1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions identifies calls to builtin functions that allocate
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Analysis/TargetFolder.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
51 #define DEBUG_TYPE "memory-builtins"
53 enum AllocType
: uint8_t {
54 OpNewLike
= 1<<0, // allocates; never returns null
55 MallocLike
= 1<<1 | OpNewLike
, // allocates; may return null
56 CallocLike
= 1<<2, // allocates + bzero
57 ReallocLike
= 1<<3, // reallocates
59 MallocOrCallocLike
= MallocLike
| CallocLike
,
60 AllocLike
= MallocLike
| CallocLike
| StrDupLike
,
61 AnyAlloc
= AllocLike
| ReallocLike
67 // First and Second size parameters (or -1 if unused)
68 int FstParam
, SndParam
;
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair
<LibFunc
, AllocFnsTy
> AllocationFnData
[] = {
74 {LibFunc_malloc
, {MallocLike
, 1, 0, -1}},
75 {LibFunc_valloc
, {MallocLike
, 1, 0, -1}},
76 {LibFunc_Znwj
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
77 {LibFunc_ZnwjRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
78 {LibFunc_Znwm
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long)
79 {LibFunc_ZnwmRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned long, nothrow)
80 {LibFunc_Znaj
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
81 {LibFunc_ZnajRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
82 {LibFunc_Znam
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long)
83 {LibFunc_ZnamRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long, nothrow)
84 {LibFunc_msvc_new_int
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
85 {LibFunc_msvc_new_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
86 {LibFunc_msvc_new_longlong
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long long)
87 {LibFunc_msvc_new_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned long long, nothrow)
88 {LibFunc_msvc_new_array_int
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
89 {LibFunc_msvc_new_array_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
90 {LibFunc_msvc_new_array_longlong
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long long)
91 {LibFunc_msvc_new_array_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long long, nothrow)
92 {LibFunc_calloc
, {CallocLike
, 2, 0, 1}},
93 {LibFunc_realloc
, {ReallocLike
, 2, 1, -1}},
94 {LibFunc_reallocf
, {ReallocLike
, 2, 1, -1}},
95 {LibFunc_strdup
, {StrDupLike
, 1, -1, -1}},
96 {LibFunc_strndup
, {StrDupLike
, 2, 1, -1}}
97 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
100 static const Function
*getCalledFunction(const Value
*V
, bool LookThroughBitCast
,
102 // Don't care about intrinsics in this case.
103 if (isa
<IntrinsicInst
>(V
))
106 if (LookThroughBitCast
)
107 V
= V
->stripPointerCasts();
109 ImmutableCallSite
CS(V
);
110 if (!CS
.getInstruction())
113 IsNoBuiltin
= CS
.isNoBuiltin();
115 const Function
*Callee
= CS
.getCalledFunction();
116 if (!Callee
|| !Callee
->isDeclaration())
121 /// Returns the allocation data for the given value if it's either a call to a
122 /// known allocation function, or a call to a function with the allocsize
124 static Optional
<AllocFnsTy
>
125 getAllocationDataForFunction(const Function
*Callee
, AllocType AllocTy
,
126 const TargetLibraryInfo
*TLI
) {
127 // Make sure that the function is available.
128 StringRef FnName
= Callee
->getName();
130 if (!TLI
|| !TLI
->getLibFunc(FnName
, TLIFn
) || !TLI
->has(TLIFn
))
133 const auto *Iter
= find_if(
134 AllocationFnData
, [TLIFn
](const std::pair
<LibFunc
, AllocFnsTy
> &P
) {
135 return P
.first
== TLIFn
;
138 if (Iter
== std::end(AllocationFnData
))
141 const AllocFnsTy
*FnData
= &Iter
->second
;
142 if ((FnData
->AllocTy
& AllocTy
) != FnData
->AllocTy
)
145 // Check function prototype.
