1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file "describes" induction and recurrence variables.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/IVDescriptors.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/DomTreeUpdater.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/ValueHandle.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/KnownBits.h"
40 using namespace llvm::PatternMatch
;
42 #define DEBUG_TYPE "iv-descriptors"
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction
*I
,
45 SmallPtrSetImpl
<Instruction
*> &Set
) {
46 for (User::op_iterator Use
= I
->op_begin(), E
= I
->op_end(); Use
!= E
; ++Use
)
47 if (!Set
.count(dyn_cast
<Instruction
>(*Use
)))
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind
) {
61 case RK_IntegerMinMax
:
67 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind
) {
68 return (Kind
!= RK_NoRecurrence
) && !isIntegerRecurrenceKind(Kind
);
71 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind
) {
84 /// Determines if Phi may have been type-promoted. If Phi has a single user
85 /// that ANDs the Phi with a type mask, return the user. RT is updated to
86 /// account for the narrower bit width represented by the mask, and the AND
87 /// instruction is added to CI.
88 static Instruction
*lookThroughAnd(PHINode
*Phi
, Type
*&RT
,
89 SmallPtrSetImpl
<Instruction
*> &Visited
,
90 SmallPtrSetImpl
<Instruction
*> &CI
) {
91 if (!Phi
->hasOneUse())
94 const APInt
*M
= nullptr;
95 Instruction
*I
, *J
= cast
<Instruction
>(Phi
->use_begin()->getUser());
97 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
98 // with a new integer type of the corresponding bit width.
99 if (match(J
, m_c_And(m_Instruction(I
), m_APInt(M
)))) {
100 int32_t Bits
= (*M
+ 1).exactLogBase2();
102 RT
= IntegerType::get(Phi
->getContext(), Bits
);
111 /// Compute the minimal bit width needed to represent a reduction whose exit
112 /// instruction is given by Exit.
113 static std::pair
<Type
*, bool> computeRecurrenceType(Instruction
*Exit
,
117 bool IsSigned
= false;
118 const DataLayout
&DL
= Exit
->getModule()->getDataLayout();
119 uint64_t MaxBitWidth
= DL
.getTypeSizeInBits(Exit
->getType());
122 // Use the demanded bits analysis to determine the bits that are live out
123 // of the exit instruction, rounding up to the nearest power of two. If the
124 // use of demanded bits results in a smaller bit width, we know the value
125 // must be positive (i.e., IsSigned = false), because if this were not the
126 // case, the sign bit would have been demanded.
127 auto Mask
= DB
->getDemandedBits(Exit
);
128 MaxBitWidth
= Mask
.getBitWidth() - Mask
.countLeadingZeros();
131 if (MaxBitWidth
== DL
.getTypeSizeInBits(Exit
->getType()) && AC
&& DT
) {
132 // If demanded bits wasn't able to limit the bit width, we can try to use
133 // value tracking instead. This can be the case, for example, if the value
135 auto NumSignBits
= ComputeNumSignBits(Exit
, DL
, 0, AC
, nullptr, DT
);
136 auto NumTypeBits
= DL
.getTypeSizeInBits(Exit
->getType());
137 MaxBitWidth
= NumTypeBits
- NumSignBits
;
138 KnownBits Bits
= computeKnownBits(Exit
, DL
);
139 if (!Bits
.isNonNegative()) {
140 // If the value is not known to be non-negative, we set IsSigned to true,
141 // meaning that we will use sext instructions instead of zext
142 // instructions to restore the original type.
144 if (!Bits
.isNegative())
145 // If the value is not known to be negative, we don't known what the
146 // upper bit is, and therefore, we don't know what kind of extend we
147 // will need. In this case, just increase the bit width by one bit and
152 if (!isPowerOf2_64(MaxBitWidth
))
153 MaxBitWidth
= NextPowerOf2(MaxBitWidth
);
155 return std::make_pair(Type::getIntNTy(Exit
->getContext(), MaxBitWidth
),
159 /// Collect cast instructions that can be ignored in the vectorizer's cost
160 /// model, given a reduction exit value and the minimal type in which the
161 /// reduction can be represented.
162 static void collectCastsToIgnore(Loop
*TheLoop
, Instruction
*Exit
,
163 Type
*RecurrenceType
,
164 SmallPtrSetImpl
<Instruction
*> &Casts
) {
166 SmallVector
<Instruction
*, 8> Worklist
;
167 SmallPtrSet
<Instruction
*, 8> Visited
;
168 Worklist
.push_back(Exit
);
170 while (!Worklist
.empty()) {
171 Instruction
*Val
= Worklist
.pop_back_val();
173 if (auto *Cast
= dyn_cast
<CastInst
>(Val
))
174 if (Cast
->getSrcTy() == RecurrenceType
) {
175 // If the source type of a cast instruction is equal to the recurrence
176 // type, it will be eliminated, and should be ignored in the vectorizer
182 // Add all operands to the work list if they are loop-varying values that
183 // we haven't yet visited.
