[PowerPC] Tell VSX swap removal that scalar conversions are lane-sensitive
[llvm-core.git] / lib / Target / PowerPC / PPCVSXSwapRemoval.cpp
blob3af2ab9cb79c327d43dcb2b2eba1b2bf7c3233c5
1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===---------------------------------------------------------------------===//
9 //
10 // This pass analyzes vector computations and removes unnecessary
11 // doubleword swaps (xxswapd instructions). This pass is performed
12 // only for little-endian VSX code generation.
14 // For this specific case, loads and stores of v4i32, v4f32, v2i64,
15 // and v2f64 vectors are inefficient. These are implemented using
16 // the lxvd2x and stxvd2x instructions, which invert the order of
17 // doublewords in a vector register. Thus code generation inserts
18 // an xxswapd after each such load, and prior to each such store.
20 // The extra xxswapd instructions reduce performance. The purpose
21 // of this pass is to reduce the number of xxswapd instructions
22 // required for correctness.
24 // The primary insight is that much code that operates on vectors
25 // does not care about the relative order of elements in a register,
26 // so long as the correct memory order is preserved. If we have a
27 // computation where all input values are provided by lxvd2x/xxswapd,
28 // all outputs are stored using xxswapd/lxvd2x, and all intermediate
29 // computations are lane-insensitive (independent of element order),
30 // then all the xxswapd instructions associated with the loads and
31 // stores may be removed without changing observable semantics.
33 // This pass uses standard equivalence class infrastructure to create
34 // maximal webs of computations fitting the above description. Each
35 // such web is then optimized by removing its unnecessary xxswapd
36 // instructions.
38 // There are some lane-sensitive operations for which we can still
39 // permit the optimization, provided we modify those operations
40 // accordingly. Such operations are identified as using "special
41 // handling" within this module.
43 //===---------------------------------------------------------------------===//
45 #include "PPC.h"
46 #include "PPCInstrBuilder.h"
47 #include "PPCInstrInfo.h"
48 #include "PPCTargetMachine.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/EquivalenceClasses.h"
51 #include "llvm/CodeGen/MachineFunctionPass.h"
52 #include "llvm/CodeGen/MachineInstrBuilder.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
58 using namespace llvm;
60 #define DEBUG_TYPE "ppc-vsx-swaps"
62 namespace llvm {
63 void initializePPCVSXSwapRemovalPass(PassRegistry&);
66 namespace {
68 // A PPCVSXSwapEntry is created for each machine instruction that
69 // is relevant to a vector computation.
70 struct PPCVSXSwapEntry {
71 // Pointer to the instruction.
72 MachineInstr *VSEMI;
74 // Unique ID (position in the swap vector).
75 int VSEId;
77 // Attributes of this node.
78 unsigned int IsLoad : 1;
79 unsigned int IsStore : 1;
80 unsigned int IsSwap : 1;
81 unsigned int MentionsPhysVR : 1;
82 unsigned int IsSwappable : 1;
83 unsigned int MentionsPartialVR : 1;
84 unsigned int SpecialHandling : 3;
85 unsigned int WebRejected : 1;
86 unsigned int WillRemove : 1;
89 enum SHValues {
90 SH_NONE = 0,
91 SH_EXTRACT,
92 SH_INSERT,
93 SH_NOSWAP_LD,
94 SH_NOSWAP_ST,
95 SH_SPLAT,
96 SH_XXPERMDI,
97 SH_COPYWIDEN
100 struct PPCVSXSwapRemoval : public MachineFunctionPass {
102 static char ID;
103 const PPCInstrInfo *TII;
104 MachineFunction *MF;
105 MachineRegisterInfo *MRI;
107 // Swap entries are allocated in a vector for better performance.
108 std::vector<PPCVSXSwapEntry> SwapVector;
110 // A mapping is maintained between machine instructions and
111 // their swap entries. The key is the address of the MI.
112 DenseMap<MachineInstr*, int> SwapMap;
114 // Equivalence classes are used to gather webs of related computation.
115 // Swap entries are represented by their VSEId fields.
116 EquivalenceClasses<int> *EC;
118 PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
119 initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
122 private:
123 // Initialize data structures.
124 void initialize(MachineFunction &MFParm);
126 // Walk the machine instructions to gather vector usage information.
127 // Return true iff vector mentions are present.
128 bool gatherVectorInstructions();
130 // Add an entry to the swap vector and swap map.
