Fix for PR34888.
[llvm-core.git] / lib / Analysis / BranchProbabilityInfo.cpp
blobc6d17d2936d922e522ad69aa52e4dc580d169e9a
1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loops should be simplified before this analysis.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/BranchProbabilityInfo.h"
15 #include "llvm/ADT/PostOrderIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 #include <utility>
43 using namespace llvm;
45 #define DEBUG_TYPE "branch-prob"
47 static cl::opt<bool> PrintBranchProb(
48 "print-bpi", cl::init(false), cl::Hidden,
49 cl::desc("Print the branch probability info."));
51 cl::opt<std::string> PrintBranchProbFuncName(
52 "print-bpi-func-name", cl::Hidden,
53 cl::desc("The option to specify the name of the function "
54 "whose branch probability info is printed."));
56 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
57 "Branch Probability Analysis", false, true)
58 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
59 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
60 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
61 "Branch Probability Analysis", false, true)
63 char BranchProbabilityInfoWrapperPass::ID = 0;
65 // Weights are for internal use only. They are used by heuristics to help to
66 // estimate edges' probability. Example:
68 // Using "Loop Branch Heuristics" we predict weights of edges for the
69 // block BB2.
70 // ...
71 // |
72 // V
73 // BB1<-+
74 // | |
75 // | | (Weight = 124)
76 // V |
77 // BB2--+
78 // |
79 // | (Weight = 4)
80 // V
81 // BB3
83 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
84 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
85 static const uint32_t LBH_TAKEN_WEIGHT = 124;
86 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
88 /// \brief Unreachable-terminating branch taken probability.
89 ///
90 /// This is the probability for a branch being taken to a block that terminates
91 /// (eventually) in unreachable. These are predicted as unlikely as possible.
92 /// All reachable probability will equally share the remaining part.
93 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
95 /// \brief Weight for a branch taken going into a cold block.
96 ///
97 /// This is the weight for a branch taken toward a block marked
98 /// cold. A block is marked cold if it's postdominated by a
99 /// block containing a call to a cold function. Cold functions
100 /// are those marked with attribute 'cold'.
101 static const uint32_t CC_TAKEN_WEIGHT = 4;
103 /// \brief Weight for a branch not-taken into a cold block.
105 /// This is the weight for a branch not taken toward a block marked
106 /// cold.
107 static const uint32_t CC_NONTAKEN_WEIGHT = 64;
109 static const uint32_t PH_TAKEN_WEIGHT = 20;
110 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
112 static const uint32_t ZH_TAKEN_WEIGHT = 20;
113 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
115 static const uint32_t FPH_TAKEN_WEIGHT = 20;
116 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
118 /// \brief Invoke-terminating normal branch taken weight
120 /// This is the weight for branching to the normal destination of an invoke
121 /// instruction. We expect this to happen most of the time. Set the weight to an
122 /// absurdly high value so that nested loops subsume it.
123 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
125 /// \brief Invoke-terminating normal branch not-taken weight.
127 /// This is the weight for branching to the unwind destination of an invoke
128 /// instruction. This is essentially never taken.
129 static const uint32_t IH_NONTAKEN_WEIGHT = 1;
131 /// \brief Add \p BB to PostDominatedByUnreachable set if applicable.
132 void
133 BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) {
134 const TerminatorInst *TI = BB->getTerminator();
135 if (TI->getNumSuccessors() == 0) {
136 if (isa<UnreachableInst>(TI) ||
137 // If this block is terminated by a call to
138 // @llvm.experimental.deoptimize then treat it like an unreachable since
139 // the @llvm.experimental.deoptimize call is expected to practically
140 // never execute.
141 BB->getTerminatingDeoptimizeCall())
142 PostDominatedByUnreachable.insert(BB);
143 return;
146 // If the terminator is an InvokeInst, check only the normal destination block
147 // as the unwind edge of InvokeInst is also very unlikely taken.
148 if (auto *II = dyn_cast<InvokeInst>(TI)) {
149 if (PostDominatedByUnreachable.count(II->getNormalDest()))
150 PostDominatedByUnreachable.insert(BB);
151 return;
154 for (auto *I : successors(BB))
155 // If any of successor is not post dominated then BB is also not.
