1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Loops should be simplified before this analysis.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/BranchProbabilityInfo.h"
15 #include "llvm/ADT/PostOrderIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
45 #define DEBUG_TYPE "branch-prob"
47 static cl::opt
<bool> PrintBranchProb(
48 "print-bpi", cl::init(false), cl::Hidden
,
49 cl::desc("Print the branch probability info."));
51 cl::opt
<std::string
> PrintBranchProbFuncName(
52 "print-bpi-func-name", cl::Hidden
,
53 cl::desc("The option to specify the name of the function "
54 "whose branch probability info is printed."));
56 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass
, "branch-prob",
57 "Branch Probability Analysis", false, true)
58 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
59 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
60 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass
, "branch-prob",
61 "Branch Probability Analysis", false, true)
63 char BranchProbabilityInfoWrapperPass::ID
= 0;
65 // Weights are for internal use only. They are used by heuristics to help to
66 // estimate edges' probability. Example:
68 // Using "Loop Branch Heuristics" we predict weights of edges for the
83 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
84 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
85 static const uint32_t LBH_TAKEN_WEIGHT
= 124;
86 static const uint32_t LBH_NONTAKEN_WEIGHT
= 4;
88 /// \brief Unreachable-terminating branch taken probability.
90 /// This is the probability for a branch being taken to a block that terminates
91 /// (eventually) in unreachable. These are predicted as unlikely as possible.
92 /// All reachable probability will equally share the remaining part.
93 static const BranchProbability UR_TAKEN_PROB
= BranchProbability::getRaw(1);
95 /// \brief Weight for a branch taken going into a cold block.
97 /// This is the weight for a branch taken toward a block marked
98 /// cold. A block is marked cold if it's postdominated by a
99 /// block containing a call to a cold function. Cold functions
100 /// are those marked with attribute 'cold'.
101 static const uint32_t CC_TAKEN_WEIGHT
= 4;
103 /// \brief Weight for a branch not-taken into a cold block.
105 /// This is the weight for a branch not taken toward a block marked
107 static const uint32_t CC_NONTAKEN_WEIGHT
= 64;
109 static const uint32_t PH_TAKEN_WEIGHT
= 20;
110 static const uint32_t PH_NONTAKEN_WEIGHT
= 12;
112 static const uint32_t ZH_TAKEN_WEIGHT
= 20;
113 static const uint32_t ZH_NONTAKEN_WEIGHT
= 12;
115 static const uint32_t FPH_TAKEN_WEIGHT
= 20;
116 static const uint32_t FPH_NONTAKEN_WEIGHT
= 12;
118 /// \brief Invoke-terminating normal branch taken weight
120 /// This is the weight for branching to the normal destination of an invoke
121 /// instruction. We expect this to happen most of the time. Set the weight to an
122 /// absurdly high value so that nested loops subsume it.
123 static const uint32_t IH_TAKEN_WEIGHT
= 1024 * 1024 - 1;
125 /// \brief Invoke-terminating normal branch not-taken weight.
127 /// This is the weight for branching to the unwind destination of an invoke
128 /// instruction. This is essentially never taken.
129 static const uint32_t IH_NONTAKEN_WEIGHT
= 1;
131 /// \brief Add \p BB to PostDominatedByUnreachable set if applicable.
133 BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock
*BB
) {
134 const TerminatorInst
*TI
= BB
->getTerminator();
135 if (TI
->getNumSuccessors() == 0) {
136 if (isa
<UnreachableInst
>(TI
) ||
137 // If this block is terminated by a call to
138 // @llvm.experimental.deoptimize then treat it like an unreachable since
139 // the @llvm.experimental.deoptimize call is expected to practically
141 BB
->getTerminatingDeoptimizeCall())
142 PostDominatedByUnreachable
.insert(BB
);
146 // If the terminator is an InvokeInst, check only the normal destination block
147 // as the unwind edge of InvokeInst is also very unlikely taken.
148 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
149 if (PostDominatedByUnreachable
.count(II
->getNormalDest()))
150 PostDominatedByUnreachable
.insert(BB
);
154 for (auto *I
: successors(BB
))
155 // If any of successor is not post dominated then BB is also not.
