[PowerPC] Remove self-copies in pre-emit peephole
[llvm-core.git] / lib / CodeGen / AtomicExpandPass.cpp
blobc1b9879401527c1b48b7e9ac95a036d2a96faf77
1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass (at IR level) to replace atomic instructions with
11 // __atomic_* library calls, or target specific instruction which implement the
12 // same semantics in a way which better fits the target backend. This can
13 // include the use of (intrinsic-based) load-linked/store-conditional loops,
14 // AtomicCmpXchg, or type coercions.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/AtomicExpandUtils.h"
22 #include "llvm/CodeGen/RuntimeLibcalls.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
53 using namespace llvm;
55 #define DEBUG_TYPE "atomic-expand"
57 namespace {
59 class AtomicExpand: public FunctionPass {
60 const TargetLowering *TLI = nullptr;
62 public:
63 static char ID; // Pass identification, replacement for typeid
65 AtomicExpand() : FunctionPass(ID) {
66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
69 bool runOnFunction(Function &F) override;
71 private:
72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75 bool tryExpandAtomicLoad(LoadInst *LI);
76 bool expandAtomicLoadToLL(LoadInst *LI);
77 bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79 bool expandAtomicStore(StoreInst *SI);
80 bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81 Value *
82 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
83 AtomicOrdering MemOpOrder,
84 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
85 void expandAtomicOpToLLSC(
86 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
87 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
88 void expandPartwordAtomicRMW(
89 AtomicRMWInst *I,
90 TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92 void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
95 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
96 static Value *insertRMWCmpXchgLoop(
97 IRBuilder<> &Builder, Type *ResultType, Value *Addr,
98 AtomicOrdering MemOpOrder,
99 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
100 CreateCmpXchgInstFun CreateCmpXchg);
101 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
104 bool isIdempotentRMW(AtomicRMWInst *RMWI);
105 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align,
108 Value *PointerOperand, Value *ValueOperand,
109 Value *CASExpected, AtomicOrdering Ordering,
110 AtomicOrdering Ordering2,
111 ArrayRef<RTLIB::Libcall> Libcalls);
112 void expandAtomicLoadToLibcall(LoadInst *LI);
113 void expandAtomicStoreToLibcall(StoreInst *LI);
114 void expandAtomicRMWToLibcall(AtomicRMWInst *I);
115 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117 friend bool
118 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
119 CreateCmpXchgInstFun CreateCmpXchg);
122 } // end anonymous namespace
124 char AtomicExpand::ID = 0;
126 char &llvm::AtomicExpandID = AtomicExpand::ID;
128 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
129 false, false)
131 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
133 // Helper functions to retrieve the size of atomic instructions.
134 static unsigned getAtomicOpSize(LoadInst *LI) {
135 const DataLayout &DL = LI->getModule()->getDataLayout();
136 return DL.getTypeStoreSize(LI->getType());
139 static unsigned getAtomicOpSize(StoreInst *SI) {
140 const DataLayout &DL = SI->getModule()->getDataLayout();
141 return DL.getTypeStoreSize(SI->getValueOperand()->getType());
144 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
145 const DataLayout &DL = RMWI->getModule()->getDataLayout();
146 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
149 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
150 const DataLayout &DL = CASI->getModule()->getDataLayout();
151 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
154 // Helper functions to retrieve the alignment of atomic instructions.
155 static unsigned getAtomicOpAlign(LoadInst *LI) {
156 unsigned Align = LI->getAlignment();
157 // In the future, if this IR restriction is relaxed, we should
158 // return DataLayout::getABITypeAlignment when there's no align
159 // value.
160 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment");
161 return Align;
164 static unsigned getAtomicOpAlign(StoreInst *SI) {
165 unsigned Align = SI->getAlignment();
166 // In the future, if this IR restriction is relaxed, we should
167 // return DataLayout::getABITypeAlignment when there's no align
168 // value.
169 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment");
170 return Align;
173 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) {
174 // TODO(PR27168): This instruction has no alignment attribute, but unlike the
175 // default alignment for load/store, the default here is to assume
176 // it has NATURAL alignment, not DataLayout-specified alignment.
177 const DataLayout &DL = RMWI->getModule()->getDataLayout();
178 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
181 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) {
182 // TODO(PR27168): same comment as above.
183 const DataLayout &DL = CASI->getModule()->getDataLayout();
184 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
187 // Determine if a particular atomic operation has a supported size,
188 // and is of appropriate alignment, to be passed through for target
189 // lowering. (Versus turning into a __atomic libcall)
190 template <typename Inst>
191 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
192 unsigned Size = getAtomicOpSize(I);
193 unsigned Align = getAtomicOpAlign(I);
194 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
197 bool AtomicExpand::runOnFunction(Function &F) {
198 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
199 if (!TPC)
200 return false;
202 auto &TM = TPC->getTM<TargetMachine>();
203 if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
204 return false;
205 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
207 SmallVector<Instruction *, 1> AtomicInsts;
209 // Changing control-flow while iterating through it is a bad idea, so gather a
210 // list of all atomic instructions before we start.
211 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
212 Instruction *I = &*II;
213 if (I->isAtomic() && !isa<FenceInst>(I))
214 AtomicInsts.push_back(I);
217 bool MadeChange = false;
218 for (auto I : AtomicInsts) {
219 auto LI = dyn_cast<LoadInst>(I);
220 auto SI = dyn_cast<StoreInst>(I);
221 auto RMWI = dyn_cast<AtomicRMWInst>(I);
222 auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
223 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
225 // If the Size/Alignment is not supported, replace with a libcall.
226 if (LI) {
227 if (!atomicSizeSupported(TLI, LI)) {
228 expandAtomicLoadToLibcall(LI);
229 MadeChange = true;
230 continue;
232 } else if (SI) {
233 if (!atomicSizeSupported(TLI, SI)) {
234 expandAtomicStoreToLibcall(SI);
235 MadeChange = true;
236 continue;
238 } else if (RMWI) {
239 if (!atomicSizeSupported(TLI, RMWI)) {
240 expandAtomicRMWToLibcall(RMWI);
241 MadeChange = true;
242 continue;
244 } else if (CASI) {
245 if (!atomicSizeSupported(TLI, CASI)) {
246 expandAtomicCASToLibcall(CASI);
247 MadeChange = true;
248 continue;
252 if (TLI->shouldInsertFencesForAtomic(I)) {
253 auto FenceOrdering = AtomicOrdering::Monotonic;
254 if (LI && isAcquireOrStronger(LI->getOrdering())) {
255 FenceOrdering = LI->getOrdering();
256 LI->setOrdering(AtomicOrdering::Monotonic);
257 } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
258 FenceOrdering = SI->getOrdering();
259 SI->setOrdering(AtomicOrdering::Monotonic);
260 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
261 isAcquireOrStronger(RMWI->getOrdering()))) {
262 FenceOrdering = RMWI->getOrdering();
263 RMWI->setOrdering(AtomicOrdering::Monotonic);
264 } else if (CASI &&
265 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
266 TargetLoweringBase::AtomicExpansionKind::None &&
267 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
268 isAcquireOrStronger(CASI->getSuccessOrdering()))) {
269 // If a compare and swap is lowered to LL/SC, we can do smarter fence
270 // insertion, with a stronger one on the success path than on the
271 // failure path. As a result, fence insertion is directly done by
272 // expandAtomicCmpXchg in that case.
