[PowerPC] Remove self-copies in pre-emit peephole
[llvm-core.git] / lib / CodeGen / MachineScheduler.cpp
blob9ab405f38d4d239716a8ea371311cf2fc6bb22a4
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
73 #define DEBUG_TYPE "machine-scheduler"
75 namespace llvm {
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78 cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80 cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83 cl::desc("Print critical path length to stdout"));
85 } // end namespace llvm
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89 cl::desc("Pop up a window to show MISched dags after they are processed"));
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100 cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102 cl::desc("Only schedule this MBB#"));
103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
104 cl::desc("Print schedule DAGs"));
105 #else
106 static const bool ViewMISchedDAGs = false;
107 static const bool PrintDAGs = false;
108 #endif // NDEBUG
110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
111 /// size of the ready lists.
112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
113 cl::desc("Limit ready list to N instructions"), cl::init(256));
115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
116 cl::desc("Enable register pressure scheduling."), cl::init(true));
118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
119 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
122 cl::desc("Enable memop clustering."),
123 cl::init(true));
125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
126 cl::desc("Verify machine instrs before and after machine scheduling"));
128 // DAG subtrees must have at least this many nodes.
129 static const unsigned MinSubtreeSize = 8;
131 // Pin the vtables to this file.
132 void MachineSchedStrategy::anchor() {}
134 void ScheduleDAGMutation::anchor() {}
136 //===----------------------------------------------------------------------===//
137 // Machine Instruction Scheduling Pass and Registry
138 //===----------------------------------------------------------------------===//
140 MachineSchedContext::MachineSchedContext() {
141 RegClassInfo = new RegisterClassInfo();
144 MachineSchedContext::~MachineSchedContext() {
145 delete RegClassInfo;
148 namespace {
150 /// Base class for a machine scheduler class that can run at any point.
151 class MachineSchedulerBase : public MachineSchedContext,
152 public MachineFunctionPass {
153 public:
154 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
156 void print(raw_ostream &O, const Module* = nullptr) const override;
158 protected:
159 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
162 /// MachineScheduler runs after coalescing and before register allocation.
163 class MachineScheduler : public MachineSchedulerBase {
164 public:
165 MachineScheduler();
167 void getAnalysisUsage(AnalysisUsage &AU) const override;
169 bool runOnMachineFunction(MachineFunction&) override;
171 static char ID; // Class identification, replacement for typeinfo
173 protected:
174 ScheduleDAGInstrs *createMachineScheduler();
177 /// PostMachineScheduler runs after shortly before code emission.
178 class PostMachineScheduler : public MachineSchedulerBase {
179 public:
180 PostMachineScheduler();
182 void getAnalysisUsage(AnalysisUsage &AU) const override;
184 bool runOnMachineFunction(MachineFunction&) override;
186 static char ID; // Class identification, replacement for typeinfo
188 protected:
189 ScheduleDAGInstrs *createPostMachineScheduler();
192 } // end anonymous namespace
194 char MachineScheduler::ID = 0;
196 char &llvm::MachineSchedulerID = MachineScheduler::ID;
198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
199 "Machine Instruction Scheduler", false, false)
200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
205 "Machine Instruction Scheduler", false, false)
207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
208 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
212 AU.setPreservesCFG();
213 AU.addRequiredID(MachineDominatorsID);
214 AU.addRequired<MachineLoopInfo>();
215 AU.addRequired<AAResultsWrapperPass>();
216 AU.addRequired<TargetPassConfig>();
217 AU.addRequired<SlotIndexes>();
218 AU.addPreserved<SlotIndexes>();
219 AU.addRequired<LiveIntervals>();
220 AU.addPreserved<LiveIntervals>();
221 MachineFunctionPass::getAnalysisUsage(AU);
224 char PostMachineScheduler::ID = 0;
226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
228 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
229 "PostRA Machine Instruction Scheduler", false, false)
231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
232 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
236 AU.setPreservesCFG();
237 AU.addRequiredID(MachineDominatorsID);
238 AU.addRequired<MachineLoopInfo>();
239 AU.addRequired<TargetPassConfig>();
240 MachineFunctionPass::getAnalysisUsage(AU);
243 MachinePassRegistry MachineSchedRegistry::Registry;
245 /// A dummy default scheduler factory indicates whether the scheduler
246 /// is overridden on the command line.
247 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
248 return nullptr;
251 /// MachineSchedOpt allows command line selection of the scheduler.
252 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
253 RegisterPassParser<MachineSchedRegistry>>
254 MachineSchedOpt("misched",
255 cl::init(&useDefaultMachineSched), cl::Hidden,
256 cl::desc("Machine instruction scheduler to use"));
258 static MachineSchedRegistry
259 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
260 useDefaultMachineSched);
262 static cl::opt<bool> EnableMachineSched(
263 "enable-misched",
264 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
265 cl::Hidden);
267 static cl::opt<bool> EnablePostRAMachineSched(
268 "enable-post-misched",
269 cl::desc("Enable the post-ra machine instruction scheduling pass."),
270 cl::init(true), cl::Hidden);
272 /// Decrement this iterator until reaching the top or a non-debug instr.
273 static MachineBasicBlock::const_iterator
274 priorNonDebug(MachineBasicBlock::const_iterator I,
275 MachineBasicBlock::const_iterator Beg) {
276 assert(I != Beg && "reached the top of the region, cannot decrement");
277 while (--I != Beg) {
278 if (!I->isDebugInstr())
279 break;
281 return I;
284 /// Non-const version.
285 static MachineBasicBlock::iterator
286 priorNonDebug(MachineBasicBlock::iterator I,
287 MachineBasicBlock::const_iterator Beg) {
288 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
289 .getNonConstIterator();
292 /// If this iterator is a debug value, increment until reaching the End or a
293 /// non-debug instruction.
294 static MachineBasicBlock::const_iterator
295 nextIfDebug(MachineBasicBlock::const_iterator I,
296 MachineBasicBlock::const_iterator End) {
297 for(; I != End; ++I) {
298 if (!I->isDebugInstr())
299 break;
301 return I;
304 /// Non-const version.
305 static MachineBasicBlock::iterator
306 nextIfDebug(MachineBasicBlock::iterator I,
307 MachineBasicBlock::const_iterator End) {
308 return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
309 .getNonConstIterator();
312 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
313 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
314 // Select the scheduler, or set the default.
315 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
316 if (Ctor != useDefaultMachineSched)
317 return Ctor(this);
319 // Get the default scheduler set by the target for this function.
320 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
321 if (Scheduler)
322 return Scheduler;
324 // Default to GenericScheduler.
325 return createGenericSchedLive(this);
328 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
329 /// the caller. We don't have a command line option to override the postRA
330 /// scheduler. The Target must configure it.
331 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
332 // Get the postRA scheduler set by the target for this function.
333 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
334 if (Scheduler)
335 return Scheduler;
337 // Default to GenericScheduler.
338 return createGenericSchedPostRA(this);
341 /// Top-level MachineScheduler pass driver.
343 /// Visit blocks in function order. Divide each block into scheduling regions
344 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
345 /// consistent with the DAG builder, which traverses the interior of the
346 /// scheduling regions bottom-up.
348 /// This design avoids exposing scheduling boundaries to the DAG builder,
349 /// simplifying the DAG builder's support for "special" target instructions.
350 /// At the same time the design allows target schedulers to operate across
351 /// scheduling boundaries, for example to bundle the boundary instructions
352 /// without reordering them. This creates complexity, because the target
353 /// scheduler must update the RegionBegin and RegionEnd positions cached by
354 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
355 /// design would be to split blocks at scheduling boundaries, but LLVM has a
356 /// general bias against block splitting purely for implementation simplicity.
357 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
358 if (skipFunction(mf.getFunction()))
359 return false;
361 if (EnableMachineSched.getNumOccurrences()) {
362 if (!EnableMachineSched)
363 return false;
364 } else if (!mf.getSubtarget().enableMachineScheduler())
365 return false;
367 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
369 // Initialize the context of the pass.
370 MF = &mf;
371 MLI = &getAnalysis<MachineLoopInfo>();
372 MDT = &getAnalysis<MachineDominatorTree>();
373 PassConfig = &getAnalysis<TargetPassConfig>();
374 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
376 LIS = &getAnalysis<LiveIntervals>();
378 if (VerifyScheduling) {
379 LLVM_DEBUG(LIS->dump());
380 MF->verify(this, "Before machine scheduling.");
382 RegClassInfo->runOnMachineFunction(*MF);
384 // Instantiate the selected scheduler for this target, function, and
385 // optimization level.
386 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
387 scheduleRegions(*Scheduler, false);
389 LLVM_DEBUG(LIS->dump());
390 if (VerifyScheduling)
391 MF->verify(this, "After machine scheduling.");
392 return true;
395 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
396 if (skipFunction(mf.getFunction()))
397 return false;
399 if (EnablePostRAMachineSched.getNumOccurrences()) {
400 if (!EnablePostRAMachineSched)
401 return false;
402 } else if (!mf.getSubtarget().enablePostRAScheduler()) {
403 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
404 return false;
406 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
408 // Initialize the context of the pass.
409 MF = &mf;
410 MLI = &getAnalysis<MachineLoopInfo>();
411 PassConfig = &getAnalysis<TargetPassConfig>();
413 if (VerifyScheduling)
414 MF->verify(this, "Before post machine scheduling.");
416 // Instantiate the selected scheduler for this target, function, and
417 // optimization level.
418 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
419 scheduleRegions(*Scheduler, true);
421 if (VerifyScheduling)
422 MF->verify(this, "After post machine scheduling.");
423 return true;
426 /// Return true of the given instruction should not be included in a scheduling
427 /// region.
429 /// MachineScheduler does not currently support scheduling across calls. To
430 /// handle calls, the DAG builder needs to be modified to create register
431 /// anti/output dependencies on the registers clobbered by the call's regmask
432 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
433 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
434 /// the boundary, but there would be no benefit to postRA scheduling across
435 /// calls this late anyway.
436 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
437 MachineBasicBlock *MBB,
438 MachineFunction *MF,
439 const TargetInstrInfo *TII) {
440 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
443 /// A region of an MBB for scheduling.
444 namespace {
445 struct SchedRegion {
446 /// RegionBegin is the first instruction in the scheduling region, and
447 /// RegionEnd is either MBB->end() or the scheduling boundary after the
448 /// last instruction in the scheduling region. These iterators cannot refer
449 /// to instructions outside of the identified scheduling region because
450 /// those may be reordered before scheduling this region.
451 MachineBasicBlock::iterator RegionBegin;
452 MachineBasicBlock::iterator RegionEnd;
453 unsigned NumRegionInstrs;
455 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
456 unsigned N) :
457 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
459 } // end anonymous namespace
461 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
463 static void
464 getSchedRegions(MachineBasicBlock *MBB,
465 MBBRegionsVector &Regions,
466 bool RegionsTopDown) {
467 MachineFunction *MF = MBB->getParent();
468 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
470 MachineBasicBlock::iterator I = nullptr;
471 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
472 RegionEnd != MBB->begin(); RegionEnd = I) {
474 // Avoid decrementing RegionEnd for blocks with no terminator.
475 if (RegionEnd != MBB->end() ||
476 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
477 --RegionEnd;
480 // The next region starts above the previous region. Look backward in the
481 // instruction stream until we find the nearest boundary.