156 if (!PostDominatedByUnreachable.count(I))
157 return;
159 PostDominatedByUnreachable.insert(BB);
162 /// \brief Add \p BB to PostDominatedByColdCall set if applicable.
163 void
164 BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) {
165 assert(!PostDominatedByColdCall.count(BB));
166 const TerminatorInst *TI = BB->getTerminator();
167 if (TI->getNumSuccessors() == 0)
168 return;
170 // If all of successor are post dominated then BB is also done.
171 if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) {
172 return PostDominatedByColdCall.count(SuccBB);
173 })) {
174 PostDominatedByColdCall.insert(BB);
175 return;
178 // If the terminator is an InvokeInst, check only the normal destination
179 // block as the unwind edge of InvokeInst is also very unlikely taken.
180 if (auto *II = dyn_cast<InvokeInst>(TI))
181 if (PostDominatedByColdCall.count(II->getNormalDest())) {
182 PostDominatedByColdCall.insert(BB);
183 return;
186 // Otherwise, if the block itself contains a cold function, add it to the
187 // set of blocks post-dominated by a cold call.
188 for (auto &I : *BB)
189 if (const CallInst *CI = dyn_cast<CallInst>(&I))
190 if (CI->hasFnAttr(Attribute::Cold)) {
191 PostDominatedByColdCall.insert(BB);
192 return;
196 /// \brief Calculate edge weights for successors lead to unreachable.
198 /// Predict that a successor which leads necessarily to an
199 /// unreachable-terminated block as extremely unlikely.
200 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
201 const TerminatorInst *TI = BB->getTerminator();
202 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
204 // Return false here so that edge weights for InvokeInst could be decided
205 // in calcInvokeHeuristics().
206 if (isa<InvokeInst>(TI))
207 return false;
209 SmallVector<unsigned, 4> UnreachableEdges;
210 SmallVector<unsigned, 4> ReachableEdges;
212 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
213 if (PostDominatedByUnreachable.count(*I))
214 UnreachableEdges.push_back(I.getSuccessorIndex());
215 else
216 ReachableEdges.push_back(I.getSuccessorIndex());
218 // Skip probabilities if all were reachable.
219 if (UnreachableEdges.empty())
220 return false;
222 if (ReachableEdges.empty()) {
223 BranchProbability Prob(1, UnreachableEdges.size());
224 for (unsigned SuccIdx : UnreachableEdges)
225 setEdgeProbability(BB, SuccIdx, Prob);
226 return true;
229 auto UnreachableProb = UR_TAKEN_PROB;
230 auto ReachableProb =
231 (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
232 ReachableEdges.size();
234 for (unsigned SuccIdx : UnreachableEdges)
235 setEdgeProbability(BB, SuccIdx, UnreachableProb);
236 for (unsigned SuccIdx : ReachableEdges)
237 setEdgeProbability(BB, SuccIdx, ReachableProb);
239 return true;
242 // Propagate existing explicit probabilities from either profile data or
243 // 'expect' intrinsic processing. Examine metadata against unreachable
244 // heuristic. The probability of the edge coming to unreachable block is
245 // set to min of metadata and unreachable heuristic.
246 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
247 const TerminatorInst *TI = BB->getTerminator();
248 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
249 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI)))
250 return false;
252 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
253 if (!WeightsNode)
254 return false;
256 // Check that the number of successors is manageable.
257 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
259 // Ensure there are weights for all of the successors. Note that the first
260 // operand to the metadata node is a name, not a weight.
261 if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
262 return false;
264 // Build up the final weights that will be used in a temporary buffer.
265 // Compute the sum of all weights to later decide whether they need to
266 // be scaled to fit in 32 bits.