273 FenceOrdering = CASI->getSuccessOrdering();
274 CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
275 CASI->setFailureOrdering(AtomicOrdering::Monotonic);
278 if (FenceOrdering != AtomicOrdering::Monotonic) {
279 MadeChange |= bracketInstWithFences(I, FenceOrdering);
283 if (LI) {
284 if (LI->getType()->isFloatingPointTy()) {
285 // TODO: add a TLI hook to control this so that each target can
286 // convert to lowering the original type one at a time.
287 LI = convertAtomicLoadToIntegerType(LI);
288 assert(LI->getType()->isIntegerTy() && "invariant broken");
289 MadeChange = true;
292 MadeChange |= tryExpandAtomicLoad(LI);
293 } else if (SI) {
294 if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
295 // TODO: add a TLI hook to control this so that each target can
296 // convert to lowering the original type one at a time.
297 SI = convertAtomicStoreToIntegerType(SI);
298 assert(SI->getValueOperand()->getType()->isIntegerTy() &&
299 "invariant broken");
300 MadeChange = true;
303 if (TLI->shouldExpandAtomicStoreInIR(SI))
304 MadeChange |= expandAtomicStore(SI);
305 } else if (RMWI) {
306 // There are two different ways of expanding RMW instructions:
307 // - into a load if it is idempotent
308 // - into a Cmpxchg/LL-SC loop otherwise
309 // we try them in that order.
311 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
312 MadeChange = true;
313 } else {
314 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
315 unsigned ValueSize = getAtomicOpSize(RMWI);
316 AtomicRMWInst::BinOp Op = RMWI->getOperation();
317 if (ValueSize < MinCASSize &&
318 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
319 Op == AtomicRMWInst::And)) {
320 RMWI = widenPartwordAtomicRMW(RMWI);
321 MadeChange = true;
324 MadeChange |= tryExpandAtomicRMW(RMWI);
326 } else if (CASI) {
327 // TODO: when we're ready to make the change at the IR level, we can
328 // extend convertCmpXchgToInteger for floating point too.
329 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
330 "unimplemented - floating point not legal at IR level");
331 if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
332 // TODO: add a TLI hook to control this so that each target can
333 // convert to lowering the original type one at a time.
334 CASI = convertCmpXchgToIntegerType(CASI);
335 assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
336 "invariant broken");
337 MadeChange = true;
340 MadeChange |= tryExpandAtomicCmpXchg(CASI);
343 return MadeChange;
346 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
347 IRBuilder<> Builder(I);
349 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
351 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
352 // We have a guard here because not every atomic operation generates a
353 // trailing fence.
354 if (TrailingFence)
355 TrailingFence->moveAfter(I);
357 return (LeadingFence || TrailingFence);
360 /// Get the iX type with the same bitwidth as T.
361 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
362 const DataLayout &DL) {
363 EVT VT = TLI->getValueType(DL, T);
364 unsigned BitWidth = VT.getStoreSizeInBits();
365 assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
366 return IntegerType::get(T->getContext(), BitWidth);
369 /// Convert an atomic load of a non-integral type to an integer load of the
370 /// equivalent bitwidth. See the function comment on
371 /// convertAtomicStoreToIntegerType for background.
372 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
373 auto *M = LI->getModule();
374 Type *NewTy = getCorrespondingIntegerType(LI->getType(),
375 M->getDataLayout());
377 IRBuilder<> Builder(LI);
379 Value *Addr = LI->getPointerOperand();
380 Type *PT = PointerType::get(NewTy,
381 Addr->getType()->getPointerAddressSpace());
382 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
384 auto *NewLI = Builder.CreateLoad(NewAddr);
385 NewLI->setAlignment(LI->getAlignment());
386 NewLI->setVolatile(LI->isVolatile());
387 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
388 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
390 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
391 LI->replaceAllUsesWith(NewVal);
392 LI->eraseFromParent();
393 return NewLI;
396 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
397 switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
398 case TargetLoweringBase::AtomicExpansionKind::None:
399 return false;
400 case TargetLoweringBase::AtomicExpansionKind::LLSC:
401 expandAtomicOpToLLSC(
402 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
403 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
404 return true;
405 case TargetLoweringBase::AtomicExpansionKind::LLOnly:
406 return expandAtomicLoadToLL(LI);
407 case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
408 return expandAtomicLoadToCmpXchg(LI);
409 default:
410 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
414 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
415 IRBuilder<> Builder(LI);
417 // On some architectures, load-linked instructions are atomic for larger
418 // sizes than normal loads. For example, the only 64-bit load guaranteed
419 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
420 Value *Val =
421 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
422 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
424 LI->replaceAllUsesWith(Val);
425 LI->eraseFromParent();
427 return true;
430 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
431 IRBuilder<> Builder(LI);
432 AtomicOrdering Order = LI->getOrdering();
433 Value *Addr = LI->getPointerOperand();
434 Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
435 Constant *DummyVal = Constant::getNullValue(Ty);
437 Value *Pair = Builder.CreateAtomicCmpXchg(
438 Addr, DummyVal, DummyVal, Order,
439 AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
440 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
442 LI->replaceAllUsesWith(Loaded);
443 LI->eraseFromParent();
445 return true;
448 /// Convert an atomic store of a non-integral type to an integer store of the
449 /// equivalent bitwidth. We used to not support floating point or vector
450 /// atomics in the IR at all. The backends learned to deal with the bitcast
451 /// idiom because that was the only way of expressing the notion of a atomic
452 /// float or vector store. The long term plan is to teach each backend to
453 /// instruction select from the original atomic store, but as a migration
454 /// mechanism, we convert back to the old format which the backends understand.