482 unsigned NumRegionInstrs = 0;
483 I = RegionEnd;
484 for (;I != MBB->begin(); --I) {
485 MachineInstr &MI = *std::prev(I);
486 if (isSchedBoundary(&MI, &*MBB, MF, TII))
487 break;
488 if (!MI.isDebugInstr())
489 // MBB::size() uses instr_iterator to count. Here we need a bundle to
490 // count as a single instruction.
491 ++NumRegionInstrs;
494 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
497 if (RegionsTopDown)
498 std::reverse(Regions.begin(), Regions.end());
501 /// Main driver for both MachineScheduler and PostMachineScheduler.
502 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
503 bool FixKillFlags) {
504 // Visit all machine basic blocks.
506 // TODO: Visit blocks in global postorder or postorder within the bottom-up
507 // loop tree. Then we can optionally compute global RegPressure.
508 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
509 MBB != MBBEnd; ++MBB) {
511 Scheduler.startBlock(&*MBB);
513 #ifndef NDEBUG
514 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
515 continue;
516 if (SchedOnlyBlock.getNumOccurrences()
517 && (int)SchedOnlyBlock != MBB->getNumber())
518 continue;
519 #endif
521 // Break the block into scheduling regions [I, RegionEnd). RegionEnd
522 // points to the scheduling boundary at the bottom of the region. The DAG
523 // does not include RegionEnd, but the region does (i.e. the next
524 // RegionEnd is above the previous RegionBegin). If the current block has
525 // no terminator then RegionEnd == MBB->end() for the bottom region.
527 // All the regions of MBB are first found and stored in MBBRegions, which
528 // will be processed (MBB) top-down if initialized with true.
530 // The Scheduler may insert instructions during either schedule() or
531 // exitRegion(), even for empty regions. So the local iterators 'I' and
532 // 'RegionEnd' are invalid across these calls. Instructions must not be
533 // added to other regions than the current one without updating MBBRegions.
535 MBBRegionsVector MBBRegions;
536 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
537 for (MBBRegionsVector::iterator R = MBBRegions.begin();
538 R != MBBRegions.end(); ++R) {
539 MachineBasicBlock::iterator I = R->RegionBegin;
540 MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
541 unsigned NumRegionInstrs = R->NumRegionInstrs;
543 // Notify the scheduler of the region, even if we may skip scheduling
544 // it. Perhaps it still needs to be bundled.
545 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
547 // Skip empty scheduling regions (0 or 1 schedulable instructions).
548 if (I == RegionEnd || I == std::prev(RegionEnd)) {
549 // Close the current region. Bundle the terminator if needed.
550 // This invalidates 'RegionEnd' and 'I'.
551 Scheduler.exitRegion();
552 continue;
554 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
555 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
556 << " " << MBB->getName() << "\n From: " << *I
557 << " To: ";
558 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
559 else dbgs() << "End";
560 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
561 if (DumpCriticalPathLength) {
562 errs() << MF->getName();
563 errs() << ":%bb. " << MBB->getNumber();
564 errs() << " " << MBB->getName() << " \n";
567 // Schedule a region: possibly reorder instructions.
568 // This invalidates the original region iterators.
569 Scheduler.schedule();
571 // Close the current region.
572 Scheduler.exitRegion();
574 Scheduler.finishBlock();
575 // FIXME: Ideally, no further passes should rely on kill flags. However,
576 // thumb2 size reduction is currently an exception, so the PostMIScheduler
577 // needs to do this.
578 if (FixKillFlags)
579 Scheduler.fixupKills(*MBB);
581 Scheduler.finalizeSchedule();
584 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
585 // unimplemented
588 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
589 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
590 dbgs() << "Queue " << Name << ": ";
591 for (const SUnit *SU : Queue)
592 dbgs() << SU->NodeNum << " ";
593 dbgs() << "\n";
595 #endif
597 //===----------------------------------------------------------------------===//
598 // ScheduleDAGMI - Basic machine instruction scheduling. This is
599 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
600 // virtual registers.
601 // ===----------------------------------------------------------------------===/
603 // Provide a vtable anchor.
604 ScheduleDAGMI::~ScheduleDAGMI() = default;
606 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
607 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
610 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
611 if (SuccSU != &ExitSU) {
612 // Do not use WillCreateCycle, it assumes SD scheduling.
613 // If Pred is reachable from Succ, then the edge creates a cycle.
614 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
615 return false;
616 Topo.AddPred(SuccSU, PredDep.getSUnit());
618 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
619 // Return true regardless of whether a new edge needed to be inserted.
620 return true;
623 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
624 /// NumPredsLeft reaches zero, release the successor node.
626 /// FIXME: Adjust SuccSU height based on MinLatency.
627 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
628 SUnit *SuccSU = SuccEdge->getSUnit();
630 if (SuccEdge->isWeak()) {
631 --SuccSU->WeakPredsLeft;
632 if (SuccEdge->isCluster())
633 NextClusterSucc = SuccSU;
634 return;
636 #ifndef NDEBUG
637 if (SuccSU->NumPredsLeft == 0) {
638 dbgs() << "*** Scheduling failed! ***\n";
639 dumpNode(*SuccSU);
640 dbgs() << " has been released too many times!\n";
641 llvm_unreachable(nullptr);
643 #endif
644 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
645 // CurrCycle may have advanced since then.
646 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
647 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
649 --SuccSU->NumPredsLeft;
650 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
651 SchedImpl->releaseTopNode(SuccSU);
654 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
655 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
656 for (SDep &Succ : SU->Succs)
657 releaseSucc(SU, &Succ);
660 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
661 /// NumSuccsLeft reaches zero, release the predecessor node.
663 /// FIXME: Adjust PredSU height based on MinLatency.
664 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
665 SUnit *PredSU = PredEdge->getSUnit();
667 if (PredEdge->isWeak()) {
668 --PredSU->WeakSuccsLeft;
669 if (PredEdge->isCluster())
670 NextClusterPred = PredSU;
671 return;
673 #ifndef NDEBUG
674 if (PredSU->NumSuccsLeft == 0) {
675 dbgs() << "*** Scheduling failed! ***\n";
676 dumpNode(*PredSU);
677 dbgs() << " has been released too many times!\n";
678 llvm_unreachable(nullptr);
680 #endif
681 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
682 // CurrCycle may have advanced since then.
683 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
684 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
686 --PredSU->NumSuccsLeft;
687 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
688 SchedImpl->releaseBottomNode(PredSU);
691 /// releasePredecessors - Call releasePred on each of SU's predecessors.
692 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
693 for (SDep &Pred : SU->Preds)
694 releasePred(SU, &Pred);
697 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
698 ScheduleDAGInstrs::startBlock(bb);
699 SchedImpl->enterMBB(bb);
702 void ScheduleDAGMI::finishBlock() {
703 SchedImpl->leaveMBB();
704 ScheduleDAGInstrs::finishBlock();
707 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
708 /// crossing a scheduling boundary. [begin, end) includes all instructions in
709 /// the region, including the boundary itself and single-instruction regions
710 /// that don't get scheduled.
711 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
712 MachineBasicBlock::iterator begin,
713 MachineBasicBlock::iterator end,
714 unsigned regioninstrs)
716 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
718 SchedImpl->initPolicy(begin, end, regioninstrs);
721 /// This is normally called from the main scheduler loop but may also be invoked
722 /// by the scheduling strategy to perform additional code motion.
723 void ScheduleDAGMI::moveInstruction(
724 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
725 // Advance RegionBegin if the first instruction moves down.
726 if (&*RegionBegin == MI)
727 ++RegionBegin;
729 // Update the instruction stream.
730 BB->splice(InsertPos, BB, MI);
732 // Update LiveIntervals
733 if (LIS)
734 LIS->handleMove(*MI, /*UpdateFlags=*/true);
736 // Recede RegionBegin if an instruction moves above the first.
737 if (RegionBegin == InsertPos)
738 RegionBegin = MI;
741 bool ScheduleDAGMI::checkSchedLimit() {
742 #ifndef NDEBUG
743 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
744 CurrentTop = CurrentBottom;
745 return false;
747 ++NumInstrsScheduled;
748 #endif
749 return true;
752 /// Per-region scheduling driver, called back from
753 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
754 /// does not consider liveness or register pressure. It is useful for PostRA
755 /// scheduling and potentially other custom schedulers.
756 void ScheduleDAGMI::schedule() {
757 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
758 LLVM_DEBUG(SchedImpl->dumpPolicy());
760 // Build the DAG.
761 buildSchedGraph(AA);
763 Topo.InitDAGTopologicalSorting();
765 postprocessDAG();
767 SmallVector<SUnit*, 8> TopRoots, BotRoots;
768 findRootsAndBiasEdges(TopRoots, BotRoots);
770 LLVM_DEBUG(dump());
771 if (PrintDAGs) dump();
772 if (ViewMISchedDAGs) viewGraph();
774 // Initialize the strategy before modifying the DAG.
775 // This may initialize a DFSResult to be used for queue priority.
776 SchedImpl->initialize(this);
778 // Initialize ready queues now that the DAG and priority data are finalized.
779 initQueues(TopRoots, BotRoots);
781 bool IsTopNode = false;
782 while (true) {
783 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
784 SUnit *SU = SchedImpl->pickNode(IsTopNode);
785 if (!SU) break;
787 assert(!SU->isScheduled && "Node already scheduled");
788 if (!checkSchedLimit())
789 break;
791 MachineInstr *MI = SU->getInstr();
792 if (IsTopNode) {
793 assert(SU->isTopReady() && "node still has unscheduled dependencies");
794 if (&*CurrentTop == MI)
795 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
796 else
797 moveInstruction(MI, CurrentTop);
798 } else {
799 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
800 MachineBasicBlock::iterator priorII =
801 priorNonDebug(CurrentBottom, CurrentTop);
802 if (&*priorII == MI)
803 CurrentBottom = priorII;
804 else {
805 if (&*CurrentTop == MI)
806 CurrentTop = nextIfDebug(++CurrentTop, priorII);
807 moveInstruction(MI, CurrentBottom);
808 CurrentBottom = MI;
811 // Notify the scheduling strategy before updating the DAG.
812 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
813 // runs, it can then use the accurate ReadyCycle time to determine whether
814 // newly released nodes can move to the readyQ.
815 SchedImpl->schedNode(SU, IsTopNode);
817 updateQueues(SU, IsTopNode);
819 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
821 placeDebugValues();
823 LLVM_DEBUG({
824 dbgs() << "*** Final schedule for "
825 << printMBBReference(*begin()->getParent()) << " ***\n";
826 dumpSchedule();
827 dbgs() << '\n';
831 /// Apply each ScheduleDAGMutation step in order.
832 void ScheduleDAGMI::postprocessDAG() {
833 for (auto &m : Mutations)
834 m->apply(this);
837 void ScheduleDAGMI::
838 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
839 SmallVectorImpl<SUnit*> &BotRoots) {
840 for (SUnit &SU : SUnits) {
841 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
843 // Order predecessors so DFSResult follows the critical path.
844 SU.biasCriticalPath();
846 // A SUnit is ready to top schedule if it has no predecessors.
847 if (!SU.NumPredsLeft)
848 TopRoots.push_back(&SU);
849 // A SUnit is ready to bottom schedule if it has no successors.
850 if (!SU.NumSuccsLeft)
851 BotRoots.push_back(&SU);
853 ExitSU.biasCriticalPath();
856 /// Identify DAG roots and setup scheduler queues.