156 if (!PostDominatedByUnreachable
.count(I
))
159 PostDominatedByUnreachable
.insert(BB
);
162 /// \brief Add \p BB to PostDominatedByColdCall set if applicable.
164 BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock
*BB
) {
165 assert(!PostDominatedByColdCall
.count(BB
));
166 const TerminatorInst
*TI
= BB
->getTerminator();
167 if (TI
->getNumSuccessors() == 0)
170 // If all of successor are post dominated then BB is also done.
171 if (llvm::all_of(successors(BB
), [&](const BasicBlock
*SuccBB
) {
172 return PostDominatedByColdCall
.count(SuccBB
);
174 PostDominatedByColdCall
.insert(BB
);
178 // If the terminator is an InvokeInst, check only the normal destination
179 // block as the unwind edge of InvokeInst is also very unlikely taken.
180 if (auto *II
= dyn_cast
<InvokeInst
>(TI
))
181 if (PostDominatedByColdCall
.count(II
->getNormalDest())) {
182 PostDominatedByColdCall
.insert(BB
);
186 // Otherwise, if the block itself contains a cold function, add it to the
187 // set of blocks post-dominated by a cold call.
189 if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
190 if (CI
->hasFnAttr(Attribute::Cold
)) {
191 PostDominatedByColdCall
.insert(BB
);
196 /// \brief Calculate edge weights for successors lead to unreachable.
198 /// Predict that a successor which leads necessarily to an
199 /// unreachable-terminated block as extremely unlikely.
200 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock
*BB
) {
201 const TerminatorInst
*TI
= BB
->getTerminator();
202 assert(TI
->getNumSuccessors() > 1 && "expected more than one successor!");
204 // Return false here so that edge weights for InvokeInst could be decided
205 // in calcInvokeHeuristics().
206 if (isa
<InvokeInst
>(TI
))
209 SmallVector
<unsigned, 4> UnreachableEdges
;
210 SmallVector
<unsigned, 4> ReachableEdges
;
212 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
)
213 if (PostDominatedByUnreachable
.count(*I
))
214 UnreachableEdges
.push_back(I
.getSuccessorIndex());
216 ReachableEdges
.push_back(I
.getSuccessorIndex());
218 // Skip probabilities if all were reachable.
219 if (UnreachableEdges
.empty())
222 if (ReachableEdges
.empty()) {
223 BranchProbability
Prob(1, UnreachableEdges
.size());
224 for (unsigned SuccIdx
: UnreachableEdges
)
225 setEdgeProbability(BB
, SuccIdx
, Prob
);
229 auto UnreachableProb
= UR_TAKEN_PROB
;
231 (BranchProbability::getOne() - UR_TAKEN_PROB
* UnreachableEdges
.size()) /
232 ReachableEdges
.size();
234 for (unsigned SuccIdx
: UnreachableEdges
)
235 setEdgeProbability(BB
, SuccIdx
, UnreachableProb
);
236 for (unsigned SuccIdx
: ReachableEdges
)
237 setEdgeProbability(BB
, SuccIdx
, ReachableProb
);
242 // Propagate existing explicit probabilities from either profile data or
243 // 'expect' intrinsic processing. Examine metadata against unreachable
244 // heuristic. The probability of the edge coming to unreachable block is
245 // set to min of metadata and unreachable heuristic.
246 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock
*BB
) {
247 const TerminatorInst
*TI
= BB
->getTerminator();
248 assert(TI
->getNumSuccessors() > 1 && "expected more than one successor!");
249 if (!(isa
<BranchInst
>(TI
) || isa
<SwitchInst
>(TI
) || isa
<IndirectBrInst
>(TI
)))
252 MDNode
*WeightsNode
= TI
->getMetadata(LLVMContext::MD_prof
);
256 // Check that the number of successors is manageable.
257 assert(TI
->getNumSuccessors() < UINT32_MAX
&& "Too many successors");
259 // Ensure there are weights for all of the successors. Note that the first
260 // operand to the metadata node is a name, not a weight.
261 if (WeightsNode
->getNumOperands() != TI
->getNumSuccessors() + 1)
264 // Build up the final weights that will be used in a temporary buffer.
265 // Compute the sum of all weights to later decide whether they need to
266 // be scaled to fit in 32 bits.