184 for (Value
*O
: cast
<User
>(Val
)->operands())
185 if (auto *I
= dyn_cast
<Instruction
>(O
))
186 if (TheLoop
->contains(I
) && !Visited
.count(I
))
187 Worklist
.push_back(I
);
191 bool RecurrenceDescriptor::AddReductionVar(PHINode
*Phi
, RecurrenceKind Kind
,
192 Loop
*TheLoop
, bool HasFunNoNaNAttr
,
193 RecurrenceDescriptor
&RedDes
,
197 if (Phi
->getNumIncomingValues() != 2)
200 // Reduction variables are only found in the loop header block.
201 if (Phi
->getParent() != TheLoop
->getHeader())
204 // Obtain the reduction start value from the value that comes from the loop
206 Value
*RdxStart
= Phi
->getIncomingValueForBlock(TheLoop
->getLoopPreheader());
208 // ExitInstruction is the single value which is used outside the loop.
209 // We only allow for a single reduction value to be used outside the loop.
210 // This includes users of the reduction, variables (which form a cycle
211 // which ends in the phi node).
212 Instruction
*ExitInstruction
= nullptr;
213 // Indicates that we found a reduction operation in our scan.
214 bool FoundReduxOp
= false;
216 // We start with the PHI node and scan for all of the users of this
217 // instruction. All users must be instructions that can be used as reduction
218 // variables (such as ADD). We must have a single out-of-block user. The cycle
219 // must include the original PHI.
220 bool FoundStartPHI
= false;
222 // To recognize min/max patterns formed by a icmp select sequence, we store
223 // the number of instruction we saw from the recognized min/max pattern,
224 // to make sure we only see exactly the two instructions.
225 unsigned NumCmpSelectPatternInst
= 0;
226 InstDesc
ReduxDesc(false, nullptr);
228 // Data used for determining if the recurrence has been type-promoted.
229 Type
*RecurrenceType
= Phi
->getType();
230 SmallPtrSet
<Instruction
*, 4> CastInsts
;
231 Instruction
*Start
= Phi
;
232 bool IsSigned
= false;
234 SmallPtrSet
<Instruction
*, 8> VisitedInsts
;
235 SmallVector
<Instruction
*, 8> Worklist
;
237 // Return early if the recurrence kind does not match the type of Phi. If the
238 // recurrence kind is arithmetic, we attempt to look through AND operations
239 // resulting from the type promotion performed by InstCombine. Vector
240 // operations are not limited to the legal integer widths, so we may be able
241 // to evaluate the reduction in the narrower width.
242 if (RecurrenceType
->isFloatingPointTy()) {
243 if (!isFloatingPointRecurrenceKind(Kind
))
246 if (!isIntegerRecurrenceKind(Kind
))
248 if (isArithmeticRecurrenceKind(Kind
))
249 Start
= lookThroughAnd(Phi
, RecurrenceType
, VisitedInsts
, CastInsts
);
252 Worklist
.push_back(Start
);
253 VisitedInsts
.insert(Start
);
255 // A value in the reduction can be used:
256 // - By the reduction:
257 // - Reduction operation:
258 // - One use of reduction value (safe).
259 // - Multiple use of reduction value (not safe).
261 // - All uses of the PHI must be the reduction (safe).
262 // - Otherwise, not safe.
263 // - By instructions outside of the loop (safe).
264 // * One value may have several outside users, but all outside
265 // uses must be of the same value.
266 // - By an instruction that is not part of the reduction (not safe).
268 // * An instruction type other than PHI or the reduction operation.
269 // * A PHI in the header other than the initial PHI.
270 while (!Worklist
.empty()) {
271 Instruction
*Cur
= Worklist
.back();
275 // If the instruction has no users then this is a broken chain and can't be
276 // a reduction variable.
277 if (Cur
->use_empty())
280 bool IsAPhi
= isa
<PHINode
>(Cur
);
282 // A header PHI use other than the original PHI.
283 if (Cur
!= Phi
&& IsAPhi
&& Cur
->getParent() == Phi
->getParent())
286 // Reductions of instructions such as Div, and Sub is only possible if the
287 // LHS is the reduction variable.