857 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
858 ArrayRef<SUnit*> BotRoots) {
859 NextClusterSucc = nullptr;
860 NextClusterPred = nullptr;
862 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
864 // Nodes with unreleased weak edges can still be roots.
865 // Release top roots in forward order.
866 for (SUnit *SU : TopRoots)
867 SchedImpl->releaseTopNode(SU);
869 // Release bottom roots in reverse order so the higher priority nodes appear
870 // first. This is more natural and slightly more efficient.
871 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
872 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
873 SchedImpl->releaseBottomNode(*I);
876 releaseSuccessors(&EntrySU);
877 releasePredecessors(&ExitSU);
879 SchedImpl->registerRoots();
881 // Advance past initial DebugValues.
882 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
883 CurrentBottom = RegionEnd;
886 /// Update scheduler queues after scheduling an instruction.
887 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
888 // Release dependent instructions for scheduling.
889 if (IsTopNode)
890 releaseSuccessors(SU);
891 else
892 releasePredecessors(SU);
894 SU->isScheduled = true;
897 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
898 void ScheduleDAGMI::placeDebugValues() {
899 // If first instruction was a DBG_VALUE then put it back.
900 if (FirstDbgValue) {
901 BB->splice(RegionBegin, BB, FirstDbgValue);
902 RegionBegin = FirstDbgValue;
905 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
906 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
907 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
908 MachineInstr *DbgValue = P.first;
909 MachineBasicBlock::iterator OrigPrevMI = P.second;
910 if (&*RegionBegin == DbgValue)
911 ++RegionBegin;
912 BB->splice(++OrigPrevMI, BB, DbgValue);
913 if (OrigPrevMI == std::prev(RegionEnd))
914 RegionEnd = DbgValue;
916 DbgValues.clear();
917 FirstDbgValue = nullptr;
920 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
921 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
922 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
923 if (SUnit *SU = getSUnit(&(*MI)))
924 dumpNode(*SU);
925 else
926 dbgs() << "Missing SUnit\n";
929 #endif
931 //===----------------------------------------------------------------------===//
932 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
933 // preservation.
934 //===----------------------------------------------------------------------===//
936 ScheduleDAGMILive::~ScheduleDAGMILive() {
937 delete DFSResult;
940 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
941 const MachineInstr &MI = *SU.getInstr();
942 for (const MachineOperand &MO : MI.operands()) {
943 if (!MO.isReg())
944 continue;
945 if (!MO.readsReg())
946 continue;
947 if (TrackLaneMasks && !MO.isUse())
948 continue;
950 unsigned Reg = MO.getReg();
951 if (!TargetRegisterInfo::isVirtualRegister(Reg))
952 continue;
954 // Ignore re-defs.
955 if (TrackLaneMasks) {
956 bool FoundDef = false;
957 for (const MachineOperand &MO2 : MI.operands()) {
958 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
959 FoundDef = true;
960 break;
963 if (FoundDef)
964 continue;
967 // Record this local VReg use.
968 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
969 for (; UI != VRegUses.end(); ++UI) {
970 if (UI->SU == &SU)
971 break;
973 if (UI == VRegUses.end())
974 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
978 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
979 /// crossing a scheduling boundary. [begin, end) includes all instructions in
980 /// the region, including the boundary itself and single-instruction regions
981 /// that don't get scheduled.
982 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
983 MachineBasicBlock::iterator begin,
984 MachineBasicBlock::iterator end,
985 unsigned regioninstrs)
987 // ScheduleDAGMI initializes SchedImpl's per-region policy.
988 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
990 // For convenience remember the end of the liveness region.
991 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
993 SUPressureDiffs.clear();
995 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
996 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
998 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
999 "ShouldTrackLaneMasks requires ShouldTrackPressure");
1002 // Setup the register pressure trackers for the top scheduled top and bottom
1003 // scheduled regions.
1004 void ScheduleDAGMILive::initRegPressure() {
1005 VRegUses.clear();
1006 VRegUses.setUniverse(MRI.getNumVirtRegs());
1007 for (SUnit &SU : SUnits)
1008 collectVRegUses(SU);
1010 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1011 ShouldTrackLaneMasks, false);
1012 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1013 ShouldTrackLaneMasks, false);
1015 // Close the RPTracker to finalize live ins.
1016 RPTracker.closeRegion();
1018 LLVM_DEBUG(RPTracker.dump());
1020 // Initialize the live ins and live outs.
1021 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1022 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1024 // Close one end of the tracker so we can call
1025 // getMaxUpward/DownwardPressureDelta before advancing across any
1026 // instructions. This converts currently live regs into live ins/outs.
1027 TopRPTracker.closeTop();
1028 BotRPTracker.closeBottom();
1030 BotRPTracker.initLiveThru(RPTracker);
1031 if (!BotRPTracker.getLiveThru().empty()) {
1032 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1033 LLVM_DEBUG(dbgs() << "Live Thru: ";
1034 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1037 // For each live out vreg reduce the pressure change associated with other
1038 // uses of the same vreg below the live-out reaching def.
1039 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1041 // Account for liveness generated by the region boundary.
1042 if (LiveRegionEnd != RegionEnd) {
1043 SmallVector<RegisterMaskPair, 8> LiveUses;
1044 BotRPTracker.recede(&LiveUses);
1045 updatePressureDiffs(LiveUses);
1048 LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1049 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1050 dbgs() << "Bottom Pressure:\n";
1051 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1053 assert((BotRPTracker.getPos() == RegionEnd ||
1054 (RegionEnd->isDebugInstr() &&
1055 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1056 "Can't find the region bottom");
1058 // Cache the list of excess pressure sets in this region. This will also track
1059 // the max pressure in the scheduled code for these sets.
1060 RegionCriticalPSets.clear();
1061 const std::vector<unsigned> &RegionPressure =
1062 RPTracker.getPressure().MaxSetPressure;
1063 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1064 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1065 if (RegionPressure[i] > Limit) {
1066 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1067 << " Actual " << RegionPressure[i] << "\n");
1068 RegionCriticalPSets.push_back(PressureChange(i));
1071 LLVM_DEBUG(dbgs() << "Excess PSets: ";
1072 for (const PressureChange &RCPS
1073 : RegionCriticalPSets) dbgs()
1074 << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1075 dbgs() << "\n");
1078 void ScheduleDAGMILive::
1079 updateScheduledPressure(const SUnit *SU,
1080 const std::vector<unsigned> &NewMaxPressure) {
1081 const PressureDiff &PDiff = getPressureDiff(SU);
1082 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1083 for (const PressureChange &PC : PDiff) {
1084 if (!PC.isValid())
1085 break;
1086 unsigned ID = PC.getPSet();
1087 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1088 ++CritIdx;
1089 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1090 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1091 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1092 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1094 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1095 if (NewMaxPressure[ID] >= Limit - 2) {
1096 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
1097 << NewMaxPressure[ID]
1098 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1099 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1100 << " livethru)\n");
1105 /// Update the PressureDiff array for liveness after scheduling this
1106 /// instruction.
1107 void ScheduleDAGMILive::updatePressureDiffs(
1108 ArrayRef<RegisterMaskPair> LiveUses) {
1109 for (const RegisterMaskPair &P : LiveUses) {
1110 unsigned Reg = P.RegUnit;
1111 /// FIXME: Currently assuming single-use physregs.
1112 if (!TRI->isVirtualRegister(Reg))
1113 continue;
1115 if (ShouldTrackLaneMasks) {
1116 // If the register has just become live then other uses won't change
1117 // this fact anymore => decrement pressure.
1118 // If the register has just become dead then other uses make it come
1119 // back to life => increment pressure.
1120 bool Decrement = P.LaneMask.any();
1122 for (const VReg2SUnit &V2SU
1123 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1124 SUnit &SU = *V2SU.SU;
1125 if (SU.isScheduled || &SU == &ExitSU)
1126 continue;
1128 PressureDiff &PDiff = getPressureDiff(&SU);
1129 PDiff.addPressureChange(Reg, Decrement, &MRI);
1130 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "
1131 << printReg(Reg, TRI) << ':'
1132 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1133 dbgs() << " to "; PDiff.dump(*TRI););
1135 } else {
1136 assert(P.LaneMask.any());
1137 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1138 // This may be called before CurrentBottom has been initialized. However,
1139 // BotRPTracker must have a valid position. We want the value live into the
1140 // instruction or live out of the block, so ask for the previous
1141 // instruction's live-out.
1142 const LiveInterval &LI = LIS->getInterval(Reg);
1143 VNInfo *VNI;
1144 MachineBasicBlock::const_iterator I =
1145 nextIfDebug(BotRPTracker.getPos(), BB->end());
1146 if (I == BB->end())
1147 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1148 else {
1149 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1150 VNI = LRQ.valueIn();
1152 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1153 assert(VNI && "No live value at use.");
1154 for (const VReg2SUnit &V2SU
1155 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1156 SUnit *SU = V2SU.SU;
1157 // If this use comes before the reaching def, it cannot be a last use,
1158 // so decrease its pressure change.
1159 if (!SU->isScheduled && SU != &ExitSU) {
1160 LiveQueryResult LRQ =
1161 LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1162 if (LRQ.valueIn() == VNI) {
1163 PressureDiff &PDiff = getPressureDiff(SU);
1164 PDiff.addPressureChange(Reg, true, &MRI);
1165 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1166 << *SU->getInstr();
1167 dbgs() << " to "; PDiff.dump(*TRI););
1175 void ScheduleDAGMILive::dump() const {
1176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1177 if (EntrySU.getInstr() != nullptr)
1178 dumpNodeAll(EntrySU);
1179 for (const SUnit &SU : SUnits) {
1180 dumpNodeAll(SU);
1181 if (ShouldTrackPressure) {
1182 dbgs() << " Pressure Diff : ";
1183 getPressureDiff(&SU).dump(*TRI);
1185 dbgs() << " Single Issue : ";
1186 if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1187 SchedModel.mustEndGroup(SU.getInstr()))
1188 dbgs() << "true;";
1189 else
1190 dbgs() << "false;";
1191 dbgs() << '\n';
1193 if (ExitSU.getInstr() != nullptr)
1194 dumpNodeAll(ExitSU);
1195 #endif
1198 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1199 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1200 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1202 /// This is a skeletal driver, with all the functionality pushed into helpers,
1203 /// so that it can be easily extended by experimental schedulers. Generally,
1204 /// implementing MachineSchedStrategy should be sufficient to implement a new
1205 /// scheduling algorithm. However, if a scheduler further subclasses
1206 /// ScheduleDAGMILive then it will want to override this virtual method in order
1207 /// to update any specialized state.
1208 void ScheduleDAGMILive::schedule() {
1209 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1210 LLVM_DEBUG(SchedImpl->dumpPolicy());
1211 buildDAGWithRegPressure();
1213 Topo.InitDAGTopologicalSorting();
1215 postprocessDAG();
1217 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1218 findRootsAndBiasEdges(TopRoots, BotRoots);
1220 // Initialize the strategy before modifying the DAG.
1221 // This may initialize a DFSResult to be used for queue priority.
1222 SchedImpl->initialize(this);
1224 LLVM_DEBUG(dump());
1225 if (PrintDAGs) dump();
1226 if (ViewMISchedDAGs) viewGraph();
1228 // Initialize ready queues now that the DAG and priority data are finalized.