146 int FstParam
= FnData
->FstParam
;
147 int SndParam
= FnData
->SndParam
;
148 FunctionType
*FTy
= Callee
->getFunctionType();
150 if (FTy
->getReturnType() == Type::getInt8PtrTy(FTy
->getContext()) &&
151 FTy
->getNumParams() == FnData
->NumParams
&&
153 (FTy
->getParamType(FstParam
)->isIntegerTy(32) ||
154 FTy
->getParamType(FstParam
)->isIntegerTy(64))) &&
156 FTy
->getParamType(SndParam
)->isIntegerTy(32) ||
157 FTy
->getParamType(SndParam
)->isIntegerTy(64)))
162 static Optional
<AllocFnsTy
> getAllocationData(const Value
*V
, AllocType AllocTy
,
163 const TargetLibraryInfo
*TLI
,
164 bool LookThroughBitCast
= false) {
165 bool IsNoBuiltinCall
;
166 if (const Function
*Callee
=
167 getCalledFunction(V
, LookThroughBitCast
, IsNoBuiltinCall
))
168 if (!IsNoBuiltinCall
)
169 return getAllocationDataForFunction(Callee
, AllocTy
, TLI
);
173 static Optional
<AllocFnsTy
> getAllocationSize(const Value
*V
,
174 const TargetLibraryInfo
*TLI
) {
175 bool IsNoBuiltinCall
;
176 const Function
*Callee
=
177 getCalledFunction(V
, /*LookThroughBitCast=*/false, IsNoBuiltinCall
);
181 // Prefer to use existing information over allocsize. This will give us an
183 if (!IsNoBuiltinCall
)
184 if (Optional
<AllocFnsTy
> Data
=
185 getAllocationDataForFunction(Callee
, AnyAlloc
, TLI
))
188 Attribute Attr
= Callee
->getFnAttribute(Attribute::AllocSize
);
189 if (Attr
== Attribute())
192 std::pair
<unsigned, Optional
<unsigned>> Args
= Attr
.getAllocSizeArgs();
195 // Because allocsize only tells us how many bytes are allocated, we're not
196 // really allowed to assume anything, so we use MallocLike.
197 Result
.AllocTy
= MallocLike
;
198 Result
.NumParams
= Callee
->getNumOperands();
199 Result
.FstParam
= Args
.first
;
200 Result
.SndParam
= Args
.second
.getValueOr(-1);
204 static bool hasNoAliasAttr(const Value
*V
, bool LookThroughBitCast
) {
205 ImmutableCallSite
CS(LookThroughBitCast
? V
->stripPointerCasts() : V
);
206 return CS
&& CS
.hasRetAttr(Attribute::NoAlias
);
209 /// \brief Tests if a value is a call or invoke to a library function that
210 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
212 bool llvm::isAllocationFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
213 bool LookThroughBitCast
) {
214 return getAllocationData(V
, AnyAlloc
, TLI
, LookThroughBitCast
).hasValue();
217 /// \brief Tests if a value is a call or invoke to a function that returns a
218 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
219 bool llvm::isNoAliasFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
220 bool LookThroughBitCast
) {
221 // it's safe to consider realloc as noalias since accessing the original
222 // pointer is undefined behavior
223 return isAllocationFn(V
, TLI
, LookThroughBitCast
) ||
224 hasNoAliasAttr(V
, LookThroughBitCast
);
227 /// \brief Tests if a value is a call or invoke to a library function that
228 /// allocates uninitialized memory (such as malloc).
229 bool llvm::isMallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
230 bool LookThroughBitCast
) {
231 return getAllocationData(V
, MallocLike
, TLI
, LookThroughBitCast
).hasValue();
234 /// \brief Tests if a value is a call or invoke to a library function that
235 /// allocates zero-filled memory (such as calloc).
236 bool llvm::isCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
237 bool LookThroughBitCast
) {
238 return getAllocationData(V
, CallocLike
, TLI
, LookThroughBitCast
).hasValue();
241 /// \brief Tests if a value is a call or invoke to a library function that
242 /// allocates memory similiar to malloc or calloc.
243 bool llvm::isMallocOrCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
244 bool LookThroughBitCast
) {
245 return getAllocationData(V
, MallocOrCallocLike
, TLI
,
246 LookThroughBitCast
).hasValue();
249 /// \brief Tests if a value is a call or invoke to a library function that
250 /// allocates memory (either malloc, calloc, or strdup like).