267 uint64_t WeightSum = 0;
268 SmallVector<uint32_t, 2> Weights;
269 SmallVector<unsigned, 2> UnreachableIdxs;
270 SmallVector<unsigned, 2> ReachableIdxs;
271 Weights.reserve(TI->getNumSuccessors());
272 for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
273 ConstantInt *Weight =
274 mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
275 if (!Weight)
276 return false;
277 assert(Weight->getValue().getActiveBits() <= 32 &&
278 "Too many bits for uint32_t");
279 Weights.push_back(Weight->getZExtValue());
280 WeightSum += Weights.back();
281 if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1)))
282 UnreachableIdxs.push_back(i - 1);
283 else
284 ReachableIdxs.push_back(i - 1);
286 assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
288 // If the sum of weights does not fit in 32 bits, scale every weight down
289 // accordingly.
290 uint64_t ScalingFactor =
291 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
293 if (ScalingFactor > 1) {
294 WeightSum = 0;
295 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
296 Weights[i] /= ScalingFactor;
297 WeightSum += Weights[i];
300 assert(WeightSum <= UINT32_MAX &&
301 "Expected weights to scale down to 32 bits");
303 if (WeightSum == 0 || ReachableIdxs.size() == 0) {
304 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
305 Weights[i] = 1;
306 WeightSum = TI->getNumSuccessors();
309 // Set the probability.
310 SmallVector<BranchProbability, 2> BP;
311 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
312 BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) });
314 // Examine the metadata against unreachable heuristic.
315 // If the unreachable heuristic is more strong then we use it for this edge.
316 if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
317 auto ToDistribute = BranchProbability::getZero();
318 auto UnreachableProb = UR_TAKEN_PROB;
319 for (auto i : UnreachableIdxs)
320 if (UnreachableProb < BP[i]) {
321 ToDistribute += BP[i] - UnreachableProb;
322 BP[i] = UnreachableProb;
325 // If we modified the probability of some edges then we must distribute
326 // the difference between reachable blocks.
327 if (ToDistribute > BranchProbability::getZero()) {
328 BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
329 for (auto i : ReachableIdxs)
330 BP[i] += PerEdge;
334 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
335 setEdgeProbability(BB, i, BP[i]);
337 return true;
340 /// \brief Calculate edge weights for edges leading to cold blocks.
342 /// A cold block is one post-dominated by a block with a call to a
343 /// cold function. Those edges are unlikely to be taken, so we give
344 /// them relatively low weight.
346 /// Return true if we could compute the weights for cold edges.
347 /// Return false, otherwise.
348 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
349 const TerminatorInst *TI = BB->getTerminator();
350 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
352 // Return false here so that edge weights for InvokeInst could be decided
353 // in calcInvokeHeuristics().
354 if (isa<InvokeInst>(TI))
355 return false;
357 // Determine which successors are post-dominated by a cold block.
358 SmallVector<unsigned, 4> ColdEdges;
359 SmallVector<unsigned, 4> NormalEdges;
360 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
361 if (PostDominatedByColdCall.count(*I))
362 ColdEdges.push_back(I.getSuccessorIndex());
363 else
364 NormalEdges.push_back(I.getSuccessorIndex());
366 // Skip probabilities if no cold edges.
367 if (ColdEdges.empty())
368 return false;
370 if (NormalEdges.empty()) {
371 BranchProbability Prob(1, ColdEdges.size());
372 for (unsigned SuccIdx : ColdEdges)
373 setEdgeProbability(BB, SuccIdx, Prob);
374 return true;
377 auto ColdProb = BranchProbability::getBranchProbability(
378 CC_TAKEN_WEIGHT,
379 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
380 auto NormalProb = BranchProbability::getBranchProbability(
381 CC_NONTAKEN_WEIGHT,
382 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
384 for (unsigned SuccIdx : ColdEdges)
385 setEdgeProbability(BB, SuccIdx, ColdProb);
386 for (unsigned SuccIdx : NormalEdges)
387 setEdgeProbability(BB, SuccIdx, NormalProb);
389 return true;
392 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
393 // between two pointer or pointer and NULL will fail.