288 if (!Cur
->isCommutative() && !IsAPhi
&& !isa
<SelectInst
>(Cur
) &&
289 !isa
<ICmpInst
>(Cur
) && !isa
<FCmpInst
>(Cur
) &&
290 !VisitedInsts
.count(dyn_cast
<Instruction
>(Cur
->getOperand(0))))
293 // Any reduction instruction must be of one of the allowed kinds. We ignore
294 // the starting value (the Phi or an AND instruction if the Phi has been
297 ReduxDesc
= isRecurrenceInstr(Cur
, Kind
, ReduxDesc
, HasFunNoNaNAttr
);
298 if (!ReduxDesc
.isRecurrence())
302 // A reduction operation must only have one use of the reduction value.
303 if (!IsAPhi
&& Kind
!= RK_IntegerMinMax
&& Kind
!= RK_FloatMinMax
&&
304 hasMultipleUsesOf(Cur
, VisitedInsts
))
307 // All inputs to a PHI node must be a reduction value.
308 if (IsAPhi
&& Cur
!= Phi
&& !areAllUsesIn(Cur
, VisitedInsts
))
311 if (Kind
== RK_IntegerMinMax
&&
312 (isa
<ICmpInst
>(Cur
) || isa
<SelectInst
>(Cur
)))
313 ++NumCmpSelectPatternInst
;
314 if (Kind
== RK_FloatMinMax
&& (isa
<FCmpInst
>(Cur
) || isa
<SelectInst
>(Cur
)))
315 ++NumCmpSelectPatternInst
;
317 // Check whether we found a reduction operator.
318 FoundReduxOp
|= !IsAPhi
&& Cur
!= Start
;
320 // Process users of current instruction. Push non-PHI nodes after PHI nodes
321 // onto the stack. This way we are going to have seen all inputs to PHI
322 // nodes once we get to them.
323 SmallVector
<Instruction
*, 8> NonPHIs
;
324 SmallVector
<Instruction
*, 8> PHIs
;
325 for (User
*U
: Cur
->users()) {
326 Instruction
*UI
= cast
<Instruction
>(U
);
328 // Check if we found the exit user.
329 BasicBlock
*Parent
= UI
->getParent();
330 if (!TheLoop
->contains(Parent
)) {
331 // If we already know this instruction is used externally, move on to
333 if (ExitInstruction
== Cur
)
336 // Exit if you find multiple values used outside or if the header phi
337 // node is being used. In this case the user uses the value of the
338 // previous iteration, in which case we would loose "VF-1" iterations of
339 // the reduction operation if we vectorize.
340 if (ExitInstruction
!= nullptr || Cur
== Phi
)
343 // The instruction used by an outside user must be the last instruction
344 // before we feed back to the reduction phi. Otherwise, we loose VF-1
345 // operations on the value.
346 if (!is_contained(Phi
->operands(), Cur
))
349 ExitInstruction
= Cur
;
353 // Process instructions only once (termination). Each reduction cycle
354 // value must only be used once, except by phi nodes and min/max
355 // reductions which are represented as a cmp followed by a select.
356 InstDesc
IgnoredVal(false, nullptr);
357 if (VisitedInsts
.insert(UI
).second
) {
358 if (isa
<PHINode
>(UI
))
361 NonPHIs
.push_back(UI
);
362 } else if (!isa
<PHINode
>(UI
) &&
363 ((!isa
<FCmpInst
>(UI
) && !isa
<ICmpInst
>(UI
) &&
364 !isa
<SelectInst
>(UI
)) ||
365 !isMinMaxSelectCmpPattern(UI
, IgnoredVal
).isRecurrence()))
368 // Remember that we completed the cycle.
370 FoundStartPHI
= true;
372 Worklist
.append(PHIs
.begin(), PHIs
.end());
373 Worklist
.append(NonPHIs
.begin(), NonPHIs
.end());
376 // This means we have seen one but not the other instruction of the
377 // pattern or more than just a select and cmp.
378 if ((Kind
== RK_IntegerMinMax
|| Kind
== RK_FloatMinMax
) &&
379 NumCmpSelectPatternInst
!= 2)
382 if (!FoundStartPHI
|| !FoundReduxOp
|| !ExitInstruction
)
386 // If the starting value is not the same as the phi node, we speculatively
387 // looked through an 'and' instruction when evaluating a potential
388 // arithmetic reduction to determine if it may have been type-promoted.