251 bool llvm::isAllocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
252 bool LookThroughBitCast
) {
253 return getAllocationData(V
, AllocLike
, TLI
, LookThroughBitCast
).hasValue();
256 /// extractMallocCall - Returns the corresponding CallInst if the instruction
257 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
258 /// ignore InvokeInst here.
259 const CallInst
*llvm::extractMallocCall(const Value
*I
,
260 const TargetLibraryInfo
*TLI
) {
261 return isMallocLikeFn(I
, TLI
) ? dyn_cast
<CallInst
>(I
) : nullptr;
264 static Value
*computeArraySize(const CallInst
*CI
, const DataLayout
&DL
,
265 const TargetLibraryInfo
*TLI
,
266 bool LookThroughSExt
= false) {
270 // The size of the malloc's result type must be known to determine array size.
271 Type
*T
= getMallocAllocatedType(CI
, TLI
);
272 if (!T
|| !T
->isSized())
275 unsigned ElementSize
= DL
.getTypeAllocSize(T
);
276 if (StructType
*ST
= dyn_cast
<StructType
>(T
))
277 ElementSize
= DL
.getStructLayout(ST
)->getSizeInBytes();
279 // If malloc call's arg can be determined to be a multiple of ElementSize,
280 // return the multiple. Otherwise, return NULL.
281 Value
*MallocArg
= CI
->getArgOperand(0);
282 Value
*Multiple
= nullptr;
283 if (ComputeMultiple(MallocArg
, ElementSize
, Multiple
, LookThroughSExt
))
289 /// getMallocType - Returns the PointerType resulting from the malloc call.
290 /// The PointerType depends on the number of bitcast uses of the malloc call:
291 /// 0: PointerType is the calls' return type.
292 /// 1: PointerType is the bitcast's result type.
293 /// >1: Unique PointerType cannot be determined, return NULL.
294 PointerType
*llvm::getMallocType(const CallInst
*CI
,
295 const TargetLibraryInfo
*TLI
) {
296 assert(isMallocLikeFn(CI
, TLI
) && "getMallocType and not malloc call");
298 PointerType
*MallocType
= nullptr;
299 unsigned NumOfBitCastUses
= 0;
301 // Determine if CallInst has a bitcast use.
302 for (Value::const_user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
304 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(*UI
++)) {
305 MallocType
= cast
<PointerType
>(BCI
->getDestTy());
309 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
310 if (NumOfBitCastUses
== 1)
313 // Malloc call was not bitcast, so type is the malloc function's return type.
314 if (NumOfBitCastUses
== 0)
315 return cast
<PointerType
>(CI
->getType());
317 // Type could not be determined.
321 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
322 /// The Type depends on the number of bitcast uses of the malloc call:
323 /// 0: PointerType is the malloc calls' return type.
324 /// 1: PointerType is the bitcast's result type.
325 /// >1: Unique PointerType cannot be determined, return NULL.
326 Type
*llvm::getMallocAllocatedType(const CallInst
*CI
,
327 const TargetLibraryInfo
*TLI
) {
328 PointerType
*PT
= getMallocType(CI
, TLI
);
329 return PT
? PT
->getElementType() : nullptr;
332 /// getMallocArraySize - Returns the array size of a malloc call. If the
333 /// argument passed to malloc is a multiple of the size of the malloced type,
334 /// then return that multiple. For non-array mallocs, the multiple is
335 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
337 Value
*llvm::getMallocArraySize(CallInst
*CI
, const DataLayout
&DL
,
338 const TargetLibraryInfo
*TLI
,
339 bool LookThroughSExt
) {
340 assert(isMallocLikeFn(CI
, TLI
) && "getMallocArraySize and not malloc call");
341 return computeArraySize(CI
, DL
, TLI
, LookThroughSExt
);
344 /// extractCallocCall - Returns the corresponding CallInst if the instruction
345 /// is a calloc call.