1229 initQueues(TopRoots, BotRoots);
1231 bool IsTopNode = false;
1232 while (true) {
1233 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1234 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1235 if (!SU) break;
1237 assert(!SU->isScheduled && "Node already scheduled");
1238 if (!checkSchedLimit())
1239 break;
1241 scheduleMI(SU, IsTopNode);
1243 if (DFSResult) {
1244 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1245 if (!ScheduledTrees.test(SubtreeID)) {
1246 ScheduledTrees.set(SubtreeID);
1247 DFSResult->scheduleTree(SubtreeID);
1248 SchedImpl->scheduleTree(SubtreeID);
1252 // Notify the scheduling strategy after updating the DAG.
1253 SchedImpl->schedNode(SU, IsTopNode);
1255 updateQueues(SU, IsTopNode);
1257 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1259 placeDebugValues();
1261 LLVM_DEBUG({
1262 dbgs() << "*** Final schedule for "
1263 << printMBBReference(*begin()->getParent()) << " ***\n";
1264 dumpSchedule();
1265 dbgs() << '\n';
1269 /// Build the DAG and setup three register pressure trackers.
1270 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1271 if (!ShouldTrackPressure) {
1272 RPTracker.reset();
1273 RegionCriticalPSets.clear();
1274 buildSchedGraph(AA);
1275 return;
1278 // Initialize the register pressure tracker used by buildSchedGraph.
1279 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1280 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1282 // Account for liveness generate by the region boundary.
1283 if (LiveRegionEnd != RegionEnd)
1284 RPTracker.recede();
1286 // Build the DAG, and compute current register pressure.
1287 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1289 // Initialize top/bottom trackers after computing region pressure.
1290 initRegPressure();
1293 void ScheduleDAGMILive::computeDFSResult() {
1294 if (!DFSResult)
1295 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1296 DFSResult->clear();
1297 ScheduledTrees.clear();
1298 DFSResult->resize(SUnits.size());
1299 DFSResult->compute(SUnits);
1300 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1303 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1304 /// only provides the critical path for single block loops. To handle loops that
1305 /// span blocks, we could use the vreg path latencies provided by
1306 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1307 /// available for use in the scheduler.
1309 /// The cyclic path estimation identifies a def-use pair that crosses the back
1310 /// edge and considers the depth and height of the nodes. For example, consider
1311 /// the following instruction sequence where each instruction has unit latency
1312 /// and defines an epomymous virtual register:
1314 /// a->b(a,c)->c(b)->d(c)->exit
1316 /// The cyclic critical path is a two cycles: b->c->b
1317 /// The acyclic critical path is four cycles: a->b->c->d->exit
1318 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1319 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1320 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1321 /// LiveInDepth = depth(b) = len(a->b) = 1
1323 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1324 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1325 /// CyclicCriticalPath = min(2, 2) = 2
1327 /// This could be relevant to PostRA scheduling, but is currently implemented
1328 /// assuming LiveIntervals.
1329 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1330 // This only applies to single block loop.
1331 if (!BB->isSuccessor(BB))
1332 return 0;
1334 unsigned MaxCyclicLatency = 0;
1335 // Visit each live out vreg def to find def/use pairs that cross iterations.
1336 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1337 unsigned Reg = P.RegUnit;
1338 if (!TRI->isVirtualRegister(Reg))
1339 continue;
1340 const LiveInterval &LI = LIS->getInterval(Reg);
1341 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1342 if (!DefVNI)
1343 continue;
1345 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1346 const SUnit *DefSU = getSUnit(DefMI);
1347 if (!DefSU)
1348 continue;
1350 unsigned LiveOutHeight = DefSU->getHeight();
1351 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1352 // Visit all local users of the vreg def.
1353 for (const VReg2SUnit &V2SU
1354 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1355 SUnit *SU = V2SU.SU;
1356 if (SU == &ExitSU)
1357 continue;
1359 // Only consider uses of the phi.
1360 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1361 if (!LRQ.valueIn()->isPHIDef())
1362 continue;
1364 // Assume that a path spanning two iterations is a cycle, which could
1365 // overestimate in strange cases. This allows cyclic latency to be
1366 // estimated as the minimum slack of the vreg's depth or height.
1367 unsigned CyclicLatency = 0;
1368 if (LiveOutDepth > SU->getDepth())
1369 CyclicLatency = LiveOutDepth - SU->getDepth();
1371 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1372 if (LiveInHeight > LiveOutHeight) {
1373 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1374 CyclicLatency = LiveInHeight - LiveOutHeight;
1375 } else
1376 CyclicLatency = 0;
1378 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1379 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1380 if (CyclicLatency > MaxCyclicLatency)
1381 MaxCyclicLatency = CyclicLatency;
1384 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1385 return MaxCyclicLatency;
1388 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1389 /// the Top RP tracker in case the region beginning has changed.
1390 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1391 ArrayRef<SUnit*> BotRoots) {
1392 ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1393 if (ShouldTrackPressure) {
1394 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1395 TopRPTracker.setPos(CurrentTop);
1399 /// Move an instruction and update register pressure.
1400 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1401 // Move the instruction to its new location in the instruction stream.
1402 MachineInstr *MI = SU->getInstr();
1404 if (IsTopNode) {
1405 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1406 if (&*CurrentTop == MI)
1407 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1408 else {
1409 moveInstruction(MI, CurrentTop);
1410 TopRPTracker.setPos(MI);
1413 if (ShouldTrackPressure) {
1414 // Update top scheduled pressure.
1415 RegisterOperands RegOpers;
1416 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1417 if (ShouldTrackLaneMasks) {
1418 // Adjust liveness and add missing dead+read-undef flags.
1419 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1420 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1421 } else {
1422 // Adjust for missing dead-def flags.
1423 RegOpers.detectDeadDefs(*MI, *LIS);
1426 TopRPTracker.advance(RegOpers);
1427 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1428 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1429 TopRPTracker.getRegSetPressureAtPos(), TRI););
1431 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1433 } else {
1434 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1435 MachineBasicBlock::iterator priorII =
1436 priorNonDebug(CurrentBottom, CurrentTop);
1437 if (&*priorII == MI)
1438 CurrentBottom = priorII;
1439 else {
1440 if (&*CurrentTop == MI) {
1441 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1442 TopRPTracker.setPos(CurrentTop);
1444 moveInstruction(MI, CurrentBottom);
1445 CurrentBottom = MI;
1446 BotRPTracker.setPos(CurrentBottom);
1448 if (ShouldTrackPressure) {
1449 RegisterOperands RegOpers;
1450 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1451 if (ShouldTrackLaneMasks) {
1452 // Adjust liveness and add missing dead+read-undef flags.
1453 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1454 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1455 } else {
1456 // Adjust for missing dead-def flags.
1457 RegOpers.detectDeadDefs(*MI, *LIS);
1460 if (BotRPTracker.getPos() != CurrentBottom)
1461 BotRPTracker.recedeSkipDebugValues();
1462 SmallVector<RegisterMaskPair, 8> LiveUses;
1463 BotRPTracker.recede(RegOpers, &LiveUses);
1464 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1465 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1466 BotRPTracker.getRegSetPressureAtPos(), TRI););
1468 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1469 updatePressureDiffs(LiveUses);
1474 //===----------------------------------------------------------------------===//
1475 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1476 //===----------------------------------------------------------------------===//
1478 namespace {
1480 /// Post-process the DAG to create cluster edges between neighboring
1481 /// loads or between neighboring stores.
1482 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1483 struct MemOpInfo {
1484 SUnit *SU;
1485 unsigned BaseReg;
1486 int64_t Offset;
1488 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1489 : SU(su), BaseReg(reg), Offset(ofs) {}
1491 bool operator<(const MemOpInfo&RHS) const {
1492 return std::tie(BaseReg, Offset, SU->NodeNum) <
1493 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1497 const TargetInstrInfo *TII;
1498 const TargetRegisterInfo *TRI;
1499 bool IsLoad;
1501 public:
1502 BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1503 const TargetRegisterInfo *tri, bool IsLoad)
1504 : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1506 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1508 protected:
1509 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1512 class StoreClusterMutation : public BaseMemOpClusterMutation {
1513 public:
1514 StoreClusterMutation(const TargetInstrInfo *tii,
1515 const TargetRegisterInfo *tri)
1516 : BaseMemOpClusterMutation(tii, tri, false) {}
1519 class LoadClusterMutation : public BaseMemOpClusterMutation {
1520 public:
1521 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1522 : BaseMemOpClusterMutation(tii, tri, true) {}
1525 } // end anonymous namespace
1527 namespace llvm {
1529 std::unique_ptr<ScheduleDAGMutation>
1530 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1531 const TargetRegisterInfo *TRI) {
1532 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1533 : nullptr;
1536 std::unique_ptr<ScheduleDAGMutation>
1537 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1538 const TargetRegisterInfo *TRI) {
1539 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1540 : nullptr;
1543 } // end namespace llvm
1545 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1546 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1547 SmallVector<MemOpInfo, 32> MemOpRecords;
1548 for (SUnit *SU : MemOps) {
1549 unsigned BaseReg;
1550 int64_t Offset;
1551 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1552 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1554 if (MemOpRecords.size() < 2)
1555 return;
1557 llvm::sort(MemOpRecords);
1558 unsigned ClusterLength = 1;
1559 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1560 SUnit *SUa = MemOpRecords[Idx].SU;
1561 SUnit *SUb = MemOpRecords[Idx+1].SU;
1562 if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg,
1563 *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg,
1564 ClusterLength) &&
1565 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1566 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1567 << SUb->NodeNum << ")\n");
1568 // Copy successor edges from SUa to SUb. Interleaving computation
1569 // dependent on SUa can prevent load combining due to register reuse.
1570 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1571 // loads should have effectively the same inputs.
1572 for (const SDep &Succ : SUa->Succs) {
1573 if (Succ.getSUnit() == SUb)
1574 continue;
1575 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum
1576 << ")\n");
1577 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1579 ++ClusterLength;
1580 } else
1581 ClusterLength = 1;
1585 /// Callback from DAG postProcessing to create cluster edges for loads.
1586 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1587 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1589 // Map DAG NodeNum to store chain ID.
1590 DenseMap<unsigned, unsigned> StoreChainIDs;
1591 // Map each store chain to a set of dependent MemOps.
1592 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1593 for (SUnit &SU : DAG->SUnits) {
1594 if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1595 (!IsLoad && !SU.getInstr()->mayStore()))
1596 continue;
1598 unsigned ChainPredID = DAG->SUnits.size();
1599 for (const SDep &Pred : SU.Preds) {
1600 if (Pred.isCtrl()) {
1601 ChainPredID = Pred.getSUnit()->NodeNum;
1602 break;
1605 // Check if this chain-like pred has been seen
1606 // before. ChainPredID==MaxNodeID at the top of the schedule.
1607 unsigned NumChains = StoreChainDependents.size();
1608 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1609 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1610 if (Result.second)
1611 StoreChainDependents.resize(NumChains + 1);
1612 StoreChainDependents[Result.first->second].push_back(&SU);
1615 // Iterate over the store chains.
1616 for (auto &SCD : StoreChainDependents)
1617 clusterNeighboringMemOps(SCD, DAG);
1620 //===----------------------------------------------------------------------===//
1621 // CopyConstrain - DAG post-processing to encourage copy elimination.
1622 //===----------------------------------------------------------------------===//
1624 namespace {
1626 /// Post-process the DAG to create weak edges from all uses of a copy to
1627 /// the one use that defines the copy's source vreg, most likely an induction
1628 /// variable increment.