394 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
395 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
396 if (!BI || !BI->isConditional())
397 return false;
399 Value *Cond = BI->getCondition();
400 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
401 if (!CI || !CI->isEquality())
402 return false;
404 Value *LHS = CI->getOperand(0);
406 if (!LHS->getType()->isPointerTy())
407 return false;
409 assert(CI->getOperand(1)->getType()->isPointerTy());
411 // p != 0 -> isProb = true
412 // p == 0 -> isProb = false
413 // p != q -> isProb = true
414 // p == q -> isProb = false;
415 unsigned TakenIdx = 0, NonTakenIdx = 1;
416 bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
417 if (!isProb)
418 std::swap(TakenIdx, NonTakenIdx);
420 BranchProbability TakenProb(PH_TAKEN_WEIGHT,
421 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
422 setEdgeProbability(BB, TakenIdx, TakenProb);
423 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
424 return true;
427 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
428 // as taken, exiting edges as not-taken.
429 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
430 const LoopInfo &LI) {
431 Loop *L = LI.getLoopFor(BB);
432 if (!L)
433 return false;
435 SmallVector<unsigned, 8> BackEdges;
436 SmallVector<unsigned, 8> ExitingEdges;
437 SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
439 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
440 if (!L->contains(*I))
441 ExitingEdges.push_back(I.getSuccessorIndex());
442 else if (L->getHeader() == *I)
443 BackEdges.push_back(I.getSuccessorIndex());
444 else
445 InEdges.push_back(I.getSuccessorIndex());
448 if (BackEdges.empty() && ExitingEdges.empty())
449 return false;
451 // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
452 // normalize them so that they sum up to one.
453 BranchProbability Probs[] = {BranchProbability::getZero(),
454 BranchProbability::getZero(),
455 BranchProbability::getZero()};
456 unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
457 (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
458 (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
459 if (!BackEdges.empty())
460 Probs[0] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
461 if (!InEdges.empty())
462 Probs[1] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
463 if (!ExitingEdges.empty())
464 Probs[2] = BranchProbability(LBH_NONTAKEN_WEIGHT, Denom);
466 if (uint32_t numBackEdges = BackEdges.size()) {
467 auto Prob = Probs[0] / numBackEdges;
468 for (unsigned SuccIdx : BackEdges)
469 setEdgeProbability(BB, SuccIdx, Prob);
472 if (uint32_t numInEdges = InEdges.size()) {
473 auto Prob = Probs[1] / numInEdges;
474 for (unsigned SuccIdx : InEdges)
475 setEdgeProbability(BB, SuccIdx, Prob);
478 if (uint32_t numExitingEdges = ExitingEdges.size()) {
479 auto Prob = Probs[2] / numExitingEdges;
480 for (unsigned SuccIdx : ExitingEdges)
481 setEdgeProbability(BB, SuccIdx, Prob);
484 return true;
487 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
488 const TargetLibraryInfo *TLI) {
489 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
490 if (!BI || !BI->isConditional())
491 return false;
493 Value *Cond = BI->getCondition();
494 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
495 if (!CI)
496 return false;
498 Value *RHS = CI->getOperand(1);
499 ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
500 if (!CV)
501 return false;
503 // If the LHS is the result of AND'ing a value with a single bit bitmask,
504 // we don't have information about probabilities.
505 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
506 if (LHS->getOpcode() == Instruction::And)
507 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
508 if (AndRHS->getValue().isPowerOf2())
509 return false;
511 // Check if the LHS is the return value of a library function
512 LibFunc Func = NumLibFuncs;
513 if (TLI)
514 if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
515 if (Function *CalledFn = Call->getCalledFunction())
516 TLI->getLibFunc(*CalledFn, Func);
518 bool isProb;
519 if (Func == LibFunc_strcasecmp ||
520 Func == LibFunc_strcmp ||
521 Func == LibFunc_strncasecmp ||
522 Func == LibFunc_strncmp ||
523 Func == LibFunc_memcmp) {
524 // strcmp and similar functions return zero, negative, or positive, if the
525 // first string is equal, less, or greater than the second. We consider it
526 // likely that the strings are not equal, so a comparison with zero is
527 // probably false, but also a comparison with any other number is also
528 // probably false given that what exactly is returned for nonzero values is
529 // not specified. Any kind of comparison other than equality we know
530 // nothing about.