131 int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
133 // Hunt backwards through COPY and SUBREG_TO_REG chains for a
134 // source register. VecIdx indicates the swap vector entry to
135 // mark as mentioning a physical register if the search leads
136 // to one.
137 unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
139 // Generate equivalence classes for related computations (webs).
140 void formWebs();
142 // Analyze webs and determine those that cannot be optimized.
143 void recordUnoptimizableWebs();
145 // Record which swap instructions can be safely removed.
146 void markSwapsForRemoval();
148 // Remove swaps and update other instructions requiring special
149 // handling. Return true iff any changes are made.
150 bool removeSwaps();
152 // Insert a swap instruction from SrcReg to DstReg at the given
153 // InsertPoint.
154 void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
155 unsigned DstReg, unsigned SrcReg);
157 // Update instructions requiring special handling.
158 void handleSpecialSwappables(int EntryIdx);
160 // Dump a description of the entries in the swap vector.
161 void dumpSwapVector();
163 // Return true iff the given register is in the given class.
164 bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
165 if (TargetRegisterInfo::isVirtualRegister(Reg))
166 return RC->hasSubClassEq(MRI->getRegClass(Reg));
167 return RC->contains(Reg);
170 // Return true iff the given register is a full vector register.
171 bool isVecReg(unsigned Reg) {
172 return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
173 isRegInClass(Reg, &PPC::VRRCRegClass));
176 // Return true iff the given register is a partial vector register.
177 bool isScalarVecReg(unsigned Reg) {
178 return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
179 isRegInClass(Reg, &PPC::VSSRCRegClass));
182 // Return true iff the given register mentions all or part of a
183 // vector register. Also sets Partial to true if the mention
184 // is for just the floating-point register overlap of the register.
185 bool isAnyVecReg(unsigned Reg, bool &Partial) {
186 if (isScalarVecReg(Reg))
187 Partial = true;
188 return isScalarVecReg(Reg) || isVecReg(Reg);
191 public:
192 // Main entry point for this pass.
193 bool runOnMachineFunction(MachineFunction &MF) override {
194 if (skipFunction(MF.getFunction()))
195 return false;
197 // If we don't have VSX on the subtarget, don't do anything.
198 // Also, on Power 9 the load and store ops preserve element order and so
199 // the swaps are not required.
200 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
201 if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps())
202 return false;
204 bool Changed = false;
205 initialize(MF);
207 if (gatherVectorInstructions()) {
208 formWebs();
209 recordUnoptimizableWebs();
210 markSwapsForRemoval();
211 Changed = removeSwaps();
214 // FIXME: See the allocation of EC in initialize().
215 delete EC;
216 return Changed;
220 // Initialize data structures for this pass. In particular, clear the
221 // swap vector and allocate the equivalence class mapping before
222 // processing each function.
223 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
224 MF = &MFParm;
225 MRI = &MF->getRegInfo();
226 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
228 // An initial vector size of 256 appears to work well in practice.
229 // Small/medium functions with vector content tend not to incur a
230 // reallocation at this size. Three of the vector tests in
231 // projects/test-suite reallocate, which seems like a reasonable rate.
232 const int InitialVectorSize(256);
233 SwapVector.clear();
234 SwapVector.reserve(InitialVectorSize);
236 // FIXME: Currently we allocate EC each time because we don't have
237 // access to the set representation on which to call clear(). Should
238 // consider adding a clear() method to the EquivalenceClasses class.
239 EC = new EquivalenceClasses<int>;
242 // Create an entry in the swap vector for each instruction that mentions
243 // a full vector register, recording various characteristics of the
244 // instructions there.
245 bool PPCVSXSwapRemoval::gatherVectorInstructions() {
246 bool RelevantFunction = false;
248 for (MachineBasicBlock &MBB : *MF) {
249 for (MachineInstr &MI : MBB) {
251 if (MI.isDebugValue())
252 continue;
254 bool RelevantInstr = false;
255 bool Partial = false;
257 for (const MachineOperand &MO : MI.operands()) {
258 if (!MO.isReg())
259 continue;
260 unsigned Reg = MO.getReg();
261 if (isAnyVecReg(Reg, Partial)) {
262 RelevantInstr = true;
263 break;
267 if (!RelevantInstr)
268 continue;
270 RelevantFunction = true;
272 // Create a SwapEntry initialized to zeros, then fill in the
273 // instruction and ID fields before pushing it to the back
274 // of the swap vector.