346 const CallInst
*llvm::extractCallocCall(const Value
*I
,
347 const TargetLibraryInfo
*TLI
) {
348 return isCallocLikeFn(I
, TLI
) ? cast
<CallInst
>(I
) : nullptr;
351 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
352 const CallInst
*llvm::isFreeCall(const Value
*I
, const TargetLibraryInfo
*TLI
) {
353 const CallInst
*CI
= dyn_cast
<CallInst
>(I
);
354 if (!CI
|| isa
<IntrinsicInst
>(CI
))
356 Function
*Callee
= CI
->getCalledFunction();
357 if (Callee
== nullptr)
360 StringRef FnName
= Callee
->getName();
362 if (!TLI
|| !TLI
->getLibFunc(FnName
, TLIFn
) || !TLI
->has(TLIFn
))
365 unsigned ExpectedNumParams
;
366 if (TLIFn
== LibFunc_free
||
367 TLIFn
== LibFunc_ZdlPv
|| // operator delete(void*)
368 TLIFn
== LibFunc_ZdaPv
|| // operator delete[](void*)
369 TLIFn
== LibFunc_msvc_delete_ptr32
|| // operator delete(void*)
370 TLIFn
== LibFunc_msvc_delete_ptr64
|| // operator delete(void*)
371 TLIFn
== LibFunc_msvc_delete_array_ptr32
|| // operator delete[](void*)
372 TLIFn
== LibFunc_msvc_delete_array_ptr64
) // operator delete[](void*)
373 ExpectedNumParams
= 1;
374 else if (TLIFn
== LibFunc_ZdlPvj
|| // delete(void*, uint)
375 TLIFn
== LibFunc_ZdlPvm
|| // delete(void*, ulong)
376 TLIFn
== LibFunc_ZdlPvRKSt9nothrow_t
|| // delete(void*, nothrow)
377 TLIFn
== LibFunc_ZdaPvj
|| // delete[](void*, uint)
378 TLIFn
== LibFunc_ZdaPvm
|| // delete[](void*, ulong)
379 TLIFn
== LibFunc_ZdaPvRKSt9nothrow_t
|| // delete[](void*, nothrow)
380 TLIFn
== LibFunc_msvc_delete_ptr32_int
|| // delete(void*, uint)
381 TLIFn
== LibFunc_msvc_delete_ptr64_longlong
|| // delete(void*, ulonglong)
382 TLIFn
== LibFunc_msvc_delete_ptr32_nothrow
|| // delete(void*, nothrow)
383 TLIFn
== LibFunc_msvc_delete_ptr64_nothrow
|| // delete(void*, nothrow)
384 TLIFn
== LibFunc_msvc_delete_array_ptr32_int
|| // delete[](void*, uint)
385 TLIFn
== LibFunc_msvc_delete_array_ptr64_longlong
|| // delete[](void*, ulonglong)
386 TLIFn
== LibFunc_msvc_delete_array_ptr32_nothrow
|| // delete[](void*, nothrow)
387 TLIFn
== LibFunc_msvc_delete_array_ptr64_nothrow
) // delete[](void*, nothrow)
388 ExpectedNumParams
= 2;
392 // Check free prototype.
393 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
394 // attribute will exist.
395 FunctionType
*FTy
= Callee
->getFunctionType();
396 if (!FTy
->getReturnType()->isVoidTy())
398 if (FTy
->getNumParams() != ExpectedNumParams
)
400 if (FTy
->getParamType(0) != Type::getInt8PtrTy(Callee
->getContext()))
406 //===----------------------------------------------------------------------===//
407 // Utility functions to compute size of objects.
409 static APInt
getSizeWithOverflow(const SizeOffsetType
&Data
) {
410 if (Data
.second
.isNegative() || Data
.first
.ult(Data
.second
))
411 return APInt(Data
.first
.getBitWidth(), 0);
412 return Data
.first
- Data
.second
;
415 /// \brief Compute the size of the object pointed by Ptr. Returns true and the
416 /// object size in Size if successful, and false otherwise.
417 /// If RoundToAlign is true, then Size is rounded up to the alignment of
418 /// allocas, byval arguments, and global variables.