531 switch (CI->getPredicate()) {
532 case CmpInst::ICMP_EQ:
533 isProb = false;
534 break;
535 case CmpInst::ICMP_NE:
536 isProb = true;
537 break;
538 default:
539 return false;
541 } else if (CV->isZero()) {
542 switch (CI->getPredicate()) {
543 case CmpInst::ICMP_EQ:
544 // X == 0 -> Unlikely
545 isProb = false;
546 break;
547 case CmpInst::ICMP_NE:
548 // X != 0 -> Likely
549 isProb = true;
550 break;
551 case CmpInst::ICMP_SLT:
552 // X < 0 -> Unlikely
553 isProb = false;
554 break;
555 case CmpInst::ICMP_SGT:
556 // X > 0 -> Likely
557 isProb = true;
558 break;
559 default:
560 return false;
562 } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
563 // InstCombine canonicalizes X <= 0 into X < 1.
564 // X <= 0 -> Unlikely
565 isProb = false;
566 } else if (CV->isMinusOne()) {
567 switch (CI->getPredicate()) {
568 case CmpInst::ICMP_EQ:
569 // X == -1 -> Unlikely
570 isProb = false;
571 break;
572 case CmpInst::ICMP_NE:
573 // X != -1 -> Likely
574 isProb = true;
575 break;
576 case CmpInst::ICMP_SGT:
577 // InstCombine canonicalizes X >= 0 into X > -1.
578 // X >= 0 -> Likely
579 isProb = true;
580 break;
581 default:
582 return false;
584 } else {
585 return false;
588 unsigned TakenIdx = 0, NonTakenIdx = 1;
590 if (!isProb)
591 std::swap(TakenIdx, NonTakenIdx);
593 BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
594 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
595 setEdgeProbability(BB, TakenIdx, TakenProb);
596 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
597 return true;
600 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
601 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
602 if (!BI || !BI->isConditional())
603 return false;
605 Value *Cond = BI->getCondition();
606 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
607 if (!FCmp)
608 return false;
610 bool isProb;
611 if (FCmp->isEquality()) {
612 // f1 == f2 -> Unlikely
613 // f1 != f2 -> Likely
614 isProb = !FCmp->isTrueWhenEqual();
615 } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
616 // !isnan -> Likely
617 isProb = true;
618 } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
619 // isnan -> Unlikely
620 isProb = false;
621 } else {
622 return false;
625 unsigned TakenIdx = 0, NonTakenIdx = 1;
627 if (!isProb)
628 std::swap(TakenIdx, NonTakenIdx);
630 BranchProbability TakenProb(FPH_TAKEN_WEIGHT,
631 FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
632 setEdgeProbability(BB, TakenIdx, TakenProb);
633 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
634 return true;
637 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
638 const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
639 if (!II)
640 return false;
642 BranchProbability TakenProb(IH_TAKEN_WEIGHT,
643 IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
644 setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
645 setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
646 return true;
649 void BranchProbabilityInfo::releaseMemory() {
650 Probs.clear();
653 void BranchProbabilityInfo::print(raw_ostream &OS) const {
654 OS << "---- Branch Probabilities ----\n";
655 // We print the probabilities from the last function the analysis ran over,
656 // or the function it is currently running over.
657 assert(LastF && "Cannot print prior to running over a function");
658 for (const auto &BI : *LastF) {
659 for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
660 ++SI) {
661 printEdgeProbability(OS << " ", &BI, *SI);
666 bool BranchProbabilityInfo::
667 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
668 // Hot probability is at least 4/5 = 80%
669 // FIXME: Compare against a static "hot" BranchProbability.
670 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
673 const BasicBlock *
674 BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
675 auto MaxProb = BranchProbability::getZero();
676 const BasicBlock *MaxSucc = nullptr;
678 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
679 const BasicBlock *Succ = *I;
680 auto Prob = getEdgeProbability(BB, Succ);
681 if (Prob > MaxProb) {
682 MaxProb = Prob;
683 MaxSucc = Succ;
687 // Hot probability is at least 4/5 = 80%
688 if (MaxProb > BranchProbability(4, 5))
689 return MaxSucc;
691 return nullptr;
694 /// Get the raw edge probability for the edge. If can't find it, return a
695 /// default probability 1/N where N is the number of successors. Here an edge is
696 /// specified using PredBlock and an
697 /// index to the successors.