455 /// Each backend will need individual work to recognize the new format.
456 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
457 IRBuilder<> Builder(SI);
458 auto *M = SI->getModule();
459 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
460 M->getDataLayout());
461 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
463 Value *Addr = SI->getPointerOperand();
464 Type *PT = PointerType::get(NewTy,
465 Addr->getType()->getPointerAddressSpace());
466 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
468 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
469 NewSI->setAlignment(SI->getAlignment());
470 NewSI->setVolatile(SI->isVolatile());
471 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
472 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
473 SI->eraseFromParent();
474 return NewSI;
477 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
478 // This function is only called on atomic stores that are too large to be
479 // atomic if implemented as a native store. So we replace them by an
480 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
481 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
482 // It is the responsibility of the target to only signal expansion via
483 // shouldExpandAtomicRMW in cases where this is required and possible.
484 IRBuilder<> Builder(SI);
485 AtomicRMWInst *AI =
486 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
487 SI->getValueOperand(), SI->getOrdering());
488 SI->eraseFromParent();
490 // Now we have an appropriate swap instruction, lower it as usual.
491 return tryExpandAtomicRMW(AI);
494 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
495 Value *Loaded, Value *NewVal,
496 AtomicOrdering MemOpOrder,
497 Value *&Success, Value *&NewLoaded) {
498 Value* Pair = Builder.CreateAtomicCmpXchg(
499 Addr, Loaded, NewVal, MemOpOrder,
500 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
501 Success = Builder.CreateExtractValue(Pair, 1, "success");
502 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
505 /// Emit IR to implement the given atomicrmw operation on values in registers,
506 /// returning the new value.
507 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
508 Value *Loaded, Value *Inc) {
509 Value *NewVal;
510 switch (Op) {
511 case AtomicRMWInst::Xchg:
512 return Inc;
513 case AtomicRMWInst::Add:
514 return Builder.CreateAdd(Loaded, Inc, "new");
515 case AtomicRMWInst::Sub:
516 return Builder.CreateSub(Loaded, Inc, "new");
517 case AtomicRMWInst::And:
518 return Builder.CreateAnd(Loaded, Inc, "new");
519 case AtomicRMWInst::Nand:
520 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
521 case AtomicRMWInst::Or:
522 return Builder.CreateOr(Loaded, Inc, "new");
523 case AtomicRMWInst::Xor:
524 return Builder.CreateXor(Loaded, Inc, "new");
525 case AtomicRMWInst::Max:
526 NewVal = Builder.CreateICmpSGT(Loaded, Inc);
527 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
528 case AtomicRMWInst::Min:
529 NewVal = Builder.CreateICmpSLE(Loaded, Inc);
530 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
531 case AtomicRMWInst::UMax:
532 NewVal = Builder.CreateICmpUGT(Loaded, Inc);
533 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
534 case AtomicRMWInst::UMin:
535 NewVal = Builder.CreateICmpULE(Loaded, Inc);
536 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
537 default:
538 llvm_unreachable("Unknown atomic op");
542 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
543 switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
544 case TargetLoweringBase::AtomicExpansionKind::None:
545 return false;
546 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
547 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
548 unsigned ValueSize = getAtomicOpSize(AI);
549 if (ValueSize < MinCASSize) {
550 llvm_unreachable(
551 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
552 } else {
553 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
554 return performAtomicOp(AI->getOperation(), Builder, Loaded,
555 AI->getValOperand());
557 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
558 AI->getOrdering(), PerformOp);
560 return true;
562 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
563 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
564 unsigned ValueSize = getAtomicOpSize(AI);
565 if (ValueSize < MinCASSize) {
566 expandPartwordAtomicRMW(AI,
567 TargetLoweringBase::AtomicExpansionKind::CmpXChg);
568 } else {
569 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
571 return true;
573 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
574 expandAtomicRMWToMaskedIntrinsic(AI);
575 return true;
577 default:
578 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
582 namespace {
584 /// Result values from createMaskInstrs helper.
585 struct PartwordMaskValues {
586 Type *WordType;
587 Type *ValueType;
588 Value *AlignedAddr;
589 Value *ShiftAmt;
590 Value *Mask;
591 Value *Inv_Mask;
594 } // end anonymous namespace
596 /// This is a helper function which builds instructions to provide
597 /// values necessary for partword atomic operations. It takes an
598 /// incoming address, Addr, and ValueType, and constructs the address,
599 /// shift-amounts and masks needed to work with a larger value of size
600 /// WordSize.
602 /// AlignedAddr: Addr rounded down to a multiple of WordSize
604 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
605 /// from AlignAddr for it to have the same value as if
606 /// ValueType was loaded from Addr.
608 /// Mask: Value to mask with the value loaded from AlignAddr to
609 /// include only the part that would've been loaded from Addr.
611 /// Inv_Mask: The inverse of Mask.
612 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
613 Type *ValueType, Value *Addr,
614 unsigned WordSize) {
615 PartwordMaskValues Ret;
617 BasicBlock *BB = I->getParent();
618 Function *F = BB->getParent();
619 Module *M = I->getModule();
621 LLVMContext &Ctx = F->getContext();
622 const DataLayout &DL = M->getDataLayout();
624 unsigned ValueSize = DL.getTypeStoreSize(ValueType);
626 assert(ValueSize < WordSize);
628 Ret.ValueType = ValueType;
629 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
631 Type *WordPtrType =
632 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
634 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
635 Ret.AlignedAddr = Builder.CreateIntToPtr(
636 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
637 "AlignedAddr");
639 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
640 if (DL.isLittleEndian()) {
641 // turn bytes into bits
642 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
643 } else {
644 // turn bytes into bits, and count from the other side.
645 Ret.ShiftAmt =
646 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
649 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
650 Ret.Mask = Builder.CreateShl(
651 ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt,
652 "Mask");
653 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
655 return Ret;
658 /// Emit IR to implement a masked version of a given atomicrmw
659 /// operation. (That is, only the bits under the Mask should be
660 /// affected by the operation)
661 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
662 IRBuilder<> &Builder, Value *Loaded,
663 Value *Shifted_Inc, Value *Inc,
664 const PartwordMaskValues &PMV) {
665 // TODO: update to use
666 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
667 // to merge bits from two values without requiring PMV.Inv_Mask.