419 bool llvm::getObjectSize(const Value
*Ptr
, uint64_t &Size
, const DataLayout
&DL
,
420 const TargetLibraryInfo
*TLI
, ObjectSizeOpts Opts
) {
421 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Ptr
->getContext(), Opts
);
422 SizeOffsetType Data
= Visitor
.compute(const_cast<Value
*>(Ptr
));
423 if (!Visitor
.bothKnown(Data
))
426 Size
= getSizeWithOverflow(Data
).getZExtValue();
430 ConstantInt
*llvm::lowerObjectSizeCall(IntrinsicInst
*ObjectSize
,
431 const DataLayout
&DL
,
432 const TargetLibraryInfo
*TLI
,
434 assert(ObjectSize
->getIntrinsicID() == Intrinsic::objectsize
&&
435 "ObjectSize must be a call to llvm.objectsize!");
437 bool MaxVal
= cast
<ConstantInt
>(ObjectSize
->getArgOperand(1))->isZero();
438 ObjectSizeOpts EvalOptions
;
439 // Unless we have to fold this to something, try to be as accurate as
442 EvalOptions
.EvalMode
=
443 MaxVal
? ObjectSizeOpts::Mode::Max
: ObjectSizeOpts::Mode::Min
;
445 EvalOptions
.EvalMode
= ObjectSizeOpts::Mode::Exact
;
447 EvalOptions
.NullIsUnknownSize
=
448 cast
<ConstantInt
>(ObjectSize
->getArgOperand(2))->isOne();
450 // FIXME: Does it make sense to just return a failure value if the size won't
451 // fit in the output and `!MustSucceed`?
453 auto *ResultType
= cast
<IntegerType
>(ObjectSize
->getType());
454 if (getObjectSize(ObjectSize
->getArgOperand(0), Size
, DL
, TLI
, EvalOptions
) &&
455 isUIntN(ResultType
->getBitWidth(), Size
))
456 return ConstantInt::get(ResultType
, Size
);
461 return ConstantInt::get(ResultType
, MaxVal
? -1ULL : 0);
464 STATISTIC(ObjectVisitorArgument
,
465 "Number of arguments with unsolved size and offset");
466 STATISTIC(ObjectVisitorLoad
,
467 "Number of load instructions with unsolved size and offset");
469 APInt
ObjectSizeOffsetVisitor::align(APInt Size
, uint64_t Align
) {
470 if (Options
.RoundToAlign
&& Align
)
471 return APInt(IntTyBits
, alignTo(Size
.getZExtValue(), Align
));
475 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout
&DL
,
476 const TargetLibraryInfo
*TLI
,
477 LLVMContext
&Context
,
478 ObjectSizeOpts Options
)
479 : DL(DL
), TLI(TLI
), Options(Options
) {
480 // Pointer size must be rechecked for each object visited since it could have
481 // a different address space.
484 SizeOffsetType
ObjectSizeOffsetVisitor::compute(Value
*V
) {
485 IntTyBits
= DL
.getPointerTypeSizeInBits(V
->getType());
486 Zero
= APInt::getNullValue(IntTyBits
);
488 V
= V
->stripPointerCasts();
489 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
490 // If we have already seen this instruction, bail out. Cycles can happen in
491 // unreachable code after constant propagation.
492 if (!SeenInsts
.insert(I
).second
)
495 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
))
496 return visitGEPOperator(*GEP
);
499 if (Argument
*A
= dyn_cast
<Argument
>(V
))
500 return visitArgument(*A
);
501 if (ConstantPointerNull
*P
= dyn_cast
<ConstantPointerNull
>(V
))
502 return visitConstantPointerNull(*P
);
503 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
504 return visitGlobalAlias(*GA
);
505 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
506 return visitGlobalVariable(*GV
);
507 if (UndefValue
*UV
= dyn_cast
<UndefValue
>(V
))
508 return visitUndefValue(*UV
);
509 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
510 if (CE
->getOpcode() == Instruction::IntToPtr
)
511 return unknown(); // clueless
512 if (CE
->getOpcode() == Instruction::GetElementPtr
)
513 return visitGEPOperator(cast
<GEPOperator
>(*CE
));
516 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
521 /// When we're compiling N-bit code, and the user uses parameters that are
522 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
523 /// trouble with APInt size issues. This function handles resizing + overflow
524 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
526 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt
&I
) {
527 // More bits than we can handle. Checking the bit width isn't necessary, but
528 // it's faster than checking active bits, and should give `false` in the
529 // vast majority of cases.