698 BranchProbability
699 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
700 unsigned IndexInSuccessors) const {
701 auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
703 if (I != Probs.end())
704 return I->second;
706 return {1,
707 static_cast<uint32_t>(std::distance(succ_begin(Src), succ_end(Src)))};
710 BranchProbability
711 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
712 succ_const_iterator Dst) const {
713 return getEdgeProbability(Src, Dst.getSuccessorIndex());
716 /// Get the raw edge probability calculated for the block pair. This returns the
717 /// sum of all raw edge probabilities from Src to Dst.
718 BranchProbability
719 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
720 const BasicBlock *Dst) const {
721 auto Prob = BranchProbability::getZero();
722 bool FoundProb = false;
723 for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
724 if (*I == Dst) {
725 auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
726 if (MapI != Probs.end()) {
727 FoundProb = true;
728 Prob += MapI->second;
731 uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
732 return FoundProb ? Prob : BranchProbability(1, succ_num);
735 /// Set the edge probability for a given edge specified by PredBlock and an
736 /// index to the successors.
737 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
738 unsigned IndexInSuccessors,
739 BranchProbability Prob) {
740 Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
741 Handles.insert(BasicBlockCallbackVH(Src, this));
742 DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << IndexInSuccessors
743 << " successor probability to " << Prob << "\n");
746 raw_ostream &
747 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
748 const BasicBlock *Src,
749 const BasicBlock *Dst) const {
750 const BranchProbability Prob = getEdgeProbability(Src, Dst);
751 OS << "edge " << Src->getName() << " -> " << Dst->getName()
752 << " probability is " << Prob
753 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
755 return OS;
758 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
759 for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
760 auto Key = I->first;
761 if (Key.first == BB)
762 Probs.erase(Key);
766 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
767 const TargetLibraryInfo *TLI) {
768 DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
769 << " ----\n\n");
770 LastF = &F; // Store the last function we ran on for printing.
771 assert(PostDominatedByUnreachable.empty());
772 assert(PostDominatedByColdCall.empty());
774 // Walk the basic blocks in post-order so that we can build up state about
775 // the successors of a block iteratively.
776 for (auto BB : post_order(&F.getEntryBlock())) {
777 DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n");
778 updatePostDominatedByUnreachable(BB);
779 updatePostDominatedByColdCall(BB);
780 // If there is no at least two successors, no sense to set probability.
781 if (BB->getTerminator()->getNumSuccessors() < 2)
782 continue;
783 if (calcMetadataWeights(BB))
784 continue;
785 if (calcUnreachableHeuristics(BB))
786 continue;
787 if (calcColdCallHeuristics(BB))
788 continue;
789 if (calcLoopBranchHeuristics(BB, LI))
790 continue;
791 if (calcPointerHeuristics(BB))
792 continue;
793 if (calcZeroHeuristics(BB, TLI))
794 continue;
795 if (calcFloatingPointHeuristics(BB))
796 continue;
797 calcInvokeHeuristics(BB);
800 PostDominatedByUnreachable.clear();
801 PostDominatedByColdCall.clear();
803 if (PrintBranchProb &&
804 (PrintBranchProbFuncName.empty() ||
805 F.getName().equals(PrintBranchProbFuncName))) {
806 print(dbgs());
810 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
811 AnalysisUsage &AU) const {
812 AU.addRequired<LoopInfoWrapperPass>();
813 AU.addRequired<TargetLibraryInfoWrapperPass>();
814 AU.setPreservesAll();
817 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
818 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
819 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
820 BPI.calculate(F, LI, &TLI);
821 return false;
824 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
826 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
827 const Module *) const {
828 BPI.print(OS);
831 AnalysisKey BranchProbabilityAnalysis::Key;
832 BranchProbabilityInfo
833 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
834 BranchProbabilityInfo BPI;
835 BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F));
836 return BPI;
839 PreservedAnalyses
840 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
841 OS << "Printing analysis results of BPI for function "
842 << "'" << F.getName() << "':"
843 << "\n";
844 AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
845 return PreservedAnalyses::all();