275 PPCVSXSwapEntry SwapEntry{};
276 int VecIdx = addSwapEntry(&MI, SwapEntry);
278 switch(MI.getOpcode()) {
279 default:
280 // Unless noted otherwise, an instruction is considered
281 // safe for the optimization. There are a large number of
282 // such true-SIMD instructions (all vector math, logical,
283 // select, compare, etc.). However, if the instruction
284 // mentions a partial vector register and does not have
285 // special handling defined, it is not swappable.
286 if (Partial)
287 SwapVector[VecIdx].MentionsPartialVR = 1;
288 else
289 SwapVector[VecIdx].IsSwappable = 1;
290 break;
291 case PPC::XXPERMDI: {
292 // This is a swap if it is of the form XXPERMDI t, s, s, 2.
293 // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
294 // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
295 // for example. We have to look through chains of COPY and
296 // SUBREG_TO_REG to find the real source value for comparison.
297 // If the real source value is a physical register, then mark the
298 // XXPERMDI as mentioning a physical register.
299 int immed = MI.getOperand(3).getImm();
300 if (immed == 2) {
301 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
302 VecIdx);
303 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
304 VecIdx);
305 if (trueReg1 == trueReg2)
306 SwapVector[VecIdx].IsSwap = 1;
307 else {
308 // We can still handle these if the two registers are not
309 // identical, by adjusting the form of the XXPERMDI.
310 SwapVector[VecIdx].IsSwappable = 1;
311 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
313 // This is a doubleword splat if it is of the form
314 // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we
315 // must look through chains of copy-likes to find the source
316 // register. We turn off the marking for mention of a physical
317 // register, because splatting it is safe; the optimization
318 // will not swap the value in the physical register. Whether
319 // or not the two input registers are identical, we can handle
320 // these by adjusting the form of the XXPERMDI.
321 } else if (immed == 0 || immed == 3) {
323 SwapVector[VecIdx].IsSwappable = 1;
324 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
326 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
327 VecIdx);
328 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
329 VecIdx);
330 if (trueReg1 == trueReg2)
331 SwapVector[VecIdx].MentionsPhysVR = 0;
333 } else {
334 // We can still handle these by adjusting the form of the XXPERMDI.
335 SwapVector[VecIdx].IsSwappable = 1;
336 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
338 break;
340 case PPC::LVX:
341 // Non-permuting loads are currently unsafe. We can use special
342 // handling for this in the future. By not marking these as
343 // IsSwap, we ensure computations containing them will be rejected
344 // for now.
345 SwapVector[VecIdx].IsLoad = 1;
346 break;
347 case PPC::LXVD2X:
348 case PPC::LXVW4X:
349 // Permuting loads are marked as both load and swap, and are
350 // safe for optimization.
351 SwapVector[VecIdx].IsLoad = 1;
352 SwapVector[VecIdx].IsSwap = 1;
353 break;
354 case PPC::LXSDX:
355 case PPC::LXSSPX:
356 case PPC::XFLOADf64:
357 case PPC::XFLOADf32:
358 // A load of a floating-point value into the high-order half of
359 // a vector register is safe, provided that we introduce a swap
360 // following the load, which will be done by the SUBREG_TO_REG
361 // support. So just mark these as safe.
362 SwapVector[VecIdx].IsLoad = 1;
363 SwapVector[VecIdx].IsSwappable = 1;
364 break;
365 case PPC::STVX:
366 // Non-permuting stores are currently unsafe. We can use special
367 // handling for this in the future. By not marking these as
368 // IsSwap, we ensure computations containing them will be rejected
369 // for now.
370 SwapVector[VecIdx].IsStore = 1;
371 break;
372 case PPC::STXVD2X:
373 case PPC::STXVW4X:
374 // Permuting stores are marked as both store and swap, and are
375 // safe for optimization.
376 SwapVector[VecIdx].IsStore = 1;
377 SwapVector[VecIdx].IsSwap = 1;
378 break;
379 case PPC::COPY:
380 // These are fine provided they are moving between full vector
381 // register classes.
382 if (isVecReg(MI.getOperand(0).getReg()) &&
383 isVecReg(MI.getOperand(1).getReg()))
384 SwapVector[VecIdx].IsSwappable = 1;
385 // If we have a copy from one scalar floating-point register
386 // to another, we can accept this even if it is a physical
387 // register. The only way this gets involved is if it feeds
388 // a SUBREG_TO_REG, which is handled by introducing a swap.