668 switch (Op) {
669 case AtomicRMWInst::Xchg: {
670 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
671 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
672 return FinalVal;
674 case AtomicRMWInst::Or:
675 case AtomicRMWInst::Xor:
676 case AtomicRMWInst::And:
677 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
678 case AtomicRMWInst::Add:
679 case AtomicRMWInst::Sub:
680 case AtomicRMWInst::Nand: {
681 // The other arithmetic ops need to be masked into place.
682 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
683 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
684 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
685 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
686 return FinalVal;
688 case AtomicRMWInst::Max:
689 case AtomicRMWInst::Min:
690 case AtomicRMWInst::UMax:
691 case AtomicRMWInst::UMin: {
692 // Finally, comparison ops will operate on the full value, so
693 // truncate down to the original size, and expand out again after
694 // doing the operation.
695 Value *Loaded_Shiftdown = Builder.CreateTrunc(
696 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
697 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
698 Value *NewVal_Shiftup = Builder.CreateShl(
699 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
700 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
701 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
702 return FinalVal;
704 default:
705 llvm_unreachable("Unknown atomic op");
709 /// Expand a sub-word atomicrmw operation into an appropriate
710 /// word-sized operation.
712 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
713 /// way as a typical atomicrmw expansion. The only difference here is
714 /// that the operation inside of the loop must operate only upon a
715 /// part of the value.
716 void AtomicExpand::expandPartwordAtomicRMW(
717 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
718 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
720 AtomicOrdering MemOpOrder = AI->getOrdering();
722 IRBuilder<> Builder(AI);
724 PartwordMaskValues PMV =
725 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
726 TLI->getMinCmpXchgSizeInBits() / 8);
728 Value *ValOperand_Shifted =
729 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
730 PMV.ShiftAmt, "ValOperand_Shifted");
732 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
733 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
734 ValOperand_Shifted, AI->getValOperand(), PMV);
737 // TODO: When we're ready to support LLSC conversions too, use
738 // insertRMWLLSCLoop here for ExpansionKind==LLSC.
739 Value *OldResult =
740 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
741 PerformPartwordOp, createCmpXchgInstFun);
742 Value *FinalOldResult = Builder.CreateTrunc(
743 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
744 AI->replaceAllUsesWith(FinalOldResult);
745 AI->eraseFromParent();
748 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
749 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
750 IRBuilder<> Builder(AI);
751 AtomicRMWInst::BinOp Op = AI->getOperation();
753 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
754 Op == AtomicRMWInst::And) &&
755 "Unable to widen operation");
757 PartwordMaskValues PMV =
758 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
759 TLI->getMinCmpXchgSizeInBits() / 8);
761 Value *ValOperand_Shifted =
762 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
763 PMV.ShiftAmt, "ValOperand_Shifted");
765 Value *NewOperand;
767 if (Op == AtomicRMWInst::And)
768 NewOperand =
769 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
770 else
771 NewOperand = ValOperand_Shifted;
773 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
774 NewOperand, AI->getOrdering());
776 Value *FinalOldResult = Builder.CreateTrunc(
777 Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType);
778 AI->replaceAllUsesWith(FinalOldResult);
779 AI->eraseFromParent();
780 return NewAI;
783 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
784 // The basic idea here is that we're expanding a cmpxchg of a
785 // smaller memory size up to a word-sized cmpxchg. To do this, we
786 // need to add a retry-loop for strong cmpxchg, so that
787 // modifications to other parts of the word don't cause a spurious
788 // failure.
790 // This generates code like the following:
791 // [[Setup mask values PMV.*]]
792 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
793 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
794 // %InitLoaded = load i32* %addr
795 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
796 // br partword.cmpxchg.loop
797 // partword.cmpxchg.loop:
798 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
799 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
800 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
801 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
802 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
803 // i32 %FullWord_NewVal success_ordering failure_ordering
804 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
805 // %Success = extractvalue { i32, i1 } %NewCI, 1
806 // br i1 %Success, label %partword.cmpxchg.end,
807 // label %partword.cmpxchg.failure
808 // partword.cmpxchg.failure:
809 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
810 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
811 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
812 // label %partword.cmpxchg.end
813 // partword.cmpxchg.end:
814 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
815 // %FinalOldVal = trunc i32 %tmp1 to i8
816 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
817 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
819 Value *Addr = CI->getPointerOperand();
820 Value *Cmp = CI->getCompareOperand();
821 Value *NewVal = CI->getNewValOperand();
823 BasicBlock *BB = CI->getParent();
824 Function *F = BB->getParent();
825 IRBuilder<> Builder(CI);
826 LLVMContext &Ctx = Builder.getContext();
828 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
830 BasicBlock *EndBB =
831 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
832 auto FailureBB =
833 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
834 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
836 // The split call above "helpfully" added a branch at the end of BB
837 // (to the wrong place).
838 std::prev(BB->end())->eraseFromParent();
839 Builder.SetInsertPoint(BB);
841 PartwordMaskValues PMV = createMaskInstrs(
842 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
844 // Shift the incoming values over, into the right location in the word.
845 Value *NewVal_Shifted =
846 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
847 Value *Cmp_Shifted =
848 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
850 // Load the entire current word, and mask into place the expected and new
851 // values
852 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
853 InitLoaded->setVolatile(CI->isVolatile());
854 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
855 Builder.CreateBr(LoopBB);
857 // partword.cmpxchg.loop:
858 Builder.SetInsertPoint(LoopBB);
859 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
860 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
862 // Mask/Or the expected and new values into place in the loaded word.
863 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
864 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
865 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
866 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
867 CI->getFailureOrdering(), CI->getSyncScopeID());
868 NewCI->setVolatile(CI->isVolatile());
869 // When we're building a strong cmpxchg, we need a loop, so you
870 // might think we could use a weak cmpxchg inside. But, using strong
871 // allows the below comparison for ShouldContinue, and we're
872 // expecting the underlying cmpxchg to be a machine instruction,
873 // which is strong anyways.
874 NewCI->setWeak(CI->isWeak());
876 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
877 Value *Success = Builder.CreateExtractValue(NewCI, 1);
879 if (CI->isWeak())
880 Builder.CreateBr(EndBB);
881 else
882 Builder.CreateCondBr(Success, EndBB, FailureBB);
884 // partword.cmpxchg.failure:
885 Builder.SetInsertPoint(FailureBB);
886 // Upon failure, verify that the masked-out part of the loaded value
887 // has been modified. If it didn't, abort the cmpxchg, since the
888 // masked-in part must've.