530 if (I
.getBitWidth() > IntTyBits
&& I
.getActiveBits() > IntTyBits
)
532 if (I
.getBitWidth() != IntTyBits
)
533 I
= I
.zextOrTrunc(IntTyBits
);
537 SizeOffsetType
ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst
&I
) {
538 if (!I
.getAllocatedType()->isSized())
541 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(I
.getAllocatedType()));
542 if (!I
.isArrayAllocation())
543 return std::make_pair(align(Size
, I
.getAlignment()), Zero
);
545 Value
*ArraySize
= I
.getArraySize();
546 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(ArraySize
)) {
547 APInt NumElems
= C
->getValue();
548 if (!CheckedZextOrTrunc(NumElems
))
552 Size
= Size
.umul_ov(NumElems
, Overflow
);
553 return Overflow
? unknown() : std::make_pair(align(Size
, I
.getAlignment()),
559 SizeOffsetType
ObjectSizeOffsetVisitor::visitArgument(Argument
&A
) {
560 // No interprocedural analysis is done at the moment.
561 if (!A
.hasByValOrInAllocaAttr()) {
562 ++ObjectVisitorArgument
;
565 PointerType
*PT
= cast
<PointerType
>(A
.getType());
566 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(PT
->getElementType()));
567 return std::make_pair(align(Size
, A
.getParamAlignment()), Zero
);
570 SizeOffsetType
ObjectSizeOffsetVisitor::visitCallSite(CallSite CS
) {
571 Optional
<AllocFnsTy
> FnData
= getAllocationSize(CS
.getInstruction(), TLI
);
575 // Handle strdup-like functions separately.
576 if (FnData
->AllocTy
== StrDupLike
) {
577 APInt
Size(IntTyBits
, GetStringLength(CS
.getArgument(0)));
581 // Strndup limits strlen.
582 if (FnData
->FstParam
> 0) {
584 dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->FstParam
));
588 APInt MaxSize
= Arg
->getValue().zextOrSelf(IntTyBits
);
589 if (Size
.ugt(MaxSize
))
592 return std::make_pair(Size
, Zero
);
595 ConstantInt
*Arg
= dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->FstParam
));
599 APInt Size
= Arg
->getValue();
600 if (!CheckedZextOrTrunc(Size
))
603 // Size is determined by just 1 parameter.
604 if (FnData
->SndParam
< 0)
605 return std::make_pair(Size
, Zero
);
607 Arg
= dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->SndParam
));
611 APInt NumElems
= Arg
->getValue();
612 if (!CheckedZextOrTrunc(NumElems
))
616 Size
= Size
.umul_ov(NumElems
, Overflow
);
617 return Overflow
? unknown() : std::make_pair(Size
, Zero
);
619 // TODO: handle more standard functions (+ wchar cousins):
620 // - strdup / strndup
621 // - strcpy / strncpy
622 // - strcat / strncat
623 // - memcpy / memmove
624 // - strcat / strncat
629 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull
& CPN
) {
630 if (Options
.NullIsUnknownSize
&& CPN
.getType()->getAddressSpace() == 0)
632 return std::make_pair(Zero
, Zero
);
636 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst
&) {
641 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst
&) {
642 // Easy cases were already folded by previous passes.
646 SizeOffsetType
ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator
&GEP
) {
647 SizeOffsetType PtrData
= compute(GEP
.getPointerOperand());
648 APInt
Offset(IntTyBits
, 0);
649 if (!bothKnown(PtrData
) || !GEP
.accumulateConstantOffset(DL
, Offset
))
652 return std::make_pair(PtrData
.first
, PtrData
.second
+ Offset
);
655 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias
&GA
) {
656 if (GA
.isInterposable())
658 return compute(GA
.getAliasee());
661 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable
&GV
){
662 if (!GV
.hasDefinitiveInitializer())
665 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(GV
.getType()->getElementType()));
666 return std::make_pair(align(Size
, GV
.getAlignment()), Zero
);
669 SizeOffsetType
ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst
&) {
674 SizeOffsetType
ObjectSizeOffsetVisitor::visitLoadInst(LoadInst
&) {
679 SizeOffsetType
ObjectSizeOffsetVisitor::visitPHINode(PHINode
&) {
680 // too complex to analyze statically.