389 else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
390 isScalarVecReg(MI.getOperand(1).getReg()))
391 SwapVector[VecIdx].IsSwappable = 1;
392 break;
393 case PPC::SUBREG_TO_REG: {
394 // These are fine provided they are moving between full vector
395 // register classes. If they are moving from a scalar
396 // floating-point class to a vector class, we can handle those
397 // as well, provided we introduce a swap. It is generally the
398 // case that we will introduce fewer swaps than we remove, but
399 // (FIXME) a cost model could be used. However, introduced
400 // swaps could potentially be CSEd, so this is not trivial.
401 if (isVecReg(MI.getOperand(0).getReg()) &&
402 isVecReg(MI.getOperand(2).getReg()))
403 SwapVector[VecIdx].IsSwappable = 1;
404 else if (isVecReg(MI.getOperand(0).getReg()) &&
405 isScalarVecReg(MI.getOperand(2).getReg())) {
406 SwapVector[VecIdx].IsSwappable = 1;
407 SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
409 break;
411 case PPC::VSPLTB:
412 case PPC::VSPLTH:
413 case PPC::VSPLTW:
414 case PPC::XXSPLTW:
415 // Splats are lane-sensitive, but we can use special handling
416 // to adjust the source lane for the splat.
417 SwapVector[VecIdx].IsSwappable = 1;
418 SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
419 break;
420 // The presence of the following lane-sensitive operations in a
421 // web will kill the optimization, at least for now. For these
422 // we do nothing, causing the optimization to fail.
423 // FIXME: Some of these could be permitted with special handling,
424 // and will be phased in as time permits.
425 // FIXME: There is no simple and maintainable way to express a set
426 // of opcodes having a common attribute in TableGen. Should this
427 // change, this is a prime candidate to use such a mechanism.
428 case PPC::INLINEASM:
429 case PPC::EXTRACT_SUBREG:
430 case PPC::INSERT_SUBREG:
431 case PPC::COPY_TO_REGCLASS:
432 case PPC::LVEBX:
433 case PPC::LVEHX:
434 case PPC::LVEWX:
435 case PPC::LVSL:
436 case PPC::LVSR:
437 case PPC::LVXL:
438 case PPC::STVEBX:
439 case PPC::STVEHX:
440 case PPC::STVEWX:
441 case PPC::STVXL:
442 // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
443 // by adding special handling for narrowing copies as well as
444 // widening ones. However, I've experimented with this, and in
445 // practice we currently do not appear to use STXSDX fed by
446 // a narrowing copy from a full vector register. Since I can't
447 // generate any useful test cases, I've left this alone for now.
448 case PPC::STXSDX:
449 case PPC::STXSSPX:
450 case PPC::VCIPHER:
451 case PPC::VCIPHERLAST:
452 case PPC::VMRGHB:
453 case PPC::VMRGHH:
454 case PPC::VMRGHW:
455 case PPC::VMRGLB:
456 case PPC::VMRGLH:
457 case PPC::VMRGLW:
458 case PPC::VMULESB:
459 case PPC::VMULESH:
460 case PPC::VMULESW:
461 case PPC::VMULEUB:
462 case PPC::VMULEUH:
463 case PPC::VMULEUW:
464 case PPC::VMULOSB:
465 case PPC::VMULOSH:
466 case PPC::VMULOSW:
467 case PPC::VMULOUB:
468 case PPC::VMULOUH:
469 case PPC::VMULOUW:
470 case PPC::VNCIPHER:
471 case PPC::VNCIPHERLAST:
472 case PPC::VPERM:
473 case PPC::VPERMXOR:
474 case PPC::VPKPX:
475 case PPC::VPKSHSS:
476 case PPC::VPKSHUS:
477 case PPC::VPKSDSS:
478 case PPC::VPKSDUS:
479 case PPC::VPKSWSS:
480 case PPC::VPKSWUS:
481 case PPC::VPKUDUM:
482 case PPC::VPKUDUS:
483 case PPC::VPKUHUM:
484 case PPC::VPKUHUS:
485 case PPC::VPKUWUM:
486 case PPC::VPKUWUS:
487 case PPC::VPMSUMB:
488 case PPC::VPMSUMD:
489 case PPC::VPMSUMH:
490 case PPC::VPMSUMW:
491 case PPC::VRLB:
492 case PPC::VRLD:
493 case PPC::VRLH:
494 case PPC::VRLW:
495 case PPC::VSBOX:
496 case PPC::VSHASIGMAD:
497 case PPC::VSHASIGMAW:
498 case PPC::VSL:
499 case PPC::VSLDOI:
500 case PPC::VSLO:
501 case PPC::VSR:
502 case PPC::VSRO:
503 case PPC::VSUM2SWS:
504 case PPC::VSUM4SBS:
505 case PPC::VSUM4SHS:
506 case PPC::VSUM4UBS:
507 case PPC::VSUMSWS:
508 case PPC::VUPKHPX:
509 case PPC::VUPKHSB:
510 case PPC::VUPKHSH:
511 case PPC::VUPKHSW:
512 case PPC::VUPKLPX:
513 case PPC::VUPKLSB:
514 case PPC::VUPKLSH:
515 case PPC::VUPKLSW:
516 case PPC::XXMRGHW:
517 case PPC::XXMRGLW:
518 // XXSLDWI could be replaced by a general permute with one of three
519 // permute control vectors (for shift values 1, 2, 3). However,
520 // VPERM has a more restrictive register class.