390 // We now compute the minimal bit width that is required to represent the
391 // reduction. If this is the same width that was indicated by the 'and', we
392 // can represent the reduction in the smaller type. The 'and' instruction
393 // will be eliminated since it will essentially be a cast instruction that
394 // can be ignore in the cost model. If we compute a different type than we
395 // did when evaluating the 'and', the 'and' will not be eliminated, and we
396 // will end up with different kinds of operations in the recurrence
397 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
400 // The vectorizer relies on InstCombine to perform the actual
401 // type-shrinking. It does this by inserting instructions to truncate the
402 // exit value of the reduction to the width indicated by RecurrenceType and
403 // then extend this value back to the original width. If IsSigned is false,
404 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
407 // TODO: We should not rely on InstCombine to rewrite the reduction in the
408 // smaller type. We should just generate a correctly typed expression
411 std::tie(ComputedType
, IsSigned
) =
412 computeRecurrenceType(ExitInstruction
, DB
, AC
, DT
);
413 if (ComputedType
!= RecurrenceType
)
416 // The recurrence expression will be represented in a narrower type. If
417 // there are any cast instructions that will be unnecessary, collect them
418 // in CastInsts. Note that the 'and' instruction was already included in
421 // TODO: A better way to represent this may be to tag in some way all the
422 // instructions that are a part of the reduction. The vectorizer cost
423 // model could then apply the recurrence type to these instructions,
424 // without needing a white list of instructions to ignore.
425 collectCastsToIgnore(TheLoop
, ExitInstruction
, RecurrenceType
, CastInsts
);
428 // We found a reduction var if we have reached the original phi node and we
429 // only have a single instruction with out-of-loop users.
431 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
432 // is saved as part of the RecurrenceDescriptor.
434 // Save the description of this reduction variable.
435 RecurrenceDescriptor
RD(
436 RdxStart
, ExitInstruction
, Kind
, ReduxDesc
.getMinMaxKind(),
437 ReduxDesc
.getUnsafeAlgebraInst(), RecurrenceType
, IsSigned
, CastInsts
);
443 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
444 /// pattern corresponding to a min(X, Y) or max(X, Y).
445 RecurrenceDescriptor::InstDesc
446 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction
*I
, InstDesc
&Prev
) {
448 assert((isa
<ICmpInst
>(I
) || isa
<FCmpInst
>(I
) || isa
<SelectInst
>(I
)) &&
449 "Expect a select instruction");
450 Instruction
*Cmp
= nullptr;
451 SelectInst
*Select
= nullptr;
453 // We must handle the select(cmp()) as a single instruction. Advance to the
455 if ((Cmp
= dyn_cast
<ICmpInst
>(I
)) || (Cmp
= dyn_cast
<FCmpInst
>(I
))) {
456 if (!Cmp
->hasOneUse() || !(Select
= dyn_cast
<SelectInst
>(*I
->user_begin())))
457 return InstDesc(false, I
);
458 return InstDesc(Select
, Prev
.getMinMaxKind());
461 // Only handle single use cases for now.
462 if (!(Select
= dyn_cast
<SelectInst
>(I
)))
463 return InstDesc(false, I
);
464 if (!(Cmp
= dyn_cast
<ICmpInst
>(I
->getOperand(0))) &&
465 !(Cmp
= dyn_cast
<FCmpInst
>(I
->getOperand(0))))
466 return InstDesc(false, I
);
467 if (!Cmp
->hasOneUse())
468 return InstDesc(false, I
);
473 // Look for a min/max pattern.
474 if (m_UMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
475 return InstDesc(Select
, MRK_UIntMin
);
476 else if (m_UMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
477 return InstDesc(Select
, MRK_UIntMax
);
478 else if (m_SMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
479 return InstDesc(Select
, MRK_SIntMax
);
480 else if (m_SMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
481 return InstDesc(Select
, MRK_SIntMin
);
482 else if (m_OrdFMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
483 return InstDesc(Select
, MRK_FloatMin
);
484 else if (m_OrdFMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
485 return InstDesc(Select
, MRK_FloatMax
);
486 else if (m_UnordFMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
487 return InstDesc(Select
, MRK_FloatMin
);
488 else if (m_UnordFMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
489 return InstDesc(Select
, MRK_FloatMax
);
491 return InstDesc(false, I
);
494 RecurrenceDescriptor::InstDesc
495 RecurrenceDescriptor::isRecurrenceInstr(Instruction
*I
, RecurrenceKind Kind
,
496 InstDesc
&Prev
, bool HasFunNoNaNAttr
) {
497 bool FP
= I
->getType()->isFloatingPointTy();
498 Instruction
*UAI
= Prev
.getUnsafeAlgebraInst();
499 if (!UAI
&& FP
&& !I
->isFast())
500 UAI
= I
; // Found an unsafe (unvectorizable) algebra instruction.