684 SizeOffsetType
ObjectSizeOffsetVisitor::visitSelectInst(SelectInst
&I
) {
685 SizeOffsetType TrueSide
= compute(I
.getTrueValue());
686 SizeOffsetType FalseSide
= compute(I
.getFalseValue());
687 if (bothKnown(TrueSide
) && bothKnown(FalseSide
)) {
688 if (TrueSide
== FalseSide
) {
692 APInt TrueResult
= getSizeWithOverflow(TrueSide
);
693 APInt FalseResult
= getSizeWithOverflow(FalseSide
);
695 if (TrueResult
== FalseResult
) {
698 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Min
) {
699 if (TrueResult
.slt(FalseResult
))
703 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Max
) {
704 if (TrueResult
.sgt(FalseResult
))
712 SizeOffsetType
ObjectSizeOffsetVisitor::visitUndefValue(UndefValue
&) {
713 return std::make_pair(Zero
, Zero
);
716 SizeOffsetType
ObjectSizeOffsetVisitor::visitInstruction(Instruction
&I
) {
717 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
<< '\n');
721 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
722 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
, LLVMContext
&Context
,
724 : DL(DL
), TLI(TLI
), Context(Context
), Builder(Context
, TargetFolder(DL
)),
725 RoundToAlign(RoundToAlign
) {
726 // IntTy and Zero must be set for each compute() since the address space may
727 // be different for later objects.
730 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute(Value
*V
) {
731 // XXX - Are vectors of pointers possible here?
732 IntTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
733 Zero
= ConstantInt::get(IntTy
, 0);
735 SizeOffsetEvalType Result
= compute_(V
);
737 if (!bothKnown(Result
)) {
738 // Erase everything that was computed in this iteration from the cache, so
739 // that no dangling references are left behind. We could be a bit smarter if
740 // we kept a dependency graph. It's probably not worth the complexity.
741 for (const Value
*SeenVal
: SeenVals
) {
742 CacheMapTy::iterator CacheIt
= CacheMap
.find(SeenVal
);
743 // non-computable results can be safely cached
744 if (CacheIt
!= CacheMap
.end() && anyKnown(CacheIt
->second
))
745 CacheMap
.erase(CacheIt
);
753 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute_(Value
*V
) {
754 ObjectSizeOpts ObjSizeOptions
;
755 ObjSizeOptions
.RoundToAlign
= RoundToAlign
;
757 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Context
, ObjSizeOptions
);
758 SizeOffsetType Const
= Visitor
.compute(V
);
759 if (Visitor
.bothKnown(Const
))
760 return std::make_pair(ConstantInt::get(Context
, Const
.first
),
761 ConstantInt::get(Context
, Const
.second
));
763 V
= V
->stripPointerCasts();
766 CacheMapTy::iterator CacheIt
= CacheMap
.find(V
);
767 if (CacheIt
!= CacheMap
.end())
768 return CacheIt
->second
;
770 // Always generate code immediately before the instruction being
771 // processed, so that the generated code dominates the same BBs.
772 BuilderTy::InsertPointGuard
Guard(Builder
);
773 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
774 Builder
.SetInsertPoint(I
);
776 // Now compute the size and offset.
777 SizeOffsetEvalType Result
;
779 // Record the pointers that were handled in this run, so that they can be
780 // cleaned later if something fails. We also use this set to break cycles that
781 // can occur in dead code.
782 if (!SeenVals
.insert(V
).second
) {
784 } else if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
785 Result
= visitGEPOperator(*GEP
);
786 } else if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
788 } else if (isa
<Argument
>(V
) ||
789 (isa
<ConstantExpr
>(V
) &&
790 cast
<ConstantExpr
>(V
)->getOpcode() == Instruction::IntToPtr
) ||
791 isa
<GlobalAlias
>(V
) ||
792 isa
<GlobalVariable
>(V
)) {
793 // Ignore values where we cannot do more than ObjectSizeVisitor.
796 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
801 // Don't reuse CacheIt since it may be invalid at this point.