521 case PPC::XXSLDWI:
522 case PPC::XSCVDPSPN:
523 case PPC::XSCVSPDPN:
524 break;
529 if (RelevantFunction) {
530 DEBUG(dbgs() << "Swap vector when first built\n\n");
531 DEBUG(dumpSwapVector());
534 return RelevantFunction;
537 // Add an entry to the swap vector and swap map, and make a
538 // singleton equivalence class for the entry.
539 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
540 PPCVSXSwapEntry& SwapEntry) {
541 SwapEntry.VSEMI = MI;
542 SwapEntry.VSEId = SwapVector.size();
543 SwapVector.push_back(SwapEntry);
544 EC->insert(SwapEntry.VSEId);
545 SwapMap[MI] = SwapEntry.VSEId;
546 return SwapEntry.VSEId;
549 // This is used to find the "true" source register for an
550 // XXPERMDI instruction, since MachineCSE does not handle the
551 // "copy-like" operations (Copy and SubregToReg). Returns
552 // the original SrcReg unless it is the target of a copy-like
553 // operation, in which case we chain backwards through all
554 // such operations to the ultimate source register. If a
555 // physical register is encountered, we stop the search and
556 // flag the swap entry indicated by VecIdx (the original
557 // XXPERMDI) as mentioning a physical register.
558 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
559 unsigned VecIdx) {
560 MachineInstr *MI = MRI->getVRegDef(SrcReg);
561 if (!MI->isCopyLike())
562 return SrcReg;
564 unsigned CopySrcReg;
565 if (MI->isCopy())
566 CopySrcReg = MI->getOperand(1).getReg();
567 else {
568 assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
569 CopySrcReg = MI->getOperand(2).getReg();
572 if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) {
573 if (!isScalarVecReg(CopySrcReg))
574 SwapVector[VecIdx].MentionsPhysVR = 1;
575 return CopySrcReg;
578 return lookThruCopyLike(CopySrcReg, VecIdx);
581 // Generate equivalence classes for related computations (webs) by
582 // def-use relationships of virtual registers. Mention of a physical
583 // register terminates the generation of equivalence classes as this
584 // indicates a use of a parameter, definition of a return value, use
585 // of a value returned from a call, or definition of a parameter to a
586 // call. Computations with physical register mentions are flagged
587 // as such so their containing webs will not be optimized.
588 void PPCVSXSwapRemoval::formWebs() {
590 DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
592 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
594 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
596 DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
597 DEBUG(MI->dump());
599 // It's sufficient to walk vector uses and join them to their unique
600 // definitions. In addition, check full vector register operands
601 // for physical regs. We exclude partial-vector register operands
602 // because we can handle them if copied to a full vector.
603 for (const MachineOperand &MO : MI->operands()) {
604 if (!MO.isReg())
605 continue;
607 unsigned Reg = MO.getReg();
608 if (!isVecReg(Reg) && !isScalarVecReg(Reg))
609 continue;
611 if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
612 if (!(MI->isCopy() && isScalarVecReg(Reg)))
613 SwapVector[EntryIdx].MentionsPhysVR = 1;
614 continue;
617 if (!MO.isUse())
618 continue;
620 MachineInstr* DefMI = MRI->getVRegDef(Reg);
621 assert(SwapMap.find(DefMI) != SwapMap.end() &&
622 "Inconsistency: def of vector reg not found in swap map!");
623 int DefIdx = SwapMap[DefMI];
624 (void)EC->unionSets(SwapVector[DefIdx].VSEId,
625 SwapVector[EntryIdx].VSEId);
627 DEBUG(dbgs() << format("Unioning %d with %d\n", SwapVector[DefIdx].VSEId,
628 SwapVector[EntryIdx].VSEId));
629 DEBUG(dbgs() << " Def: ");
630 DEBUG(DefMI->dump());
635 // Walk the swap vector entries looking for conditions that prevent their
636 // containing computations from being optimized. When such conditions are
637 // found, mark the representative of the computation's equivalence class
638 // as rejected.