889 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
890 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
891 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
893 // Add the second value to the phi from above
894 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
896 // partword.cmpxchg.end:
897 Builder.SetInsertPoint(CI);
899 Value *FinalOldVal = Builder.CreateTrunc(
900 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
901 Value *Res = UndefValue::get(CI->getType());
902 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
903 Res = Builder.CreateInsertValue(Res, Success, 1);
905 CI->replaceAllUsesWith(Res);
906 CI->eraseFromParent();
909 void AtomicExpand::expandAtomicOpToLLSC(
910 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
911 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
912 IRBuilder<> Builder(I);
913 Value *Loaded =
914 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
916 I->replaceAllUsesWith(Loaded);
917 I->eraseFromParent();
920 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
921 IRBuilder<> Builder(AI);
923 PartwordMaskValues PMV =
924 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
925 TLI->getMinCmpXchgSizeInBits() / 8);
927 // The value operand must be sign-extended for signed min/max so that the
928 // target's signed comparison instructions can be used. Otherwise, just
929 // zero-ext.
930 Instruction::CastOps CastOp = Instruction::ZExt;
931 AtomicRMWInst::BinOp RMWOp = AI->getOperation();
932 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
933 CastOp = Instruction::SExt;
935 Value *ValOperand_Shifted = Builder.CreateShl(
936 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
937 PMV.ShiftAmt, "ValOperand_Shifted");
938 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
939 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
940 AI->getOrdering());
941 Value *FinalOldResult = Builder.CreateTrunc(
942 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
943 AI->replaceAllUsesWith(FinalOldResult);
944 AI->eraseFromParent();
947 Value *AtomicExpand::insertRMWLLSCLoop(
948 IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
949 AtomicOrdering MemOpOrder,
950 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
951 LLVMContext &Ctx = Builder.getContext();
952 BasicBlock *BB = Builder.GetInsertBlock();
953 Function *F = BB->getParent();
955 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
957 // The standard expansion we produce is:
958 // [...]
959 // atomicrmw.start:
960 // %loaded = @load.linked(%addr)
961 // %new = some_op iN %loaded, %incr
962 // %stored = @store_conditional(%new, %addr)
963 // %try_again = icmp i32 ne %stored, 0
964 // br i1 %try_again, label %loop, label %atomicrmw.end
965 // atomicrmw.end:
966 // [...]
967 BasicBlock *ExitBB =
968 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
969 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
971 // The split call above "helpfully" added a branch at the end of BB (to the
972 // wrong place).
973 std::prev(BB->end())->eraseFromParent();
974 Builder.SetInsertPoint(BB);
975 Builder.CreateBr(LoopBB);
977 // Start the main loop block now that we've taken care of the preliminaries.
978 Builder.SetInsertPoint(LoopBB);
979 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
981 Value *NewVal = PerformOp(Builder, Loaded);
983 Value *StoreSuccess =
984 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
985 Value *TryAgain = Builder.CreateICmpNE(
986 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
987 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
989 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
990 return Loaded;
993 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
994 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
995 /// IR. As a migration step, we convert back to what use to be the standard
996 /// way to represent a pointer cmpxchg so that we can update backends one by
997 /// one.
998 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
999 auto *M = CI->getModule();
1000 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1001 M->getDataLayout());
1003 IRBuilder<> Builder(CI);
1005 Value *Addr = CI->getPointerOperand();
1006 Type *PT = PointerType::get(NewTy,
1007 Addr->getType()->getPointerAddressSpace());
1008 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1010 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1011 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1014 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
1015 CI->getSuccessOrdering(),
1016 CI->getFailureOrdering(),
1017 CI->getSyncScopeID());
1018 NewCI->setVolatile(CI->isVolatile());
1019 NewCI->setWeak(CI->isWeak());
1020 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1022 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1023 Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1025 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1027 Value *Res = UndefValue::get(CI->getType());
1028 Res = Builder.CreateInsertValue(Res, OldVal, 0);
1029 Res = Builder.CreateInsertValue(Res, Succ, 1);
1031 CI->replaceAllUsesWith(Res);
1032 CI->eraseFromParent();
1033 return NewCI;
1036 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1037 AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1038 AtomicOrdering FailureOrder = CI->getFailureOrdering();
1039 Value *Addr = CI->getPointerOperand();
1040 BasicBlock *BB = CI->getParent();
1041 Function *F = BB->getParent();
1042 LLVMContext &Ctx = F->getContext();
1043 // If shouldInsertFencesForAtomic() returns true, then the target does not
1044 // want to deal with memory orders, and emitLeading/TrailingFence should take
1045 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1046 // should preserve the ordering.
1047 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1048 AtomicOrdering MemOpOrder =
1049 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1051 // In implementations which use a barrier to achieve release semantics, we can
1052 // delay emitting this barrier until we know a store is actually going to be
1053 // attempted. The cost of this delay is that we need 2 copies of the block
1054 // emitting the load-linked, affecting code size.
1056 // Ideally, this logic would be unconditional except for the minsize check
1057 // since in other cases the extra blocks naturally collapse down to the
1058 // minimal loop. Unfortunately, this puts too much stress on later
1059 // optimisations so we avoid emitting the extra logic in those cases too.
1060 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1061 SuccessOrder != AtomicOrdering::Monotonic &&
1062 SuccessOrder != AtomicOrdering::Acquire &&
1063 !F->optForMinSize();
1065 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1066 // do it even on minsize.
1067 bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak();
1069 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1071 // The full expansion we produce is:
1072 // [...]
1073 // cmpxchg.start:
1074 // %unreleasedload = @load.linked(%addr)
1075 // %should_store = icmp eq %unreleasedload, %desired
1076 // br i1 %should_store, label %cmpxchg.fencedstore,
1077 // label %cmpxchg.nostore
1078 // cmpxchg.releasingstore:
1079 // fence?
1080 // br label cmpxchg.trystore
1081 // cmpxchg.trystore:
1082 // %loaded.trystore = phi [%unreleasedload, %releasingstore],
1083 // [%releasedload, %cmpxchg.releasedload]
1084 // %stored = @store_conditional(%new, %addr)
1085 // %success = icmp eq i32 %stored, 0
1086 // br i1 %success, label %cmpxchg.success,
1087 // label %cmpxchg.releasedload/%cmpxchg.failure
1088 // cmpxchg.releasedload:
1089 // %releasedload = @load.linked(%addr)
1090 // %should_store = icmp eq %releasedload, %desired
1091 // br i1 %should_store, label %cmpxchg.trystore,
1092 // label %cmpxchg.failure
1093 // cmpxchg.success:
1094 // fence?
