brlz", BPLZnapt, BPLZapt >;
378 defm : bpr_alias<"brnz", BPNZnapt, BPNZapt >;
379 defm : bpr_alias<"brgz", BPGZnapt, BPGZapt >;
380 defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>;
382 // Move integer register on register condition (MOVr).
383 multiclass MOVR< bits<3> rcond, string OpcStr> {
384 def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd),
385 (ins I64Regs:$rs1, IntRegs:$rs2),
386 !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
388 def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd),
389 (ins I64Regs:$rs1, i64imm:$simm10),
390 !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>;
393 defm MOVRRZ : MOVR<0b001, "movrz">;
394 defm MOVRLEZ : MOVR<0b010, "movrlez">;
395 defm MOVRLZ : MOVR<0b011, "movrlz">;
396 defm MOVRNZ : MOVR<0b101, "movrnz">;
397 defm MOVRGZ : MOVR<0b110, "movrgz">;
398 defm MOVRGEZ : MOVR<0b111, "movrgez">;
400 // Move FP register on integer register condition (FMOVr).
401 multiclass FMOVR<bits<3> rcond, string OpcStr> {
403 def S : F4_4r<0b110101, 0b00101, rcond,
404 (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
405 !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"),
407 def D : F4_4r<0b110101, 0b00110, rcond,
408 (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
409 !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"),
411 def Q : F4_4r<0b110101, 0b00111, rcond,
412 (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
413 !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"),
414 []>, Requires<[HasHardQuad]>;
417 let Predicates = [HasV9] in {
418 defm FMOVRZ : FMOVR<0b001, "z">;
419 defm FMOVRLEZ : FMOVR<0b010, "lez">;
420 defm FMOVRLZ : FMOVR<0b011, "lz">;
421 defm FMOVRNZ : FMOVR<0b101, "nz">;
422 defm FMOVRGZ : FMOVR<0b110, "gz">;
423 defm FMOVRGEZ : FMOVR<0b111, "gez">;
426 //===----------------------------------------------------------------------===//
427 // 64-bit Floating Point Conversions.
428 //===----------------------------------------------------------------------===//
430 let Predicates = [Is64Bit] in {
432 def FXTOS : F3_3u<2, 0b110100, 0b010000100,
433 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
435 [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
436 def FXTOD : F3_3u<2, 0b110100, 0b010001000,
437 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
439 [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
440 def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
441 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
443 [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>,
444 Requires<[HasHardQuad]>;
446 def FSTOX : F3_3u<2, 0b110100, 0b010000001,
447 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
449 [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>;
450 def FDTOX : F3_3u<2, 0b110100, 0b010000010,
451 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
453 [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>;
454 def FQTOX : F3_3u<2, 0b110100, 0b010000011,
455 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
457 [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>,
458 Requires<[HasHardQuad]>;
460 } // Predicates = [Is64Bit]
462 def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
463 (MOVXCCrr $t, $f, imm:$cond)>;
464 def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
465 (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
467 def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
468 (MOVICCrr $t, $f, imm:$cond)>;
469 def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
470 (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
472 def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
473 (MOVFCCrr $t, $f, imm:$cond)>;
474 def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
475 (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
477 } // Predicates = [Is64Bit]
481 let Predicates = [Is64Bit], isCodeGenOnly = 1 in {
482 def SETHIXi : F2_1<0b100,
483 (outs IntRegs:$rd), (ins i64imm:$imm22),
485 [(set i64:$rd, SETHIimm:$imm22)]>;
489 let Predicates = [Is64Bit], Constraints = "$swap = $rd", asi = 0b10000000 in {
490 def CASXrr: F3_1_asi<3, 0b111110,
491 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2,
493 "casx [$rs1], $rs2, $rd",
495 (atomic_cmp_swap_64 i64:$rs1, i64:$rs2, i64:$swap))]>;
497 } // Predicates = [Is64Bit], Constraints = ...
499 let Predicates = [Is64Bit] in {
501 def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>;
503 // atomic_load_64 addr -> load addr
504 def : Pat<(i64 (atomic_load_64 ADDRrr:$src)), (LDXrr ADDRrr:$src)>;
505 def : Pat<(i64 (atomic_load_64 ADDRri:$src)), (LDXri ADDRri:$src)>;
507 // atomic_store_64 val, addr -> store val, addr
508 def : Pat<(atomic_store_64 ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>;
509 def : Pat<(atomic_store_64 ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>;
511 } // Predicates = [Is64Bit]
513 let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in
514 defm TXCC : TRAP<"%xcc">;
516 // Global addresses, constant pool entries
517 let Predicates = [Is64Bit] in {
519 def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
520 def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
521 def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
522 def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;
524 // GlobalTLS addresses
525 def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
526 def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
527 def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
528 (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
529 def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
530 (XORXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
533 def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
534 def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;
536 // Add reg, lo. This is used when taking the addr of a global/constpool entry.
537 def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
538 def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDXri $r, tconstpool:$in)>;
539 def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
540 (ADDXri $r, tblockaddress:$in)>;