1629 class CopyConstrain : public ScheduleDAGMutation {
1630 // Transient state.
1631 SlotIndex RegionBeginIdx;
1633 // RegionEndIdx is the slot index of the last non-debug instruction in the
1634 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1635 SlotIndex RegionEndIdx;
1637 public:
1638 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1640 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1642 protected:
1643 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1646 } // end anonymous namespace
1648 namespace llvm {
1650 std::unique_ptr<ScheduleDAGMutation>
1651 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1652 const TargetRegisterInfo *TRI) {
1653 return llvm::make_unique<CopyConstrain>(TII, TRI);
1656 } // end namespace llvm
1658 /// constrainLocalCopy handles two possibilities:
1659 /// 1) Local src:
1660 /// I0: = dst
1661 /// I1: src = ...
1662 /// I2: = dst
1663 /// I3: dst = src (copy)
1664 /// (create pred->succ edges I0->I1, I2->I1)
1666 /// 2) Local copy:
1667 /// I0: dst = src (copy)
1668 /// I1: = dst
1669 /// I2: src = ...
1670 /// I3: = dst
1671 /// (create pred->succ edges I1->I2, I3->I2)
1673 /// Although the MachineScheduler is currently constrained to single blocks,
1674 /// this algorithm should handle extended blocks. An EBB is a set of
1675 /// contiguously numbered blocks such that the previous block in the EBB is
1676 /// always the single predecessor.
1677 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1678 LiveIntervals *LIS = DAG->getLIS();
1679 MachineInstr *Copy = CopySU->getInstr();
1681 // Check for pure vreg copies.
1682 const MachineOperand &SrcOp = Copy->getOperand(1);
1683 unsigned SrcReg = SrcOp.getReg();
1684 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1685 return;
1687 const MachineOperand &DstOp = Copy->getOperand(0);
1688 unsigned DstReg = DstOp.getReg();
1689 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1690 return;
1692 // Check if either the dest or source is local. If it's live across a back
1693 // edge, it's not local. Note that if both vregs are live across the back
1694 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1695 // If both the copy's source and dest are local live intervals, then we
1696 // should treat the dest as the global for the purpose of adding
1697 // constraints. This adds edges from source's other uses to the copy.
1698 unsigned LocalReg = SrcReg;
1699 unsigned GlobalReg = DstReg;
1700 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1701 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1702 LocalReg = DstReg;
1703 GlobalReg = SrcReg;
1704 LocalLI = &LIS->getInterval(LocalReg);
1705 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1706 return;
1708 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1710 // Find the global segment after the start of the local LI.
1711 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1712 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1713 // local live range. We could create edges from other global uses to the local
1714 // start, but the coalescer should have already eliminated these cases, so
1715 // don't bother dealing with it.
1716 if (GlobalSegment == GlobalLI->end())
1717 return;
1719 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1720 // returned the next global segment. But if GlobalSegment overlaps with
1721 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1722 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1723 if (GlobalSegment->contains(LocalLI->beginIndex()))
1724 ++GlobalSegment;
1726 if (GlobalSegment == GlobalLI->end())
1727 return;
1729 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1730 if (GlobalSegment != GlobalLI->begin()) {
1731 // Two address defs have no hole.
1732 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1733 GlobalSegment->start)) {
1734 return;
1736 // If the prior global segment may be defined by the same two-address
1737 // instruction that also defines LocalLI, then can't make a hole here.
1738 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1739 LocalLI->beginIndex())) {
1740 return;
1742 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1743 // it would be a disconnected component in the live range.
1744 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1745 "Disconnected LRG within the scheduling region.");
1747 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1748 if (!GlobalDef)
1749 return;
1751 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1752 if (!GlobalSU)
1753 return;
1755 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1756 // constraining the uses of the last local def to precede GlobalDef.
1757 SmallVector<SUnit*,8> LocalUses;
1758 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1759 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1760 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1761 for (const SDep &Succ : LastLocalSU->Succs) {
1762 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1763 continue;
1764 if (Succ.getSUnit() == GlobalSU)
1765 continue;
1766 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1767 return;
1768 LocalUses.push_back(Succ.getSUnit());
1770 // Open the top of the GlobalLI hole by constraining any earlier global uses
1771 // to precede the start of LocalLI.
1772 SmallVector<SUnit*,8> GlobalUses;
1773 MachineInstr *FirstLocalDef =
1774 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1775 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1776 for (const SDep &Pred : GlobalSU->Preds) {
1777 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1778 continue;
1779 if (Pred.getSUnit() == FirstLocalSU)
1780 continue;
1781 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1782 return;
1783 GlobalUses.push_back(Pred.getSUnit());
1785 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1786 // Add the weak edges.
1787 for (SmallVectorImpl<SUnit*>::const_iterator
1788 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1789 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1790 << GlobalSU->NodeNum << ")\n");
1791 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1793 for (SmallVectorImpl<SUnit*>::const_iterator
1794 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1795 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1796 << FirstLocalSU->NodeNum << ")\n");
1797 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1801 /// Callback from DAG postProcessing to create weak edges to encourage
1802 /// copy elimination.
1803 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1804 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1805 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1807 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1808 if (FirstPos == DAG->end())
1809 return;
1810 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1811 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1812 *priorNonDebug(DAG->end(), DAG->begin()));
1814 for (SUnit &SU : DAG->SUnits) {
1815 if (!SU.getInstr()->isCopy())
1816 continue;
1818 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1822 //===----------------------------------------------------------------------===//
1823 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1824 // and possibly other custom schedulers.
1825 //===----------------------------------------------------------------------===//
1827 static const unsigned InvalidCycle = ~0U;
1829 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1831 /// Given a Count of resource usage and a Latency value, return true if a
1832 /// SchedBoundary becomes resource limited.
1833 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1834 unsigned Latency) {
1835 return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1838 void SchedBoundary::reset() {
1839 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1840 // Destroying and reconstructing it is very expensive though. So keep
1841 // invalid, placeholder HazardRecs.
1842 if (HazardRec && HazardRec->isEnabled()) {
1843 delete HazardRec;
1844 HazardRec = nullptr;
1846 Available.clear();
1847 Pending.clear();
1848 CheckPending = false;
1849 CurrCycle = 0;
1850 CurrMOps = 0;
1851 MinReadyCycle = std::numeric_limits<unsigned>::max();
1852 ExpectedLatency = 0;
1853 DependentLatency = 0;
1854 RetiredMOps = 0;
1855 MaxExecutedResCount = 0;
1856 ZoneCritResIdx = 0;
1857 IsResourceLimited = false;
1858 ReservedCycles.clear();
1859 #ifndef NDEBUG
1860 // Track the maximum number of stall cycles that could arise either from the
1861 // latency of a DAG edge or the number of cycles that a processor resource is
1862 // reserved (SchedBoundary::ReservedCycles).
1863 MaxObservedStall = 0;
1864 #endif
1865 // Reserve a zero-count for invalid CritResIdx.
1866 ExecutedResCounts.resize(1);
1867 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1870 void SchedRemainder::
1871 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1872 reset();
1873 if (!SchedModel->hasInstrSchedModel())
1874 return;
1875 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1876 for (SUnit &SU : DAG->SUnits) {
1877 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1878 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1879 * SchedModel->getMicroOpFactor();
1880 for (TargetSchedModel::ProcResIter
1881 PI = SchedModel->getWriteProcResBegin(SC),
1882 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1883 unsigned PIdx = PI->ProcResourceIdx;
1884 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1885 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1890 void SchedBoundary::
1891 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1892 reset();
1893 DAG = dag;
1894 SchedModel = smodel;
1895 Rem = rem;
1896 if (SchedModel->hasInstrSchedModel()) {
1897 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1898 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1902 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1903 /// these "soft stalls" differently than the hard stall cycles based on CPU
1904 /// resources and computed by checkHazard(). A fully in-order model
1905 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1906 /// available for scheduling until they are ready. However, a weaker in-order
1907 /// model may use this for heuristics. For example, if a processor has in-order
1908 /// behavior when reading certain resources, this may come into play.
1909 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1910 if (!SU->isUnbuffered)
1911 return 0;
1913 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1914 if (ReadyCycle > CurrCycle)
1915 return ReadyCycle - CurrCycle;
1916 return 0;
1919 /// Compute the next cycle at which the given processor resource can be
1920 /// scheduled.
1921 unsigned SchedBoundary::
1922 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1923 unsigned NextUnreserved = ReservedCycles[PIdx];
1924 // If this resource has never been used, always return cycle zero.
1925 if (NextUnreserved == InvalidCycle)
1926 return 0;
1927 // For bottom-up scheduling add the cycles needed for the current operation.
1928 if (!isTop())
1929 NextUnreserved += Cycles;
1930 return NextUnreserved;
1933 /// Does this SU have a hazard within the current instruction group.
1935 /// The scheduler supports two modes of hazard recognition. The first is the
1936 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1937 /// supports highly complicated in-order reservation tables
1938 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1940 /// The second is a streamlined mechanism that checks for hazards based on
1941 /// simple counters that the scheduler itself maintains. It explicitly checks
1942 /// for instruction dispatch limitations, including the number of micro-ops that
1943 /// can dispatch per cycle.
1945 /// TODO: Also check whether the SU must start a new group.
1946 bool SchedBoundary::checkHazard(SUnit *SU) {
1947 if (HazardRec->isEnabled()
1948 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1949 return true;
1952 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1953 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1954 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1955 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1956 return true;
1959 if (CurrMOps > 0 &&
1960 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1961 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1962 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must "
1963 << (isTop() ? "begin" : "end") << " group\n");
1964 return true;
1967 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1968 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1969 for (const MCWriteProcResEntry &PE :
1970 make_range(SchedModel->getWriteProcResBegin(SC),
1971 SchedModel->getWriteProcResEnd(SC))) {
1972 unsigned ResIdx = PE.ProcResourceIdx;
1973 unsigned Cycles = PE.Cycles;
1974 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1975 if (NRCycle > CurrCycle) {
1976 #ifndef NDEBUG
1977 MaxObservedStall = std::max(Cycles, MaxObservedStall);
1978 #endif
1979 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
1980 << SchedModel->getResourceName(ResIdx) << "="
1981 << NRCycle << "c\n");
1982 return true;
1986 return false;
1989 // Find the unscheduled node in ReadySUs with the highest latency.
1990 unsigned SchedBoundary::
1991 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1992 SUnit *LateSU = nullptr;
1993 unsigned RemLatency = 0;
1994 for (SUnit *SU : ReadySUs) {
1995 unsigned L = getUnscheduledLatency(SU);
1996 if (L > RemLatency) {
1997 RemLatency = L;
1998 LateSU = SU;
2001 if (LateSU) {
2002 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2003 << LateSU->NodeNum << ") " << RemLatency << "c\n");
2005 return RemLatency;
2008 // Count resources in this zone and the remaining unscheduled
2009 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2010 // resource index, or zero if the zone is issue limited.