802 CacheMap
[V
] = Result
;
806 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst
&I
) {
807 if (!I
.getAllocatedType()->isSized())
811 assert(I
.isArrayAllocation());
812 Value
*ArraySize
= I
.getArraySize();
813 Value
*Size
= ConstantInt::get(ArraySize
->getType(),
814 DL
.getTypeAllocSize(I
.getAllocatedType()));
815 Size
= Builder
.CreateMul(Size
, ArraySize
);
816 return std::make_pair(Size
, Zero
);
819 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS
) {
820 Optional
<AllocFnsTy
> FnData
= getAllocationSize(CS
.getInstruction(), TLI
);
824 // Handle strdup-like functions separately.
825 if (FnData
->AllocTy
== StrDupLike
) {
830 Value
*FirstArg
= CS
.getArgument(FnData
->FstParam
);
831 FirstArg
= Builder
.CreateZExt(FirstArg
, IntTy
);
832 if (FnData
->SndParam
< 0)
833 return std::make_pair(FirstArg
, Zero
);
835 Value
*SecondArg
= CS
.getArgument(FnData
->SndParam
);
836 SecondArg
= Builder
.CreateZExt(SecondArg
, IntTy
);
837 Value
*Size
= Builder
.CreateMul(FirstArg
, SecondArg
);
838 return std::make_pair(Size
, Zero
);
840 // TODO: handle more standard functions (+ wchar cousins):
841 // - strdup / strndup
842 // - strcpy / strncpy
843 // - strcat / strncat
844 // - memcpy / memmove
845 // - strcat / strncat
850 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst
&) {
855 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst
&) {
860 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator
&GEP
) {
861 SizeOffsetEvalType PtrData
= compute_(GEP
.getPointerOperand());
862 if (!bothKnown(PtrData
))
865 Value
*Offset
= EmitGEPOffset(&Builder
, DL
, &GEP
, /*NoAssumptions=*/true);
866 Offset
= Builder
.CreateAdd(PtrData
.second
, Offset
);
867 return std::make_pair(PtrData
.first
, Offset
);
870 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst
&) {
875 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst
&) {
879 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitPHINode(PHINode
&PHI
) {
880 // Create 2 PHIs: one for size and another for offset.
881 PHINode
*SizePHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
882 PHINode
*OffsetPHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
884 // Insert right away in the cache to handle recursive PHIs.
885 CacheMap
[&PHI
] = std::make_pair(SizePHI
, OffsetPHI
);
887 // Compute offset/size for each PHI incoming pointer.
888 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
) {
889 Builder
.SetInsertPoint(&*PHI
.getIncomingBlock(i
)->getFirstInsertionPt());
890 SizeOffsetEvalType EdgeData
= compute_(PHI
.getIncomingValue(i
));
892 if (!bothKnown(EdgeData
)) {
893 OffsetPHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
894 OffsetPHI
->eraseFromParent();
895 SizePHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
896 SizePHI
->eraseFromParent();
899 SizePHI
->addIncoming(EdgeData
.first
, PHI
.getIncomingBlock(i
));
900 OffsetPHI
->addIncoming(EdgeData
.second
, PHI
.getIncomingBlock(i
));
903 Value
*Size
= SizePHI
, *Offset
= OffsetPHI
, *Tmp
;
904 if ((Tmp
= SizePHI
->hasConstantValue())) {
906 SizePHI
->replaceAllUsesWith(Size
);
907 SizePHI
->eraseFromParent();
909 if ((Tmp
= OffsetPHI
->hasConstantValue())) {
911 OffsetPHI
->replaceAllUsesWith(Offset
);
912 OffsetPHI
->eraseFromParent();
914 return std::make_pair(Size
, Offset
);
917 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst
&I
) {
918 SizeOffsetEvalType TrueSide
= compute_(I
.getTrueValue());
919 SizeOffsetEvalType FalseSide
= compute_(I
.getFalseValue());
921 if (!bothKnown(TrueSide
) || !bothKnown(FalseSide
))
923 if (TrueSide
== FalseSide
)
926 Value
*Size
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.first
,
928 Value
*Offset
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.second
,
930 return std::make_pair(Size
, Offset
);
933 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitInstruction(Instruction
&I
) {
934 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
<<'\n');