502 switch (I
->getOpcode()) {
504 return InstDesc(false, I
);
505 case Instruction::PHI
:
506 return InstDesc(I
, Prev
.getMinMaxKind(), Prev
.getUnsafeAlgebraInst());
507 case Instruction::Sub
:
508 case Instruction::Add
:
509 return InstDesc(Kind
== RK_IntegerAdd
, I
);
510 case Instruction::Mul
:
511 return InstDesc(Kind
== RK_IntegerMult
, I
);
512 case Instruction::And
:
513 return InstDesc(Kind
== RK_IntegerAnd
, I
);
514 case Instruction::Or
:
515 return InstDesc(Kind
== RK_IntegerOr
, I
);
516 case Instruction::Xor
:
517 return InstDesc(Kind
== RK_IntegerXor
, I
);
518 case Instruction::FMul
:
519 return InstDesc(Kind
== RK_FloatMult
, I
, UAI
);
520 case Instruction::FSub
:
521 case Instruction::FAdd
:
522 return InstDesc(Kind
== RK_FloatAdd
, I
, UAI
);
523 case Instruction::FCmp
:
524 case Instruction::ICmp
:
525 case Instruction::Select
:
526 if (Kind
!= RK_IntegerMinMax
&&
527 (!HasFunNoNaNAttr
|| Kind
!= RK_FloatMinMax
))
528 return InstDesc(false, I
);
529 return isMinMaxSelectCmpPattern(I
, Prev
);
533 bool RecurrenceDescriptor::hasMultipleUsesOf(
534 Instruction
*I
, SmallPtrSetImpl
<Instruction
*> &Insts
) {
535 unsigned NumUses
= 0;
536 for (User::op_iterator Use
= I
->op_begin(), E
= I
->op_end(); Use
!= E
;
538 if (Insts
.count(dyn_cast
<Instruction
>(*Use
)))
546 bool RecurrenceDescriptor::isReductionPHI(PHINode
*Phi
, Loop
*TheLoop
,
547 RecurrenceDescriptor
&RedDes
,
548 DemandedBits
*DB
, AssumptionCache
*AC
,
551 BasicBlock
*Header
= TheLoop
->getHeader();
552 Function
&F
= *Header
->getParent();
553 bool HasFunNoNaNAttr
=
554 F
.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
556 if (AddReductionVar(Phi
, RK_IntegerAdd
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
558 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi
<< "\n");
561 if (AddReductionVar(Phi
, RK_IntegerMult
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
563 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi
<< "\n");
566 if (AddReductionVar(Phi
, RK_IntegerOr
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
568 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi
<< "\n");
571 if (AddReductionVar(Phi
, RK_IntegerAnd
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
573 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi
<< "\n");
576 if (AddReductionVar(Phi
, RK_IntegerXor
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
578 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi
<< "\n");
581 if (AddReductionVar(Phi
, RK_IntegerMinMax
, TheLoop
, HasFunNoNaNAttr
, RedDes
,
583 LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi
<< "\n");
586 if (AddReductionVar(Phi
, RK_FloatMult
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
588 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi
<< "\n");
591 if (AddReductionVar(Phi
, RK_FloatAdd
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
593 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi
<< "\n");
596 if (AddReductionVar(Phi
, RK_FloatMinMax
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
598 LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
602 // Not a reduction of known type.
606 bool RecurrenceDescriptor::isFirstOrderRecurrence(
607 PHINode
*Phi
, Loop
*TheLoop
,
608 DenseMap
<Instruction
*, Instruction
*> &SinkAfter
, DominatorTree
*DT
) {
610 // Ensure the phi node is in the loop header and has two incoming values.
611 if (Phi
->getParent() != TheLoop
->getHeader() ||
612 Phi
->getNumIncomingValues() != 2)
615 // Ensure the loop has a preheader and a single latch block. The loop
616 // vectorizer will need the latch to set up the next iteration of the loop.
617 auto *Preheader
= TheLoop
->getLoopPreheader();
618 auto *Latch
= TheLoop
->getLoopLatch();
619 if (!Preheader
|| !Latch
)
622 // Ensure the phi node's incoming blocks are the loop preheader and latch.
623 if (Phi
->getBasicBlockIndex(Preheader
) < 0 ||
624 Phi
->getBasicBlockIndex(Latch
) < 0)
627 // Get the previous value. The previous value comes from the latch edge while
628 // the initial value comes form the preheader edge.
629 auto *Previous
= dyn_cast
<Instruction
>(Phi
->getIncomingValueForBlock(Latch
));
630 if (!Previous
|| !TheLoop
->contains(Previous
) || isa
<PHINode
>(Previous
) ||
631 SinkAfter
.count(Previous
)) // Cannot rely on dominance due to motion.
634 // Ensure every user of the phi node is dominated by the previous value.
635 // The dominance requirement ensures the loop vectorizer will not need to
636 // vectorize the initial value prior to the first iteration of the loop.