639 void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
641 DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
643 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
644 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
646 // If representative is already rejected, don't waste further time.
647 if (SwapVector[Repr].WebRejected)
648 continue;
650 // Reject webs containing mentions of physical or partial registers, or
651 // containing operations that we don't know how to handle in a lane-
652 // permuted region.
653 if (SwapVector[EntryIdx].MentionsPhysVR ||
654 SwapVector[EntryIdx].MentionsPartialVR ||
655 !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
657 SwapVector[Repr].WebRejected = 1;
659 DEBUG(dbgs() <<
660 format("Web %d rejected for physreg, partial reg, or not "
661 "swap[pable]\n", Repr));
662 DEBUG(dbgs() << " in " << EntryIdx << ": ");
663 DEBUG(SwapVector[EntryIdx].VSEMI->dump());
664 DEBUG(dbgs() << "\n");
667 // Reject webs than contain swapping loads that feed something other
668 // than a swap instruction.
669 else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
670 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
671 unsigned DefReg = MI->getOperand(0).getReg();
673 // We skip debug instructions in the analysis. (Note that debug
674 // location information is still maintained by this optimization
675 // because it remains on the LXVD2X and STXVD2X instructions after
676 // the XXPERMDIs are removed.)
677 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
678 int UseIdx = SwapMap[&UseMI];
680 if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
681 SwapVector[UseIdx].IsStore) {
683 SwapVector[Repr].WebRejected = 1;
685 DEBUG(dbgs() <<
686 format("Web %d rejected for load not feeding swap\n", Repr));
687 DEBUG(dbgs() << " def " << EntryIdx << ": ");
688 DEBUG(MI->dump());
689 DEBUG(dbgs() << " use " << UseIdx << ": ");
690 DEBUG(UseMI.dump());
691 DEBUG(dbgs() << "\n");
695 // Reject webs that contain swapping stores that are fed by something
696 // other than a swap instruction.
697 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
698 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
699 unsigned UseReg = MI->getOperand(0).getReg();
700 MachineInstr *DefMI = MRI->getVRegDef(UseReg);
701 unsigned DefReg = DefMI->getOperand(0).getReg();
702 int DefIdx = SwapMap[DefMI];
704 if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
705 SwapVector[DefIdx].IsStore) {
707 SwapVector[Repr].WebRejected = 1;
709 DEBUG(dbgs() <<
710 format("Web %d rejected for store not fed by swap\n", Repr));
711 DEBUG(dbgs() << " def " << DefIdx << ": ");
712 DEBUG(DefMI->dump());
713 DEBUG(dbgs() << " use " << EntryIdx << ": ");
714 DEBUG(MI->dump());
715 DEBUG(dbgs() << "\n");
718 // Ensure all uses of the register defined by DefMI feed store
719 // instructions
720 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
721 int UseIdx = SwapMap[&UseMI];
723 if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
724 SwapVector[Repr].WebRejected = 1;
726 DEBUG(dbgs() <<
727 format("Web %d rejected for swap not feeding only stores\n",
728 Repr));
729 DEBUG(dbgs() << " def " << " : ");
730 DEBUG(DefMI->dump());
731 DEBUG(dbgs() << " use " << UseIdx << ": ");
732 DEBUG(SwapVector[UseIdx].VSEMI->dump());
733 DEBUG(dbgs() << "\n");
739 DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
740 DEBUG(dumpSwapVector());
743 // Walk the swap vector entries looking for swaps fed by permuting loads
744 // and swaps that feed permuting stores. If the containing computation
745 // has not been marked rejected, mark each such swap for removal.
746 // (Removal is delayed in case optimization has disturbed the pattern,
747 // such that multiple loads feed the same swap, etc.)