267 uint64_t WeightSum
= 0;
268 SmallVector
<uint32_t, 2> Weights
;
269 SmallVector
<unsigned, 2> UnreachableIdxs
;
270 SmallVector
<unsigned, 2> ReachableIdxs
;
271 Weights
.reserve(TI
->getNumSuccessors());
272 for (unsigned i
= 1, e
= WeightsNode
->getNumOperands(); i
!= e
; ++i
) {
273 ConstantInt
*Weight
=
274 mdconst::dyn_extract
<ConstantInt
>(WeightsNode
->getOperand(i
));
277 assert(Weight
->getValue().getActiveBits() <= 32 &&
278 "Too many bits for uint32_t");
279 Weights
.push_back(Weight
->getZExtValue());
280 WeightSum
+= Weights
.back();
281 if (PostDominatedByUnreachable
.count(TI
->getSuccessor(i
- 1)))
282 UnreachableIdxs
.push_back(i
- 1);
284 ReachableIdxs
.push_back(i
- 1);
286 assert(Weights
.size() == TI
->getNumSuccessors() && "Checked above");
288 // If the sum of weights does not fit in 32 bits, scale every weight down
290 uint64_t ScalingFactor
=
291 (WeightSum
> UINT32_MAX
) ? WeightSum
/ UINT32_MAX
+ 1 : 1;
293 if (ScalingFactor
> 1) {
295 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
296 Weights
[i
] /= ScalingFactor
;
297 WeightSum
+= Weights
[i
];
300 assert(WeightSum
<= UINT32_MAX
&&
301 "Expected weights to scale down to 32 bits");
303 if (WeightSum
== 0 || ReachableIdxs
.size() == 0) {
304 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
306 WeightSum
= TI
->getNumSuccessors();
309 // Set the probability.
310 SmallVector
<BranchProbability
, 2> BP
;
311 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
312 BP
.push_back({ Weights
[i
], static_cast<uint32_t>(WeightSum
) });
314 // Examine the metadata against unreachable heuristic.
315 // If the unreachable heuristic is more strong then we use it for this edge.
316 if (UnreachableIdxs
.size() > 0 && ReachableIdxs
.size() > 0) {
317 auto ToDistribute
= BranchProbability::getZero();
318 auto UnreachableProb
= UR_TAKEN_PROB
;
319 for (auto i
: UnreachableIdxs
)
320 if (UnreachableProb
< BP
[i
]) {
321 ToDistribute
+= BP
[i
] - UnreachableProb
;
322 BP
[i
] = UnreachableProb
;
325 // If we modified the probability of some edges then we must distribute
326 // the difference between reachable blocks.
327 if (ToDistribute
> BranchProbability::getZero()) {
328 BranchProbability PerEdge
= ToDistribute
/ ReachableIdxs
.size();
329 for (auto i
: ReachableIdxs
)
334 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
335 setEdgeProbability(BB
, i
, BP
[i
]);
340 /// \brief Calculate edge weights for edges leading to cold blocks.
342 /// A cold block is one post-dominated by a block with a call to a
343 /// cold function. Those edges are unlikely to be taken, so we give
344 /// them relatively low weight.
346 /// Return true if we could compute the weights for cold edges.
347 /// Return false, otherwise.
348 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock
*BB
) {
349 const TerminatorInst
*TI
= BB
->getTerminator();
350 assert(TI
->getNumSuccessors() > 1 && "expected more than one successor!");
352 // Return false here so that edge weights for InvokeInst could be decided
353 // in calcInvokeHeuristics().
354 if (isa
<InvokeInst
>(TI
))
357 // Determine which successors are post-dominated by a cold block.
358 SmallVector
<unsigned, 4> ColdEdges
;
359 SmallVector
<unsigned, 4> NormalEdges
;
360 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
)
361 if (PostDominatedByColdCall
.count(*I
))
362 ColdEdges
.push_back(I
.getSuccessorIndex());
364 NormalEdges
.push_back(I
.getSuccessorIndex());
366 // Skip probabilities if no cold edges.
367 if (ColdEdges
.empty())
370 if (NormalEdges
.empty()) {
371 BranchProbability
Prob(1, ColdEdges
.size());
372 for (unsigned SuccIdx
: ColdEdges
)
373 setEdgeProbability(BB
, SuccIdx
, Prob
);
377 auto ColdProb
= BranchProbability::getBranchProbability(
379 (CC_TAKEN_WEIGHT
+ CC_NONTAKEN_WEIGHT
) * uint64_t(ColdEdges
.size()));
380 auto NormalProb
= BranchProbability::getBranchProbability(
382 (CC_TAKEN_WEIGHT
+ CC_NONTAKEN_WEIGHT
) * uint64_t(NormalEdges
.size()));
384 for (unsigned SuccIdx
: ColdEdges
)
385 setEdgeProbability(BB
, SuccIdx
, ColdProb
);
386 for (unsigned SuccIdx
: NormalEdges
)
387 setEdgeProbability(BB
, SuccIdx
, NormalProb
);
392 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
393 // between two pointer or pointer and NULL will fail.
394 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock
*BB
) {
395 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
396 if (!BI
|| !BI
->isConditional())
399 Value
*Cond
= BI
->getCondition();
400 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(Cond
);
401 if (!CI
|| !CI
->isEquality())
404 Value
*LHS
= CI
->getOperand(0);
406 if (!LHS
->getType()->isPointerTy())
409 assert(CI
->getOperand(1)->getType()->isPointerTy());
411 // p != 0 -> isProb = true
412 // p == 0 -> isProb = false
413 // p != q -> isProb = true
414 // p == q -> isProb = false;
415 unsigned TakenIdx
= 0, NonTakenIdx
= 1;
416 bool isProb
= CI
->getPredicate() == ICmpInst::ICMP_NE
;
418 std::swap(TakenIdx
, NonTakenIdx
);
420 BranchProbability
TakenProb(PH_TAKEN_WEIGHT
,
421 PH_TAKEN_WEIGHT
+ PH_NONTAKEN_WEIGHT
);
422 setEdgeProbability(BB
, TakenIdx
, TakenProb
);
423 setEdgeProbability(BB
, NonTakenIdx
, TakenProb
.getCompl());
427 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
428 // as taken, exiting edges as not-taken.
429 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock
*BB
,
430 const LoopInfo
&LI
) {
431 Loop
*L
= LI
.getLoopFor(BB
);
435 SmallVector
<unsigned, 8> BackEdges
;
436 SmallVector
<unsigned, 8> ExitingEdges
;
437 SmallVector
<unsigned, 8> InEdges
; // Edges from header to the loop.
439 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
) {
440 if (!L
->contains(*I
))
441 ExitingEdges
.push_back(I
.getSuccessorIndex());
442 else if (L
->getHeader() == *I
)
443 BackEdges
.push_back(I
.getSuccessorIndex());
445 InEdges
.push_back(I
.getSuccessorIndex());
448 if (BackEdges
.empty() && ExitingEdges
.empty())
451 // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
452 // normalize them so that they sum up to one.
453 BranchProbability Probs
[] = {BranchProbability::getZero(),
454 BranchProbability::getZero(),
455 BranchProbability::getZero()};
456 unsigned Denom
= (BackEdges
.empty() ? 0 : LBH_TAKEN_WEIGHT
) +
457 (InEdges
.empty() ? 0 : LBH_TAKEN_WEIGHT
) +
458 (ExitingEdges
.empty() ? 0 : LBH_NONTAKEN_WEIGHT
);
459 if (!BackEdges
.empty())
460 Probs
[0] = BranchProbability(LBH_TAKEN_WEIGHT
, Denom
);
461 if (!InEdges
.empty())
462 Probs
[1] = BranchProbability(LBH_TAKEN_WEIGHT
, Denom
);
463 if (!ExitingEdges
.empty())
464 Probs
[2] = BranchProbability(LBH_NONTAKEN_WEIGHT
, Denom
);
466 if (uint32_t numBackEdges
= BackEdges
.size()) {
467 auto Prob
= Probs
[0] / numBackEdges
;
468 for (unsigned SuccIdx
: BackEdges
)
469 setEdgeProbability(BB
, SuccIdx
, Prob
);
472 if (uint32_t numInEdges
= InEdges
.size()) {
473 auto Prob
= Probs
[1] / numInEdges
;
474 for (unsigned SuccIdx
: InEdges
)
475 setEdgeProbability(BB
, SuccIdx
, Prob
);
478 if (uint32_t numExitingEdges
= ExitingEdges
.size()) {
479 auto Prob
= Probs
[2] / numExitingEdges
;
480 for (unsigned SuccIdx
: ExitingEdges
)
481 setEdgeProbability(BB
, SuccIdx
, Prob
);
487 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock
*BB
,
488 const TargetLibraryInfo
*TLI
) {
489 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
490 if (!BI
|| !BI
->isConditional())
493 Value
*Cond
= BI
->getCondition();
494 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(Cond
);
498 Value
*RHS
= CI
->getOperand(1);
499 ConstantInt
*CV
= dyn_cast
<ConstantInt
>(RHS
);
503 // If the LHS is the result of AND'ing a value with a single bit bitmask,
504 // we don't have information about probabilities.
505 if (Instruction
*LHS
= dyn_cast
<Instruction
>(CI
->getOperand(0)))
506 if (LHS
->getOpcode() == Instruction::And
)
507 if (ConstantInt
*AndRHS
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1)))
508 if (AndRHS
->getValue().isPowerOf2())
511 // Check if the LHS is the return value of a library function
512 LibFunc Func
= NumLibFuncs
;
514 if (CallInst
*Call
= dyn_cast
<CallInst
>(CI
->getOperand(0)))
515 if (Function
*CalledFn
= Call
->getCalledFunction())
516 TLI
->getLibFunc(*CalledFn
, Func
);
519 if (Func
== LibFunc_strcasecmp
||
520 Func
== LibFunc_strcmp
||
521 Func
== LibFunc_strncasecmp
||
522 Func
== LibFunc_strncmp
||
523 Func
== LibFunc_memcmp
) {
524 // strcmp and similar functions return zero, negative, or positive, if the
525 // first string is equal, less, or greater than the second. We consider it
526 // likely that the strings are not equal, so a comparison with zero is
527 // probably false, but also a comparison with any other number is also
528 // probably false given that what exactly is returned for nonzero values is
529 // not specified. Any kind of comparison other than equality we know
531 switch (CI
->getPredicate()) {
532 case CmpInst::ICMP_EQ
:
535 case CmpInst::ICMP_NE
:
541 } else if (CV
->isZero()) {
542 switch (CI
->getPredicate()) {
543 case CmpInst::ICMP_EQ
:
544 // X == 0 -> Unlikely
547 case CmpInst::ICMP_NE
:
551 case CmpInst::ICMP_SLT
:
555 case CmpInst::ICMP_SGT
:
562 } else if (CV
->isOne() && CI
->getPredicate() == CmpInst::ICMP_SLT
) {
563 // InstCombine canonicalizes X <= 0 into X < 1.
564 // X <= 0 -> Unlikely
566 } else if (CV
->isMinusOne()) {
567 switch (CI
->getPredicate()) {
568 case CmpInst::ICMP_EQ
:
569 // X == -1 -> Unlikely
572 case CmpInst::ICMP_NE
:
576 case CmpInst::ICMP_SGT
:
577 // InstCombine canonicalizes X >= 0 into X > -1.
588 unsigned TakenIdx
= 0, NonTakenIdx
= 1;
591 std::swap(TakenIdx
, NonTakenIdx
);
593 BranchProbability
TakenProb(ZH_TAKEN_WEIGHT
,
594 ZH_TAKEN_WEIGHT
+ ZH_NONTAKEN_WEIGHT
);
595 setEdgeProbability(BB
, TakenIdx
, TakenProb
);
596 setEdgeProbability(BB
, NonTakenIdx
, TakenProb
.getCompl());
600 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock
*BB
) {
601 const BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
602 if (!BI
|| !BI
->isConditional())
605 Value
*Cond
= BI
->getCondition();
606 FCmpInst
*FCmp
= dyn_cast
<FCmpInst
>(Cond
);
611 if (FCmp
->isEquality()) {
612 // f1 == f2 -> Unlikely
613 // f1 != f2 -> Likely
614 isProb
= !FCmp
->isTrueWhenEqual();
615 } else if (FCmp
->getPredicate() == FCmpInst::FCMP_ORD
) {
618 } else if (FCmp
->getPredicate() == FCmpInst::FCMP_UNO
) {
625 unsigned TakenIdx
= 0, NonTakenIdx
= 1;
628 std::swap(TakenIdx
, NonTakenIdx
);
630 BranchProbability
TakenProb(FPH_TAKEN_WEIGHT
,
631 FPH_TAKEN_WEIGHT
+ FPH_NONTAKEN_WEIGHT
);
632 setEdgeProbability(BB
, TakenIdx
, TakenProb
);
633 setEdgeProbability(BB
, NonTakenIdx
, TakenProb
.getCompl());
637 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock
*BB
) {
638 const InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator());
642 BranchProbability
TakenProb(IH_TAKEN_WEIGHT
,
643 IH_TAKEN_WEIGHT
+ IH_NONTAKEN_WEIGHT
);
644 setEdgeProbability(BB
, 0 /*Index for Normal*/, TakenProb
);
645 setEdgeProbability(BB
, 1 /*Index for Unwind*/, TakenProb
.getCompl());
649 void BranchProbabilityInfo::releaseMemory() {
653 void BranchProbabilityInfo::print(raw_ostream
&OS
) const {
654 OS
<< "---- Branch Probabilities ----\n";
655 // We print the probabilities from the last function the analysis ran over,
656 // or the function it is currently running over.
657 assert(LastF
&& "Cannot print prior to running over a function");
658 for (const auto &BI
: *LastF
) {
659 for (succ_const_iterator SI
= succ_begin(&BI
), SE
= succ_end(&BI
); SI
!= SE
;
661 printEdgeProbability(OS
<< " ", &BI
, *SI
);
666 bool BranchProbabilityInfo::
667 isEdgeHot(const BasicBlock
*Src
, const BasicBlock
*Dst
) const {
668 // Hot probability is at least 4/5 = 80%
669 // FIXME: Compare against a static "hot" BranchProbability.
670 return getEdgeProbability(Src
, Dst
) > BranchProbability(4, 5);
674 BranchProbabilityInfo::getHotSucc(const BasicBlock
*BB
) const {
675 auto MaxProb
= BranchProbability::getZero();
676 const BasicBlock
*MaxSucc
= nullptr;
678 for (succ_const_iterator I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; ++I
) {
679 const BasicBlock
*Succ
= *I
;
680 auto Prob
= getEdgeProbability(BB
, Succ
);
681 if (Prob
> MaxProb
) {
687 // Hot probability is at least 4/5 = 80%
688 if (MaxProb
> BranchProbability(4, 5))
694 /// Get the raw edge probability for the edge. If can't find it, return a
695 /// default probability 1/N where N is the number of successors. Here an edge is
696 /// specified using PredBlock and an
697 /// index to the successors.
699 BranchProbabilityInfo::getEdgeProbability(const BasicBlock
*Src
,
700 unsigned IndexInSuccessors
) const {
701 auto I
= Probs
.find(std::make_pair(Src
, IndexInSuccessors
));
703 if (I
!= Probs
.end())
707 static_cast<uint32_t>(std::distance(succ_begin(Src
), succ_end(Src
)))};
711 BranchProbabilityInfo::getEdgeProbability(const BasicBlock
*Src
,
712 succ_const_iterator Dst
) const {
713 return getEdgeProbability(Src
, Dst
.getSuccessorIndex());
716 /// Get the raw edge probability calculated for the block pair. This returns the
717 /// sum of all raw edge probabilities from Src to Dst.
719 BranchProbabilityInfo::getEdgeProbability(const BasicBlock
*Src
,
720 const BasicBlock
*Dst
) const {
721 auto Prob
= BranchProbability::getZero();
722 bool FoundProb
= false;
723 for (succ_const_iterator I
= succ_begin(Src
), E
= succ_end(Src
); I
!= E
; ++I
)
725 auto MapI
= Probs
.find(std::make_pair(Src
, I
.getSuccessorIndex()));
726 if (MapI
!= Probs
.end()) {
728 Prob
+= MapI
->second
;
731 uint32_t succ_num
= std::distance(succ_begin(Src
), succ_end(Src
));
732 return FoundProb
? Prob
: BranchProbability(1, succ_num
);
735 /// Set the edge probability for a given edge specified by PredBlock and an
736 /// index to the successors.
737 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock
*Src
,
738 unsigned IndexInSuccessors
,
739 BranchProbability Prob
) {
740 Probs
[std::make_pair(Src
, IndexInSuccessors
)] = Prob
;
741 Handles
.insert(BasicBlockCallbackVH(Src
, this));
742 DEBUG(dbgs() << "set edge " << Src
->getName() << " -> " << IndexInSuccessors
743 << " successor probability to " << Prob
<< "\n");
747 BranchProbabilityInfo::printEdgeProbability(raw_ostream
&OS
,
748 const BasicBlock
*Src
,
749 const BasicBlock
*Dst
) const {
750 const BranchProbability Prob
= getEdgeProbability(Src
, Dst
);
751 OS
<< "edge " << Src
->getName() << " -> " << Dst
->getName()
752 << " probability is " << Prob
753 << (isEdgeHot(Src
, Dst
) ? " [HOT edge]\n" : "\n");
758 void BranchProbabilityInfo::eraseBlock(const BasicBlock
*BB
) {
759 for (auto I
= Probs
.begin(), E
= Probs
.end(); I
!= E
; ++I
) {
766 void BranchProbabilityInfo::calculate(const Function
&F
, const LoopInfo
&LI
,
767 const TargetLibraryInfo
*TLI
) {
768 DEBUG(dbgs() << "---- Branch Probability Info : " << F
.getName()
770 LastF
= &F
; // Store the last function we ran on for printing.
771 assert(PostDominatedByUnreachable
.empty());
772 assert(PostDominatedByColdCall
.empty());
774 // Walk the basic blocks in post-order so that we can build up state about
775 // the successors of a block iteratively.
776 for (auto BB
: post_order(&F
.getEntryBlock())) {
777 DEBUG(dbgs() << "Computing probabilities for " << BB
->getName() << "\n");
778 updatePostDominatedByUnreachable(BB
);
779 updatePostDominatedByColdCall(BB
);
780 // If there is no at least two successors, no sense to set probability.
781 if (BB
->getTerminator()->getNumSuccessors() < 2)
783 if (calcMetadataWeights(BB
))
785 if (calcUnreachableHeuristics(BB
))
787 if (calcColdCallHeuristics(BB
))
789 if (calcLoopBranchHeuristics(BB
, LI
))
791 if (calcPointerHeuristics(BB
))
793 if (calcZeroHeuristics(BB
, TLI
))
795 if (calcFloatingPointHeuristics(BB
))
797 calcInvokeHeuristics(BB
);
800 PostDominatedByUnreachable
.clear();
801 PostDominatedByColdCall
.clear();
803 if (PrintBranchProb
&&
804 (PrintBranchProbFuncName
.empty() ||
805 F
.getName().equals(PrintBranchProbFuncName
))) {
810 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
811 AnalysisUsage
&AU
) const {
812 AU
.addRequired
<LoopInfoWrapperPass
>();
813 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
814 AU
.setPreservesAll();
817 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function
&F
) {
818 const LoopInfo
&LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
819 const TargetLibraryInfo
&TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
820 BPI
.calculate(F
, LI
, &TLI
);
824 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI
.releaseMemory(); }
826 void BranchProbabilityInfoWrapperPass::print(raw_ostream
&OS
,
827 const Module
*) const {
831 AnalysisKey
BranchProbabilityAnalysis::Key
;
832 BranchProbabilityInfo
833 BranchProbabilityAnalysis::run(Function
&F
, FunctionAnalysisManager
&AM
) {
834 BranchProbabilityInfo BPI
;
835 BPI
.calculate(F
, AM
.getResult
<LoopAnalysis
>(F
), &AM
.getResult
<TargetLibraryAnalysis
>(F
));
840 BranchProbabilityPrinterPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
841 OS
<< "Printing analysis results of BPI for function "
842 << "'" << F
.getName() << "':"
844 AM
.getResult
<BranchProbabilityAnalysis
>(F
).print(OS
);
845 return PreservedAnalyses::all();