637 // TODO: Consider extending this sinking to handle other kinds of instructions
638 // and expressions, beyond sinking a single cast past Previous.
639 if (Phi
->hasOneUse()) {
640 auto *I
= Phi
->user_back();
641 if (I
->isCast() && (I
->getParent() == Phi
->getParent()) && I
->hasOneUse() &&
642 DT
->dominates(Previous
, I
->user_back())) {
643 if (!DT
->dominates(Previous
, I
)) // Otherwise we're good w/o sinking.
644 SinkAfter
[I
] = Previous
;
649 for (User
*U
: Phi
->users())
650 if (auto *I
= dyn_cast
<Instruction
>(U
)) {
651 if (!DT
->dominates(Previous
, I
))
658 /// This function returns the identity element (or neutral element) for
660 Constant
*RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K
,
666 // Adding, Xoring, Oring zero to a number does not change it.
667 return ConstantInt::get(Tp
, 0);
669 // Multiplying a number by 1 does not change it.
670 return ConstantInt::get(Tp
, 1);
672 // AND-ing a number with an all-1 value does not change it.
673 return ConstantInt::get(Tp
, -1, true);
675 // Multiplying a number by 1 does not change it.
676 return ConstantFP::get(Tp
, 1.0L);
678 // Adding zero to a number does not change it.
679 return ConstantFP::get(Tp
, 0.0L);
681 llvm_unreachable("Unknown recurrence kind");
685 /// This function translates the recurrence kind to an LLVM binary operator.
686 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind
) {
689 return Instruction::Add
;
691 return Instruction::Mul
;
693 return Instruction::Or
;
695 return Instruction::And
;
697 return Instruction::Xor
;
699 return Instruction::FMul
;
701 return Instruction::FAdd
;
702 case RK_IntegerMinMax
:
703 return Instruction::ICmp
;
705 return Instruction::FCmp
;
707 llvm_unreachable("Unknown recurrence operation");
711 InductionDescriptor::InductionDescriptor(Value
*Start
, InductionKind K
,
712 const SCEV
*Step
, BinaryOperator
*BOp
,
713 SmallVectorImpl
<Instruction
*> *Casts
)
714 : StartValue(Start
), IK(K
), Step(Step
), InductionBinOp(BOp
) {
715 assert(IK
!= IK_NoInduction
&& "Not an induction");
717 // Start value type should match the induction kind and the value
718 // itself should not be null.
719 assert(StartValue
&& "StartValue is null");
720 assert((IK
!= IK_PtrInduction
|| StartValue
->getType()->isPointerTy()) &&
721 "StartValue is not a pointer for pointer induction");
722 assert((IK
!= IK_IntInduction
|| StartValue
->getType()->isIntegerTy()) &&
723 "StartValue is not an integer for integer induction");
725 // Check the Step Value. It should be non-zero integer value.
726 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
727 "Step value is zero");
729 assert((IK
!= IK_PtrInduction
|| getConstIntStepValue()) &&
730 "Step value should be constant for pointer induction");
731 assert((IK
== IK_FpInduction
|| Step
->getType()->isIntegerTy()) &&
732 "StepValue is not an integer");
734 assert((IK
!= IK_FpInduction
|| Step
->getType()->isFloatingPointTy()) &&
735 "StepValue is not FP for FpInduction");
736 assert((IK
!= IK_FpInduction
||
738 (InductionBinOp
->getOpcode() == Instruction::FAdd
||
739 InductionBinOp
->getOpcode() == Instruction::FSub
))) &&
740 "Binary opcode should be specified for FP induction");
743 for (auto &Inst
: *Casts
) {
744 RedundantCasts
.push_back(Inst
);
749 int InductionDescriptor::getConsecutiveDirection() const {
750 ConstantInt
*ConstStep
= getConstIntStepValue();
751 if (ConstStep
&& (ConstStep
->isOne() || ConstStep
->isMinusOne()))
752 return ConstStep
->getSExtValue();
756 ConstantInt
*InductionDescriptor::getConstIntStepValue() const {
757 if (isa
<SCEVConstant
>(Step
))
758 return dyn_cast
<ConstantInt
>(cast
<SCEVConstant
>(Step
)->getValue());
762 bool InductionDescriptor::isFPInductionPHI(PHINode
*Phi
, const Loop
*TheLoop
,
764 InductionDescriptor
&D
) {
766 // Here we only handle FP induction variables.
767 assert(Phi
->getType()->isFloatingPointTy() && "Unexpected Phi type");
769 if (TheLoop
->getHeader() != Phi
->getParent())
772 // The loop may have multiple entrances or multiple exits; we can analyze
773 // this phi if it has a unique entry value and a unique backedge value.