1095 // br label %cmpxchg.end
1096 // cmpxchg.nostore:
1097 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1098 // [%releasedload,
1099 // %cmpxchg.releasedload/%cmpxchg.trystore]
1100 // @load_linked_fail_balance()?
1101 // br label %cmpxchg.failure
1102 // cmpxchg.failure:
1103 // fence?
1104 // br label %cmpxchg.end
1105 // cmpxchg.end:
1106 // %loaded = phi [%loaded.nostore, %cmpxchg.failure],
1107 // [%loaded.trystore, %cmpxchg.trystore]
1108 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1109 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1110 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1111 // [...]
1112 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1113 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1114 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1115 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1116 auto ReleasedLoadBB =
1117 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1118 auto TryStoreBB =
1119 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1120 auto ReleasingStoreBB =
1121 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1122 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1124 // This grabs the DebugLoc from CI
1125 IRBuilder<> Builder(CI);
1127 // The split call above "helpfully" added a branch at the end of BB (to the
1128 // wrong place), but we might want a fence too. It's easiest to just remove
1129 // the branch entirely.
1130 std::prev(BB->end())->eraseFromParent();
1131 Builder.SetInsertPoint(BB);
1132 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1133 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1134 Builder.CreateBr(StartBB);
1136 // Start the main loop block now that we've taken care of the preliminaries.
1137 Builder.SetInsertPoint(StartBB);
1138 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1139 Value *ShouldStore = Builder.CreateICmpEQ(
1140 UnreleasedLoad, CI->getCompareOperand(), "should_store");
1142 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1143 // jump straight past that fence instruction (if it exists).
1144 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1146 Builder.SetInsertPoint(ReleasingStoreBB);
1147 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1148 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1149 Builder.CreateBr(TryStoreBB);
1151 Builder.SetInsertPoint(TryStoreBB);
1152 Value *StoreSuccess = TLI->emitStoreConditional(
1153 Builder, CI->getNewValOperand(), Addr, MemOpOrder);
1154 StoreSuccess = Builder.CreateICmpEQ(
1155 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1156 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1157 Builder.CreateCondBr(StoreSuccess, SuccessBB,
1158 CI->isWeak() ? FailureBB : RetryBB);
1160 Builder.SetInsertPoint(ReleasedLoadBB);
1161 Value *SecondLoad;
1162 if (HasReleasedLoadBB) {
1163 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1164 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
1165 "should_store");
1167 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1168 // jump straight past that fence instruction (if it exists).
1169 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1170 } else
1171 Builder.CreateUnreachable();
1173 // Make sure later instructions don't get reordered with a fence if
1174 // necessary.
1175 Builder.SetInsertPoint(SuccessBB);
1176 if (ShouldInsertFencesForAtomic)
1177 TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1178 Builder.CreateBr(ExitBB);
1180 Builder.SetInsertPoint(NoStoreBB);
1181 // In the failing case, where we don't execute the store-conditional, the
1182 // target might want to balance out the load-linked with a dedicated
1183 // instruction (e.g., on ARM, clearing the exclusive monitor).
1184 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1185 Builder.CreateBr(FailureBB);
1187 Builder.SetInsertPoint(FailureBB);
1188 if (ShouldInsertFencesForAtomic)
1189 TLI->emitTrailingFence(Builder, CI, FailureOrder);
1190 Builder.CreateBr(ExitBB);
1192 // Finally, we have control-flow based knowledge of whether the cmpxchg
1193 // succeeded or not. We expose this to later passes by converting any
1194 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1195 // PHI.
1196 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1197 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
1198 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1199 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1201 // Setup the builder so we can create any PHIs we need.
1202 Value *Loaded;
1203 if (!HasReleasedLoadBB)
1204 Loaded = UnreleasedLoad;
1205 else {
1206 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
1207 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1208 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1209 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1211 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
1212 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1213 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
1214 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1216 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
1217 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1218 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
1219 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
1221 Loaded = ExitLoaded;
1224 // Look for any users of the cmpxchg that are just comparing the loaded value
1225 // against the desired one, and replace them with the CFG-derived version.
1226 SmallVector<ExtractValueInst *, 2> PrunedInsts;
1227 for (auto User : CI->users()) {
1228 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1229 if (!EV)
1230 continue;
1232 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1233 "weird extraction from { iN, i1 }");
1235 if (EV->getIndices()[0] == 0)
1236 EV->replaceAllUsesWith(Loaded);
1237 else
1238 EV->replaceAllUsesWith(Success);
1240 PrunedInsts.push_back(EV);
1243 // We can remove the instructions now we're no longer iterating through them.
1244 for (auto EV : PrunedInsts)
1245 EV->eraseFromParent();
1247 if (!CI->use_empty()) {
1248 // Some use of the full struct return that we don't understand has happened,
1249 // so we've got to reconstruct it properly.
1250 Value *Res;
1251 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1252 Res = Builder.CreateInsertValue(Res, Success, 1);
1254 CI->replaceAllUsesWith(Res);
1257 CI->eraseFromParent();
1258 return true;
1261 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1262 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1263 if(!C)
1264 return false;
1266 AtomicRMWInst::BinOp Op = RMWI->getOperation();
1267 switch(Op) {
1268 case AtomicRMWInst::Add:
1269 case AtomicRMWInst::Sub:
1270 case AtomicRMWInst::Or:
1271 case AtomicRMWInst::Xor:
1272 return C->isZero();
1273 case AtomicRMWInst::And:
1274 return C->isMinusOne();
1275 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1276 default:
1277 return false;
1281 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1282 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1283 tryExpandAtomicLoad(ResultingLoad);
1284 return true;
1286 return false;
1289 Value *AtomicExpand::insertRMWCmpXchgLoop(
1290 IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1291 AtomicOrdering MemOpOrder,
1292 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1293 CreateCmpXchgInstFun CreateCmpXchg) {
1294 LLVMContext &Ctx = Builder.getContext();
1295 BasicBlock *BB = Builder.GetInsertBlock();
1296 Function *F = BB->getParent();
1298 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1300 // The standard expansion we produce is:
1301 // [...]
1302 // %init_loaded = load atomic iN* %addr
1303 // br label %loop
1304 // loop:
1305 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1306 // %new = some_op iN %loaded, %incr
1307 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1308 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1309 // %success = extractvalue { iN, i1 } %pair, 1
1310 // br i1 %success, label %atomicrmw.end, label %loop
1311 // atomicrmw.end:
1312 // [...]