748 void PPCVSXSwapRemoval::markSwapsForRemoval() {
750 DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
752 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
754 if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
755 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
757 if (!SwapVector[Repr].WebRejected) {
758 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
759 unsigned DefReg = MI->getOperand(0).getReg();
761 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
762 int UseIdx = SwapMap[&UseMI];
763 SwapVector[UseIdx].WillRemove = 1;
765 DEBUG(dbgs() << "Marking swap fed by load for removal: ");
766 DEBUG(UseMI.dump());
770 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
771 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
773 if (!SwapVector[Repr].WebRejected) {
774 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
775 unsigned UseReg = MI->getOperand(0).getReg();
776 MachineInstr *DefMI = MRI->getVRegDef(UseReg);
777 int DefIdx = SwapMap[DefMI];
778 SwapVector[DefIdx].WillRemove = 1;
780 DEBUG(dbgs() << "Marking swap feeding store for removal: ");
781 DEBUG(DefMI->dump());
784 } else if (SwapVector[EntryIdx].IsSwappable &&
785 SwapVector[EntryIdx].SpecialHandling != 0) {
786 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
788 if (!SwapVector[Repr].WebRejected)
789 handleSpecialSwappables(EntryIdx);
794 // Create an xxswapd instruction and insert it prior to the given point.
795 // MI is used to determine basic block and debug loc information.
796 // FIXME: When inserting a swap, we should check whether SrcReg is
797 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so,
798 // then instead we should generate a copy from Reg to DstReg.
799 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
800 MachineBasicBlock::iterator InsertPoint,
801 unsigned DstReg, unsigned SrcReg) {
802 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
803 TII->get(PPC::XXPERMDI), DstReg)
804 .addReg(SrcReg)
805 .addReg(SrcReg)
806 .addImm(2);
809 // The identified swap entry requires special handling to allow its
810 // containing computation to be optimized. Perform that handling
811 // here.
812 // FIXME: Additional opportunities will be phased in with subsequent
813 // patches.
814 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
815 switch (SwapVector[EntryIdx].SpecialHandling) {
817 default:
818 llvm_unreachable("Unexpected special handling type");
820 // For splats based on an index into a vector, add N/2 modulo N
821 // to the index, where N is the number of vector elements.
822 case SHValues::SH_SPLAT: {
823 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
824 unsigned NElts;
826 DEBUG(dbgs() << "Changing splat: ");
827 DEBUG(MI->dump());
829 switch (MI->getOpcode()) {
830 default:
831 llvm_unreachable("Unexpected splat opcode");
832 case PPC::VSPLTB: NElts = 16; break;
833 case PPC::VSPLTH: NElts = 8; break;
834 case PPC::VSPLTW:
835 case PPC::XXSPLTW: NElts = 4; break;
838 unsigned EltNo;
839 if (MI->getOpcode() == PPC::XXSPLTW)
840 EltNo = MI->getOperand(2).getImm();
841 else
842 EltNo = MI->getOperand(1).getImm();
844 EltNo = (EltNo + NElts / 2) % NElts;
845 if (MI->getOpcode() == PPC::XXSPLTW)
846 MI->getOperand(2).setImm(EltNo);
847 else
848 MI->getOperand(1).setImm(EltNo);
850 DEBUG(dbgs() << " Into: ");
851 DEBUG(MI->dump());
852 break;
855 // For an XXPERMDI that isn't handled otherwise, we need to
856 // reverse the order of the operands. If the selector operand
857 // has a value of 0 or 3, we need to change it to 3 or 0,
858 // respectively. Otherwise we should leave it alone. (This
859 // is equivalent to reversing the two bits of the selector
860 // operand and complementing the result.)
861 case SHValues::SH_XXPERMDI: {
862 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
864 DEBUG(dbgs() << "Changing XXPERMDI: ");
865 DEBUG(MI->dump());
867 unsigned Selector = MI->getOperand(3).getImm();
868 if (Selector == 0 || Selector == 3)
869 Selector = 3 - Selector;
870 MI->getOperand(3).setImm(Selector);
872 unsigned Reg1 = MI->getOperand(1).getReg();
873 unsigned Reg2 = MI->getOperand(2).getReg();
874 MI->getOperand(1).setReg(Reg2);
875 MI->getOperand(2).setReg(Reg1);
877 DEBUG(dbgs() << " Into: ");
878 DEBUG(MI->dump());
879 break;
882 // For a copy from a scalar floating-point register to a vector
883 // register, removing swaps will leave the copied value in the
884 // wrong lane. Insert a swap following the copy to fix this.
