[PowerPC] Remove self-copies in pre-emit peephole
[llvm-core.git] / lib / Analysis / BasicAliasAnalysis.cpp
blob072a50a9fd6f6c55d1b35f142a8cb5fa0ad1fb8f
1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/PhiValues.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
64 #define DEBUG_TYPE "basicaa"
66 using namespace llvm;
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
70 cl::init(false));
71 /// SearchLimitReached / SearchTimes shows how often the limit of
72 /// to decompose GEPs is reached. It will affect the precision
73 /// of basic alias analysis.
74 STATISTIC(SearchLimitReached, "Number of times the limit to "
75 "decompose GEPs is reached");
76 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
78 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
79 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
80 /// careful with value equivalence. We use reachability to make sure a value
81 /// cannot be involved in a cycle.
82 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
84 // The max limit of the search depth in DecomposeGEPExpression() and
85 // GetUnderlyingObject(), both functions need to use the same search
86 // depth otherwise the algorithm in aliasGEP will assert.
87 static const unsigned MaxLookupSearchDepth = 6;
89 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
90 FunctionAnalysisManager::Invalidator &Inv) {
91 // We don't care if this analysis itself is preserved, it has no state. But
92 // we need to check that the analyses it depends on have been. Note that we
93 // may be created without handles to some analyses and in that case don't
94 // depend on them.
95 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
96 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
97 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
98 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
99 return true;
101 // Otherwise this analysis result remains valid.
102 return false;
105 //===----------------------------------------------------------------------===//
106 // Useful predicates
107 //===----------------------------------------------------------------------===//
109 /// Returns true if the pointer is to a function-local object that never
110 /// escapes from the function.
111 static bool isNonEscapingLocalObject(const Value *V) {
112 // If this is a local allocation, check to see if it escapes.
113 if (isa<AllocaInst>(V) || isNoAliasCall(V))
114 // Set StoreCaptures to True so that we can assume in our callers that the
115 // pointer is not the result of a load instruction. Currently
116 // PointerMayBeCaptured doesn't have any special analysis for the
117 // StoreCaptures=false case; if it did, our callers could be refined to be
118 // more precise.
119 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
121 // If this is an argument that corresponds to a byval or noalias argument,
122 // then it has not escaped before entering the function. Check if it escapes
123 // inside the function.
124 if (const Argument *A = dyn_cast<Argument>(V))
125 if (A->hasByValAttr() || A->hasNoAliasAttr())
126 // Note even if the argument is marked nocapture, we still need to check
127 // for copies made inside the function. The nocapture attribute only
128 // specifies that there are no copies made that outlive the function.
129 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
131 return false;
134 /// Returns true if the pointer is one which would have been considered an
135 /// escape by isNonEscapingLocalObject.
136 static bool isEscapeSource(const Value *V) {
137 if (ImmutableCallSite(V))
138 return true;
140 if (isa<Argument>(V))
141 return true;
143 // The load case works because isNonEscapingLocalObject considers all
144 // stores to be escapes (it passes true for the StoreCaptures argument
145 // to PointerMayBeCaptured).
146 if (isa<LoadInst>(V))
147 return true;
149 return false;
152 /// Returns the size of the object specified by V or UnknownSize if unknown.
153 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
154 const TargetLibraryInfo &TLI,
155 bool NullIsValidLoc,
156 bool RoundToAlign = false) {
157 uint64_t Size;
158 ObjectSizeOpts Opts;
159 Opts.RoundToAlign = RoundToAlign;
160 Opts.NullIsUnknownSize = NullIsValidLoc;
161 if (getObjectSize(V, Size, DL, &TLI, Opts))
162 return Size;
163 return MemoryLocation::UnknownSize;
166 /// Returns true if we can prove that the object specified by V is smaller than
167 /// Size.
168 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
169 const DataLayout &DL,
170 const TargetLibraryInfo &TLI,
171 bool NullIsValidLoc) {
172 // Note that the meanings of the "object" are slightly different in the
173 // following contexts:
174 // c1: llvm::getObjectSize()
175 // c2: llvm.objectsize() intrinsic
176 // c3: isObjectSmallerThan()
177 // c1 and c2 share the same meaning; however, the meaning of "object" in c3
178 // refers to the "entire object".
180 // Consider this example:
181 // char *p = (char*)malloc(100)
182 // char *q = p+80;
184 // In the context of c1 and c2, the "object" pointed by q refers to the
185 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
187 // However, in the context of c3, the "object" refers to the chunk of memory
188 // being allocated. So, the "object" has 100 bytes, and q points to the middle
189 // the "object". In case q is passed to isObjectSmallerThan() as the 1st
190 // parameter, before the llvm::getObjectSize() is called to get the size of
191 // entire object, we should:
192 // - either rewind the pointer q to the base-address of the object in
193 // question (in this case rewind to p), or
194 // - just give up. It is up to caller to make sure the pointer is pointing
195 // to the base address the object.
197 // We go for 2nd option for simplicity.
198 if (!isIdentifiedObject(V))
199 return false;
201 // This function needs to use the aligned object size because we allow
202 // reads a bit past the end given sufficient alignment.
203 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
204 /*RoundToAlign*/ true);
206 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
209 /// Returns true if we can prove that the object specified by V has size Size.
210 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
211 const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
212 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
213 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
216 //===----------------------------------------------------------------------===//
217 // GetElementPtr Instruction Decomposition and Analysis
218 //===----------------------------------------------------------------------===//
220 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
221 /// B are constant integers.
223 /// Returns the scale and offset values as APInts and return V as a Value*, and
224 /// return whether we looked through any sign or zero extends. The incoming
225 /// Value is known to have IntegerType, and it may already be sign or zero
226 /// extended.
228 /// Note that this looks through extends, so the high bits may not be
229 /// represented in the result.
230 /*static*/ const Value *BasicAAResult::GetLinearExpression(
231 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
232 unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
233 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
234 assert(V->getType()->isIntegerTy() && "Not an integer value");
236 // Limit our recursion depth.
237 if (Depth == 6) {
238 Scale = 1;
239 Offset = 0;
240 return V;
243 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
244 // If it's a constant, just convert it to an offset and remove the variable.
245 // If we've been called recursively, the Offset bit width will be greater
246 // than the constant's (the Offset's always as wide as the outermost call),
247 // so we'll zext here and process any extension in the isa<SExtInst> &
248 // isa<ZExtInst> cases below.
249 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
250 assert(Scale == 0 && "Constant values don't have a scale");
251 return V;
254 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
255 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
256 // If we've been called recursively, then Offset and Scale will be wider
257 // than the BOp operands. We'll always zext it here as we'll process sign
258 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
259 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
261 switch (BOp->getOpcode()) {
262 default:
263 // We don't understand this instruction, so we can't decompose it any
264 // further.
265 Scale = 1;
266 Offset = 0;
267 return V;
268 case Instruction::Or:
269 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
270 // analyze it.
271 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
272 BOp, DT)) {
273 Scale = 1;
274 Offset = 0;
275 return V;
277 LLVM_FALLTHROUGH;
278 case Instruction::Add:
279 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
280 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
281 Offset += RHS;
282 break;
283 case Instruction::Sub:
284 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286 Offset -= RHS;
287 break;
288 case Instruction::Mul:
289 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291 Offset *= RHS;
292 Scale *= RHS;
293 break;
294 case Instruction::Shl:
295 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
296 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
298 // We're trying to linearize an expression of the kind:
299 // shl i8 -128, 36
300 // where the shift count exceeds the bitwidth of the type.
301 // We can't decompose this further (the expression would return
302 // a poison value).