1313 BasicBlock *ExitBB =
1314 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1315 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1317 // The split call above "helpfully" added a branch at the end of BB (to the
1318 // wrong place), but we want a load. It's easiest to just remove
1319 // the branch entirely.
1320 std::prev(BB->end())->eraseFromParent();
1321 Builder.SetInsertPoint(BB);
1322 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
1323 // Atomics require at least natural alignment.
1324 InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8);
1325 Builder.CreateBr(LoopBB);
1327 // Start the main loop block now that we've taken care of the preliminaries.
1328 Builder.SetInsertPoint(LoopBB);
1329 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1330 Loaded->addIncoming(InitLoaded, BB);
1332 Value *NewVal = PerformOp(Builder, Loaded);
1334 Value *NewLoaded = nullptr;
1335 Value *Success = nullptr;
1337 CreateCmpXchg(Builder, Addr, Loaded, NewVal,
1338 MemOpOrder == AtomicOrdering::Unordered
1339 ? AtomicOrdering::Monotonic
1340 : MemOpOrder,
1341 Success, NewLoaded);
1342 assert(Success && NewLoaded);
1344 Loaded->addIncoming(NewLoaded, LoopBB);
1346 Builder.CreateCondBr(Success, ExitBB, LoopBB);
1348 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1349 return NewLoaded;
1352 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1353 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1354 unsigned ValueSize = getAtomicOpSize(CI);
1356 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1357 default:
1358 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1359 case TargetLoweringBase::AtomicExpansionKind::None:
1360 if (ValueSize < MinCASSize)
1361 expandPartwordCmpXchg(CI);
1362 return false;
1363 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1364 assert(ValueSize >= MinCASSize &&
1365 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
1366 return expandAtomicCmpXchg(CI);
1368 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1369 llvm_unreachable(
1370 "MaskedIntrinsic expansion of cmpxhg not yet implemented");
1374 // Note: This function is exposed externally by AtomicExpandUtils.h
1375 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1376 CreateCmpXchgInstFun CreateCmpXchg) {
1377 IRBuilder<> Builder(AI);
1378 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1379 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
1380 [&](IRBuilder<> &Builder, Value *Loaded) {
1381 return performAtomicOp(AI->getOperation(), Builder, Loaded,
1382 AI->getValOperand());
1384 CreateCmpXchg);
1386 AI->replaceAllUsesWith(Loaded);
1387 AI->eraseFromParent();
1388 return true;
1391 // In order to use one of the sized library calls such as
1392 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1393 // must be one of the potentially-specialized sizes, and the value
1394 // type must actually exist in C on the target (otherwise, the
1395 // function wouldn't actually be defined.)
1396 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align,
1397 const DataLayout &DL) {
1398 // TODO: "LargestSize" is an approximation for "largest type that
1399 // you can express in C". It seems to be the case that int128 is
1400 // supported on all 64-bit platforms, otherwise only up to 64-bit
1401 // integers are supported. If we get this wrong, then we'll try to
1402 // call a sized libcall that doesn't actually exist. There should
1403 // really be some more reliable way in LLVM of determining integer
1404 // sizes which are valid in the target's C ABI...
1405 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1406 return Align >= Size &&
1407 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1408 Size <= LargestSize;
1411 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1412 static const RTLIB::Libcall Libcalls[6] = {
1413 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1414 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1415 unsigned Size = getAtomicOpSize(I);
1416 unsigned Align = getAtomicOpAlign(I);
1418 bool expanded = expandAtomicOpToLibcall(
1419 I, Size, Align, I->getPointerOperand(), nullptr, nullptr,
1420 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1421 (void)expanded;
1422 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
1425 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1426 static const RTLIB::Libcall Libcalls[6] = {
1427 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1428 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1429 unsigned Size = getAtomicOpSize(I);
1430 unsigned Align = getAtomicOpAlign(I);
1432 bool expanded = expandAtomicOpToLibcall(
1433 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr,
1434 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1435 (void)expanded;
1436 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
1439 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1440 static const RTLIB::Libcall Libcalls[6] = {
1441 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1442 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1443 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1444 unsigned Size = getAtomicOpSize(I);
1445 unsigned Align = getAtomicOpAlign(I);
1447 bool expanded = expandAtomicOpToLibcall(
1448 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(),
1449 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1450 Libcalls);
1451 (void)expanded;
1452 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
1455 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1456 static const RTLIB::Libcall LibcallsXchg[6] = {
1457 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
1458 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1459 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1460 static const RTLIB::Libcall LibcallsAdd[6] = {
1461 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
1462 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1463 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1464 static const RTLIB::Libcall LibcallsSub[6] = {
1465 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
1466 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1467 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1468 static const RTLIB::Libcall LibcallsAnd[6] = {
1469 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
1470 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1471 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1472 static const RTLIB::Libcall LibcallsOr[6] = {
1473 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
1474 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1475 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1476 static const RTLIB::Libcall LibcallsXor[6] = {
1477 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
1478 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1479 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1480 static const RTLIB::Libcall LibcallsNand[6] = {
1481 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
1482 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1483 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1485 switch (Op) {
1486 case AtomicRMWInst::BAD_BINOP:
1487 llvm_unreachable("Should not have BAD_BINOP.");
1488 case AtomicRMWInst::Xchg:
1489 return makeArrayRef(LibcallsXchg);
1490 case AtomicRMWInst::Add:
1491 return makeArrayRef(LibcallsAdd);
1492 case AtomicRMWInst::Sub:
1493 return makeArrayRef(LibcallsSub);
1494 case AtomicRMWInst::And:
1495 return makeArrayRef(LibcallsAnd);
1496 case AtomicRMWInst::Or:
1497 return makeArrayRef(LibcallsOr);
1498 case AtomicRMWInst::Xor:
1499 return makeArrayRef(LibcallsXor);
1500 case AtomicRMWInst::Nand:
1501 return makeArrayRef(LibcallsNand);
1502 case AtomicRMWInst::Max:
1503 case AtomicRMWInst::Min:
1504 case AtomicRMWInst::UMax:
1505 case AtomicRMWInst::UMin:
1506 // No atomic libcalls are available for max/min/umax/umin.
1507 return {};
1509 llvm_unreachable("Unexpected AtomicRMW operation.");
1512 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1513 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1515 unsigned Size = getAtomicOpSize(I);
1516 unsigned Align = getAtomicOpAlign(I);
1518 bool Success = false;
1519 if (!Libcalls.empty())
1520 Success = expandAtomicOpToLibcall(
1521 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr,
1522 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1524 // The expansion failed: either there were no libcalls at all for
1525 // the operation (min/max), or there were only size-specialized
1526 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1527 // CAS libcall, via a CAS loop, instead.
