1 //===- unittests/Support/EndianTest.cpp - Endian.h tests ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Support/Endian.h"
10 #include "llvm/Support/DataTypes.h"
11 #include "gtest/gtest.h"
15 using namespace support
;
22 // These are 5 bytes so we can be sure at least one of the reads is unaligned.
23 unsigned char bigval
[] = {0x00, 0x01, 0x02, 0x03, 0x04};
24 unsigned char littleval
[] = {0x00, 0x04, 0x03, 0x02, 0x01};
25 int32_t BigAsHost
= 0x00010203;
26 EXPECT_EQ(BigAsHost
, (endian::read
<int32_t, big
, unaligned
>(bigval
)));
27 int32_t LittleAsHost
= 0x02030400;
28 EXPECT_EQ(LittleAsHost
,(endian::read
<int32_t, little
, unaligned
>(littleval
)));
30 EXPECT_EQ((endian::read
<int32_t, big
, unaligned
>(bigval
+ 1)),
31 (endian::read
<int32_t, little
, unaligned
>(littleval
+ 1)));
34 TEST(Endian
, ReadBitAligned
) {
35 // Simple test to make sure we properly pull out the 0x0 word.
36 unsigned char littleval
[] = {0x3f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff};
37 unsigned char bigval
[] = {0x00, 0x00, 0x00, 0x3f, 0xff, 0xff, 0xff, 0xc0};
39 (endian::readAtBitAlignment
<int, little
, unaligned
>(&littleval
[0], 6)),
41 EXPECT_EQ((endian::readAtBitAlignment
<int, big
, unaligned
>(&bigval
[0], 6)),
43 // Test to make sure that signed right shift of 0xf0000000 is masked
45 unsigned char littleval2
[] = {0x00, 0x00, 0x00, 0xf0, 0x00, 0x00, 0x00, 0x00};
46 unsigned char bigval2
[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
48 (endian::readAtBitAlignment
<int, little
, unaligned
>(&littleval2
[0], 4)),
50 EXPECT_EQ((endian::readAtBitAlignment
<int, big
, unaligned
>(&bigval2
[0], 4)),
52 // Test to make sure left shift of start bit doesn't overflow.
54 (endian::readAtBitAlignment
<int, little
, unaligned
>(&littleval2
[0], 1)),
56 EXPECT_EQ((endian::readAtBitAlignment
<int, big
, unaligned
>(&bigval2
[0], 1)),
58 // Test to make sure 64-bit int doesn't overflow.
59 unsigned char littleval3
[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0,
60 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
61 unsigned char bigval3
[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
62 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
63 EXPECT_EQ((endian::readAtBitAlignment
<int64_t, little
, unaligned
>(
67 (endian::readAtBitAlignment
<int64_t, big
, unaligned
>(&bigval3
[0], 4)),
71 TEST(Endian
, WriteBitAligned
) {
72 // This test ensures that signed right shift of 0xffffaa is masked
74 unsigned char bigval
[8] = {0x00};
75 endian::writeAtBitAlignment
<int32_t, big
, unaligned
>(bigval
, (int)0xffffaaaa,
77 EXPECT_EQ(bigval
[0], 0xff);
78 EXPECT_EQ(bigval
[1], 0xfa);
79 EXPECT_EQ(bigval
[2], 0xaa);
80 EXPECT_EQ(bigval
[3], 0xa0);
81 EXPECT_EQ(bigval
[4], 0x00);
82 EXPECT_EQ(bigval
[5], 0x00);
83 EXPECT_EQ(bigval
[6], 0x00);
84 EXPECT_EQ(bigval
[7], 0x0f);
86 unsigned char littleval
[8] = {0x00};
87 endian::writeAtBitAlignment
<int32_t, little
, unaligned
>(littleval
,
89 EXPECT_EQ(littleval
[0], 0xa0);
90 EXPECT_EQ(littleval
[1], 0xaa);
91 EXPECT_EQ(littleval
[2], 0xfa);
92 EXPECT_EQ(littleval
[3], 0xff);
93 EXPECT_EQ(littleval
[4], 0x0f);
94 EXPECT_EQ(littleval
[5], 0x00);
95 EXPECT_EQ(littleval
[6], 0x00);
96 EXPECT_EQ(littleval
[7], 0x00);
98 // This test makes sure 1<<31 doesn't overflow.
99 // Test to make sure left shift of start bit doesn't overflow.
100 unsigned char bigval2
[8] = {0x00};
101 endian::writeAtBitAlignment
<int32_t, big
, unaligned
>(bigval2
, (int)0xffffffff,
103 EXPECT_EQ(bigval2
[0], 0xff);
104 EXPECT_EQ(bigval2
[1], 0xff);
105 EXPECT_EQ(bigval2
[2], 0xff);
106 EXPECT_EQ(bigval2
[3], 0xfe);
107 EXPECT_EQ(bigval2
[4], 0x00);
108 EXPECT_EQ(bigval2
[5], 0x00);
109 EXPECT_EQ(bigval2
[6], 0x00);
110 EXPECT_EQ(bigval2
[7], 0x01);
112 unsigned char littleval2
[8] = {0x00};
113 endian::writeAtBitAlignment
<int32_t, little
, unaligned
>(littleval2
,
115 EXPECT_EQ(littleval2
[0], 0xfe);
116 EXPECT_EQ(littleval2
[1], 0xff);
117 EXPECT_EQ(littleval2
[2], 0xff);
118 EXPECT_EQ(littleval2
[3], 0xff);
119 EXPECT_EQ(littleval2
[4], 0x01);
120 EXPECT_EQ(littleval2
[5], 0x00);
121 EXPECT_EQ(littleval2
[6], 0x00);
122 EXPECT_EQ(littleval2
[7], 0x00);
124 // Test to make sure 64-bit int doesn't overflow.