2011 unsigned SchedBoundary::
2012 getOtherResourceCount(unsigned &OtherCritIdx) {
2013 OtherCritIdx = 0;
2014 if (!SchedModel->hasInstrSchedModel())
2015 return 0;
2017 unsigned OtherCritCount = Rem->RemIssueCount
2018 + (RetiredMOps * SchedModel->getMicroOpFactor());
2019 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
2020 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2021 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2022 PIdx != PEnd; ++PIdx) {
2023 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2024 if (OtherCount > OtherCritCount) {
2025 OtherCritCount = OtherCount;
2026 OtherCritIdx = PIdx;
2029 if (OtherCritIdx) {
2030 LLVM_DEBUG(
2031 dbgs() << " " << Available.getName() << " + Remain CritRes: "
2032 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2033 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2035 return OtherCritCount;
2038 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2039 assert(SU->getInstr() && "Scheduled SUnit must have instr");
2041 #ifndef NDEBUG
2042 // ReadyCycle was been bumped up to the CurrCycle when this node was
2043 // scheduled, but CurrCycle may have been eagerly advanced immediately after
2044 // scheduling, so may now be greater than ReadyCycle.
2045 if (ReadyCycle > CurrCycle)
2046 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2047 #endif
2049 if (ReadyCycle < MinReadyCycle)
2050 MinReadyCycle = ReadyCycle;
2052 // Check for interlocks first. For the purpose of other heuristics, an
2053 // instruction that cannot issue appears as if it's not in the ReadyQueue.
2054 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2055 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2056 Available.size() >= ReadyListLimit)
2057 Pending.push(SU);
2058 else
2059 Available.push(SU);
2062 /// Move the boundary of scheduled code by one cycle.
2063 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2064 if (SchedModel->getMicroOpBufferSize() == 0) {
2065 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2066 "MinReadyCycle uninitialized");
2067 if (MinReadyCycle > NextCycle)
2068 NextCycle = MinReadyCycle;
2070 // Update the current micro-ops, which will issue in the next cycle.
2071 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2072 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2074 // Decrement DependentLatency based on the next cycle.
2075 if ((NextCycle - CurrCycle) > DependentLatency)
2076 DependentLatency = 0;
2077 else
2078 DependentLatency -= (NextCycle - CurrCycle);
2080 if (!HazardRec->isEnabled()) {
2081 // Bypass HazardRec virtual calls.
2082 CurrCycle = NextCycle;
2083 } else {
2084 // Bypass getHazardType calls in case of long latency.
2085 for (; CurrCycle != NextCycle; ++CurrCycle) {
2086 if (isTop())
2087 HazardRec->AdvanceCycle();
2088 else
2089 HazardRec->RecedeCycle();
2092 CheckPending = true;
2093 IsResourceLimited =
2094 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2095 getScheduledLatency());
2097 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2098 << '\n');
2101 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2102 ExecutedResCounts[PIdx] += Count;
2103 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2104 MaxExecutedResCount = ExecutedResCounts[PIdx];
2107 /// Add the given processor resource to this scheduled zone.
2109 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2110 /// during which this resource is consumed.
2112 /// \return the next cycle at which the instruction may execute without
2113 /// oversubscribing resources.
2114 unsigned SchedBoundary::
2115 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2116 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2117 unsigned Count = Factor * Cycles;
2118 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +"
2119 << Cycles << "x" << Factor << "u\n");
2121 // Update Executed resources counts.
2122 incExecutedResources(PIdx, Count);
2123 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2124 Rem->RemainingCounts[PIdx] -= Count;
2126 // Check if this resource exceeds the current critical resource. If so, it
2127 // becomes the critical resource.
2128 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2129 ZoneCritResIdx = PIdx;
2130 LLVM_DEBUG(dbgs() << " *** Critical resource "
2131 << SchedModel->getResourceName(PIdx) << ": "
2132 << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2133 << "c\n");
2135 // For reserved resources, record the highest cycle using the resource.
2136 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2137 if (NextAvailable > CurrCycle) {
2138 LLVM_DEBUG(dbgs() << " Resource conflict: "
2139 << SchedModel->getProcResource(PIdx)->Name
2140 << " reserved until @" << NextAvailable << "\n");
2142 return NextAvailable;
2145 /// Move the boundary of scheduled code by one SUnit.
2146 void SchedBoundary::bumpNode(SUnit *SU) {
2147 // Update the reservation table.
2148 if (HazardRec->isEnabled()) {
2149 if (!isTop() && SU->isCall) {
2150 // Calls are scheduled with their preceding instructions. For bottom-up
2151 // scheduling, clear the pipeline state before emitting.
2152 HazardRec->Reset();
2154 HazardRec->EmitInstruction(SU);
2156 // checkHazard should prevent scheduling multiple instructions per cycle that
2157 // exceed the issue width.
2158 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2159 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2160 assert(
2161 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2162 "Cannot schedule this instruction's MicroOps in the current cycle.");
2164 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2165 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2167 unsigned NextCycle = CurrCycle;
2168 switch (SchedModel->getMicroOpBufferSize()) {
2169 case 0:
2170 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2171 break;
2172 case 1:
2173 if (ReadyCycle > NextCycle) {
2174 NextCycle = ReadyCycle;
2175 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2177 break;
2178 default:
2179 // We don't currently model the OOO reorder buffer, so consider all
2180 // scheduled MOps to be "retired". We do loosely model in-order resource
2181 // latency. If this instruction uses an in-order resource, account for any
2182 // likely stall cycles.
2183 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2184 NextCycle = ReadyCycle;
2185 break;
2187 RetiredMOps += IncMOps;
2189 // Update resource counts and critical resource.
2190 if (SchedModel->hasInstrSchedModel()) {
2191 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2192 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2193 Rem->RemIssueCount -= DecRemIssue;
2194 if (ZoneCritResIdx) {
2195 // Scale scheduled micro-ops for comparing with the critical resource.
2196 unsigned ScaledMOps =
2197 RetiredMOps * SchedModel->getMicroOpFactor();
2199 // If scaled micro-ops are now more than the previous critical resource by
2200 // a full cycle, then micro-ops issue becomes critical.
2201 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2202 >= (int)SchedModel->getLatencyFactor()) {
2203 ZoneCritResIdx = 0;
2204 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2205 << ScaledMOps / SchedModel->getLatencyFactor()
2206 << "c\n");
2209 for (TargetSchedModel::ProcResIter
2210 PI = SchedModel->getWriteProcResBegin(SC),
2211 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2212 unsigned RCycle =
2213 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2214 if (RCycle > NextCycle)
2215 NextCycle = RCycle;
2217 if (SU->hasReservedResource) {
2218 // For reserved resources, record the highest cycle using the resource.
2219 // For top-down scheduling, this is the cycle in which we schedule this
2220 // instruction plus the number of cycles the operations reserves the
2221 // resource. For bottom-up is it simply the instruction's cycle.
2222 for (TargetSchedModel::ProcResIter
2223 PI = SchedModel->getWriteProcResBegin(SC),
2224 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2225 unsigned PIdx = PI->ProcResourceIdx;
2226 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2227 if (isTop()) {
2228 ReservedCycles[PIdx] =
2229 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2231 else
2232 ReservedCycles[PIdx] = NextCycle;
2237 // Update ExpectedLatency and DependentLatency.
2238 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2239 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2240 if (SU->getDepth() > TopLatency) {
2241 TopLatency = SU->getDepth();
2242 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU("
2243 << SU->NodeNum << ") " << TopLatency << "c\n");
2245 if (SU->getHeight() > BotLatency) {
2246 BotLatency = SU->getHeight();
2247 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU("
2248 << SU->NodeNum << ") " << BotLatency << "c\n");
2250 // If we stall for any reason, bump the cycle.
2251 if (NextCycle > CurrCycle)
2252 bumpCycle(NextCycle);
2253 else
2254 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2255 // resource limited. If a stall occurred, bumpCycle does this.
2256 IsResourceLimited =
2257 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2258 getScheduledLatency());
2260 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2261 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2262 // one cycle. Since we commonly reach the max MOps here, opportunistically
2263 // bump the cycle to avoid uselessly checking everything in the readyQ.
2264 CurrMOps += IncMOps;
2266 // Bump the cycle count for issue group constraints.
2267 // This must be done after NextCycle has been adjust for all other stalls.
2268 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2269 // currCycle to X.
2270 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) ||
2271 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2272 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin")
2273 << " group\n");
2274 bumpCycle(++NextCycle);
2277 while (CurrMOps >= SchedModel->getIssueWidth()) {
2278 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "
2279 << CurrCycle << '\n');
2280 bumpCycle(++NextCycle);
2282 LLVM_DEBUG(dumpScheduledState());
2285 /// Release pending ready nodes in to the available queue. This makes them
2286 /// visible to heuristics.
2287 void SchedBoundary::releasePending() {
2288 // If the available queue is empty, it is safe to reset MinReadyCycle.
2289 if (Available.empty())
2290 MinReadyCycle = std::numeric_limits<unsigned>::max();
2292 // Check to see if any of the pending instructions are ready to issue. If
2293 // so, add them to the available queue.
2294 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2295 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2296 SUnit *SU = *(Pending.begin()+i);
2297 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2299 if (ReadyCycle < MinReadyCycle)
2300 MinReadyCycle = ReadyCycle;
2302 if (!IsBuffered && ReadyCycle > CurrCycle)
2303 continue;
2305 if (checkHazard(SU))
2306 continue;
2308 if (Available.size() >= ReadyListLimit)
2309 break;
2311 Available.push(SU);
2312 Pending.remove(Pending.begin()+i);
2313 --i; --e;
2315 CheckPending = false;
2318 /// Remove SU from the ready set for this boundary.
2319 void SchedBoundary::removeReady(SUnit *SU) {
2320 if (Available.isInQueue(SU))
2321 Available.remove(Available.find(SU));
2322 else {
2323 assert(Pending.isInQueue(SU) && "bad ready count");
2324 Pending.remove(Pending.find(SU));
2328 /// If this queue only has one ready candidate, return it. As a side effect,
2329 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2330 /// one node is ready. If multiple instructions are ready, return NULL.
2331 SUnit *SchedBoundary::pickOnlyChoice() {
2332 if (CheckPending)
2333 releasePending();
2335 if (CurrMOps > 0) {
2336 // Defer any ready instrs that now have a hazard.
2337 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2338 if (checkHazard(*I)) {
2339 Pending.push(*I);
2340 I = Available.remove(I);
2341 continue;
2343 ++I;
2346 for (unsigned i = 0; Available.empty(); ++i) {
2347 // FIXME: Re-enable assert once PR20057 is resolved.
2348 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2349 // "permanent hazard");
2350 (void)i;
2351 bumpCycle(CurrCycle + 1);
2352 releasePending();
2355 LLVM_DEBUG(Pending.dump());
2356 LLVM_DEBUG(Available.dump());
2358 if (Available.size() == 1)
2359 return *Available.begin();
2360 return nullptr;
2363 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2364 // This is useful information to dump after bumpNode.
2365 // Note that the Queue contents are more useful before pickNodeFromQueue.
2366 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2367 unsigned ResFactor;
2368 unsigned ResCount;
2369 if (ZoneCritResIdx) {
2370 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2371 ResCount = getResourceCount(ZoneCritResIdx);
2372 } else {
2373 ResFactor = SchedModel->getMicroOpFactor();
2374 ResCount = RetiredMOps * ResFactor;
2376 unsigned LFactor = SchedModel->getLatencyFactor();
2377 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2378 << " Retired: " << RetiredMOps;
2379 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2380 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2381 << ResCount / ResFactor << " "
2382 << SchedModel->getResourceName(ZoneCritResIdx)
2383 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2384 << (IsResourceLimited ? " - Resource" : " - Latency")
2385 << " limited.\n";
2387 #endif
2389 //===----------------------------------------------------------------------===//
2390 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2391 //===----------------------------------------------------------------------===//
2393 void GenericSchedulerBase::SchedCandidate::
2394 initResourceDelta(const ScheduleDAGMI *DAG,
2395 const TargetSchedModel *SchedModel) {
2396 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2397 return;
2399 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2400 for (TargetSchedModel::ProcResIter
2401 PI = SchedModel->getWriteProcResBegin(SC),
2402 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2403 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2404 ResDelta.CritResources += PI->Cycles;
2405 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2406 ResDelta.DemandedResources += PI->Cycles;
2410 /// Compute remaining latency. We need this both to determine whether the
2411 /// overall schedule has become latency-limited and whether the instructions
2412 /// outside this zone are resource or latency limited.