774 if (Phi
->getNumIncomingValues() != 2)
776 Value
*BEValue
= nullptr, *StartValue
= nullptr;
777 if (TheLoop
->contains(Phi
->getIncomingBlock(0))) {
778 BEValue
= Phi
->getIncomingValue(0);
779 StartValue
= Phi
->getIncomingValue(1);
781 assert(TheLoop
->contains(Phi
->getIncomingBlock(1)) &&
782 "Unexpected Phi node in the loop");
783 BEValue
= Phi
->getIncomingValue(1);
784 StartValue
= Phi
->getIncomingValue(0);
787 BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(BEValue
);
791 Value
*Addend
= nullptr;
792 if (BOp
->getOpcode() == Instruction::FAdd
) {
793 if (BOp
->getOperand(0) == Phi
)
794 Addend
= BOp
->getOperand(1);
795 else if (BOp
->getOperand(1) == Phi
)
796 Addend
= BOp
->getOperand(0);
797 } else if (BOp
->getOpcode() == Instruction::FSub
)
798 if (BOp
->getOperand(0) == Phi
)
799 Addend
= BOp
->getOperand(1);
804 // The addend should be loop invariant
805 if (auto *I
= dyn_cast
<Instruction
>(Addend
))
806 if (TheLoop
->contains(I
))
809 // FP Step has unknown SCEV
810 const SCEV
*Step
= SE
->getUnknown(Addend
);
811 D
= InductionDescriptor(StartValue
, IK_FpInduction
, Step
, BOp
);
815 /// This function is called when we suspect that the update-chain of a phi node
816 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
817 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
818 /// predicate P under which the SCEV expression for the phi can be the
819 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
820 /// cast instructions that are involved in the update-chain of this induction.
821 /// A caller that adds the required runtime predicate can be free to drop these
822 /// cast instructions, and compute the phi using \p AR (instead of some scev
823 /// expression with casts).
825 /// For example, without a predicate the scev expression can take the following
827 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
829 /// It corresponds to the following IR sequence:
831 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
832 /// %casted_phi = "ExtTrunc i64 %x"
833 /// %add = add i64 %casted_phi, %step
835 /// where %x is given in \p PN,
836 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
837 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
838 /// several forms, for example, such as:
839 /// ExtTrunc1: %casted_phi = and %x, 2^n-1
841 /// ExtTrunc2: %t = shl %x, m
842 /// %casted_phi = ashr %t, m
844 /// If we are able to find such sequence, we return the instructions
845 /// we found, namely %casted_phi and the instructions on its use-def chain up
846 /// to the phi (not including the phi).
847 static bool getCastsForInductionPHI(PredicatedScalarEvolution
&PSE
,
848 const SCEVUnknown
*PhiScev
,
849 const SCEVAddRecExpr
*AR
,
850 SmallVectorImpl
<Instruction
*> &CastInsts
) {
852 assert(CastInsts
.empty() && "CastInsts is expected to be empty.");
853 auto *PN
= cast
<PHINode
>(PhiScev
->getValue());
854 assert(PSE
.getSCEV(PN
) == AR
&& "Unexpected phi node SCEV expression");
855 const Loop
*L
= AR
->getLoop();
857 // Find any cast instructions that participate in the def-use chain of
858 // PhiScev in the loop.
859 // FORNOW/TODO: We currently expect the def-use chain to include only
860 // two-operand instructions, where one of the operands is an invariant.
861 // createAddRecFromPHIWithCasts() currently does not support anything more
862 // involved than that, so we keep the search simple. This can be
863 // extended/generalized as needed.
865 auto getDef
= [&](const Value
*Val
) -> Value
* {
866 const BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(Val
);
869 Value
*Op0
= BinOp
->getOperand(0);
870 Value
*Op1
= BinOp
->getOperand(1);
871 Value
*Def
= nullptr;
872 if (L
->isLoopInvariant(Op0
))
874 else if (L
->isLoopInvariant(Op1
))
879 // Look for the instruction that defines the induction via the
881 BasicBlock
*Latch
= L
->getLoopLatch();
884 Value
*Val
= PN
->getIncomingValueForBlock(Latch
);
888 // Follow the def-use chain until the induction phi is reached.
889 // If on the way we encounter a Value that has the same SCEV Expr as the
890 // phi node, we can consider the instructions we visit from that point
891 // as part of the cast-sequence that can be ignored.
892 bool InCastSequence
= false;
893 auto *Inst
= dyn_cast
<Instruction
>(Val
);
895 // If we encountered a phi node other than PN, or if we left the loop,
897 if (!Inst
|| !L
->contains(Inst
)) {
900 auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(PSE
.getSCEV(Val
));
901 if (AddRec
&& PSE
.areAddRecsEqualWithPreds(AddRec
, AR
))
902 InCastSequence
= true;
903 if (InCastSequence
) {
904 // Only the last instruction in the cast sequence is expected to have
905 // uses outside the induction def-use chain.
906 if (!CastInsts
.empty())
907 if (!Inst
->hasOneUse())
909 CastInsts
.push_back(Inst
);
914 Inst
= dyn_cast
<Instruction
>(Val
);
917 return InCastSequence
;
920 bool InductionDescriptor::isInductionPHI(PHINode
*Phi
, const Loop
*TheLoop
,
921 PredicatedScalarEvolution
&PSE
,
922 InductionDescriptor
&D
, bool Assume
) {
923 Type
*PhiTy
= Phi
->getType();
925 // Handle integer and pointer inductions variables.
926 // Now we handle also FP induction but not trying to make a
927 // recurrent expression from the PHI node in-place.
929 if (!PhiTy
->isIntegerTy() && !PhiTy
->isPointerTy() && !PhiTy
->isFloatTy() &&
930 !PhiTy
->isDoubleTy() && !PhiTy
->isHalfTy())
933 if (PhiTy
->isFloatingPointTy())
934 return isFPInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
);
936 const SCEV
*PhiScev
= PSE
.getSCEV(Phi
);
937 const auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PhiScev
);
939 // We need this expression to be an AddRecExpr.
941 AR
= PSE
.getAsAddRec(Phi
);
944 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
948 // Record any Cast instructions that participate in the induction update
949 const auto *SymbolicPhi
= dyn_cast
<SCEVUnknown
>(PhiScev
);
950 // If we started from an UnknownSCEV, and managed to build an addRecurrence
951 // only after enabling Assume with PSCEV, this means we may have encountered
952 // cast instructions that required adding a runtime check in order to
953 // guarantee the correctness of the AddRecurence respresentation of the
955 if (PhiScev
!= AR
&& SymbolicPhi
) {
956 SmallVector
<Instruction
*, 2> Casts
;
957 if (getCastsForInductionPHI(PSE
, SymbolicPhi
, AR
, Casts
))
958 return isInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
, AR
, &Casts
);
961 return isInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
, AR
);
964 bool InductionDescriptor::isInductionPHI(
965 PHINode
*Phi
, const Loop
*TheLoop
, ScalarEvolution
*SE
,
966 InductionDescriptor
&D
, const SCEV
*Expr
,
967 SmallVectorImpl
<Instruction
*> *CastsToIgnore
) {
968 Type
*PhiTy
= Phi
->getType();
969 // We only handle integer and pointer inductions variables.
970 if (!PhiTy
->isIntegerTy() && !PhiTy
->isPointerTy())
973 // Check that the PHI is consecutive.
974 const SCEV
*PhiScev
= Expr
? Expr
: SE
->getSCEV(Phi
);
975 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PhiScev
);
978 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
982 if (AR
->getLoop() != TheLoop
) {
983 // FIXME: We should treat this as a uniform. Unfortunately, we
984 // don't currently know how to handled uniform PHIs.
986 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
991 Phi
->getIncomingValueForBlock(AR
->getLoop()->getLoopPreheader());
992 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
993 // Calculate the pointer stride and check if it is consecutive.
994 // The stride may be a constant or a loop invariant integer value.
995 const SCEVConstant
*ConstStep
= dyn_cast
<SCEVConstant
>(Step
);
996 if (!ConstStep
&& !SE
->isLoopInvariant(Step
, TheLoop
))
999 if (PhiTy
->isIntegerTy()) {
1000 D
= InductionDescriptor(StartValue
, IK_IntInduction
, Step
, /*BOp=*/nullptr,
1005 assert(PhiTy
->isPointerTy() && "The PHI must be a pointer");
1006 // Pointer induction should be a constant.
1010 ConstantInt
*CV
= ConstStep
->getValue();
1011 Type
*PointerElementType
= PhiTy
->getPointerElementType();
1012 // The pointer stride cannot be determined if the pointer element type is not
1014 if (!PointerElementType
->isSized())
1017 const DataLayout
&DL
= Phi
->getModule()->getDataLayout();
1018 int64_t Size
= static_cast<int64_t>(DL
.getTypeAllocSize(PointerElementType
));
1022 int64_t CVSize
= CV
->getSExtValue();
1026 SE
->getConstant(CV
->getType(), CVSize
/ Size
, true /* signed */);
1027 D
= InductionDescriptor(StartValue
, IK_PtrInduction
, StepValue
);