125 unsigned char bigval64
[16] = {0x00};
126 endian::writeAtBitAlignment
<int64_t, big
, unaligned
>(
127 bigval64
, (int64_t)0xffffffffffffffff, 1);
128 EXPECT_EQ(bigval64
[0], 0xff);
129 EXPECT_EQ(bigval64
[1], 0xff);
130 EXPECT_EQ(bigval64
[2], 0xff);
131 EXPECT_EQ(bigval64
[3], 0xff);
132 EXPECT_EQ(bigval64
[4], 0xff);
133 EXPECT_EQ(bigval64
[5], 0xff);
134 EXPECT_EQ(bigval64
[6], 0xff);
135 EXPECT_EQ(bigval64
[7], 0xfe);
136 EXPECT_EQ(bigval64
[8], 0x00);
137 EXPECT_EQ(bigval64
[9], 0x00);
138 EXPECT_EQ(bigval64
[10], 0x00);
139 EXPECT_EQ(bigval64
[11], 0x00);
140 EXPECT_EQ(bigval64
[12], 0x00);
141 EXPECT_EQ(bigval64
[13], 0x00);
142 EXPECT_EQ(bigval64
[14], 0x00);
143 EXPECT_EQ(bigval64
[15], 0x01);
145 unsigned char littleval64
[16] = {0x00};
146 endian::writeAtBitAlignment
<int64_t, little
, unaligned
>(
147 littleval64
, (int64_t)0xffffffffffffffff, 1);
148 EXPECT_EQ(littleval64
[0], 0xfe);
149 EXPECT_EQ(littleval64
[1], 0xff);
150 EXPECT_EQ(littleval64
[2], 0xff);
151 EXPECT_EQ(littleval64
[3], 0xff);
152 EXPECT_EQ(littleval64
[4], 0xff);
153 EXPECT_EQ(littleval64
[5], 0xff);
154 EXPECT_EQ(littleval64
[6], 0xff);
155 EXPECT_EQ(littleval64
[7], 0xff);
156 EXPECT_EQ(littleval64
[8], 0x01);
157 EXPECT_EQ(littleval64
[9], 0x00);
158 EXPECT_EQ(littleval64
[10], 0x00);
159 EXPECT_EQ(littleval64
[11], 0x00);
160 EXPECT_EQ(littleval64
[12], 0x00);
161 EXPECT_EQ(littleval64
[13], 0x00);
162 EXPECT_EQ(littleval64
[14], 0x00);
163 EXPECT_EQ(littleval64
[15], 0x00);
166 TEST(Endian
, Write
) {
167 unsigned char data
[5];
168 endian::write
<int32_t, big
, unaligned
>(data
, -1362446643);
169 EXPECT_EQ(data
[0], 0xAE);
170 EXPECT_EQ(data
[1], 0xCA);
171 EXPECT_EQ(data
[2], 0xB6);
172 EXPECT_EQ(data
[3], 0xCD);
173 endian::write
<int32_t, big
, unaligned
>(data
+ 1, -1362446643);
174 EXPECT_EQ(data
[1], 0xAE);
175 EXPECT_EQ(data
[2], 0xCA);
176 EXPECT_EQ(data
[3], 0xB6);
177 EXPECT_EQ(data
[4], 0xCD);
179 endian::write
<int32_t, little
, unaligned
>(data
, -1362446643);
180 EXPECT_EQ(data
[0], 0xCD);
181 EXPECT_EQ(data
[1], 0xB6);
182 EXPECT_EQ(data
[2], 0xCA);
183 EXPECT_EQ(data
[3], 0xAE);
184 endian::write
<int32_t, little
, unaligned
>(data
+ 1, -1362446643);
185 EXPECT_EQ(data
[1], 0xCD);
186 EXPECT_EQ(data
[2], 0xB6);
187 EXPECT_EQ(data
[3], 0xCA);
188 EXPECT_EQ(data
[4], 0xAE);
191 TEST(Endian
, PackedEndianSpecificIntegral
) {
192 // These are 5 bytes so we can be sure at least one of the reads is unaligned.
193 unsigned char big
[] = {0x00, 0x01, 0x02, 0x03, 0x04};
194 unsigned char little
[] = {0x00, 0x04, 0x03, 0x02, 0x01};
196 reinterpret_cast<big32_t
*>(big
+ 1);
197 little32_t
*little_val
=
198 reinterpret_cast<little32_t
*>(little
+ 1);
200 EXPECT_EQ(*big_val
, *little_val
);
203 TEST(Endian
, PacketEndianSpecificIntegralAsEnum
) {
204 enum class Test
: uint16_t { ONETWO
= 0x0102, TWOONE
= 0x0201 };
205 unsigned char bytes
[] = {0x01, 0x02};
206 using LittleTest
= little_t
<Test
>;
207 using BigTest
= big_t
<Test
>;
208 EXPECT_EQ(Test::TWOONE
, *reinterpret_cast<LittleTest
*>(bytes
));
209 EXPECT_EQ(Test::ONETWO
, *reinterpret_cast<BigTest
*>(bytes
));
212 } // end anon namespace