885 case SHValues::SH_COPYWIDEN: {
886 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
888 DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
889 DEBUG(MI->dump());
891 unsigned DstReg = MI->getOperand(0).getReg();
892 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
893 unsigned NewVReg = MRI->createVirtualRegister(DstRC);
895 MI->getOperand(0).setReg(NewVReg);
896 DEBUG(dbgs() << " Into: ");
897 DEBUG(MI->dump());
899 auto InsertPoint = ++MachineBasicBlock::iterator(MI);
901 // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
902 // is copying to a VRRC, we need to be careful to avoid a register
903 // assignment problem. In this case we must copy from VRRC to VSRC
904 // prior to the swap, and from VSRC to VRRC following the swap.
905 // Coalescing will usually remove all this mess.
906 if (DstRC == &PPC::VRRCRegClass) {
907 unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
908 unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
910 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
911 TII->get(PPC::COPY), VSRCTmp1)
912 .addReg(NewVReg);
913 DEBUG(std::prev(InsertPoint)->dump());
915 insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
916 DEBUG(std::prev(InsertPoint)->dump());
918 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
919 TII->get(PPC::COPY), DstReg)
920 .addReg(VSRCTmp2);
921 DEBUG(std::prev(InsertPoint)->dump());
923 } else {
924 insertSwap(MI, InsertPoint, DstReg, NewVReg);
925 DEBUG(std::prev(InsertPoint)->dump());
927 break;
932 // Walk the swap vector and replace each entry marked for removal with
933 // a copy operation.
934 bool PPCVSXSwapRemoval::removeSwaps() {
936 DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
938 bool Changed = false;
940 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
941 if (SwapVector[EntryIdx].WillRemove) {
942 Changed = true;
943 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
944 MachineBasicBlock *MBB = MI->getParent();
945 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
946 MI->getOperand(0).getReg())
947 .add(MI->getOperand(1));
949 DEBUG(dbgs() << format("Replaced %d with copy: ",
950 SwapVector[EntryIdx].VSEId));
951 DEBUG(MI->dump());
953 MI->eraseFromParent();
957 return Changed;
960 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
961 // For debug purposes, dump the contents of the swap vector.
962 LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() {
964 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
966 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
967 int ID = SwapVector[EntryIdx].VSEId;
969 dbgs() << format("%6d", ID);
970 dbgs() << format("%6d", EC->getLeaderValue(ID));
971 dbgs() << format(" %bb.%3d", MI->getParent()->getNumber());
972 dbgs() << format(" %14s ", TII->getName(MI->getOpcode()).str().c_str());
974 if (SwapVector[EntryIdx].IsLoad)
975 dbgs() << "load ";
976 if (SwapVector[EntryIdx].IsStore)
977 dbgs() << "store ";
978 if (SwapVector[EntryIdx].IsSwap)
979 dbgs() << "swap ";
980 if (SwapVector[EntryIdx].MentionsPhysVR)
981 dbgs() << "physreg ";
982 if (SwapVector[EntryIdx].MentionsPartialVR)
983 dbgs() << "partialreg ";
985 if (SwapVector[EntryIdx].IsSwappable) {
986 dbgs() << "swappable ";
987 switch(SwapVector[EntryIdx].SpecialHandling) {
988 default:
989 dbgs() << "special:**unknown**";
990 break;
991 case SH_NONE:
992 break;
993 case SH_EXTRACT:
994 dbgs() << "special:extract ";
995 break;
996 case SH_INSERT:
997 dbgs() << "special:insert ";
998 break;
999 case SH_NOSWAP_LD:
1000 dbgs() << "special:load ";
1001 break;
1002 case SH_NOSWAP_ST:
1003 dbgs() << "special:store ";
1004 break;
1005 case SH_SPLAT:
1006 dbgs() << "special:splat ";
1007 break;
1008 case SH_XXPERMDI:
1009 dbgs() << "special:xxpermdi ";
1010 break;
1011 case SH_COPYWIDEN:
1012 dbgs() << "special:copywiden ";
1013 break;
1017 if (SwapVector[EntryIdx].WebRejected)
1018 dbgs() << "rejected ";
1019 if (SwapVector[EntryIdx].WillRemove)
1020 dbgs() << "remove ";
1022 dbgs() << "\n";
1024 // For no-asserts builds.
1025 (void)MI;
1026 (void)ID;
1029 dbgs() << "\n";
1031 #endif
1033 } // end default namespace
1035 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
1036 "PowerPC VSX Swap Removal", false, false)
1037 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1038 "PowerPC VSX Swap Removal", false, false)
1040 char PPCVSXSwapRemoval::ID = 0;
1041 FunctionPass*
1042 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }