1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interface for lazy computation of value constraint
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/LazyValueInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/ValueLattice.h"
24 #include "llvm/IR/AssemblyAnnotationWriter.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/raw_ostream.h"
42 using namespace PatternMatch
;
44 #define DEBUG_TYPE "lazy-value-info"
46 // This is the number of worklist items we will process to try to discover an
47 // answer for a given value.
48 static const unsigned MaxProcessedPerValue
= 500;
50 char LazyValueInfoWrapperPass::ID
= 0;
51 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass
, "lazy-value-info",
52 "Lazy Value Information Analysis", false, true)
53 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
54 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
55 INITIALIZE_PASS_END(LazyValueInfoWrapperPass
, "lazy-value-info",
56 "Lazy Value Information Analysis", false, true)
59 FunctionPass
*createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
62 AnalysisKey
LazyValueAnalysis::Key
;
64 /// Returns true if this lattice value represents at most one possible value.
65 /// This is as precise as any lattice value can get while still representing
67 static bool hasSingleValue(const ValueLatticeElement
&Val
) {
68 if (Val
.isConstantRange() &&
69 Val
.getConstantRange().isSingleElement())
70 // Integer constants are single element ranges
73 // Non integer constants
78 /// Combine two sets of facts about the same value into a single set of
79 /// facts. Note that this method is not suitable for merging facts along
80 /// different paths in a CFG; that's what the mergeIn function is for. This
81 /// is for merging facts gathered about the same value at the same location
82 /// through two independent means.
84 /// * This method does not promise to return the most precise possible lattice
85 /// value implied by A and B. It is allowed to return any lattice element
86 /// which is at least as strong as *either* A or B (unless our facts
87 /// conflict, see below).
88 /// * Due to unreachable code, the intersection of two lattice values could be
89 /// contradictory. If this happens, we return some valid lattice value so as
90 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
91 /// we do not make this guarantee. TODO: This would be a useful enhancement.
92 static ValueLatticeElement
intersect(const ValueLatticeElement
&A
,
93 const ValueLatticeElement
&B
) {
94 // Undefined is the strongest state. It means the value is known to be along
95 // an unreachable path.
101 // If we gave up for one, but got a useable fact from the other, use it.
102 if (A
.isOverdefined())
104 if (B
.isOverdefined())
107 // Can't get any more precise than constants.
108 if (hasSingleValue(A
))
110 if (hasSingleValue(B
))
113 // Could be either constant range or not constant here.
114 if (!A
.isConstantRange() || !B
.isConstantRange()) {
115 // TODO: Arbitrary choice, could be improved
119 // Intersect two constant ranges
120 ConstantRange Range
=
121 A
.getConstantRange().intersectWith(B
.getConstantRange());
122 // Note: An empty range is implicitly converted to overdefined internally.
123 // TODO: We could instead use Undefined here since we've proven a conflict
124 // and thus know this path must be unreachable.
125 return ValueLatticeElement::getRange(std::move(Range
));
128 //===----------------------------------------------------------------------===//
129 // LazyValueInfoCache Decl
130 //===----------------------------------------------------------------------===//
133 /// A callback value handle updates the cache when values are erased.
134 class LazyValueInfoCache
;
135 struct LVIValueHandle final
: public CallbackVH
{
136 // Needs to access getValPtr(), which is protected.
137 friend struct DenseMapInfo
<LVIValueHandle
>;
139 LazyValueInfoCache
*Parent
;
141 LVIValueHandle(Value
*V
, LazyValueInfoCache
*P
)
142 : CallbackVH(V
), Parent(P
) { }
144 void deleted() override
;
145 void allUsesReplacedWith(Value
*V
) override
{
149 } // end anonymous namespace
152 /// This is the cache kept by LazyValueInfo which
153 /// maintains information about queries across the clients' queries.
154 class LazyValueInfoCache
{
155 /// This is all of the cached block information for exactly one Value*.
156 /// The entries are sorted by the BasicBlock* of the
157 /// entries, allowing us to do a lookup with a binary search.
158 /// Over-defined lattice values are recorded in OverDefinedCache to reduce
160 struct ValueCacheEntryTy
{
161 ValueCacheEntryTy(Value
*V
, LazyValueInfoCache
*P
) : Handle(V
, P
) {}
162 LVIValueHandle Handle
;
163 SmallDenseMap
<PoisoningVH
<BasicBlock
>, ValueLatticeElement
, 4> BlockVals
;
166 /// This tracks, on a per-block basis, the set of values that are
167 /// over-defined at the end of that block.
168 typedef DenseMap
<PoisoningVH
<BasicBlock
>, SmallPtrSet
<Value
*, 4>>
170 /// Keep track of all blocks that we have ever seen, so we
171 /// don't spend time removing unused blocks from our caches.
172 DenseSet
<PoisoningVH
<BasicBlock
> > SeenBlocks
;
174 /// This is all of the cached information for all values,
175 /// mapped from Value* to key information.
176 DenseMap
<Value
*, std::unique_ptr
<ValueCacheEntryTy
>> ValueCache
;
177 OverDefinedCacheTy OverDefinedCache
;
181 void insertResult(Value
*Val
, BasicBlock
*BB
,
182 const ValueLatticeElement
&Result
) {
183 SeenBlocks
.insert(BB
);
185 // Insert over-defined values into their own cache to reduce memory
187 if (Result
.isOverdefined())
188 OverDefinedCache
[BB
].insert(Val
);
190 auto It
= ValueCache
.find_as(Val
);
191 if (It
== ValueCache
.end()) {
192 ValueCache
[Val
] = make_unique
<ValueCacheEntryTy
>(Val
, this);
193 It
= ValueCache
.find_as(Val
);
194 assert(It
!= ValueCache
.end() && "Val was just added to the map!");
196 It
->second
->BlockVals
[BB
] = Result
;
200 bool isOverdefined(Value
*V
, BasicBlock
*BB
) const {
201 auto ODI
= OverDefinedCache
.find(BB
);
203 if (ODI
== OverDefinedCache
.end())
206 return ODI
->second
.count(V
);
209 bool hasCachedValueInfo(Value
*V
, BasicBlock
*BB
) const {
210 if (isOverdefined(V
, BB
))
213 auto I
= ValueCache
.find_as(V
);
214 if (I
== ValueCache
.end())
217 return I
->second
->BlockVals
.count(BB
);
220 ValueLatticeElement
getCachedValueInfo(Value
*V
, BasicBlock
*BB
) const {
221 if (isOverdefined(V
, BB
))
222 return ValueLatticeElement::getOverdefined();
224 auto I
= ValueCache
.find_as(V
);
225 if (I
== ValueCache
.end())
226 return ValueLatticeElement();
227 auto BBI
= I
->second
->BlockVals
.find(BB
);
228 if (BBI
== I
->second
->BlockVals
.end())
229 return ValueLatticeElement();
233 /// clear - Empty the cache.
237 OverDefinedCache
.clear();
240 /// Inform the cache that a given value has been deleted.
241 void eraseValue(Value
*V
);
243 /// This is part of the update interface to inform the cache
244 /// that a block has been deleted.
245 void eraseBlock(BasicBlock
*BB
);
247 /// Updates the cache to remove any influence an overdefined value in
248 /// OldSucc might have (unless also overdefined in NewSucc). This just
249 /// flushes elements from the cache and does not add any.
250 void threadEdgeImpl(BasicBlock
*OldSucc
,BasicBlock
*NewSucc
);
252 friend struct LVIValueHandle
;
256 void LazyValueInfoCache::eraseValue(Value
*V
) {
257 for (auto I
= OverDefinedCache
.begin(), E
= OverDefinedCache
.end(); I
!= E
;) {
258 // Copy and increment the iterator immediately so we can erase behind
261 SmallPtrSetImpl
<Value
*> &ValueSet
= Iter
->second
;
263 if (ValueSet
.empty())
264 OverDefinedCache
.erase(Iter
);
270 void LVIValueHandle::deleted() {
271 // This erasure deallocates *this, so it MUST happen after we're done
272 // using any and all members of *this.
273 Parent
->eraseValue(*this);
276 void LazyValueInfoCache::eraseBlock(BasicBlock
*BB
) {
277 // Shortcut if we have never seen this block.
278 DenseSet
<PoisoningVH
<BasicBlock
> >::iterator I
= SeenBlocks
.find(BB
);
279 if (I
== SeenBlocks
.end())
283 auto ODI
= OverDefinedCache
.find(BB
);
284 if (ODI
!= OverDefinedCache
.end())
285 OverDefinedCache
.erase(ODI
);
287 for (auto &I
: ValueCache
)
288 I
.second
->BlockVals
.erase(BB
);
291 void LazyValueInfoCache::threadEdgeImpl(BasicBlock
*OldSucc
,
292 BasicBlock
*NewSucc
) {
293 // When an edge in the graph has been threaded, values that we could not
294 // determine a value for before (i.e. were marked overdefined) may be
295 // possible to solve now. We do NOT try to proactively update these values.
296 // Instead, we clear their entries from the cache, and allow lazy updating to
297 // recompute them when needed.
299 // The updating process is fairly simple: we need to drop cached info
300 // for all values that were marked overdefined in OldSucc, and for those same
301 // values in any successor of OldSucc (except NewSucc) in which they were
302 // also marked overdefined.
303 std::vector
<BasicBlock
*> worklist
;
304 worklist
.push_back(OldSucc
);
306 auto I
= OverDefinedCache
.find(OldSucc
);
307 if (I
== OverDefinedCache
.end())
308 return; // Nothing to process here.
309 SmallVector
<Value
*, 4> ValsToClear(I
->second
.begin(), I
->second
.end());
311 // Use a worklist to perform a depth-first search of OldSucc's successors.
312 // NOTE: We do not need a visited list since any blocks we have already
313 // visited will have had their overdefined markers cleared already, and we
314 // thus won't loop to their successors.
315 while (!worklist
.empty()) {
316 BasicBlock
*ToUpdate
= worklist
.back();
319 // Skip blocks only accessible through NewSucc.
320 if (ToUpdate
== NewSucc
) continue;
322 // If a value was marked overdefined in OldSucc, and is here too...
323 auto OI
= OverDefinedCache
.find(ToUpdate
);
324 if (OI
== OverDefinedCache
.end())
326 SmallPtrSetImpl
<Value
*> &ValueSet
= OI
->second
;
328 bool changed
= false;
329 for (Value
*V
: ValsToClear
) {
330 if (!ValueSet
.erase(V
))
333 // If we removed anything, then we potentially need to update
334 // blocks successors too.
337 if (ValueSet
.empty()) {
338 OverDefinedCache
.erase(OI
);
343 if (!changed
) continue;
345 worklist
.insert(worklist
.end(), succ_begin(ToUpdate
), succ_end(ToUpdate
));
351 /// An assembly annotator class to print LazyValueCache information in
353 class LazyValueInfoImpl
;
354 class LazyValueInfoAnnotatedWriter
: public AssemblyAnnotationWriter
{
355 LazyValueInfoImpl
*LVIImpl
;
356 // While analyzing which blocks we can solve values for, we need the dominator
357 // information. Since this is an optional parameter in LVI, we require this
358 // DomTreeAnalysis pass in the printer pass, and pass the dominator
359 // tree to the LazyValueInfoAnnotatedWriter.
363 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl
*L
, DominatorTree
&DTree
)
364 : LVIImpl(L
), DT(DTree
) {}
366 virtual void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
367 formatted_raw_ostream
&OS
);
369 virtual void emitInstructionAnnot(const Instruction
*I
,
370 formatted_raw_ostream
&OS
);
374 // The actual implementation of the lazy analysis and update. Note that the
375 // inheritance from LazyValueInfoCache is intended to be temporary while
376 // splitting the code and then transitioning to a has-a relationship.
377 class LazyValueInfoImpl
{
379 /// Cached results from previous queries
380 LazyValueInfoCache TheCache
;
382 /// This stack holds the state of the value solver during a query.
383 /// It basically emulates the callstack of the naive
384 /// recursive value lookup process.
385 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> BlockValueStack
;
387 /// Keeps track of which block-value pairs are in BlockValueStack.
388 DenseSet
<std::pair
<BasicBlock
*, Value
*> > BlockValueSet
;
390 /// Push BV onto BlockValueStack unless it's already in there.
391 /// Returns true on success.
392 bool pushBlockValue(const std::pair
<BasicBlock
*, Value
*> &BV
) {
393 if (!BlockValueSet
.insert(BV
).second
)
394 return false; // It's already in the stack.
396 DEBUG(dbgs() << "PUSH: " << *BV
.second
<< " in " << BV
.first
->getName()
398 BlockValueStack
.push_back(BV
);
402 AssumptionCache
*AC
; ///< A pointer to the cache of @llvm.assume calls.
403 const DataLayout
&DL
; ///< A mandatory DataLayout
404 DominatorTree
*DT
; ///< An optional DT pointer.
406 ValueLatticeElement
getBlockValue(Value
*Val
, BasicBlock
*BB
);
407 bool getEdgeValue(Value
*V
, BasicBlock
*F
, BasicBlock
*T
,
408 ValueLatticeElement
&Result
, Instruction
*CxtI
= nullptr);
409 bool hasBlockValue(Value
*Val
, BasicBlock
*BB
);
411 // These methods process one work item and may add more. A false value
412 // returned means that the work item was not completely processed and must
413 // be revisited after going through the new items.
414 bool solveBlockValue(Value
*Val
, BasicBlock
*BB
);
415 bool solveBlockValueImpl(ValueLatticeElement
&Res
, Value
*Val
,
417 bool solveBlockValueNonLocal(ValueLatticeElement
&BBLV
, Value
*Val
,
419 bool solveBlockValuePHINode(ValueLatticeElement
&BBLV
, PHINode
*PN
,
421 bool solveBlockValueSelect(ValueLatticeElement
&BBLV
, SelectInst
*S
,
423 bool solveBlockValueBinaryOp(ValueLatticeElement
&BBLV
, BinaryOperator
*BBI
,
425 bool solveBlockValueCast(ValueLatticeElement
&BBLV
, CastInst
*CI
,
427 void intersectAssumeOrGuardBlockValueConstantRange(Value
*Val
,
428 ValueLatticeElement
&BBLV
,
434 /// This is the query interface to determine the lattice
435 /// value for the specified Value* at the end of the specified block.
436 ValueLatticeElement
getValueInBlock(Value
*V
, BasicBlock
*BB
,
437 Instruction
*CxtI
= nullptr);
439 /// This is the query interface to determine the lattice
440 /// value for the specified Value* at the specified instruction (generally
441 /// from an assume intrinsic).
442 ValueLatticeElement
getValueAt(Value
*V
, Instruction
*CxtI
);
444 /// This is the query interface to determine the lattice
445 /// value for the specified Value* that is true on the specified edge.
446 ValueLatticeElement
getValueOnEdge(Value
*V
, BasicBlock
*FromBB
,
448 Instruction
*CxtI
= nullptr);
450 /// Complete flush all previously computed values
455 /// Printing the LazyValueInfo Analysis.
456 void printLVI(Function
&F
, DominatorTree
&DTree
, raw_ostream
&OS
) {
457 LazyValueInfoAnnotatedWriter
Writer(this, DTree
);
458 F
.print(OS
, &Writer
);
461 /// This is part of the update interface to inform the cache
462 /// that a block has been deleted.
463 void eraseBlock(BasicBlock
*BB
) {
464 TheCache
.eraseBlock(BB
);
467 /// This is the update interface to inform the cache that an edge from
468 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
469 void threadEdge(BasicBlock
*PredBB
,BasicBlock
*OldSucc
,BasicBlock
*NewSucc
);
471 LazyValueInfoImpl(AssumptionCache
*AC
, const DataLayout
&DL
,
472 DominatorTree
*DT
= nullptr)
473 : AC(AC
), DL(DL
), DT(DT
) {}
475 } // end anonymous namespace
478 void LazyValueInfoImpl::solve() {
479 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> StartingStack(
480 BlockValueStack
.begin(), BlockValueStack
.end());
482 unsigned processedCount
= 0;
483 while (!BlockValueStack
.empty()) {
485 // Abort if we have to process too many values to get a result for this one.
486 // Because of the design of the overdefined cache currently being per-block
487 // to avoid naming-related issues (IE it wants to try to give different
488 // results for the same name in different blocks), overdefined results don't
489 // get cached globally, which in turn means we will often try to rediscover
490 // the same overdefined result again and again. Once something like
491 // PredicateInfo is used in LVI or CVP, we should be able to make the
492 // overdefined cache global, and remove this throttle.
493 if (processedCount
> MaxProcessedPerValue
) {
494 DEBUG(dbgs() << "Giving up on stack because we are getting too deep\n");
495 // Fill in the original values
496 while (!StartingStack
.empty()) {
497 std::pair
<BasicBlock
*, Value
*> &e
= StartingStack
.back();
498 TheCache
.insertResult(e
.second
, e
.first
,
499 ValueLatticeElement::getOverdefined());
500 StartingStack
.pop_back();
502 BlockValueSet
.clear();
503 BlockValueStack
.clear();
506 std::pair
<BasicBlock
*, Value
*> e
= BlockValueStack
.back();
507 assert(BlockValueSet
.count(e
) && "Stack value should be in BlockValueSet!");
509 if (solveBlockValue(e
.second
, e
.first
)) {
510 // The work item was completely processed.
511 assert(BlockValueStack
.back() == e
&& "Nothing should have been pushed!");
512 assert(TheCache
.hasCachedValueInfo(e
.second
, e
.first
) &&
513 "Result should be in cache!");
515 DEBUG(dbgs() << "POP " << *e
.second
<< " in " << e
.first
->getName()
516 << " = " << TheCache
.getCachedValueInfo(e
.second
, e
.first
) << "\n");
518 BlockValueStack
.pop_back();
519 BlockValueSet
.erase(e
);
521 // More work needs to be done before revisiting.
522 assert(BlockValueStack
.back() != e
&& "Stack should have been pushed!");
527 bool LazyValueInfoImpl::hasBlockValue(Value
*Val
, BasicBlock
*BB
) {
528 // If already a constant, there is nothing to compute.
529 if (isa
<Constant
>(Val
))
532 return TheCache
.hasCachedValueInfo(Val
, BB
);
535 ValueLatticeElement
LazyValueInfoImpl::getBlockValue(Value
*Val
,
537 // If already a constant, there is nothing to compute.
538 if (Constant
*VC
= dyn_cast
<Constant
>(Val
))
539 return ValueLatticeElement::get(VC
);
541 return TheCache
.getCachedValueInfo(Val
, BB
);
544 static ValueLatticeElement
getFromRangeMetadata(Instruction
*BBI
) {
545 switch (BBI
->getOpcode()) {
547 case Instruction::Load
:
548 case Instruction::Call
:
549 case Instruction::Invoke
:
550 if (MDNode
*Ranges
= BBI
->getMetadata(LLVMContext::MD_range
))
551 if (isa
<IntegerType
>(BBI
->getType())) {
552 return ValueLatticeElement::getRange(
553 getConstantRangeFromMetadata(*Ranges
));
557 // Nothing known - will be intersected with other facts
558 return ValueLatticeElement::getOverdefined();
561 bool LazyValueInfoImpl::solveBlockValue(Value
*Val
, BasicBlock
*BB
) {
562 if (isa
<Constant
>(Val
))
565 if (TheCache
.hasCachedValueInfo(Val
, BB
)) {
566 // If we have a cached value, use that.
567 DEBUG(dbgs() << " reuse BB '" << BB
->getName()
568 << "' val=" << TheCache
.getCachedValueInfo(Val
, BB
) << '\n');
570 // Since we're reusing a cached value, we don't need to update the
571 // OverDefinedCache. The cache will have been properly updated whenever the
572 // cached value was inserted.
576 // Hold off inserting this value into the Cache in case we have to return
577 // false and come back later.
578 ValueLatticeElement Res
;
579 if (!solveBlockValueImpl(Res
, Val
, BB
))
580 // Work pushed, will revisit
583 TheCache
.insertResult(Val
, BB
, Res
);
587 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement
&Res
,
588 Value
*Val
, BasicBlock
*BB
) {
590 Instruction
*BBI
= dyn_cast
<Instruction
>(Val
);
591 if (!BBI
|| BBI
->getParent() != BB
)
592 return solveBlockValueNonLocal(Res
, Val
, BB
);
594 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
))
595 return solveBlockValuePHINode(Res
, PN
, BB
);
597 if (auto *SI
= dyn_cast
<SelectInst
>(BBI
))
598 return solveBlockValueSelect(Res
, SI
, BB
);
600 // If this value is a nonnull pointer, record it's range and bailout. Note
601 // that for all other pointer typed values, we terminate the search at the
602 // definition. We could easily extend this to look through geps, bitcasts,
603 // and the like to prove non-nullness, but it's not clear that's worth it
604 // compile time wise. The context-insensitive value walk done inside
605 // isKnownNonZero gets most of the profitable cases at much less expense.
606 // This does mean that we have a sensativity to where the defining
607 // instruction is placed, even if it could legally be hoisted much higher.
608 // That is unfortunate.
609 PointerType
*PT
= dyn_cast
<PointerType
>(BBI
->getType());
610 if (PT
&& isKnownNonZero(BBI
, DL
)) {
611 Res
= ValueLatticeElement::getNot(ConstantPointerNull::get(PT
));
614 if (BBI
->getType()->isIntegerTy()) {
615 if (auto *CI
= dyn_cast
<CastInst
>(BBI
))
616 return solveBlockValueCast(Res
, CI
, BB
);
618 BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(BBI
);
619 if (BO
&& isa
<ConstantInt
>(BO
->getOperand(1)))
620 return solveBlockValueBinaryOp(Res
, BO
, BB
);
623 DEBUG(dbgs() << " compute BB '" << BB
->getName()
624 << "' - unknown inst def found.\n");
625 Res
= getFromRangeMetadata(BBI
);
629 static bool InstructionDereferencesPointer(Instruction
*I
, Value
*Ptr
) {
630 if (LoadInst
*L
= dyn_cast
<LoadInst
>(I
)) {
631 return L
->getPointerAddressSpace() == 0 &&
632 GetUnderlyingObject(L
->getPointerOperand(),
633 L
->getModule()->getDataLayout()) == Ptr
;
635 if (StoreInst
*S
= dyn_cast
<StoreInst
>(I
)) {
636 return S
->getPointerAddressSpace() == 0 &&
637 GetUnderlyingObject(S
->getPointerOperand(),
638 S
->getModule()->getDataLayout()) == Ptr
;
640 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(I
)) {
641 if (MI
->isVolatile()) return false;
643 // FIXME: check whether it has a valuerange that excludes zero?
644 ConstantInt
*Len
= dyn_cast
<ConstantInt
>(MI
->getLength());
645 if (!Len
|| Len
->isZero()) return false;
647 if (MI
->getDestAddressSpace() == 0)
648 if (GetUnderlyingObject(MI
->getRawDest(),
649 MI
->getModule()->getDataLayout()) == Ptr
)
651 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
))
652 if (MTI
->getSourceAddressSpace() == 0)
653 if (GetUnderlyingObject(MTI
->getRawSource(),
654 MTI
->getModule()->getDataLayout()) == Ptr
)
660 /// Return true if the allocation associated with Val is ever dereferenced
661 /// within the given basic block. This establishes the fact Val is not null,
662 /// but does not imply that the memory at Val is dereferenceable. (Val may
663 /// point off the end of the dereferenceable part of the object.)
664 static bool isObjectDereferencedInBlock(Value
*Val
, BasicBlock
*BB
) {
665 assert(Val
->getType()->isPointerTy());
667 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
668 Value
*UnderlyingVal
= GetUnderlyingObject(Val
, DL
);
669 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
670 // inside InstructionDereferencesPointer either.
671 if (UnderlyingVal
== GetUnderlyingObject(UnderlyingVal
, DL
, 1))
672 for (Instruction
&I
: *BB
)
673 if (InstructionDereferencesPointer(&I
, UnderlyingVal
))
678 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement
&BBLV
,
679 Value
*Val
, BasicBlock
*BB
) {
680 ValueLatticeElement Result
; // Start Undefined.
682 // If this is the entry block, we must be asking about an argument. The
683 // value is overdefined.
684 if (BB
== &BB
->getParent()->getEntryBlock()) {
685 assert(isa
<Argument
>(Val
) && "Unknown live-in to the entry block");
686 // Before giving up, see if we can prove the pointer non-null local to
687 // this particular block.
688 if (Val
->getType()->isPointerTy() &&
689 (isKnownNonZero(Val
, DL
) || isObjectDereferencedInBlock(Val
, BB
))) {
690 PointerType
*PTy
= cast
<PointerType
>(Val
->getType());
691 Result
= ValueLatticeElement::getNot(ConstantPointerNull::get(PTy
));
693 Result
= ValueLatticeElement::getOverdefined();
699 // Loop over all of our predecessors, merging what we know from them into
700 // result. If we encounter an unexplored predecessor, we eagerly explore it
701 // in a depth first manner. In practice, this has the effect of discovering
702 // paths we can't analyze eagerly without spending compile times analyzing
703 // other paths. This heuristic benefits from the fact that predecessors are
704 // frequently arranged such that dominating ones come first and we quickly
705 // find a path to function entry. TODO: We should consider explicitly
706 // canonicalizing to make this true rather than relying on this happy
708 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
709 ValueLatticeElement EdgeResult
;
710 if (!getEdgeValue(Val
, *PI
, BB
, EdgeResult
))
711 // Explore that input, then return here
714 Result
.mergeIn(EdgeResult
, DL
);
716 // If we hit overdefined, exit early. The BlockVals entry is already set
718 if (Result
.isOverdefined()) {
719 DEBUG(dbgs() << " compute BB '" << BB
->getName()
720 << "' - overdefined because of pred (non local).\n");
721 // Before giving up, see if we can prove the pointer non-null local to
722 // this particular block.
723 if (Val
->getType()->isPointerTy() &&
724 isObjectDereferencedInBlock(Val
, BB
)) {
725 PointerType
*PTy
= cast
<PointerType
>(Val
->getType());
726 Result
= ValueLatticeElement::getNot(ConstantPointerNull::get(PTy
));
734 // Return the merged value, which is more precise than 'overdefined'.
735 assert(!Result
.isOverdefined());
740 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement
&BBLV
,
741 PHINode
*PN
, BasicBlock
*BB
) {
742 ValueLatticeElement Result
; // Start Undefined.
744 // Loop over all of our predecessors, merging what we know from them into
745 // result. See the comment about the chosen traversal order in
746 // solveBlockValueNonLocal; the same reasoning applies here.
747 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
748 BasicBlock
*PhiBB
= PN
->getIncomingBlock(i
);
749 Value
*PhiVal
= PN
->getIncomingValue(i
);
750 ValueLatticeElement EdgeResult
;
751 // Note that we can provide PN as the context value to getEdgeValue, even
752 // though the results will be cached, because PN is the value being used as
753 // the cache key in the caller.
754 if (!getEdgeValue(PhiVal
, PhiBB
, BB
, EdgeResult
, PN
))
755 // Explore that input, then return here
758 Result
.mergeIn(EdgeResult
, DL
);
760 // If we hit overdefined, exit early. The BlockVals entry is already set
762 if (Result
.isOverdefined()) {
763 DEBUG(dbgs() << " compute BB '" << BB
->getName()
764 << "' - overdefined because of pred (local).\n");
771 // Return the merged value, which is more precise than 'overdefined'.
772 assert(!Result
.isOverdefined() && "Possible PHI in entry block?");
777 static ValueLatticeElement
getValueFromCondition(Value
*Val
, Value
*Cond
,
778 bool isTrueDest
= true);
780 // If we can determine a constraint on the value given conditions assumed by
781 // the program, intersect those constraints with BBLV
782 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
783 Value
*Val
, ValueLatticeElement
&BBLV
, Instruction
*BBI
) {
784 BBI
= BBI
? BBI
: dyn_cast
<Instruction
>(Val
);
788 for (auto &AssumeVH
: AC
->assumptionsFor(Val
)) {
791 auto *I
= cast
<CallInst
>(AssumeVH
);
792 if (!isValidAssumeForContext(I
, BBI
, DT
))
795 BBLV
= intersect(BBLV
, getValueFromCondition(Val
, I
->getArgOperand(0)));
798 // If guards are not used in the module, don't spend time looking for them
799 auto *GuardDecl
= BBI
->getModule()->getFunction(
800 Intrinsic::getName(Intrinsic::experimental_guard
));
801 if (!GuardDecl
|| GuardDecl
->use_empty())
804 for (Instruction
&I
: make_range(BBI
->getIterator().getReverse(),
805 BBI
->getParent()->rend())) {
806 Value
*Cond
= nullptr;
807 if (match(&I
, m_Intrinsic
<Intrinsic::experimental_guard
>(m_Value(Cond
))))
808 BBLV
= intersect(BBLV
, getValueFromCondition(Val
, Cond
));
812 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement
&BBLV
,
813 SelectInst
*SI
, BasicBlock
*BB
) {
815 // Recurse on our inputs if needed
816 if (!hasBlockValue(SI
->getTrueValue(), BB
)) {
817 if (pushBlockValue(std::make_pair(BB
, SI
->getTrueValue())))
819 BBLV
= ValueLatticeElement::getOverdefined();
822 ValueLatticeElement TrueVal
= getBlockValue(SI
->getTrueValue(), BB
);
823 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
824 // extra slots in the table if we can.
825 if (TrueVal
.isOverdefined()) {
826 BBLV
= ValueLatticeElement::getOverdefined();
830 if (!hasBlockValue(SI
->getFalseValue(), BB
)) {
831 if (pushBlockValue(std::make_pair(BB
, SI
->getFalseValue())))
833 BBLV
= ValueLatticeElement::getOverdefined();
836 ValueLatticeElement FalseVal
= getBlockValue(SI
->getFalseValue(), BB
);
837 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
838 // extra slots in the table if we can.
839 if (FalseVal
.isOverdefined()) {
840 BBLV
= ValueLatticeElement::getOverdefined();
844 if (TrueVal
.isConstantRange() && FalseVal
.isConstantRange()) {
845 const ConstantRange
&TrueCR
= TrueVal
.getConstantRange();
846 const ConstantRange
&FalseCR
= FalseVal
.getConstantRange();
847 Value
*LHS
= nullptr;
848 Value
*RHS
= nullptr;
849 SelectPatternResult SPR
= matchSelectPattern(SI
, LHS
, RHS
);
850 // Is this a min specifically of our two inputs? (Avoid the risk of
851 // ValueTracking getting smarter looking back past our immediate inputs.)
852 if (SelectPatternResult::isMinOrMax(SPR
.Flavor
) &&
853 LHS
== SI
->getTrueValue() && RHS
== SI
->getFalseValue()) {
854 ConstantRange ResultCR
= [&]() {
855 switch (SPR
.Flavor
) {
857 llvm_unreachable("unexpected minmax type!");
858 case SPF_SMIN
: /// Signed minimum
859 return TrueCR
.smin(FalseCR
);
860 case SPF_UMIN
: /// Unsigned minimum
861 return TrueCR
.umin(FalseCR
);
862 case SPF_SMAX
: /// Signed maximum
863 return TrueCR
.smax(FalseCR
);
864 case SPF_UMAX
: /// Unsigned maximum
865 return TrueCR
.umax(FalseCR
);
868 BBLV
= ValueLatticeElement::getRange(ResultCR
);
872 // TODO: ABS, NABS from the SelectPatternResult
875 // Can we constrain the facts about the true and false values by using the
876 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
877 // TODO: We could potentially refine an overdefined true value above.
878 Value
*Cond
= SI
->getCondition();
879 TrueVal
= intersect(TrueVal
,
880 getValueFromCondition(SI
->getTrueValue(), Cond
, true));
881 FalseVal
= intersect(FalseVal
,
882 getValueFromCondition(SI
->getFalseValue(), Cond
, false));
884 // Handle clamp idioms such as:
885 // %24 = constantrange<0, 17>
886 // %39 = icmp eq i32 %24, 0
887 // %40 = add i32 %24, -1
888 // %siv.next = select i1 %39, i32 16, i32 %40
889 // %siv.next = constantrange<0, 17> not <-1, 17>
890 // In general, this can handle any clamp idiom which tests the edge
891 // condition via an equality or inequality.
892 if (auto *ICI
= dyn_cast
<ICmpInst
>(Cond
)) {
893 ICmpInst::Predicate Pred
= ICI
->getPredicate();
894 Value
*A
= ICI
->getOperand(0);
895 if (ConstantInt
*CIBase
= dyn_cast
<ConstantInt
>(ICI
->getOperand(1))) {
896 auto addConstants
= [](ConstantInt
*A
, ConstantInt
*B
) {
897 assert(A
->getType() == B
->getType());
898 return ConstantInt::get(A
->getType(), A
->getValue() + B
->getValue());
900 // See if either input is A + C2, subject to the constraint from the
901 // condition that A != C when that input is used. We can assume that
902 // that input doesn't include C + C2.
903 ConstantInt
*CIAdded
;
906 case ICmpInst::ICMP_EQ
:
907 if (match(SI
->getFalseValue(), m_Add(m_Specific(A
),
908 m_ConstantInt(CIAdded
)))) {
909 auto ResNot
= addConstants(CIBase
, CIAdded
);
910 FalseVal
= intersect(FalseVal
,
911 ValueLatticeElement::getNot(ResNot
));
914 case ICmpInst::ICMP_NE
:
915 if (match(SI
->getTrueValue(), m_Add(m_Specific(A
),
916 m_ConstantInt(CIAdded
)))) {
917 auto ResNot
= addConstants(CIBase
, CIAdded
);
918 TrueVal
= intersect(TrueVal
,
919 ValueLatticeElement::getNot(ResNot
));
926 ValueLatticeElement Result
; // Start Undefined.
927 Result
.mergeIn(TrueVal
, DL
);
928 Result
.mergeIn(FalseVal
, DL
);
933 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement
&BBLV
,
936 if (!CI
->getOperand(0)->getType()->isSized()) {
937 // Without knowing how wide the input is, we can't analyze it in any useful
939 BBLV
= ValueLatticeElement::getOverdefined();
943 // Filter out casts we don't know how to reason about before attempting to
944 // recurse on our operand. This can cut a long search short if we know we're
945 // not going to be able to get any useful information anways.
946 switch (CI
->getOpcode()) {
947 case Instruction::Trunc
:
948 case Instruction::SExt
:
949 case Instruction::ZExt
:
950 case Instruction::BitCast
:
953 // Unhandled instructions are overdefined.
954 DEBUG(dbgs() << " compute BB '" << BB
->getName()
955 << "' - overdefined (unknown cast).\n");
956 BBLV
= ValueLatticeElement::getOverdefined();
960 // Figure out the range of the LHS. If that fails, we still apply the
961 // transfer rule on the full set since we may be able to locally infer
962 // interesting facts.
963 if (!hasBlockValue(CI
->getOperand(0), BB
))
964 if (pushBlockValue(std::make_pair(BB
, CI
->getOperand(0))))
965 // More work to do before applying this transfer rule.
968 const unsigned OperandBitWidth
=
969 DL
.getTypeSizeInBits(CI
->getOperand(0)->getType());
970 ConstantRange LHSRange
= ConstantRange(OperandBitWidth
);
971 if (hasBlockValue(CI
->getOperand(0), BB
)) {
972 ValueLatticeElement LHSVal
= getBlockValue(CI
->getOperand(0), BB
);
973 intersectAssumeOrGuardBlockValueConstantRange(CI
->getOperand(0), LHSVal
,
975 if (LHSVal
.isConstantRange())
976 LHSRange
= LHSVal
.getConstantRange();
979 const unsigned ResultBitWidth
= CI
->getType()->getIntegerBitWidth();
981 // NOTE: We're currently limited by the set of operations that ConstantRange
982 // can evaluate symbolically. Enhancing that set will allows us to analyze
984 BBLV
= ValueLatticeElement::getRange(LHSRange
.castOp(CI
->getOpcode(),
989 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement
&BBLV
,
993 assert(BO
->getOperand(0)->getType()->isSized() &&
994 "all operands to binary operators are sized");
996 // Filter out operators we don't know how to reason about before attempting to
997 // recurse on our operand(s). This can cut a long search short if we know
998 // we're not going to be able to get any useful information anyways.
999 switch (BO
->getOpcode()) {
1000 case Instruction::Add
:
1001 case Instruction::Sub
:
1002 case Instruction::Mul
:
1003 case Instruction::UDiv
:
1004 case Instruction::Shl
:
1005 case Instruction::LShr
:
1006 case Instruction::And
:
1007 case Instruction::Or
:
1008 // continue into the code below
1011 // Unhandled instructions are overdefined.
1012 DEBUG(dbgs() << " compute BB '" << BB
->getName()
1013 << "' - overdefined (unknown binary operator).\n");
1014 BBLV
= ValueLatticeElement::getOverdefined();
1018 // Figure out the range of the LHS. If that fails, use a conservative range,
1019 // but apply the transfer rule anyways. This lets us pick up facts from
1020 // expressions like "and i32 (call i32 @foo()), 32"
1021 if (!hasBlockValue(BO
->getOperand(0), BB
))
1022 if (pushBlockValue(std::make_pair(BB
, BO
->getOperand(0))))
1023 // More work to do before applying this transfer rule.
1026 const unsigned OperandBitWidth
=
1027 DL
.getTypeSizeInBits(BO
->getOperand(0)->getType());
1028 ConstantRange LHSRange
= ConstantRange(OperandBitWidth
);
1029 if (hasBlockValue(BO
->getOperand(0), BB
)) {
1030 ValueLatticeElement LHSVal
= getBlockValue(BO
->getOperand(0), BB
);
1031 intersectAssumeOrGuardBlockValueConstantRange(BO
->getOperand(0), LHSVal
,
1033 if (LHSVal
.isConstantRange())
1034 LHSRange
= LHSVal
.getConstantRange();
1037 ConstantInt
*RHS
= cast
<ConstantInt
>(BO
->getOperand(1));
1038 ConstantRange RHSRange
= ConstantRange(RHS
->getValue());
1040 // NOTE: We're currently limited by the set of operations that ConstantRange
1041 // can evaluate symbolically. Enhancing that set will allows us to analyze
1042 // more definitions.
1043 Instruction::BinaryOps BinOp
= BO
->getOpcode();
1044 BBLV
= ValueLatticeElement::getRange(LHSRange
.binaryOp(BinOp
, RHSRange
));
1048 static ValueLatticeElement
getValueFromICmpCondition(Value
*Val
, ICmpInst
*ICI
,
1050 Value
*LHS
= ICI
->getOperand(0);
1051 Value
*RHS
= ICI
->getOperand(1);
1052 CmpInst::Predicate Predicate
= ICI
->getPredicate();
1054 if (isa
<Constant
>(RHS
)) {
1055 if (ICI
->isEquality() && LHS
== Val
) {
1056 // We know that V has the RHS constant if this is a true SETEQ or
1058 if (isTrueDest
== (Predicate
== ICmpInst::ICMP_EQ
))
1059 return ValueLatticeElement::get(cast
<Constant
>(RHS
));
1061 return ValueLatticeElement::getNot(cast
<Constant
>(RHS
));
1065 if (!Val
->getType()->isIntegerTy())
1066 return ValueLatticeElement::getOverdefined();
1068 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
1069 // range of Val guaranteed by the condition. Recognize comparisons in the from
1071 // icmp <pred> Val, ...
1072 // icmp <pred> (add Val, Offset), ...
1073 // The latter is the range checking idiom that InstCombine produces. Subtract
1074 // the offset from the allowed range for RHS in this case.
1076 // Val or (add Val, Offset) can be on either hand of the comparison
1077 if (LHS
!= Val
&& !match(LHS
, m_Add(m_Specific(Val
), m_ConstantInt()))) {
1078 std::swap(LHS
, RHS
);
1079 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
1082 ConstantInt
*Offset
= nullptr;
1084 match(LHS
, m_Add(m_Specific(Val
), m_ConstantInt(Offset
)));
1086 if (LHS
== Val
|| Offset
) {
1087 // Calculate the range of values that are allowed by the comparison
1088 ConstantRange
RHSRange(RHS
->getType()->getIntegerBitWidth(),
1089 /*isFullSet=*/true);
1090 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
))
1091 RHSRange
= ConstantRange(CI
->getValue());
1092 else if (Instruction
*I
= dyn_cast
<Instruction
>(RHS
))
1093 if (auto *Ranges
= I
->getMetadata(LLVMContext::MD_range
))
1094 RHSRange
= getConstantRangeFromMetadata(*Ranges
);
1096 // If we're interested in the false dest, invert the condition
1097 CmpInst::Predicate Pred
=
1098 isTrueDest
? Predicate
: CmpInst::getInversePredicate(Predicate
);
1099 ConstantRange TrueValues
=
1100 ConstantRange::makeAllowedICmpRegion(Pred
, RHSRange
);
1102 if (Offset
) // Apply the offset from above.
1103 TrueValues
= TrueValues
.subtract(Offset
->getValue());
1105 return ValueLatticeElement::getRange(std::move(TrueValues
));
1108 return ValueLatticeElement::getOverdefined();
1111 static ValueLatticeElement
1112 getValueFromCondition(Value
*Val
, Value
*Cond
, bool isTrueDest
,
1113 DenseMap
<Value
*, ValueLatticeElement
> &Visited
);
1115 static ValueLatticeElement
1116 getValueFromConditionImpl(Value
*Val
, Value
*Cond
, bool isTrueDest
,
1117 DenseMap
<Value
*, ValueLatticeElement
> &Visited
) {
1118 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Cond
))
1119 return getValueFromICmpCondition(Val
, ICI
, isTrueDest
);
1121 // Handle conditions in the form of (cond1 && cond2), we know that on the
1122 // true dest path both of the conditions hold. Similarly for conditions of
1123 // the form (cond1 || cond2), we know that on the false dest path neither
1125 BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
);
1126 if (!BO
|| (isTrueDest
&& BO
->getOpcode() != BinaryOperator::And
) ||
1127 (!isTrueDest
&& BO
->getOpcode() != BinaryOperator::Or
))
1128 return ValueLatticeElement::getOverdefined();
1130 auto RHS
= getValueFromCondition(Val
, BO
->getOperand(0), isTrueDest
, Visited
);
1131 auto LHS
= getValueFromCondition(Val
, BO
->getOperand(1), isTrueDest
, Visited
);
1132 return intersect(RHS
, LHS
);
1135 static ValueLatticeElement
1136 getValueFromCondition(Value
*Val
, Value
*Cond
, bool isTrueDest
,
1137 DenseMap
<Value
*, ValueLatticeElement
> &Visited
) {
1138 auto I
= Visited
.find(Cond
);
1139 if (I
!= Visited
.end())
1142 auto Result
= getValueFromConditionImpl(Val
, Cond
, isTrueDest
, Visited
);
1143 Visited
[Cond
] = Result
;
1147 ValueLatticeElement
getValueFromCondition(Value
*Val
, Value
*Cond
,
1149 assert(Cond
&& "precondition");
1150 DenseMap
<Value
*, ValueLatticeElement
> Visited
;
1151 return getValueFromCondition(Val
, Cond
, isTrueDest
, Visited
);
1154 // Return true if Usr has Op as an operand, otherwise false.
1155 static bool usesOperand(User
*Usr
, Value
*Op
) {
1156 return find(Usr
->operands(), Op
) != Usr
->op_end();
1159 // Return true if the instruction type of Val is supported by
1160 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this
1161 // before calling constantFoldUser() to find out if it's even worth attempting
1163 static bool isOperationFoldable(User
*Usr
) {
1164 return isa
<CastInst
>(Usr
) || isa
<BinaryOperator
>(Usr
);
1167 // Check if Usr can be simplified to an integer constant when the value of one
1168 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1169 // lattice value range with a single element or otherwise return an overdefined
1171 static ValueLatticeElement
constantFoldUser(User
*Usr
, Value
*Op
,
1172 const APInt
&OpConstVal
,
1173 const DataLayout
&DL
) {
1174 assert(isOperationFoldable(Usr
) && "Precondition");
1175 Constant
* OpConst
= Constant::getIntegerValue(Op
->getType(), OpConstVal
);
1176 // Check if Usr can be simplified to a constant.
1177 if (auto *CI
= dyn_cast
<CastInst
>(Usr
)) {
1178 assert(CI
->getOperand(0) == Op
&& "Operand 0 isn't Op");
1179 if (auto *C
= dyn_cast_or_null
<ConstantInt
>(
1180 SimplifyCastInst(CI
->getOpcode(), OpConst
,
1181 CI
->getDestTy(), DL
))) {
1182 return ValueLatticeElement::getRange(ConstantRange(C
->getValue()));
1184 } else if (auto *BO
= dyn_cast
<BinaryOperator
>(Usr
)) {
1185 bool Op0Match
= BO
->getOperand(0) == Op
;
1186 bool Op1Match
= BO
->getOperand(1) == Op
;
1187 assert((Op0Match
|| Op1Match
) &&
1188 "Operand 0 nor Operand 1 isn't a match");
1189 Value
*LHS
= Op0Match
? OpConst
: BO
->getOperand(0);
1190 Value
*RHS
= Op1Match
? OpConst
: BO
->getOperand(1);
1191 if (auto *C
= dyn_cast_or_null
<ConstantInt
>(
1192 SimplifyBinOp(BO
->getOpcode(), LHS
, RHS
, DL
))) {
1193 return ValueLatticeElement::getRange(ConstantRange(C
->getValue()));
1196 return ValueLatticeElement::getOverdefined();
1199 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1200 /// Val is not constrained on the edge. Result is unspecified if return value
1202 static bool getEdgeValueLocal(Value
*Val
, BasicBlock
*BBFrom
,
1203 BasicBlock
*BBTo
, ValueLatticeElement
&Result
) {
1204 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1205 // know that v != 0.
1206 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BBFrom
->getTerminator())) {
1207 // If this is a conditional branch and only one successor goes to BBTo, then
1208 // we may be able to infer something from the condition.
1209 if (BI
->isConditional() &&
1210 BI
->getSuccessor(0) != BI
->getSuccessor(1)) {
1211 bool isTrueDest
= BI
->getSuccessor(0) == BBTo
;
1212 assert(BI
->getSuccessor(!isTrueDest
) == BBTo
&&
1213 "BBTo isn't a successor of BBFrom");
1214 Value
*Condition
= BI
->getCondition();
1216 // If V is the condition of the branch itself, then we know exactly what
1218 if (Condition
== Val
) {
1219 Result
= ValueLatticeElement::get(ConstantInt::get(
1220 Type::getInt1Ty(Val
->getContext()), isTrueDest
));
1224 // If the condition of the branch is an equality comparison, we may be
1225 // able to infer the value.
1226 Result
= getValueFromCondition(Val
, Condition
, isTrueDest
);
1227 if (!Result
.isOverdefined())
1230 if (User
*Usr
= dyn_cast
<User
>(Val
)) {
1231 assert(Result
.isOverdefined() && "Result isn't overdefined");
1232 // Check with isOperationFoldable() first to avoid linearly iterating
1233 // over the operands unnecessarily which can be expensive for
1234 // instructions with many operands.
1235 if (isa
<IntegerType
>(Usr
->getType()) && isOperationFoldable(Usr
)) {
1236 const DataLayout
&DL
= BBTo
->getModule()->getDataLayout();
1237 if (usesOperand(Usr
, Condition
)) {
1238 // If Val has Condition as an operand and Val can be folded into a
1239 // constant with either Condition == true or Condition == false,
1240 // propagate the constant.
1242 // ; %Val is true on the edge to %then.
1243 // %Val = and i1 %Condition, true.
1244 // br %Condition, label %then, label %else
1245 APInt
ConditionVal(1, isTrueDest
? 1 : 0);
1246 Result
= constantFoldUser(Usr
, Condition
, ConditionVal
, DL
);
1248 // If one of Val's operand has an inferred value, we may be able to
1249 // infer the value of Val.
1251 // ; %Val is 94 on the edge to %then.
1252 // %Val = add i8 %Op, 1
1253 // %Condition = icmp eq i8 %Op, 93
1254 // br i1 %Condition, label %then, label %else
1255 for (unsigned i
= 0; i
< Usr
->getNumOperands(); ++i
) {
1256 Value
*Op
= Usr
->getOperand(i
);
1257 ValueLatticeElement OpLatticeVal
=
1258 getValueFromCondition(Op
, Condition
, isTrueDest
);
1259 if (Optional
<APInt
> OpConst
= OpLatticeVal
.asConstantInteger()) {
1260 Result
= constantFoldUser(Usr
, Op
, OpConst
.getValue(), DL
);
1267 if (!Result
.isOverdefined())
1272 // If the edge was formed by a switch on the value, then we may know exactly
1274 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BBFrom
->getTerminator())) {
1275 Value
*Condition
= SI
->getCondition();
1276 if (!isa
<IntegerType
>(Val
->getType()))
1278 bool ValUsesConditionAndMayBeFoldable
= false;
1279 if (Condition
!= Val
) {
1280 // Check if Val has Condition as an operand.
1281 if (User
*Usr
= dyn_cast
<User
>(Val
))
1282 ValUsesConditionAndMayBeFoldable
= isOperationFoldable(Usr
) &&
1283 usesOperand(Usr
, Condition
);
1284 if (!ValUsesConditionAndMayBeFoldable
)
1287 assert((Condition
== Val
|| ValUsesConditionAndMayBeFoldable
) &&
1288 "Condition != Val nor Val doesn't use Condition");
1290 bool DefaultCase
= SI
->getDefaultDest() == BBTo
;
1291 unsigned BitWidth
= Val
->getType()->getIntegerBitWidth();
1292 ConstantRange
EdgesVals(BitWidth
, DefaultCase
/*isFullSet*/);
1294 for (auto Case
: SI
->cases()) {
1295 APInt CaseValue
= Case
.getCaseValue()->getValue();
1296 ConstantRange
EdgeVal(CaseValue
);
1297 if (ValUsesConditionAndMayBeFoldable
) {
1298 User
*Usr
= cast
<User
>(Val
);
1299 const DataLayout
&DL
= BBTo
->getModule()->getDataLayout();
1300 ValueLatticeElement EdgeLatticeVal
=
1301 constantFoldUser(Usr
, Condition
, CaseValue
, DL
);
1302 if (EdgeLatticeVal
.isOverdefined())
1304 EdgeVal
= EdgeLatticeVal
.getConstantRange();
1307 // It is possible that the default destination is the destination of
1308 // some cases. We cannot perform difference for those cases.
1309 // We know Condition != CaseValue in BBTo. In some cases we can use
1310 // this to infer Val == f(Condition) is != f(CaseValue). For now, we
1311 // only do this when f is identity (i.e. Val == Condition), but we
1312 // should be able to do this for any injective f.
1313 if (Case
.getCaseSuccessor() != BBTo
&& Condition
== Val
)
1314 EdgesVals
= EdgesVals
.difference(EdgeVal
);
1315 } else if (Case
.getCaseSuccessor() == BBTo
)
1316 EdgesVals
= EdgesVals
.unionWith(EdgeVal
);
1318 Result
= ValueLatticeElement::getRange(std::move(EdgesVals
));
1324 /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
1325 /// the basic block if the edge does not constrain Val.
1326 bool LazyValueInfoImpl::getEdgeValue(Value
*Val
, BasicBlock
*BBFrom
,
1328 ValueLatticeElement
&Result
,
1329 Instruction
*CxtI
) {
1330 // If already a constant, there is nothing to compute.
1331 if (Constant
*VC
= dyn_cast
<Constant
>(Val
)) {
1332 Result
= ValueLatticeElement::get(VC
);
1336 ValueLatticeElement LocalResult
;
1337 if (!getEdgeValueLocal(Val
, BBFrom
, BBTo
, LocalResult
))
1338 // If we couldn't constrain the value on the edge, LocalResult doesn't
1339 // provide any information.
1340 LocalResult
= ValueLatticeElement::getOverdefined();
1342 if (hasSingleValue(LocalResult
)) {
1343 // Can't get any more precise here
1344 Result
= LocalResult
;
1348 if (!hasBlockValue(Val
, BBFrom
)) {
1349 if (pushBlockValue(std::make_pair(BBFrom
, Val
)))
1351 // No new information.
1352 Result
= LocalResult
;
1356 // Try to intersect ranges of the BB and the constraint on the edge.
1357 ValueLatticeElement InBlock
= getBlockValue(Val
, BBFrom
);
1358 intersectAssumeOrGuardBlockValueConstantRange(Val
, InBlock
,
1359 BBFrom
->getTerminator());
1360 // We can use the context instruction (generically the ultimate instruction
1361 // the calling pass is trying to simplify) here, even though the result of
1362 // this function is generally cached when called from the solve* functions
1363 // (and that cached result might be used with queries using a different
1364 // context instruction), because when this function is called from the solve*
1365 // functions, the context instruction is not provided. When called from
1366 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1367 // but then the result is not cached.
1368 intersectAssumeOrGuardBlockValueConstantRange(Val
, InBlock
, CxtI
);
1370 Result
= intersect(LocalResult
, InBlock
);
1374 ValueLatticeElement
LazyValueInfoImpl::getValueInBlock(Value
*V
, BasicBlock
*BB
,
1375 Instruction
*CxtI
) {
1376 DEBUG(dbgs() << "LVI Getting block end value " << *V
<< " at '"
1377 << BB
->getName() << "'\n");
1379 assert(BlockValueStack
.empty() && BlockValueSet
.empty());
1380 if (!hasBlockValue(V
, BB
)) {
1381 pushBlockValue(std::make_pair(BB
, V
));
1384 ValueLatticeElement Result
= getBlockValue(V
, BB
);
1385 intersectAssumeOrGuardBlockValueConstantRange(V
, Result
, CxtI
);
1387 DEBUG(dbgs() << " Result = " << Result
<< "\n");
1391 ValueLatticeElement
LazyValueInfoImpl::getValueAt(Value
*V
, Instruction
*CxtI
) {
1392 DEBUG(dbgs() << "LVI Getting value " << *V
<< " at '"
1393 << CxtI
->getName() << "'\n");
1395 if (auto *C
= dyn_cast
<Constant
>(V
))
1396 return ValueLatticeElement::get(C
);
1398 ValueLatticeElement Result
= ValueLatticeElement::getOverdefined();
1399 if (auto *I
= dyn_cast
<Instruction
>(V
))
1400 Result
= getFromRangeMetadata(I
);
1401 intersectAssumeOrGuardBlockValueConstantRange(V
, Result
, CxtI
);
1403 DEBUG(dbgs() << " Result = " << Result
<< "\n");
1407 ValueLatticeElement
LazyValueInfoImpl::
1408 getValueOnEdge(Value
*V
, BasicBlock
*FromBB
, BasicBlock
*ToBB
,
1409 Instruction
*CxtI
) {
1410 DEBUG(dbgs() << "LVI Getting edge value " << *V
<< " from '"
1411 << FromBB
->getName() << "' to '" << ToBB
->getName() << "'\n");
1413 ValueLatticeElement Result
;
1414 if (!getEdgeValue(V
, FromBB
, ToBB
, Result
, CxtI
)) {
1416 bool WasFastQuery
= getEdgeValue(V
, FromBB
, ToBB
, Result
, CxtI
);
1418 assert(WasFastQuery
&& "More work to do after problem solved?");
1421 DEBUG(dbgs() << " Result = " << Result
<< "\n");
1425 void LazyValueInfoImpl::threadEdge(BasicBlock
*PredBB
, BasicBlock
*OldSucc
,
1426 BasicBlock
*NewSucc
) {
1427 TheCache
.threadEdgeImpl(OldSucc
, NewSucc
);
1430 //===----------------------------------------------------------------------===//
1431 // LazyValueInfo Impl
1432 //===----------------------------------------------------------------------===//
1434 /// This lazily constructs the LazyValueInfoImpl.
1435 static LazyValueInfoImpl
&getImpl(void *&PImpl
, AssumptionCache
*AC
,
1436 const DataLayout
*DL
,
1437 DominatorTree
*DT
= nullptr) {
1439 assert(DL
&& "getCache() called with a null DataLayout");
1440 PImpl
= new LazyValueInfoImpl(AC
, *DL
, DT
);
1442 return *static_cast<LazyValueInfoImpl
*>(PImpl
);
1445 bool LazyValueInfoWrapperPass::runOnFunction(Function
&F
) {
1446 Info
.AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1447 const DataLayout
&DL
= F
.getParent()->getDataLayout();
1449 DominatorTreeWrapperPass
*DTWP
=
1450 getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
1451 Info
.DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
1452 Info
.TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
1455 getImpl(Info
.PImpl
, Info
.AC
, &DL
, Info
.DT
).clear();
1461 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1462 AU
.setPreservesAll();
1463 AU
.addRequired
<AssumptionCacheTracker
>();
1464 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
1467 LazyValueInfo
&LazyValueInfoWrapperPass::getLVI() { return Info
; }
1469 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1471 void LazyValueInfo::releaseMemory() {
1472 // If the cache was allocated, free it.
1474 delete &getImpl(PImpl
, AC
, nullptr);
1479 bool LazyValueInfo::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
1480 FunctionAnalysisManager::Invalidator
&Inv
) {
1481 // We need to invalidate if we have either failed to preserve this analyses
1482 // result directly or if any of its dependencies have been invalidated.
1483 auto PAC
= PA
.getChecker
<LazyValueAnalysis
>();
1484 if (!(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
1485 (DT
&& Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
)))
1491 void LazyValueInfoWrapperPass::releaseMemory() { Info
.releaseMemory(); }
1493 LazyValueInfo
LazyValueAnalysis::run(Function
&F
,
1494 FunctionAnalysisManager
&FAM
) {
1495 auto &AC
= FAM
.getResult
<AssumptionAnalysis
>(F
);
1496 auto &TLI
= FAM
.getResult
<TargetLibraryAnalysis
>(F
);
1497 auto *DT
= FAM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
1499 return LazyValueInfo(&AC
, &F
.getParent()->getDataLayout(), &TLI
, DT
);
1502 /// Returns true if we can statically tell that this value will never be a
1503 /// "useful" constant. In practice, this means we've got something like an
1504 /// alloca or a malloc call for which a comparison against a constant can
1505 /// only be guarding dead code. Note that we are potentially giving up some
1506 /// precision in dead code (a constant result) in favour of avoiding a
1507 /// expensive search for a easily answered common query.
1508 static bool isKnownNonConstant(Value
*V
) {
1509 V
= V
->stripPointerCasts();
1510 // The return val of alloc cannot be a Constant.
1511 if (isa
<AllocaInst
>(V
))
1516 Constant
*LazyValueInfo::getConstant(Value
*V
, BasicBlock
*BB
,
1517 Instruction
*CxtI
) {
1518 // Bail out early if V is known not to be a Constant.
1519 if (isKnownNonConstant(V
))
1522 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1523 ValueLatticeElement Result
=
1524 getImpl(PImpl
, AC
, &DL
, DT
).getValueInBlock(V
, BB
, CxtI
);
1526 if (Result
.isConstant())
1527 return Result
.getConstant();
1528 if (Result
.isConstantRange()) {
1529 const ConstantRange
&CR
= Result
.getConstantRange();
1530 if (const APInt
*SingleVal
= CR
.getSingleElement())
1531 return ConstantInt::get(V
->getContext(), *SingleVal
);
1536 ConstantRange
LazyValueInfo::getConstantRange(Value
*V
, BasicBlock
*BB
,
1537 Instruction
*CxtI
) {
1538 assert(V
->getType()->isIntegerTy());
1539 unsigned Width
= V
->getType()->getIntegerBitWidth();
1540 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1541 ValueLatticeElement Result
=
1542 getImpl(PImpl
, AC
, &DL
, DT
).getValueInBlock(V
, BB
, CxtI
);
1543 if (Result
.isUndefined())
1544 return ConstantRange(Width
, /*isFullSet=*/false);
1545 if (Result
.isConstantRange())
1546 return Result
.getConstantRange();
1547 // We represent ConstantInt constants as constant ranges but other kinds
1548 // of integer constants, i.e. ConstantExpr will be tagged as constants
1549 assert(!(Result
.isConstant() && isa
<ConstantInt
>(Result
.getConstant())) &&
1550 "ConstantInt value must be represented as constantrange");
1551 return ConstantRange(Width
, /*isFullSet=*/true);
1554 /// Determine whether the specified value is known to be a
1555 /// constant on the specified edge. Return null if not.
1556 Constant
*LazyValueInfo::getConstantOnEdge(Value
*V
, BasicBlock
*FromBB
,
1558 Instruction
*CxtI
) {
1559 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
1560 ValueLatticeElement Result
=
1561 getImpl(PImpl
, AC
, &DL
, DT
).getValueOnEdge(V
, FromBB
, ToBB
, CxtI
);
1563 if (Result
.isConstant())
1564 return Result
.getConstant();
1565 if (Result
.isConstantRange()) {
1566 const ConstantRange
&CR
= Result
.getConstantRange();
1567 if (const APInt
*SingleVal
= CR
.getSingleElement())
1568 return ConstantInt::get(V
->getContext(), *SingleVal
);
1573 ConstantRange
LazyValueInfo::getConstantRangeOnEdge(Value
*V
,
1576 Instruction
*CxtI
) {
1577 unsigned Width
= V
->getType()->getIntegerBitWidth();
1578 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
1579 ValueLatticeElement Result
=
1580 getImpl(PImpl
, AC
, &DL
, DT
).getValueOnEdge(V
, FromBB
, ToBB
, CxtI
);
1582 if (Result
.isUndefined())
1583 return ConstantRange(Width
, /*isFullSet=*/false);
1584 if (Result
.isConstantRange())
1585 return Result
.getConstantRange();
1586 // We represent ConstantInt constants as constant ranges but other kinds
1587 // of integer constants, i.e. ConstantExpr will be tagged as constants
1588 assert(!(Result
.isConstant() && isa
<ConstantInt
>(Result
.getConstant())) &&
1589 "ConstantInt value must be represented as constantrange");
1590 return ConstantRange(Width
, /*isFullSet=*/true);
1593 static LazyValueInfo::Tristate
1594 getPredicateResult(unsigned Pred
, Constant
*C
, const ValueLatticeElement
&Val
,
1595 const DataLayout
&DL
, TargetLibraryInfo
*TLI
) {
1596 // If we know the value is a constant, evaluate the conditional.
1597 Constant
*Res
= nullptr;
1598 if (Val
.isConstant()) {
1599 Res
= ConstantFoldCompareInstOperands(Pred
, Val
.getConstant(), C
, DL
, TLI
);
1600 if (ConstantInt
*ResCI
= dyn_cast
<ConstantInt
>(Res
))
1601 return ResCI
->isZero() ? LazyValueInfo::False
: LazyValueInfo::True
;
1602 return LazyValueInfo::Unknown
;
1605 if (Val
.isConstantRange()) {
1606 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
);
1607 if (!CI
) return LazyValueInfo::Unknown
;
1609 const ConstantRange
&CR
= Val
.getConstantRange();
1610 if (Pred
== ICmpInst::ICMP_EQ
) {
1611 if (!CR
.contains(CI
->getValue()))
1612 return LazyValueInfo::False
;
1614 if (CR
.isSingleElement())
1615 return LazyValueInfo::True
;
1616 } else if (Pred
== ICmpInst::ICMP_NE
) {
1617 if (!CR
.contains(CI
->getValue()))
1618 return LazyValueInfo::True
;
1620 if (CR
.isSingleElement())
1621 return LazyValueInfo::False
;
1623 // Handle more complex predicates.
1624 ConstantRange TrueValues
= ConstantRange::makeExactICmpRegion(
1625 (ICmpInst::Predicate
)Pred
, CI
->getValue());
1626 if (TrueValues
.contains(CR
))
1627 return LazyValueInfo::True
;
1628 if (TrueValues
.inverse().contains(CR
))
1629 return LazyValueInfo::False
;
1631 return LazyValueInfo::Unknown
;
1634 if (Val
.isNotConstant()) {
1635 // If this is an equality comparison, we can try to fold it knowing that
1637 if (Pred
== ICmpInst::ICMP_EQ
) {
1638 // !C1 == C -> false iff C1 == C.
1639 Res
= ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE
,
1640 Val
.getNotConstant(), C
, DL
,
1642 if (Res
->isNullValue())
1643 return LazyValueInfo::False
;
1644 } else if (Pred
== ICmpInst::ICMP_NE
) {
1645 // !C1 != C -> true iff C1 == C.
1646 Res
= ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE
,
1647 Val
.getNotConstant(), C
, DL
,
1649 if (Res
->isNullValue())
1650 return LazyValueInfo::True
;
1652 return LazyValueInfo::Unknown
;
1655 return LazyValueInfo::Unknown
;
1658 /// Determine whether the specified value comparison with a constant is known to
1659 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1660 LazyValueInfo::Tristate
1661 LazyValueInfo::getPredicateOnEdge(unsigned Pred
, Value
*V
, Constant
*C
,
1662 BasicBlock
*FromBB
, BasicBlock
*ToBB
,
1663 Instruction
*CxtI
) {
1664 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
1665 ValueLatticeElement Result
=
1666 getImpl(PImpl
, AC
, &DL
, DT
).getValueOnEdge(V
, FromBB
, ToBB
, CxtI
);
1668 return getPredicateResult(Pred
, C
, Result
, DL
, TLI
);
1671 LazyValueInfo::Tristate
1672 LazyValueInfo::getPredicateAt(unsigned Pred
, Value
*V
, Constant
*C
,
1673 Instruction
*CxtI
) {
1674 // Is or is not NonNull are common predicates being queried. If
1675 // isKnownNonZero can tell us the result of the predicate, we can
1676 // return it quickly. But this is only a fastpath, and falling
1677 // through would still be correct.
1678 const DataLayout
&DL
= CxtI
->getModule()->getDataLayout();
1679 if (V
->getType()->isPointerTy() && C
->isNullValue() &&
1680 isKnownNonZero(V
->stripPointerCasts(), DL
)) {
1681 if (Pred
== ICmpInst::ICMP_EQ
)
1682 return LazyValueInfo::False
;
1683 else if (Pred
== ICmpInst::ICMP_NE
)
1684 return LazyValueInfo::True
;
1686 ValueLatticeElement Result
= getImpl(PImpl
, AC
, &DL
, DT
).getValueAt(V
, CxtI
);
1687 Tristate Ret
= getPredicateResult(Pred
, C
, Result
, DL
, TLI
);
1691 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1692 // LVI as a whole tries to compute a lattice value which is conservatively
1693 // correct at a given location. In this case, we have a predicate which we
1694 // weren't able to prove about the merged result, and we're pushing that
1695 // predicate back along each incoming edge to see if we can prove it
1696 // separately for each input. As a motivating example, consider:
1698 // %v1 = ... ; constantrange<1, 5>
1701 // %v2 = ... ; constantrange<10, 20>
1704 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1705 // %pred = icmp eq i32 %phi, 8
1706 // We can't tell from the lattice value for '%phi' that '%pred' is false
1707 // along each path, but by checking the predicate over each input separately,
1709 // We limit the search to one step backwards from the current BB and value.
1710 // We could consider extending this to search further backwards through the
1711 // CFG and/or value graph, but there are non-obvious compile time vs quality
1714 BasicBlock
*BB
= CxtI
->getParent();
1716 // Function entry or an unreachable block. Bail to avoid confusing
1718 pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
1722 // If V is a PHI node in the same block as the context, we need to ask
1723 // questions about the predicate as applied to the incoming value along
1724 // each edge. This is useful for eliminating cases where the predicate is
1725 // known along all incoming edges.
1726 if (auto *PHI
= dyn_cast
<PHINode
>(V
))
1727 if (PHI
->getParent() == BB
) {
1728 Tristate Baseline
= Unknown
;
1729 for (unsigned i
= 0, e
= PHI
->getNumIncomingValues(); i
< e
; i
++) {
1730 Value
*Incoming
= PHI
->getIncomingValue(i
);
1731 BasicBlock
*PredBB
= PHI
->getIncomingBlock(i
);
1732 // Note that PredBB may be BB itself.
1733 Tristate Result
= getPredicateOnEdge(Pred
, Incoming
, C
, PredBB
, BB
,
1736 // Keep going as long as we've seen a consistent known result for
1738 Baseline
= (i
== 0) ? Result
/* First iteration */
1739 : (Baseline
== Result
? Baseline
: Unknown
); /* All others */
1740 if (Baseline
== Unknown
)
1743 if (Baseline
!= Unknown
)
1747 // For a comparison where the V is outside this block, it's possible
1748 // that we've branched on it before. Look to see if the value is known
1749 // on all incoming edges.
1750 if (!isa
<Instruction
>(V
) ||
1751 cast
<Instruction
>(V
)->getParent() != BB
) {
1752 // For predecessor edge, determine if the comparison is true or false
1753 // on that edge. If they're all true or all false, we can conclude
1754 // the value of the comparison in this block.
1755 Tristate Baseline
= getPredicateOnEdge(Pred
, V
, C
, *PI
, BB
, CxtI
);
1756 if (Baseline
!= Unknown
) {
1757 // Check that all remaining incoming values match the first one.
1758 while (++PI
!= PE
) {
1759 Tristate Ret
= getPredicateOnEdge(Pred
, V
, C
, *PI
, BB
, CxtI
);
1760 if (Ret
!= Baseline
) break;
1762 // If we terminated early, then one of the values didn't match.
1772 void LazyValueInfo::threadEdge(BasicBlock
*PredBB
, BasicBlock
*OldSucc
,
1773 BasicBlock
*NewSucc
) {
1775 const DataLayout
&DL
= PredBB
->getModule()->getDataLayout();
1776 getImpl(PImpl
, AC
, &DL
, DT
).threadEdge(PredBB
, OldSucc
, NewSucc
);
1780 void LazyValueInfo::eraseBlock(BasicBlock
*BB
) {
1782 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1783 getImpl(PImpl
, AC
, &DL
, DT
).eraseBlock(BB
);
1788 void LazyValueInfo::printLVI(Function
&F
, DominatorTree
&DTree
, raw_ostream
&OS
) {
1790 getImpl(PImpl
, AC
, DL
, DT
).printLVI(F
, DTree
, OS
);
1794 // Print the LVI for the function arguments at the start of each basic block.
1795 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1796 const BasicBlock
*BB
, formatted_raw_ostream
&OS
) {
1797 // Find if there are latticevalues defined for arguments of the function.
1798 auto *F
= BB
->getParent();
1799 for (auto &Arg
: F
->args()) {
1800 ValueLatticeElement Result
= LVIImpl
->getValueInBlock(
1801 const_cast<Argument
*>(&Arg
), const_cast<BasicBlock
*>(BB
));
1802 if (Result
.isUndefined())
1804 OS
<< "; LatticeVal for: '" << Arg
<< "' is: " << Result
<< "\n";
1808 // This function prints the LVI analysis for the instruction I at the beginning
1809 // of various basic blocks. It relies on calculated values that are stored in
1810 // the LazyValueInfoCache, and in the absence of cached values, recalculte the
1811 // LazyValueInfo for `I`, and print that info.
1812 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1813 const Instruction
*I
, formatted_raw_ostream
&OS
) {
1815 auto *ParentBB
= I
->getParent();
1816 SmallPtrSet
<const BasicBlock
*, 16> BlocksContainingLVI
;
1817 // We can generate (solve) LVI values only for blocks that are dominated by
1818 // the I's parent. However, to avoid generating LVI for all dominating blocks,
1819 // that contain redundant/uninteresting information, we print LVI for
1820 // blocks that may use this LVI information (such as immediate successor
1821 // blocks, and blocks that contain uses of `I`).
1822 auto printResult
= [&](const BasicBlock
*BB
) {
1823 if (!BlocksContainingLVI
.insert(BB
).second
)
1825 ValueLatticeElement Result
= LVIImpl
->getValueInBlock(
1826 const_cast<Instruction
*>(I
), const_cast<BasicBlock
*>(BB
));
1827 OS
<< "; LatticeVal for: '" << *I
<< "' in BB: '";
1828 BB
->printAsOperand(OS
, false);
1829 OS
<< "' is: " << Result
<< "\n";
1832 printResult(ParentBB
);
1833 // Print the LVI analysis results for the the immediate successor blocks, that
1834 // are dominated by `ParentBB`.
1835 for (auto *BBSucc
: successors(ParentBB
))
1836 if (DT
.dominates(ParentBB
, BBSucc
))
1837 printResult(BBSucc
);
1839 // Print LVI in blocks where `I` is used.
1840 for (auto *U
: I
->users())
1841 if (auto *UseI
= dyn_cast
<Instruction
>(U
))
1842 if (!isa
<PHINode
>(UseI
) || DT
.dominates(ParentBB
, UseI
->getParent()))
1843 printResult(UseI
->getParent());
1848 // Printer class for LazyValueInfo results.
1849 class LazyValueInfoPrinter
: public FunctionPass
{
1851 static char ID
; // Pass identification, replacement for typeid
1852 LazyValueInfoPrinter() : FunctionPass(ID
) {
1853 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
1856 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1857 AU
.setPreservesAll();
1858 AU
.addRequired
<LazyValueInfoWrapperPass
>();
1859 AU
.addRequired
<DominatorTreeWrapperPass
>();
1862 // Get the mandatory dominator tree analysis and pass this in to the
1863 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
1864 bool runOnFunction(Function
&F
) override
{
1865 dbgs() << "LVI for function '" << F
.getName() << "':\n";
1866 auto &LVI
= getAnalysis
<LazyValueInfoWrapperPass
>().getLVI();
1867 auto &DTree
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1868 LVI
.printLVI(F
, DTree
, dbgs());
1874 char LazyValueInfoPrinter::ID
= 0;
1875 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter
, "print-lazy-value-info",
1876 "Lazy Value Info Printer Pass", false, false)
1877 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass
)
1878 INITIALIZE_PASS_END(LazyValueInfoPrinter
, "print-lazy-value-info",
1879 "Lazy Value Info Printer Pass", false, false)