2414 /// The "dependent" latency is updated incrementally during scheduling as the
2415 /// max height/depth of scheduled nodes minus the cycles since it was
2416 /// scheduled:
2417 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2419 /// The "independent" latency is the max ready queue depth:
2420 /// ILat = max N.depth for N in Available|Pending
2422 /// RemainingLatency is the greater of independent and dependent latency.
2424 /// These computations are expensive, especially in DAGs with many edges, so
2425 /// only do them if necessary.
2426 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2427 unsigned RemLatency = CurrZone.getDependentLatency();
2428 RemLatency = std::max(RemLatency,
2429 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2430 RemLatency = std::max(RemLatency,
2431 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2432 return RemLatency;
2435 /// Returns true if the current cycle plus remaning latency is greater than
2436 /// the cirtical path in the scheduling region.
2437 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2438 SchedBoundary &CurrZone,
2439 bool ComputeRemLatency,
2440 unsigned &RemLatency) const {
2441 // The current cycle is already greater than the critical path, so we are
2442 // already latnecy limited and don't need to compute the remaining latency.
2443 if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2444 return true;
2446 // If we haven't scheduled anything yet, then we aren't latency limited.
2447 if (CurrZone.getCurrCycle() == 0)
2448 return false;
2450 if (ComputeRemLatency)
2451 RemLatency = computeRemLatency(CurrZone);
2453 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2456 /// Set the CandPolicy given a scheduling zone given the current resources and
2457 /// latencies inside and outside the zone.
2458 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2459 SchedBoundary &CurrZone,
2460 SchedBoundary *OtherZone) {
2461 // Apply preemptive heuristics based on the total latency and resources
2462 // inside and outside this zone. Potential stalls should be considered before
2463 // following this policy.
2465 // Compute the critical resource outside the zone.
2466 unsigned OtherCritIdx = 0;
2467 unsigned OtherCount =
2468 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2470 bool OtherResLimited = false;
2471 unsigned RemLatency = 0;
2472 bool RemLatencyComputed = false;
2473 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2474 RemLatency = computeRemLatency(CurrZone);
2475 RemLatencyComputed = true;
2476 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2477 OtherCount, RemLatency);
2480 // Schedule aggressively for latency in PostRA mode. We don't check for
2481 // acyclic latency during PostRA, and highly out-of-order processors will
2482 // skip PostRA scheduling.
2483 if (!OtherResLimited &&
2484 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2485 RemLatency))) {
2486 Policy.ReduceLatency |= true;
2487 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName()
2488 << " RemainingLatency " << RemLatency << " + "
2489 << CurrZone.getCurrCycle() << "c > CritPath "
2490 << Rem.CriticalPath << "\n");
2492 // If the same resource is limiting inside and outside the zone, do nothing.
2493 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2494 return;
2496 LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2497 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2498 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2499 } if (OtherResLimited) dbgs()
2500 << " RemainingLimit: "
2501 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2502 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2503 << " Latency limited both directions.\n");
2505 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2506 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2508 if (OtherResLimited)
2509 Policy.DemandResIdx = OtherCritIdx;
2512 #ifndef NDEBUG
2513 const char *GenericSchedulerBase::getReasonStr(
2514 GenericSchedulerBase::CandReason Reason) {
2515 switch (Reason) {
2516 case NoCand: return "NOCAND ";
2517 case Only1: return "ONLY1 ";
2518 case PhysRegCopy: return "PREG-COPY ";
2519 case RegExcess: return "REG-EXCESS";
2520 case RegCritical: return "REG-CRIT ";
2521 case Stall: return "STALL ";
2522 case Cluster: return "CLUSTER ";
2523 case Weak: return "WEAK ";
2524 case RegMax: return "REG-MAX ";
2525 case ResourceReduce: return "RES-REDUCE";
2526 case ResourceDemand: return "RES-DEMAND";
2527 case TopDepthReduce: return "TOP-DEPTH ";
2528 case TopPathReduce: return "TOP-PATH ";
2529 case BotHeightReduce:return "BOT-HEIGHT";
2530 case BotPathReduce: return "BOT-PATH ";
2531 case NextDefUse: return "DEF-USE ";
2532 case NodeOrder: return "ORDER ";
2534 llvm_unreachable("Unknown reason!");
2537 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2538 PressureChange P;
2539 unsigned ResIdx = 0;
2540 unsigned Latency = 0;
2541 switch (Cand.Reason) {
2542 default:
2543 break;
2544 case RegExcess:
2545 P = Cand.RPDelta.Excess;
2546 break;
2547 case RegCritical:
2548 P = Cand.RPDelta.CriticalMax;
2549 break;
2550 case RegMax:
2551 P = Cand.RPDelta.CurrentMax;
2552 break;
2553 case ResourceReduce:
2554 ResIdx = Cand.Policy.ReduceResIdx;
2555 break;
2556 case ResourceDemand:
2557 ResIdx = Cand.Policy.DemandResIdx;
2558 break;
2559 case TopDepthReduce:
2560 Latency = Cand.SU->getDepth();
2561 break;
2562 case TopPathReduce:
2563 Latency = Cand.SU->getHeight();
2564 break;
2565 case BotHeightReduce:
2566 Latency = Cand.SU->getHeight();
2567 break;
2568 case BotPathReduce:
2569 Latency = Cand.SU->getDepth();
2570 break;
2572 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2573 if (P.isValid())
2574 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2575 << ":" << P.getUnitInc() << " ";
2576 else
2577 dbgs() << " ";
2578 if (ResIdx)
2579 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2580 else
2581 dbgs() << " ";
2582 if (Latency)
2583 dbgs() << " " << Latency << " cycles ";
2584 else
2585 dbgs() << " ";
2586 dbgs() << '\n';
2588 #endif
2590 namespace llvm {
2591 /// Return true if this heuristic determines order.
2592 bool tryLess(int TryVal, int CandVal,
2593 GenericSchedulerBase::SchedCandidate &TryCand,
2594 GenericSchedulerBase::SchedCandidate &Cand,
2595 GenericSchedulerBase::CandReason Reason) {
2596 if (TryVal < CandVal) {
2597 TryCand.Reason = Reason;
2598 return true;
2600 if (TryVal > CandVal) {
2601 if (Cand.Reason > Reason)
2602 Cand.Reason = Reason;
2603 return true;
2605 return false;
2608 bool tryGreater(int TryVal, int CandVal,
2609 GenericSchedulerBase::SchedCandidate &TryCand,
2610 GenericSchedulerBase::SchedCandidate &Cand,
2611 GenericSchedulerBase::CandReason Reason) {
2612 if (TryVal > CandVal) {
2613 TryCand.Reason = Reason;
2614 return true;
2616 if (TryVal < CandVal) {
2617 if (Cand.Reason > Reason)
2618 Cand.Reason = Reason;
2619 return true;
2621 return false;
2624 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2625 GenericSchedulerBase::SchedCandidate &Cand,
2626 SchedBoundary &Zone) {
2627 if (Zone.isTop()) {
2628 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2629 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2630 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2631 return true;
2633 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2634 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2635 return true;
2636 } else {
2637 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2638 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2639 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2640 return true;
2642 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2643 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2644 return true;
2646 return false;
2648 } // end namespace llvm
2650 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2651 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2652 << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2655 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2656 tracePick(Cand.Reason, Cand.AtTop);
2659 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2660 assert(dag->hasVRegLiveness() &&
2661 "(PreRA)GenericScheduler needs vreg liveness");
2662 DAG = static_cast<ScheduleDAGMILive*>(dag);
2663 SchedModel = DAG->getSchedModel();
2664 TRI = DAG->TRI;
2666 Rem.init(DAG, SchedModel);
2667 Top.init(DAG, SchedModel, &Rem);
2668 Bot.init(DAG, SchedModel, &Rem);
2670 // Initialize resource counts.
2672 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2673 // are disabled, then these HazardRecs will be disabled.
2674 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2675 if (!Top.HazardRec) {
2676 Top.HazardRec =
2677 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2678 Itin, DAG);
2680 if (!Bot.HazardRec) {
2681 Bot.HazardRec =
2682 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2683 Itin, DAG);
2685 TopCand.SU = nullptr;
2686 BotCand.SU = nullptr;
2689 /// Initialize the per-region scheduling policy.
2690 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2691 MachineBasicBlock::iterator End,
2692 unsigned NumRegionInstrs) {
2693 const MachineFunction &MF = *Begin->getMF();
2694 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2696 // Avoid setting up the register pressure tracker for small regions to save
2697 // compile time. As a rough heuristic, only track pressure when the number of
2698 // schedulable instructions exceeds half the integer register file.
2699 RegionPolicy.ShouldTrackPressure = true;
2700 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2701 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2702 if (TLI->isTypeLegal(LegalIntVT)) {
2703 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2704 TLI->getRegClassFor(LegalIntVT));
2705 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2709 // For generic targets, we default to bottom-up, because it's simpler and more
2710 // compile-time optimizations have been implemented in that direction.
2711 RegionPolicy.OnlyBottomUp = true;
2713 // Allow the subtarget to override default policy.
2714 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2716 // After subtarget overrides, apply command line options.
2717 if (!EnableRegPressure)
2718 RegionPolicy.ShouldTrackPressure = false;
2720 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2721 // e.g. -misched-bottomup=false allows scheduling in both directions.
2722 assert((!ForceTopDown || !ForceBottomUp) &&
2723 "-misched-topdown incompatible with -misched-bottomup");
2724 if (ForceBottomUp.getNumOccurrences() > 0) {
2725 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2726 if (RegionPolicy.OnlyBottomUp)
2727 RegionPolicy.OnlyTopDown = false;
2729 if (ForceTopDown.getNumOccurrences() > 0) {
2730 RegionPolicy.OnlyTopDown = ForceTopDown;
2731 if (RegionPolicy.OnlyTopDown)
2732 RegionPolicy.OnlyBottomUp = false;
2736 void GenericScheduler::dumpPolicy() const {
2737 // Cannot completely remove virtual function even in release mode.
2738 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2739 dbgs() << "GenericScheduler RegionPolicy: "
2740 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2741 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2742 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2743 << "\n";
2744 #endif
2747 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2748 /// critical path by more cycles than it takes to drain the instruction buffer.
2749 /// We estimate an upper bounds on in-flight instructions as:
2751 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2752 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2753 /// InFlightResources = InFlightIterations * LoopResources
2755 /// TODO: Check execution resources in addition to IssueCount.
2756 void GenericScheduler::checkAcyclicLatency() {
2757 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2758 return;
2760 // Scaled number of cycles per loop iteration.
2761 unsigned IterCount =
2762 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2763 Rem.RemIssueCount);
2764 // Scaled acyclic critical path.