303 if (Offset.getBitWidth() < RHS.getLimitedValue() ||
304 Scale.getBitWidth() < RHS.getLimitedValue()) {
305 Scale = 1;
306 Offset = 0;
307 return V;
310 Offset <<= RHS.getLimitedValue();
311 Scale <<= RHS.getLimitedValue();
312 // the semantics of nsw and nuw for left shifts don't match those of
313 // multiplications, so we won't propagate them.
314 NSW = NUW = false;
315 return V;
318 if (isa<OverflowingBinaryOperator>(BOp)) {
319 NUW &= BOp->hasNoUnsignedWrap();
320 NSW &= BOp->hasNoSignedWrap();
322 return V;
326 // Since GEP indices are sign extended anyway, we don't care about the high
327 // bits of a sign or zero extended value - just scales and offsets. The
328 // extensions have to be consistent though.
329 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
330 Value *CastOp = cast<CastInst>(V)->getOperand(0);
331 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
332 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
333 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
334 const Value *Result =
335 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
336 Depth + 1, AC, DT, NSW, NUW);
338 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
339 // by just incrementing the number of bits we've extended by.
340 unsigned ExtendedBy = NewWidth - SmallWidth;
342 if (isa<SExtInst>(V) && ZExtBits == 0) {
343 // sext(sext(%x, a), b) == sext(%x, a + b)
345 if (NSW) {
346 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
347 // into sext(%x) + sext(c). We'll sext the Offset ourselves:
348 unsigned OldWidth = Offset.getBitWidth();
349 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
350 } else {
351 // We may have signed-wrapped, so don't decompose sext(%x + c) into
352 // sext(%x) + sext(c)
353 Scale = 1;
354 Offset = 0;
355 Result = CastOp;
356 ZExtBits = OldZExtBits;
357 SExtBits = OldSExtBits;
359 SExtBits += ExtendedBy;
360 } else {
361 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
363 if (!NUW) {
364 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
365 // zext(%x) + zext(c)
366 Scale = 1;
367 Offset = 0;
368 Result = CastOp;
369 ZExtBits = OldZExtBits;
370 SExtBits = OldSExtBits;
372 ZExtBits += ExtendedBy;
375 return Result;
378 Scale = 1;
379 Offset = 0;
380 return V;
383 /// To ensure a pointer offset fits in an integer of size PointerSize
384 /// (in bits) when that size is smaller than 64. This is an issue in
385 /// particular for 32b programs with negative indices that rely on two's
386 /// complement wrap-arounds for precise alias information.
387 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
388 assert(PointerSize <= 64 && "Invalid PointerSize!");
389 unsigned ShiftBits = 64 - PointerSize;
390 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
393 /// If V is a symbolic pointer expression, decompose it into a base pointer
394 /// with a constant offset and a number of scaled symbolic offsets.
396 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
397 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
398 /// specified amount, but which may have other unrepresented high bits. As
399 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
401 /// When DataLayout is around, this function is capable of analyzing everything
402 /// that GetUnderlyingObject can look through. To be able to do that
403 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
404 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
405 /// through pointer casts.
406 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
407 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
408 DominatorTree *DT) {
409 // Limit recursion depth to limit compile time in crazy cases.
410 unsigned MaxLookup = MaxLookupSearchDepth;
411 SearchTimes++;
413 Decomposed.StructOffset = 0;
414 Decomposed.OtherOffset = 0;
415 Decomposed.VarIndices.clear();
416 do {
417 // See if this is a bitcast or GEP.
418 const Operator *Op = dyn_cast<Operator>(V);
419 if (!Op) {
420 // The only non-operator case we can handle are GlobalAliases.
421 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
422 if (!GA->isInterposable()) {
423 V = GA->getAliasee();
424 continue;
427 Decomposed.Base = V;
428 return false;
431 if (Op->getOpcode() == Instruction::BitCast ||
432 Op->getOpcode() == Instruction::AddrSpaceCast) {
433 V = Op->getOperand(0);
434 continue;
437 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
438 if (!GEPOp) {
439 if (auto CS = ImmutableCallSite(V)) {
440 // CaptureTracking can know about special capturing properties of some
441 // intrinsics like launder.invariant.group, that can't be expressed with
442 // the attributes, but have properties like returning aliasing pointer.
443 // Because some analysis may assume that nocaptured pointer is not
444 // returned from some special intrinsic (because function would have to
445 // be marked with returns attribute), it is crucial to use this function
446 // because it should be in sync with CaptureTracking. Not using it may
447 // cause weird miscompilations where 2 aliasing pointers are assumed to
448 // noalias.
449 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) {
450 V = RP;
451 continue;
455 // If it's not a GEP, hand it off to SimplifyInstruction to see if it
456 // can come up with something. This matches what GetUnderlyingObject does.
457 if (const Instruction *I = dyn_cast<Instruction>(V))
458 // TODO: Get a DominatorTree and AssumptionCache and use them here
459 // (these are both now available in this function, but this should be
460 // updated when GetUnderlyingObject is updated). TLI should be
461 // provided also.
462 if (const Value *Simplified =
463 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
464 V = Simplified;
465 continue;
468 Decomposed.Base = V;
469 return false;
472 // Don't attempt to analyze GEPs over unsized objects.
473 if (!GEPOp->getSourceElementType()->isSized()) {
474 Decomposed.Base = V;
475 return false;
478 unsigned AS = GEPOp->getPointerAddressSpace();
479 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
480 gep_type_iterator GTI = gep_type_begin(GEPOp);
481 unsigned PointerSize = DL.getPointerSizeInBits(AS);
482 // Assume all GEP operands are constants until proven otherwise.
483 bool GepHasConstantOffset = true;
484 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
485 I != E; ++I, ++GTI) {
486 const Value *Index = *I;
487 // Compute the (potentially symbolic) offset in bytes for this index.
488 if (StructType *STy = GTI.getStructTypeOrNull()) {
489 // For a struct, add the member offset.
490 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
491 if (FieldNo == 0)
492 continue;
494 Decomposed.StructOffset +=
495 DL.getStructLayout(STy)->getElementOffset(FieldNo);
496 continue;
499 // For an array/pointer, add the element offset, explicitly scaled.
500 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
501 if (CIdx->isZero())
502 continue;
503 Decomposed.OtherOffset +=
504 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue();
505 continue;
508 GepHasConstantOffset = false;
510 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType());
511 unsigned ZExtBits = 0, SExtBits = 0;
513 // If the integer type is smaller than the pointer size, it is implicitly
514 // sign extended to pointer size.
515 unsigned Width = Index->getType()->getIntegerBitWidth();
516 if (PointerSize > Width)
517 SExtBits += PointerSize - Width;
519 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
520 APInt IndexScale(Width, 0), IndexOffset(Width, 0);
521 bool NSW = true, NUW = true;
522 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
523 SExtBits, DL, 0, AC, DT, NSW, NUW);
525 // All GEP math happens in the width of the pointer type,
526 // so we can truncate the value to 64-bits as we don't handle
527 // currently pointers larger than 64 bits and we would crash
528 // later. TODO: Make `Scale` an APInt to avoid this problem.
529 if (IndexScale.getBitWidth() > 64)
530 IndexScale = IndexScale.sextOrTrunc(64);
532 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
533 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
534 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
535 Scale *= IndexScale.getSExtValue();
537 // If we already had an occurrence of this index variable, merge this
538 // scale into it. For example, we want to handle:
539 // A[x][x] -> x*16 + x*4 -> x*20
540 // This also ensures that 'x' only appears in the index list once.
541 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
542 if (Decomposed.VarIndices[i].V == Index &&
543 Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
544 Decomposed.VarIndices[i].SExtBits == SExtBits) {
545 Scale += Decomposed.VarIndices[i].Scale;
546 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
547 break;
551 // Make sure that we have a scale that makes sense for this target's
552 // pointer size.
553 Scale = adjustToPointerSize(Scale, PointerSize);
555 if (Scale) {
556 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
557 static_cast<int64_t>(Scale)};
558 Decomposed.VarIndices.push_back(Entry);
562 // Take care of wrap-arounds
563 if (GepHasConstantOffset) {
564 Decomposed.StructOffset =
565 adjustToPointerSize(Decomposed.StructOffset, PointerSize);
566 Decomposed.OtherOffset =
567 adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
570 // Analyze the base pointer next.
571 V = GEPOp->getOperand(0);
572 } while (--MaxLookup);
574 // If the chain of expressions is too deep, just return early.
575 Decomposed.Base = V;
576 SearchLimitReached++;
577 return true;
580 /// Returns whether the given pointer value points to memory that is local to
581 /// the function, with global constants being considered local to all
582 /// functions.
583 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
584 bool OrLocal) {
585 assert(Visited.empty() && "Visited must be cleared after use!");
587 unsigned MaxLookup = 8;
588 SmallVector<const Value *, 16> Worklist;
589 Worklist.push_back(Loc.Ptr);
590 do {
591 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
592 if (!Visited.insert(V).second) {
593 Visited.clear();
594 return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
597 // An alloca instruction defines local memory.
598 if (OrLocal && isa<AllocaInst>(V))
599 continue;
601 // A global constant counts as local memory for our purposes.
602 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
603 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
604 // global to be marked constant in some modules and non-constant in
605 // others. GV may even be a declaration, not a definition.
606 if (!GV->isConstant()) {
607 Visited.clear();
608 return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
610 continue;
613 // If both select values point to local memory, then so does the select.
614 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
615 Worklist.push_back(SI->getTrueValue());
616 Worklist.push_back(SI->getFalseValue());
617 continue;
620 // If all values incoming to a phi node point to local memory, then so does
621 // the phi.
622 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
623 // Don't bother inspecting phi nodes with many operands.
624 if (PN->getNumIncomingValues() > MaxLookup) {
625 Visited.clear();
626 return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
628 for (Value *IncValue : PN->incoming_values())
629 Worklist.push_back(IncValue);
630 continue;
633 // Otherwise be conservative.
634 Visited.clear();
635 return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
636 } while (!Worklist.empty() && --MaxLookup);
638 Visited.clear();
639 return Worklist.empty();
642 /// Returns the behavior when calling the given call site.
643 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
644 if (CS.doesNotAccessMemory())
645 // Can't do better than this.
646 return FMRB_DoesNotAccessMemory;
648 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
650 // If the callsite knows it only reads memory, don't return worse
651 // than that.
652 if (CS.onlyReadsMemory())
653 Min = FMRB_OnlyReadsMemory;
654 else if (CS.doesNotReadMemory())
655 Min = FMRB_DoesNotReadMemory;
657 if (CS.onlyAccessesArgMemory())
658 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
659 else if (CS.onlyAccessesInaccessibleMemory())
660 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
661 else if (CS.onlyAccessesInaccessibleMemOrArgMem())
662 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
664 // If CS has operand bundles then aliasing attributes from the function it
665 // calls do not directly apply to the CallSite. This can be made more
666 // precise in the future.
667 if (!CS.hasOperandBundles())
668 if (const Function *F = CS.getCalledFunction())
669 Min =
670 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
672 return Min;
675 /// Returns the behavior when calling the given function. For use when the call
676 /// site is not known.
677 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
678 // If the function declares it doesn't access memory, we can't do better.
679 if (F->doesNotAccessMemory())
680 return FMRB_DoesNotAccessMemory;
682 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
684 // If the function declares it only reads memory, go with that.
685 if (F->onlyReadsMemory())
686 Min = FMRB_OnlyReadsMemory;
687 else if (F->doesNotReadMemory())
688 Min = FMRB_DoesNotReadMemory;
690 if (F->onlyAccessesArgMemory())
691 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
692 else if (F->onlyAccessesInaccessibleMemory())
693 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
694 else if (F->onlyAccessesInaccessibleMemOrArgMem())
695 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
697 return Min;
700 /// Returns true if this is a writeonly (i.e Mod only) parameter.
701 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
702 const TargetLibraryInfo &TLI) {
703 if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly))
704 return true;
706 // We can bound the aliasing properties of memset_pattern16 just as we can
707 // for memcpy/memset. This is particularly important because the
708 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
709 // whenever possible.
710 // FIXME Consider handling this in InferFunctionAttr.cpp together with other
711 // attributes.
712 LibFunc F;
713 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
714 F == LibFunc_memset_pattern16 && TLI.has(F))
715 if (ArgIdx == 0)
716 return true;
718 // TODO: memset_pattern4, memset_pattern8
719 // TODO: _chk variants
720 // TODO: strcmp, strcpy
722 return false;
725 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
726 unsigned ArgIdx) {
727 // Checking for known builtin intrinsics and target library functions.
728 if (isWriteOnlyParam(CS, ArgIdx, TLI))
729 return ModRefInfo::Mod;
731 if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly))
732 return ModRefInfo::Ref;
734 if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone))
735 return ModRefInfo::NoModRef;
737 return AAResultBase::getArgModRefInfo(CS, ArgIdx);
740 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
741 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
742 return II && II->getIntrinsicID() == IID;
745 #ifndef NDEBUG
746 static const Function *getParent(const Value *V) {
747 if (const Instruction *inst = dyn_cast<Instruction>(V)) {
748 if (!inst->getParent())
749 return nullptr;
750 return inst->getParent()->getParent();
753 if (const Argument *arg = dyn_cast<Argument>(V))
754 return arg->getParent();
756 return nullptr;
759 static bool notDifferentParent(const Value *O1, const Value *O2) {
761 const Function *F1 = getParent(O1);
762 const Function *F2 = getParent(O2);
764 return !F1 || !F2 || F1 == F2;
766 #endif
768 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
769 const MemoryLocation &LocB) {
770 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
771 "BasicAliasAnalysis doesn't support interprocedural queries.");
773 // If we have a directly cached entry for these locations, we have recursed
774 // through this once, so just return the cached results. Notably, when this
775 // happens, we don't clear the cache.
776 auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
777 if (CacheIt != AliasCache.end())
778 return CacheIt->second;
780 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
781 LocB.Size, LocB.AATags);
782 // AliasCache rarely has more than 1 or 2 elements, always use
783 // shrink_and_clear so it quickly returns to the inline capacity of the
784 // SmallDenseMap if it ever grows larger.
785 // FIXME: This should really be shrink_to_inline_capacity_and_clear().
786 AliasCache.shrink_and_clear();
787 VisitedPhiBBs.clear();
788 return Alias;
791 /// Checks to see if the specified callsite can clobber the specified memory
792 /// object.
794 /// Since we only look at local properties of this function, we really can't
795 /// say much about this query. We do, however, use simple "address taken"
796 /// analysis on local objects.
797 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
798 const MemoryLocation &Loc) {
799 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
800 "AliasAnalysis query involving multiple functions!");
802 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
804 // Calls marked 'tail' cannot read or write allocas from the current frame
805 // because the current frame might be destroyed by the time they run. However,
806 // a tail call may use an alloca with byval. Calling with byval copies the
807 // contents of the alloca into argument registers or stack slots, so there is
808 // no lifetime issue.
809 if (isa<AllocaInst>(Object))
810 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
811 if (CI->isTailCall() &&
812 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
813 return ModRefInfo::NoModRef;
815 // If the pointer is to a locally allocated object that does not escape,
816 // then the call can not mod/ref the pointer unless the call takes the pointer
817 // as an argument, and itself doesn't capture it.
818 if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
819 isNonEscapingLocalObject(Object)) {
821 // Optimistically assume that call doesn't touch Object and check this
822 // assumption in the following loop.
823 ModRefInfo Result = ModRefInfo::NoModRef;
824 bool IsMustAlias = true;
826 unsigned OperandNo = 0;
827 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
828 CI != CE; ++CI, ++OperandNo) {
829 // Only look at the no-capture or byval pointer arguments. If this
830 // pointer were passed to arguments that were neither of these, then it
831 // couldn't be no-capture.
832 if (!(*CI)->getType()->isPointerTy() ||
833 (!CS.doesNotCapture(OperandNo) &&
834 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo)))
835 continue;
837 // Call doesn't access memory through this operand, so we don't care
838 // if it aliases with Object.
839 if (CS.doesNotAccessMemory(OperandNo))
840 continue;
842 // If this is a no-capture pointer argument, see if we can tell that it
843 // is impossible to alias the pointer we're checking.
844 AliasResult AR =
845 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
846 if (AR != MustAlias)
847 IsMustAlias = false;
848 // Operand doesnt alias 'Object', continue looking for other aliases
849 if (AR == NoAlias)
850 continue;
851 // Operand aliases 'Object', but call doesn't modify it. Strengthen
852 // initial assumption and keep looking in case if there are more aliases.
853 if (CS.onlyReadsMemory(OperandNo)) {
854 Result = setRef(Result);
855 continue;
857 // Operand aliases 'Object' but call only writes into it.
858 if (CS.doesNotReadMemory(OperandNo)) {
859 Result = setMod(Result);
860 continue;
862 // This operand aliases 'Object' and call reads and writes into it.
863 // Setting ModRef will not yield an early return below, MustAlias is not
864 // used further.
865 Result = ModRefInfo::ModRef;
866 break;
869 // No operand aliases, reset Must bit. Add below if at least one aliases
870 // and all aliases found are MustAlias.
871 if (isNoModRef(Result))
872 IsMustAlias = false;
874 // Early return if we improved mod ref information
875 if (!isModAndRefSet(Result)) {
876 if (isNoModRef(Result))
877 return ModRefInfo::NoModRef;
878 return IsMustAlias ? setMust(Result) : clearMust(Result);
882 // If the CallSite is to malloc or calloc, we can assume that it doesn't
883 // modify any IR visible value. This is only valid because we assume these
884 // routines do not read values visible in the IR. TODO: Consider special
885 // casing realloc and strdup routines which access only their arguments as
886 // well. Or alternatively, replace all of this with inaccessiblememonly once
887 // that's implemented fully.
888 auto *Inst = CS.getInstruction();
889 if (isMallocOrCallocLikeFn(Inst, &TLI)) {
890 // Be conservative if the accessed pointer may alias the allocation -
891 // fallback to the generic handling below.
892 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
893 return ModRefInfo::NoModRef;
896 // The semantics of memcpy intrinsics forbid overlap between their respective
897 // operands, i.e., source and destination of any given memcpy must no-alias.
898 // If Loc must-aliases either one of these two locations, then it necessarily
899 // no-aliases the other.
900 if (auto *Inst = dyn_cast<AnyMemCpyInst>(CS.getInstruction())) {
901 AliasResult SrcAA, DestAA;
903 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
904 Loc)) == MustAlias)
905 // Loc is exactly the memcpy source thus disjoint from memcpy dest.
906 return ModRefInfo::Ref;
907 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
908 Loc)) == MustAlias)
909 // The converse case.
910 return ModRefInfo::Mod;
912 // It's also possible for Loc to alias both src and dest, or neither.
913 ModRefInfo rv = ModRefInfo::NoModRef;
914 if (SrcAA != NoAlias)
915 rv = setRef(rv);
916 if (DestAA != NoAlias)
917 rv = setMod(rv);
918 return rv;
921 // While the assume intrinsic is marked as arbitrarily writing so that
922 // proper control dependencies will be maintained, it never aliases any
923 // particular memory location.
924 if (isIntrinsicCall(CS, Intrinsic::assume))
925 return ModRefInfo::NoModRef;
927 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
928 // that proper control dependencies are maintained but they never mods any
929 // particular memory location.
931 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
932 // heap state at the point the guard is issued needs to be consistent in case
933 // the guard invokes the "deopt" continuation.
934 if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
935 return ModRefInfo::Ref;
937 // Like assumes, invariant.start intrinsics were also marked as arbitrarily
938 // writing so that proper control dependencies are maintained but they never
939 // mod any particular memory location visible to the IR.
940 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
941 // intrinsic is now modeled as reading memory. This prevents hoisting the
942 // invariant.start intrinsic over stores. Consider:
943 // *ptr = 40;
944 // *ptr = 50;
945 // invariant_start(ptr)
946 // int val = *ptr;
947 // print(val);
949 // This cannot be transformed to:
951 // *ptr = 40;
952 // invariant_start(ptr)
953 // *ptr = 50;
954 // int val = *ptr;
955 // print(val);
957 // The transformation will cause the second store to be ignored (based on
958 // rules of invariant.start) and print 40, while the first program always
959 // prints 50.
960 if (isIntrinsicCall(CS, Intrinsic::invariant_start))
961 return ModRefInfo::Ref;
963 // The AAResultBase base class has some smarts, lets use them.
964 return AAResultBase::getModRefInfo(CS, Loc);
967 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
968 ImmutableCallSite CS2) {
969 // While the assume intrinsic is marked as arbitrarily writing so that
970 // proper control dependencies will be maintained, it never aliases any
971 // particular memory location.
972 if (isIntrinsicCall(CS1, Intrinsic::assume) ||
973 isIntrinsicCall(CS2, Intrinsic::assume))
974 return ModRefInfo::NoModRef;
976 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
977 // that proper control dependencies are maintained but they never mod any
978 // particular memory location.
980 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
981 // heap state at the point the guard is issued needs to be consistent in case
982 // the guard invokes the "deopt" continuation.
984 // NB! This function is *not* commutative, so we specical case two
985 // possibilities for guard intrinsics.
987 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
988 return isModSet(createModRefInfo(getModRefBehavior(CS2)))
989 ? ModRefInfo::Ref
990 : ModRefInfo::NoModRef;
992 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
993 return isModSet(createModRefInfo(getModRefBehavior(CS1)))
994 ? ModRefInfo::Mod
995 : ModRefInfo::NoModRef;
997 // The AAResultBase base class has some smarts, lets use them.
998 return AAResultBase::getModRefInfo(CS1, CS2);
1001 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1002 /// both having the exact same pointer operand.
1003 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1004 LocationSize MaybeV1Size,
1005 const GEPOperator *GEP2,
1006 LocationSize MaybeV2Size,
1007 const DataLayout &DL) {
1008 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1009 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1010 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1011 "Expected GEPs with the same pointer operand");
1013 // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1014 // such that the struct field accesses provably cannot alias.
1015 // We also need at least two indices (the pointer, and the struct field).
1016 if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1017 GEP1->getNumIndices() < 2)
1018 return MayAlias;
1020 // If we don't know the size of the accesses through both GEPs, we can't
1021 // determine whether the struct fields accessed can't alias.
1022 if (MaybeV1Size == MemoryLocation::UnknownSize ||
1023 MaybeV2Size == MemoryLocation::UnknownSize)
1024 return MayAlias;
1026 const uint64_t V1Size = MaybeV1Size.getValue();
1027 const uint64_t V2Size = MaybeV2Size.getValue();
1029 ConstantInt *C1 =
1030 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1031 ConstantInt *C2 =
1032 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1034 // If the last (struct) indices are constants and are equal, the other indices
1035 // might be also be dynamically equal, so the GEPs can alias.
1036 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
1037 return MayAlias;
1039 // Find the last-indexed type of the GEP, i.e., the type you'd get if
1040 // you stripped the last index.
1041 // On the way, look at each indexed type. If there's something other
1042 // than an array, different indices can lead to different final types.
1043 SmallVector<Value *, 8> IntermediateIndices;
1045 // Insert the first index; we don't need to check the type indexed
1046 // through it as it only drops the pointer indirection.
1047 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1048 IntermediateIndices.push_back(GEP1->getOperand(1));
1050 // Insert all the remaining indices but the last one.
1051 // Also, check that they all index through arrays.
1052 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1053 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1054 GEP1->getSourceElementType(), IntermediateIndices)))
1055 return MayAlias;
1056 IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1059 auto *Ty = GetElementPtrInst::getIndexedType(
1060 GEP1->getSourceElementType(), IntermediateIndices);
1061 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1063 if (isa<SequentialType>(Ty)) {
1064 // We know that:
1065 // - both GEPs begin indexing from the exact same pointer;
1066 // - the last indices in both GEPs are constants, indexing into a sequential
1067 // type (array or pointer);
1068 // - both GEPs only index through arrays prior to that.
1070 // Because array indices greater than the number of elements are valid in
1071 // GEPs, unless we know the intermediate indices are identical between
1072 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1073 // partially overlap. We also need to check that the loaded size matches
1074 // the element size, otherwise we could still have overlap.
1075 const uint64_t ElementSize =
1076 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
1077 if (V1Size != ElementSize || V2Size != ElementSize)
1078 return MayAlias;
1080 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1081 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1082 return MayAlias;
1084 // Now we know that the array/pointer that GEP1 indexes into and that
1085 // that GEP2 indexes into must either precisely overlap or be disjoint.
1086 // Because they cannot partially overlap and because fields in an array
1087 // cannot overlap, if we can prove the final indices are different between
1088 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1090 // If the last indices are constants, we've already checked they don't
1091 // equal each other so we can exit early.
1092 if (C1 && C2)
1093 return NoAlias;
1095 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1096 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1097 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1098 // If one of the indices is a PHI node, be safe and only use
1099 // computeKnownBits so we don't make any assumptions about the
1100 // relationships between the two indices. This is important if we're
1101 // asking about values from different loop iterations. See PR32314.
1102 // TODO: We may be able to change the check so we only do this when
1103 // we definitely looked through a PHINode.
1104 if (GEP1LastIdx != GEP2LastIdx &&
1105 GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1106 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1107 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1108 if (Known1.Zero.intersects(Known2.One) ||
1109 Known1.One.intersects(Known2.Zero))
1110 return NoAlias;
1112 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1113 return NoAlias;
1115 return MayAlias;
1116 } else if (!LastIndexedStruct || !C1 || !C2) {
1117 return MayAlias;
1120 // We know that:
1121 // - both GEPs begin indexing from the exact same pointer;
1122 // - the last indices in both GEPs are constants, indexing into a struct;
1123 // - said indices are different, hence, the pointed-to fields are different;
1124 // - both GEPs only index through arrays prior to that.
1126 // This lets us determine that the struct that GEP1 indexes into and the
1127 // struct that GEP2 indexes into must either precisely overlap or be
1128 // completely disjoint. Because they cannot partially overlap, indexing into
1129 // different non-overlapping fields of the struct will never alias.
1131 // Therefore, the only remaining thing needed to show that both GEPs can't
1132 // alias is that the fields are not overlapping.
1133 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1134 const uint64_t StructSize = SL->getSizeInBytes();
1135 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1136 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1138 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1139 uint64_t V2Off, uint64_t V2Size) {
1140 return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1141 ((V2Off + V2Size <= StructSize) ||
1142 (V2Off + V2Size - StructSize <= V1Off));
1145 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1146 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1147 return NoAlias;
1149 return MayAlias;
1152 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1153 // beginning of the object the GEP points would have a negative offset with
1154 // repsect to the alloca, that means the GEP can not alias pointer (b).
1155 // Note that the pointer based on the alloca may not be a GEP. For
1156 // example, it may be the alloca itself.
1157 // The same applies if (b) is based on a GlobalVariable. Note that just being
1158 // based on isIdentifiedObject() is not enough - we need an identified object
1159 // that does not permit access to negative offsets. For example, a negative
1160 // offset from a noalias argument or call can be inbounds w.r.t the actual
1161 // underlying object.
1163 // For example, consider:
1165 // struct { int f0, int f1, ...} foo;
1166 // foo alloca;
1167 // foo* random = bar(alloca);
1168 // int *f0 = &alloca.f0
1169 // int *f1 = &random->f1;
1171 // Which is lowered, approximately, to:
1173 // %alloca = alloca %struct.foo
1174 // %random = call %struct.foo* @random(%struct.foo* %alloca)
1175 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1176 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1178 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1179 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1180 // point into the same object. But since %f0 points to the beginning of %alloca,
1181 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1182 // than (%alloca - 1), and so is not inbounds, a contradiction.
1183 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1184 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1185 LocationSize MaybeObjectAccessSize) {
1186 // If the object access size is unknown, or the GEP isn't inbounds, bail.
1187 if (MaybeObjectAccessSize == MemoryLocation::UnknownSize ||
1188 !GEPOp->isInBounds())
1189 return false;
1191 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1193 // We need the object to be an alloca or a globalvariable, and want to know
1194 // the offset of the pointer from the object precisely, so no variable
1195 // indices are allowed.
1196 if (!(isa<AllocaInst>(DecompObject.Base) ||
1197 isa<GlobalVariable>(DecompObject.Base)) ||
1198 !DecompObject.VarIndices.empty())
1199 return false;
1201 int64_t ObjectBaseOffset = DecompObject.StructOffset +
1202 DecompObject.OtherOffset;
1204 // If the GEP has no variable indices, we know the precise offset
1205 // from the base, then use it. If the GEP has variable indices,
1206 // we can't get exact GEP offset to identify pointer alias. So return
1207 // false in that case.
1208 if (!DecompGEP.VarIndices.empty())
1209 return false;
1210 int64_t GEPBaseOffset = DecompGEP.StructOffset;
1211 GEPBaseOffset += DecompGEP.OtherOffset;
1213 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
1216 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1217 /// another pointer.
1219 /// We know that V1 is a GEP, but we don't know anything about V2.
1220 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1221 /// V2.
1222 AliasResult
1223 BasicAAResult::aliasGEP(const GEPOperator *GEP1, LocationSize V1Size,
1224 const AAMDNodes &V1AAInfo, const Value *V2,
1225 LocationSize V2Size, const AAMDNodes &V2AAInfo,
1226 const Value *UnderlyingV1, const Value *UnderlyingV2) {
1227 DecomposedGEP DecompGEP1, DecompGEP2;
1228 bool GEP1MaxLookupReached =
1229 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1230 bool GEP2MaxLookupReached =
1231 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1233 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1234 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1236 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1237 "DecomposeGEPExpression returned a result different from "
1238 "GetUnderlyingObject");
1240 // If the GEP's offset relative to its base is such that the base would
1241 // fall below the start of the object underlying V2, then the GEP and V2
1242 // cannot alias.
1243 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1244 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1245 return NoAlias;
1246 // If we have two gep instructions with must-alias or not-alias'ing base
1247 // pointers, figure out if the indexes to the GEP tell us anything about the
1248 // derived pointer.
1249 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1250 // Check for the GEP base being at a negative offset, this time in the other
1251 // direction.
1252 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1253 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1254 return NoAlias;
1255 // Do the base pointers alias?
1256 AliasResult BaseAlias =
1257 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
1258 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
1260 // Check for geps of non-aliasing underlying pointers where the offsets are
1261 // identical.
1262 if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1263 // Do the base pointers alias assuming type and size.
1264 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1265 UnderlyingV2, V2Size, V2AAInfo);
1266 if (PreciseBaseAlias == NoAlias) {
1267 // See if the computed offset from the common pointer tells us about the
1268 // relation of the resulting pointer.
1269 // If the max search depth is reached the result is undefined
1270 if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1271 return MayAlias;
1273 // Same offsets.
1274 if (GEP1BaseOffset == GEP2BaseOffset &&
1275 DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1276 return NoAlias;
1280 // If we get a No or May, then return it immediately, no amount of analysis
1281 // will improve this situation.
1282 if (BaseAlias != MustAlias) {
1283 assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1284 return BaseAlias;
1287 // Otherwise, we have a MustAlias. Since the base pointers alias each other
1288 // exactly, see if the computed offset from the common pointer tells us
1289 // about the relation of the resulting pointer.
1290 // If we know the two GEPs are based off of the exact same pointer (and not
1291 // just the same underlying object), see if that tells us anything about
1292 // the resulting pointers.
1293 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1294 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1295 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1296 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1297 // If we couldn't find anything interesting, don't abandon just yet.
1298 if (R != MayAlias)
1299 return R;
1302 // If the max search depth is reached, the result is undefined
1303 if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1304 return MayAlias;
1306 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1307 // symbolic difference.
1308 GEP1BaseOffset -= GEP2BaseOffset;
1309 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1311 } else {
1312 // Check to see if these two pointers are related by the getelementptr
1313 // instruction. If one pointer is a GEP with a non-zero index of the other
1314 // pointer, we know they cannot alias.
1316 // If both accesses are unknown size, we can't do anything useful here.
1317 if (V1Size == MemoryLocation::UnknownSize &&
1318 V2Size == MemoryLocation::UnknownSize)
1319 return MayAlias;
1321 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1322 AAMDNodes(), V2, MemoryLocation::UnknownSize,
1323 V2AAInfo, nullptr, UnderlyingV2);
1324 if (R != MustAlias) {
1325 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1326 // If V2 is known not to alias GEP base pointer, then the two values
1327 // cannot alias per GEP semantics: "Any memory access must be done through
1328 // a pointer value associated with an address range of the memory access,
1329 // otherwise the behavior is undefined.".
1330 assert(R == NoAlias || R == MayAlias);
1331 return R;
1334 // If the max search depth is reached the result is undefined
1335 if (GEP1MaxLookupReached)
1336 return MayAlias;
1339 // In the two GEP Case, if there is no difference in the offsets of the
1340 // computed pointers, the resultant pointers are a must alias. This
1341 // happens when we have two lexically identical GEP's (for example).
1343 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1344 // must aliases the GEP, the end result is a must alias also.
1345 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1346 return MustAlias;
1348 // If there is a constant difference between the pointers, but the difference
1349 // is less than the size of the associated memory object, then we know
1350 // that the objects are partially overlapping. If the difference is
1351 // greater, we know they do not overlap.
1352 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1353 if (GEP1BaseOffset >= 0) {
1354 if (V2Size != MemoryLocation::UnknownSize) {
1355 if ((uint64_t)GEP1BaseOffset < V2Size.getValue())
1356 return PartialAlias;
1357 return NoAlias;
1359 } else {
1360 // We have the situation where:
1361 // + +
1362 // | BaseOffset |
1363 // ---------------->|
1364 // |-->V1Size |-------> V2Size
1365 // GEP1 V2
1366 // We need to know that V2Size is not unknown, otherwise we might have
1367 // stripped a gep with negative index ('gep <ptr>, -1, ...).
1368 if (V1Size != MemoryLocation::UnknownSize &&
1369 V2Size != MemoryLocation::UnknownSize) {
1370 if (-(uint64_t)GEP1BaseOffset < V1Size.getValue())
1371 return PartialAlias;
1372 return NoAlias;
1377 if (!DecompGEP1.VarIndices.empty()) {
1378 uint64_t Modulo = 0;
1379 bool AllPositive = true;
1380 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1382 // Try to distinguish something like &A[i][1] against &A[42][0].
1383 // Grab the least significant bit set in any of the scales. We
1384 // don't need std::abs here (even if the scale's negative) as we'll
1385 // be ^'ing Modulo with itself later.
1386 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
1388 if (AllPositive) {
1389 // If the Value could change between cycles, then any reasoning about
1390 // the Value this cycle may not hold in the next cycle. We'll just
1391 // give up if we can't determine conditions that hold for every cycle:
1392 const Value *V = DecompGEP1.VarIndices[i].V;
1394 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT);
1395 bool SignKnownZero = Known.isNonNegative();
1396 bool SignKnownOne = Known.isNegative();
1398 // Zero-extension widens the variable, and so forces the sign
1399 // bit to zero.
1400 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1401 SignKnownZero |= IsZExt;
1402 SignKnownOne &= !IsZExt;
1404 // If the variable begins with a zero then we know it's
1405 // positive, regardless of whether the value is signed or
1406 // unsigned.
1407 int64_t Scale = DecompGEP1.VarIndices[i].Scale;
1408 AllPositive =
1409 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1413 Modulo = Modulo ^ (Modulo & (Modulo - 1));
1415 // We can compute the difference between the two addresses
1416 // mod Modulo. Check whether that difference guarantees that the
1417 // two locations do not alias.
1418 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1419 if (V1Size != MemoryLocation::UnknownSize &&
1420 V2Size != MemoryLocation::UnknownSize &&
1421 ModOffset >= V2Size.getValue() &&
1422 V1Size.getValue() <= Modulo - ModOffset)
1423 return NoAlias;
1425 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1426 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1427 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1428 if (AllPositive && GEP1BaseOffset > 0 &&
1429 V2Size != MemoryLocation::UnknownSize &&
1430 V2Size.getValue() <= (uint64_t)GEP1BaseOffset)
1431 return NoAlias;
1433 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1434 GEP1BaseOffset, &AC, DT))
1435 return NoAlias;
1438 // Statically, we can see that the base objects are the same, but the
1439 // pointers have dynamic offsets which we can't resolve. And none of our
1440 // little tricks above worked.
1441 return MayAlias;
1444 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1445 // If the results agree, take it.
1446 if (A == B)
1447 return A;
1448 // A mix of PartialAlias and MustAlias is PartialAlias.
1449 if ((A == PartialAlias && B == MustAlias) ||
1450 (B == PartialAlias && A == MustAlias))
1451 return PartialAlias;
1452 // Otherwise, we don't know anything.
1453 return MayAlias;
1456 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1457 /// against another.
1458 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI,
1459 LocationSize SISize,
1460 const AAMDNodes &SIAAInfo,
1461 const Value *V2, LocationSize V2Size,
1462 const AAMDNodes &V2AAInfo,
1463 const Value *UnderV2) {
1464 // If the values are Selects with the same condition, we can do a more precise
1465 // check: just check for aliases between the values on corresponding arms.
1466 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1467 if (SI->getCondition() == SI2->getCondition()) {
1468 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1469 SI2->getTrueValue(), V2Size, V2AAInfo);
1470 if (Alias == MayAlias)
1471 return MayAlias;
1472 AliasResult ThisAlias =
1473 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1474 SI2->getFalseValue(), V2Size, V2AAInfo);
1475 return MergeAliasResults(ThisAlias, Alias);
1478 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1479 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1480 AliasResult Alias =
1481 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1482 SISize, SIAAInfo, UnderV2);
1483 if (Alias == MayAlias)
1484 return MayAlias;
1486 AliasResult ThisAlias =
1487 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo,
1488 UnderV2);
1489 return MergeAliasResults(ThisAlias, Alias);
1492 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1493 /// another.
1494 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1495 const AAMDNodes &PNAAInfo, const Value *V2,
1496 LocationSize V2Size,
1497 const AAMDNodes &V2AAInfo,
1498 const Value *UnderV2) {
1499 // Track phi nodes we have visited. We use this information when we determine
1500 // value equivalence.
1501 VisitedPhiBBs.insert(PN->getParent());
1503 // If the values are PHIs in the same block, we can do a more precise
1504 // as well as efficient check: just check for aliases between the values
1505 // on corresponding edges.
1506 if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1507 if (PN2->getParent() == PN->getParent()) {
1508 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1509 MemoryLocation(V2, V2Size, V2AAInfo));
1510 if (PN > V2)
1511 std::swap(Locs.first, Locs.second);
1512 // Analyse the PHIs' inputs under the assumption that the PHIs are
1513 // NoAlias.
1514 // If the PHIs are May/MustAlias there must be (recursively) an input
1515 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1516 // there must be an operation on the PHIs within the PHIs' value cycle
1517 // that causes a MayAlias.
1518 // Pretend the phis do not alias.
1519 AliasResult Alias = NoAlias;
1520 assert(AliasCache.count(Locs) &&
1521 "There must exist an entry for the phi node");
1522 AliasResult OrigAliasResult = AliasCache[Locs];
1523 AliasCache[Locs] = NoAlias;
1525 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1526 AliasResult ThisAlias =
1527 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1528 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1529 V2Size, V2AAInfo);
1530 Alias = MergeAliasResults(ThisAlias, Alias);
1531 if (Alias == MayAlias)
1532 break;
1535 // Reset if speculation failed.
1536 if (Alias != NoAlias)
1537 AliasCache[Locs] = OrigAliasResult;
1539 return Alias;
1542 SmallVector<Value *, 4> V1Srcs;
1543 bool isRecursive = false;
1544 if (PV) {
1545 // If we have PhiValues then use it to get the underlying phi values.
1546 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1547 // If we have more phi values than the search depth then return MayAlias
1548 // conservatively to avoid compile time explosion. The worst possible case
1549 // is if both sides are PHI nodes. In which case, this is O(m x n) time
1550 // where 'm' and 'n' are the number of PHI sources.
1551 if (PhiValueSet.size() > MaxLookupSearchDepth)
1552 return MayAlias;
1553 // Add the values to V1Srcs
1554 for (Value *PV1 : PhiValueSet) {
1555 if (EnableRecPhiAnalysis) {
1556 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1557 // Check whether the incoming value is a GEP that advances the pointer
1558 // result of this PHI node (e.g. in a loop). If this is the case, we
1559 // would recurse and always get a MayAlias. Handle this case specially
1560 // below.
1561 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1562 isa<ConstantInt>(PV1GEP->idx_begin())) {
1563 isRecursive = true;
1564 continue;
1568 V1Srcs.push_back(PV1);
1570 } else {
1571 // If we don't have PhiInfo then just look at the operands of the phi itself
1572 // FIXME: Remove this once we can guarantee that we have PhiInfo always
1573 SmallPtrSet<Value *, 4> UniqueSrc;
1574 for (Value *PV1 : PN->incoming_values()) {
1575 if (isa<PHINode>(PV1))
1576 // If any of the source itself is a PHI, return MayAlias conservatively
1577 // to avoid compile time explosion. The worst possible case is if both
1578 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1579 // and 'n' are the number of PHI sources.
1580 return MayAlias;
1582 if (EnableRecPhiAnalysis)
1583 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1584 // Check whether the incoming value is a GEP that advances the pointer
1585 // result of this PHI node (e.g. in a loop). If this is the case, we
1586 // would recurse and always get a MayAlias. Handle this case specially
1587 // below.
1588 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1589 isa<ConstantInt>(PV1GEP->idx_begin())) {
1590 isRecursive = true;
1591 continue;
1595 if (UniqueSrc.insert(PV1).second)
1596 V1Srcs.push_back(PV1);
1600 // If V1Srcs is empty then that means that the phi has no underlying non-phi
1601 // value. This should only be possible in blocks unreachable from the entry
1602 // block, but return MayAlias just in case.
1603 if (V1Srcs.empty())
1604 return MayAlias;
1606 // If this PHI node is recursive, set the size of the accessed memory to
1607 // unknown to represent all the possible values the GEP could advance the
1608 // pointer to.
1609 if (isRecursive)
1610 PNSize = MemoryLocation::UnknownSize;
1612 AliasResult Alias =
1613 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0],
1614 PNSize, PNAAInfo, UnderV2);
1616 // Early exit if the check of the first PHI source against V2 is MayAlias.
1617 // Other results are not possible.
1618 if (Alias == MayAlias)
1619 return MayAlias;
1621 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1622 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1623 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1624 Value *V = V1Srcs[i];
1626 AliasResult ThisAlias =
1627 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2);
1628 Alias = MergeAliasResults(ThisAlias, Alias);
1629 if (Alias == MayAlias)
1630 break;
1633 return Alias;
1636 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1637 /// array references.
1638 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1639 AAMDNodes V1AAInfo, const Value *V2,
1640 LocationSize V2Size, AAMDNodes V2AAInfo,
1641 const Value *O1, const Value *O2) {
1642 // If either of the memory references is empty, it doesn't matter what the
1643 // pointer values are.
1644 if (V1Size == 0 || V2Size == 0)
1645 return NoAlias;
1647 // Strip off any casts if they exist.
1648 V1 = V1->stripPointerCastsAndInvariantGroups();
1649 V2 = V2->stripPointerCastsAndInvariantGroups();
1651 // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1652 // value for undef that aliases nothing in the program.
1653 if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1654 return NoAlias;
1656 // Are we checking for alias of the same value?
1657 // Because we look 'through' phi nodes, we could look at "Value" pointers from
1658 // different iterations. We must therefore make sure that this is not the
1659 // case. The function isValueEqualInPotentialCycles ensures that this cannot
1660 // happen by looking at the visited phi nodes and making sure they cannot
1661 // reach the value.
1662 if (isValueEqualInPotentialCycles(V1, V2))
1663 return MustAlias;
1665 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1666 return NoAlias; // Scalars cannot alias each other
1668 // Figure out what objects these things are pointing to if we can.
1669 if (O1 == nullptr)
1670 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1672 if (O2 == nullptr)
1673 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1675 // Null values in the default address space don't point to any object, so they
1676 // don't alias any other pointer.
1677 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1678 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1679 return NoAlias;
1680 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1681 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1682 return NoAlias;
1684 if (O1 != O2) {
1685 // If V1/V2 point to two different objects, we know that we have no alias.
1686 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1687 return NoAlias;
1689 // Constant pointers can't alias with non-const isIdentifiedObject objects.
1690 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1691 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1692 return NoAlias;
1694 // Function arguments can't alias with things that are known to be
1695 // unambigously identified at the function level.
1696 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1697 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1698 return NoAlias;
1700 // If one pointer is the result of a call/invoke or load and the other is a
1701 // non-escaping local object within the same function, then we know the
1702 // object couldn't escape to a point where the call could return it.
1704 // Note that if the pointers are in different functions, there are a
1705 // variety of complications. A call with a nocapture argument may still
1706 // temporary store the nocapture argument's value in a temporary memory
1707 // location if that memory location doesn't escape. Or it may pass a
1708 // nocapture value to other functions as long as they don't capture it.
1709 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1710 return NoAlias;
1711 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1712 return NoAlias;
1715 // If the size of one access is larger than the entire object on the other
1716 // side, then we know such behavior is undefined and can assume no alias.
1717 bool NullIsValidLocation = NullPointerIsDefined(&F);
1718 if ((V1Size != MemoryLocation::UnknownSize &&
1719 isObjectSmallerThan(O2, V1Size.getValue(), DL, TLI,
1720 NullIsValidLocation)) ||
1721 (V2Size != MemoryLocation::UnknownSize &&
1722 isObjectSmallerThan(O1, V2Size.getValue(), DL, TLI,
1723 NullIsValidLocation)))
1724 return NoAlias;
1726 // Check the cache before climbing up use-def chains. This also terminates
1727 // otherwise infinitely recursive queries.
1728 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1729 MemoryLocation(V2, V2Size, V2AAInfo));
1730 if (V1 > V2)
1731 std::swap(Locs.first, Locs.second);
1732 std::pair<AliasCacheTy::iterator, bool> Pair =
1733 AliasCache.insert(std::make_pair(Locs, MayAlias));
1734 if (!Pair.second)
1735 return Pair.first->second;
1737 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1738 // GEP can't simplify, we don't even look at the PHI cases.
1739 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1740 std::swap(V1, V2);
1741 std::swap(V1Size, V2Size);
1742 std::swap(O1, O2);
1743 std::swap(V1AAInfo, V2AAInfo);
1745 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1746 AliasResult Result =
1747 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1748 if (Result != MayAlias)
1749 return AliasCache[Locs] = Result;
1752 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1753 std::swap(V1, V2);
1754 std::swap(O1, O2);
1755 std::swap(V1Size, V2Size);
1756 std::swap(V1AAInfo, V2AAInfo);
1758 if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1759 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1760 V2, V2Size, V2AAInfo, O2);
1761 if (Result != MayAlias)
1762 return AliasCache[Locs] = Result;
1765 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1766 std::swap(V1, V2);
1767 std::swap(O1, O2);
1768 std::swap(V1Size, V2Size);
1769 std::swap(V1AAInfo, V2AAInfo);
1771 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1772 AliasResult Result =
1773 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2);
1774 if (Result != MayAlias)
1775 return AliasCache[Locs] = Result;
1778 // If both pointers are pointing into the same object and one of them
1779 // accesses the entire object, then the accesses must overlap in some way.
1780 if (O1 == O2)
1781 if (V1Size != MemoryLocation::UnknownSize &&
1782 V2Size != MemoryLocation::UnknownSize &&
1783 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1784 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1785 return AliasCache[Locs] = PartialAlias;
1787 // Recurse back into the best AA results we have, potentially with refined
1788 // memory locations. We have already ensured that BasicAA has a MayAlias
1789 // cache result for these, so any recursion back into BasicAA won't loop.
1790 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1791 return AliasCache[Locs] = Result;
1794 /// Check whether two Values can be considered equivalent.
1796 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1797 /// they can not be part of a cycle in the value graph by looking at all
1798 /// visited phi nodes an making sure that the phis cannot reach the value. We
1799 /// have to do this because we are looking through phi nodes (That is we say
1800 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1801 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1802 const Value *V2) {
1803 if (V != V2)
1804 return false;
1806 const Instruction *Inst = dyn_cast<Instruction>(V);
1807 if (!Inst)
1808 return true;
1810 if (VisitedPhiBBs.empty())
1811 return true;
1813 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1814 return false;
1816 // Make sure that the visited phis cannot reach the Value. This ensures that
1817 // the Values cannot come from different iterations of a potential cycle the
1818 // phi nodes could be involved in.
1819 for (auto *P : VisitedPhiBBs)
1820 if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1821 return false;
1823 return true;
1826 /// Computes the symbolic difference between two de-composed GEPs.
1828 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1829 /// instructions GEP1 and GEP2 which have common base pointers.
1830 void BasicAAResult::GetIndexDifference(
1831 SmallVectorImpl<VariableGEPIndex> &Dest,
1832 const SmallVectorImpl<VariableGEPIndex> &Src) {
1833 if (Src.empty())
1834 return;
1836 for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1837 const Value *V = Src[i].V;
1838 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1839 int64_t Scale = Src[i].Scale;
1841 // Find V in Dest. This is N^2, but pointer indices almost never have more
1842 // than a few variable indexes.
1843 for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1844 if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1845 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1846 continue;
1848 // If we found it, subtract off Scale V's from the entry in Dest. If it
1849 // goes to zero, remove the entry.
1850 if (Dest[j].Scale != Scale)
1851 Dest[j].Scale -= Scale;
1852 else
1853 Dest.erase(Dest.begin() + j);
1854 Scale = 0;
1855 break;
1858 // If we didn't consume this entry, add it to the end of the Dest list.
1859 if (Scale) {
1860 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1861 Dest.push_back(Entry);
1866 bool BasicAAResult::constantOffsetHeuristic(
1867 const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1868 LocationSize MaybeV1Size, LocationSize MaybeV2Size, int64_t BaseOffset,
1869 AssumptionCache *AC, DominatorTree *DT) {
1870 if (VarIndices.size() != 2 || MaybeV1Size == MemoryLocation::UnknownSize ||
1871 MaybeV2Size == MemoryLocation::UnknownSize)
1872 return false;
1874 const uint64_t V1Size = MaybeV1Size.getValue();
1875 const uint64_t V2Size = MaybeV2Size.getValue();
1877 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1879 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1880 Var0.Scale != -Var1.Scale)
1881 return false;
1883 unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1885 // We'll strip off the Extensions of Var0 and Var1 and do another round
1886 // of GetLinearExpression decomposition. In the example above, if Var0
1887 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1889 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1890 V1Offset(Width, 0);
1891 bool NSW = true, NUW = true;
1892 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1893 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1894 V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1895 NSW = true;
1896 NUW = true;
1897 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1898 V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1900 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1901 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1902 return false;
1904 // We have a hit - Var0 and Var1 only differ by a constant offset!
1906 // If we've been sext'ed then zext'd the maximum difference between Var0 and
1907 // Var1 is possible to calculate, but we're just interested in the absolute
1908 // minimum difference between the two. The minimum distance may occur due to
1909 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1910 // the minimum distance between %i and %i + 5 is 3.
1911 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1912 MinDiff = APIntOps::umin(MinDiff, Wrapped);
1913 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1915 // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1916 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1917 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1918 // V2Size can fit in the MinDiffBytes gap.
1919 return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1920 V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1923 //===----------------------------------------------------------------------===//
1924 // BasicAliasAnalysis Pass
1925 //===----------------------------------------------------------------------===//
1927 AnalysisKey BasicAA::Key;
1929 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1930 return BasicAAResult(F.getParent()->getDataLayout(),
1932 AM.getResult<TargetLibraryAnalysis>(F),
1933 AM.getResult<AssumptionAnalysis>(F),
1934 &AM.getResult<DominatorTreeAnalysis>(F),
1935 AM.getCachedResult<LoopAnalysis>(F),
1936 AM.getCachedResult<PhiValuesAnalysis>(F));
1939 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1940 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1943 char BasicAAWrapperPass::ID = 0;
1945 void BasicAAWrapperPass::anchor() {}
1947 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1948 "Basic Alias Analysis (stateless AA impl)", false, true)
1949 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1950 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1951 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1952 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1953 "Basic Alias Analysis (stateless AA impl)", false, true)
1955 FunctionPass *llvm::createBasicAAWrapperPass() {
1956 return new BasicAAWrapperPass();
1959 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1960 auto &ACT = getAnalysis<AssumptionCacheTracker>();
1961 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1962 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1963 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1964 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1966 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, TLIWP.getTLI(),
1967 ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1968 LIWP ? &LIWP->getLoopInfo() : nullptr,
1969 PVWP ? &PVWP->getResult() : nullptr));
1971 return false;
1974 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1975 AU.setPreservesAll();
1976 AU.addRequired<AssumptionCacheTracker>();
1977 AU.addRequired<DominatorTreeWrapperPass>();
1978 AU.addRequired<TargetLibraryInfoWrapperPass>();
1979 AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1982 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1983 return BasicAAResult(
1984 F.getParent()->getDataLayout(),
1986 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1987 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));