1528 if (!Success) {
1529 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
1530 Value *Loaded, Value *NewVal,
1531 AtomicOrdering MemOpOrder,
1532 Value *&Success, Value *&NewLoaded) {
1533 // Create the CAS instruction normally...
1534 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1535 Addr, Loaded, NewVal, MemOpOrder,
1536 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
1537 Success = Builder.CreateExtractValue(Pair, 1, "success");
1538 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1540 // ...and then expand the CAS into a libcall.
1541 expandAtomicCASToLibcall(Pair);
1546 // A helper routine for the above expandAtomic*ToLibcall functions.
1548 // 'Libcalls' contains an array of enum values for the particular
1549 // ATOMIC libcalls to be emitted. All of the other arguments besides
1550 // 'I' are extracted from the Instruction subclass by the
1551 // caller. Depending on the particular call, some will be null.
1552 bool AtomicExpand::expandAtomicOpToLibcall(
1553 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand,
1554 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1555 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1556 assert(Libcalls.size() == 6);
1558 LLVMContext &Ctx = I->getContext();
1559 Module *M = I->getModule();
1560 const DataLayout &DL = M->getDataLayout();
1561 IRBuilder<> Builder(I);
1562 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1564 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL);
1565 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1567 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy);
1569 // TODO: the "order" argument type is "int", not int32. So
1570 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1571 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1572 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1573 Constant *OrderingVal =
1574 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1575 Constant *Ordering2Val = nullptr;
1576 if (CASExpected) {
1577 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1578 Ordering2Val =
1579 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1581 bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1583 RTLIB::Libcall RTLibType;
1584 if (UseSizedLibcall) {
1585 switch (Size) {
1586 case 1: RTLibType = Libcalls[1]; break;
1587 case 2: RTLibType = Libcalls[2]; break;
1588 case 4: RTLibType = Libcalls[3]; break;
1589 case 8: RTLibType = Libcalls[4]; break;
1590 case 16: RTLibType = Libcalls[5]; break;
1592 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1593 RTLibType = Libcalls[0];
1594 } else {
1595 // Can't use sized function, and there's no generic for this
1596 // operation, so give up.
1597 return false;
1600 // Build up the function call. There's two kinds. First, the sized
1601 // variants. These calls are going to be one of the following (with
1602 // N=1,2,4,8,16):
1603 // iN __atomic_load_N(iN *ptr, int ordering)
1604 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1605 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1606 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1607 // int success_order, int failure_order)
1609 // Note that these functions can be used for non-integer atomic
1610 // operations, the values just need to be bitcast to integers on the
1611 // way in and out.
1613 // And, then, the generic variants. They look like the following:
1614 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1615 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1616 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1617 // int ordering)
1618 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1619 // void *desired, int success_order,
1620 // int failure_order)
1622 // The different signatures are built up depending on the
1623 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1624 // variables.
1626 AllocaInst *AllocaCASExpected = nullptr;
1627 Value *AllocaCASExpected_i8 = nullptr;
1628 AllocaInst *AllocaValue = nullptr;
1629 Value *AllocaValue_i8 = nullptr;
1630 AllocaInst *AllocaResult = nullptr;
1631 Value *AllocaResult_i8 = nullptr;
1633 Type *ResultTy;
1634 SmallVector<Value *, 6> Args;
1635 AttributeList Attr;
1637 // 'size' argument.
1638 if (!UseSizedLibcall) {
1639 // Note, getIntPtrType is assumed equivalent to size_t.
1640 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1643 // 'ptr' argument.
1644 Value *PtrVal =
1645 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx));
1646 Args.push_back(PtrVal);
1648 // 'expected' argument, if present.
1649 if (CASExpected) {
1650 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1651 AllocaCASExpected->setAlignment(AllocaAlignment);
1652 AllocaCASExpected_i8 =
1653 Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx));
1654 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1655 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1656 Args.push_back(AllocaCASExpected_i8);
1659 // 'val' argument ('desired' for cas), if present.
1660 if (ValueOperand) {
1661 if (UseSizedLibcall) {
1662 Value *IntValue =
1663 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1664 Args.push_back(IntValue);
1665 } else {
1666 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1667 AllocaValue->setAlignment(AllocaAlignment);
1668 AllocaValue_i8 =
1669 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1670 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1671 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1672 Args.push_back(AllocaValue_i8);
1676 // 'ret' argument.
1677 if (!CASExpected && HasResult && !UseSizedLibcall) {
1678 AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1679 AllocaResult->setAlignment(AllocaAlignment);
1680 AllocaResult_i8 =
1681 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx));
1682 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1683 Args.push_back(AllocaResult_i8);
1686 // 'ordering' ('success_order' for cas) argument.
1687 Args.push_back(OrderingVal);
1689 // 'failure_order' argument, if present.
1690 if (Ordering2Val)
1691 Args.push_back(Ordering2Val);
1693 // Now, the return type.
1694 if (CASExpected) {
1695 ResultTy = Type::getInt1Ty(Ctx);
1696 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1697 } else if (HasResult && UseSizedLibcall)
1698 ResultTy = SizedIntTy;
1699 else
1700 ResultTy = Type::getVoidTy(Ctx);
1702 // Done with setting up arguments and return types, create the call:
1703 SmallVector<Type *, 6> ArgTys;
1704 for (Value *Arg : Args)
1705 ArgTys.push_back(Arg->getType());
1706 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1707 Constant *LibcallFn =
1708 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1709 CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1710 Call->setAttributes(Attr);
1711 Value *Result = Call;
1713 // And then, extract the results...
1714 if (ValueOperand && !UseSizedLibcall)
1715 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1717 if (CASExpected) {
1718 // The final result from the CAS is {load of 'expected' alloca, bool result
1719 // from call}
1720 Type *FinalResultTy = I->getType();
1721 Value *V = UndefValue::get(FinalResultTy);
1722 Value *ExpectedOut =
1723 Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment);
1724 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1725 V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1726 V = Builder.CreateInsertValue(V, Result, 1);
1727 I->replaceAllUsesWith(V);
1728 } else if (HasResult) {
1729 Value *V;
1730 if (UseSizedLibcall)
1731 V = Builder.CreateBitOrPointerCast(Result, I->getType());
1732 else {
1733 V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment);
1734 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1736 I->replaceAllUsesWith(V);
1738 I->eraseFromParent();
1739 return true;