2765 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2766 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2767 unsigned InFlightCount =
2768 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2769 unsigned BufferLimit =
2770 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2772 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2774 LLVM_DEBUG(
2775 dbgs() << "IssueCycles="
2776 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2777 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2778 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2779 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2780 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2781 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n");
2784 void GenericScheduler::registerRoots() {
2785 Rem.CriticalPath = DAG->ExitSU.getDepth();
2787 // Some roots may not feed into ExitSU. Check all of them in case.
2788 for (const SUnit *SU : Bot.Available) {
2789 if (SU->getDepth() > Rem.CriticalPath)
2790 Rem.CriticalPath = SU->getDepth();
2792 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2793 if (DumpCriticalPathLength) {
2794 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2797 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2798 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2799 checkAcyclicLatency();
2803 namespace llvm {
2804 bool tryPressure(const PressureChange &TryP,
2805 const PressureChange &CandP,
2806 GenericSchedulerBase::SchedCandidate &TryCand,
2807 GenericSchedulerBase::SchedCandidate &Cand,
2808 GenericSchedulerBase::CandReason Reason,
2809 const TargetRegisterInfo *TRI,
2810 const MachineFunction &MF) {
2811 // If one candidate decreases and the other increases, go with it.
2812 // Invalid candidates have UnitInc==0.
2813 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2814 Reason)) {
2815 return true;
2817 // Do not compare the magnitude of pressure changes between top and bottom
2818 // boundary.
2819 if (Cand.AtTop != TryCand.AtTop)
2820 return false;
2822 // If both candidates affect the same set in the same boundary, go with the
2823 // smallest increase.
2824 unsigned TryPSet = TryP.getPSetOrMax();
2825 unsigned CandPSet = CandP.getPSetOrMax();
2826 if (TryPSet == CandPSet) {
2827 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2828 Reason);
2831 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2832 std::numeric_limits<int>::max();
2834 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2835 std::numeric_limits<int>::max();
2837 // If the candidates are decreasing pressure, reverse priority.
2838 if (TryP.getUnitInc() < 0)
2839 std::swap(TryRank, CandRank);
2840 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2843 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2844 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2847 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2848 /// their physreg def/use.
2850 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2851 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2852 /// with the operation that produces or consumes the physreg. We'll do this when
2853 /// regalloc has support for parallel copies.
2854 int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2855 const MachineInstr *MI = SU->getInstr();
2856 if (!MI->isCopy())
2857 return 0;
2859 unsigned ScheduledOper = isTop ? 1 : 0;
2860 unsigned UnscheduledOper = isTop ? 0 : 1;
2861 // If we have already scheduled the physreg produce/consumer, immediately
2862 // schedule the copy.
2863 if (TargetRegisterInfo::isPhysicalRegister(
2864 MI->getOperand(ScheduledOper).getReg()))
2865 return 1;
2866 // If the physreg is at the boundary, defer it. Otherwise schedule it
2867 // immediately to free the dependent. We can hoist the copy later.
2868 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2869 if (TargetRegisterInfo::isPhysicalRegister(
2870 MI->getOperand(UnscheduledOper).getReg()))
2871 return AtBoundary ? -1 : 1;
2872 return 0;
2874 } // end namespace llvm
2876 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2877 bool AtTop,
2878 const RegPressureTracker &RPTracker,
2879 RegPressureTracker &TempTracker) {
2880 Cand.SU = SU;
2881 Cand.AtTop = AtTop;
2882 if (DAG->isTrackingPressure()) {
2883 if (AtTop) {
2884 TempTracker.getMaxDownwardPressureDelta(
2885 Cand.SU->getInstr(),
2886 Cand.RPDelta,
2887 DAG->getRegionCriticalPSets(),
2888 DAG->getRegPressure().MaxSetPressure);
2889 } else {
2890 if (VerifyScheduling) {
2891 TempTracker.getMaxUpwardPressureDelta(
2892 Cand.SU->getInstr(),
2893 &DAG->getPressureDiff(Cand.SU),
2894 Cand.RPDelta,
2895 DAG->getRegionCriticalPSets(),
2896 DAG->getRegPressure().MaxSetPressure);
2897 } else {
2898 RPTracker.getUpwardPressureDelta(
2899 Cand.SU->getInstr(),
2900 DAG->getPressureDiff(Cand.SU),
2901 Cand.RPDelta,
2902 DAG->getRegionCriticalPSets(),
2903 DAG->getRegPressure().MaxSetPressure);
2907 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2908 << " Try SU(" << Cand.SU->NodeNum << ") "
2909 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2910 << Cand.RPDelta.Excess.getUnitInc() << "\n");
2913 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2914 /// hierarchical. This may be more efficient than a graduated cost model because
2915 /// we don't need to evaluate all aspects of the model for each node in the
2916 /// queue. But it's really done to make the heuristics easier to debug and
2917 /// statistically analyze.
2919 /// \param Cand provides the policy and current best candidate.
2920 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2921 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2922 // if Cand is from a different zone than TryCand.
2923 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2924 SchedCandidate &TryCand,
2925 SchedBoundary *Zone) const {
2926 // Initialize the candidate if needed.
2927 if (!Cand.isValid()) {
2928 TryCand.Reason = NodeOrder;
2929 return;
2932 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2933 biasPhysRegCopy(Cand.SU, Cand.AtTop),
2934 TryCand, Cand, PhysRegCopy))
2935 return;
2937 // Avoid exceeding the target's limit.
2938 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2939 Cand.RPDelta.Excess,
2940 TryCand, Cand, RegExcess, TRI,
2941 DAG->MF))
2942 return;
2944 // Avoid increasing the max critical pressure in the scheduled region.
2945 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2946 Cand.RPDelta.CriticalMax,
2947 TryCand, Cand, RegCritical, TRI,
2948 DAG->MF))
2949 return;
2951 // We only compare a subset of features when comparing nodes between
2952 // Top and Bottom boundary. Some properties are simply incomparable, in many
2953 // other instances we should only override the other boundary if something
2954 // is a clear good pick on one boundary. Skip heuristics that are more
2955 // "tie-breaking" in nature.
2956 bool SameBoundary = Zone != nullptr;
2957 if (SameBoundary) {
2958 // For loops that are acyclic path limited, aggressively schedule for
2959 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2960 // heuristics to take precedence.
2961 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2962 tryLatency(TryCand, Cand, *Zone))
2963 return;
2965 // Prioritize instructions that read unbuffered resources by stall cycles.
2966 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2967 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2968 return;
2971 // Keep clustered nodes together to encourage downstream peephole
2972 // optimizations which may reduce resource requirements.
2974 // This is a best effort to set things up for a post-RA pass. Optimizations
2975 // like generating loads of multiple registers should ideally be done within
2976 // the scheduler pass by combining the loads during DAG postprocessing.
2977 const SUnit *CandNextClusterSU =
2978 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2979 const SUnit *TryCandNextClusterSU =
2980 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2981 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2982 Cand.SU == CandNextClusterSU,
2983 TryCand, Cand, Cluster))
2984 return;
2986 if (SameBoundary) {
2987 // Weak edges are for clustering and other constraints.
2988 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2989 getWeakLeft(Cand.SU, Cand.AtTop),
2990 TryCand, Cand, Weak))
2991 return;
2994 // Avoid increasing the max pressure of the entire region.
2995 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2996 Cand.RPDelta.CurrentMax,
2997 TryCand, Cand, RegMax, TRI,
2998 DAG->MF))
2999 return;
3001 if (SameBoundary) {
3002 // Avoid critical resource consumption and balance the schedule.
3003 TryCand.initResourceDelta(DAG, SchedModel);
3004 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3005 TryCand, Cand, ResourceReduce))
3006 return;
3007 if (tryGreater(TryCand.ResDelta.DemandedResources,
3008 Cand.ResDelta.DemandedResources,
3009 TryCand, Cand, ResourceDemand))
3010 return;
3012 // Avoid serializing long latency dependence chains.
3013 // For acyclic path limited loops, latency was already checked above.
3014 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3015 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3016 return;
3018 // Fall through to original instruction order.
3019 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3020 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3021 TryCand.Reason = NodeOrder;
3026 /// Pick the best candidate from the queue.
3028 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3029 /// DAG building. To adjust for the current scheduling location we need to
3030 /// maintain the number of vreg uses remaining to be top-scheduled.
3031 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3032 const CandPolicy &ZonePolicy,
3033 const RegPressureTracker &RPTracker,
3034 SchedCandidate &Cand) {
3035 // getMaxPressureDelta temporarily modifies the tracker.
3036 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3038 ReadyQueue &Q = Zone.Available;
3039 for (SUnit *SU : Q) {
3041 SchedCandidate TryCand(ZonePolicy);
3042 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3043 // Pass SchedBoundary only when comparing nodes from the same boundary.
3044 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3045 tryCandidate(Cand, TryCand, ZoneArg);
3046 if (TryCand.Reason != NoCand) {
3047 // Initialize resource delta if needed in case future heuristics query it.
3048 if (TryCand.ResDelta == SchedResourceDelta())
3049 TryCand.initResourceDelta(DAG, SchedModel);
3050 Cand.setBest(TryCand);
3051 LLVM_DEBUG(traceCandidate(Cand));
3056 /// Pick the best candidate node from either the top or bottom queue.
3057 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3058 // Schedule as far as possible in the direction of no choice. This is most
3059 // efficient, but also provides the best heuristics for CriticalPSets.
3060 if (SUnit *SU = Bot.pickOnlyChoice()) {
3061 IsTopNode = false;
3062 tracePick(Only1, false);
3063 return SU;
3065 if (SUnit *SU = Top.pickOnlyChoice()) {
3066 IsTopNode = true;
3067 tracePick(Only1, true);
3068 return SU;
3070 // Set the bottom-up policy based on the state of the current bottom zone and
3071 // the instructions outside the zone, including the top zone.
3072 CandPolicy BotPolicy;
3073 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3074 // Set the top-down policy based on the state of the current top zone and
3075 // the instructions outside the zone, including the bottom zone.
3076 CandPolicy TopPolicy;
3077 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3079 // See if BotCand is still valid (because we previously scheduled from Top).
3080 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3081 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3082 BotCand.Policy != BotPolicy) {
3083 BotCand.reset(CandPolicy());
3084 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3085 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3086 } else {
3087 LLVM_DEBUG(traceCandidate(BotCand));
3088 #ifndef NDEBUG
3089 if (VerifyScheduling) {
3090 SchedCandidate TCand;
3091 TCand.reset(CandPolicy());
3092 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3093 assert(TCand.SU == BotCand.SU &&
3094 "Last pick result should correspond to re-picking right now");
3096 #endif
3099 // Check if the top Q has a better candidate.
3100 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3101 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3102 TopCand.Policy != TopPolicy) {
3103 TopCand.reset(CandPolicy());
3104 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3105 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3106 } else {
3107 LLVM_DEBUG(traceCandidate(TopCand));
3108 #ifndef NDEBUG
3109 if (VerifyScheduling) {
3110 SchedCandidate TCand;
3111 TCand.reset(CandPolicy());
3112 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3113 assert(TCand.SU == TopCand.SU &&
3114 "Last pick result should correspond to re-picking right now");
3116 #endif
3119 // Pick best from BotCand and TopCand.
3120 assert(BotCand.isValid());
3121 assert(TopCand.isValid());
3122 SchedCandidate Cand = BotCand;
3123 TopCand.Reason = NoCand;
3124 tryCandidate(Cand, TopCand, nullptr);
3125 if (TopCand.Reason != NoCand) {
3126 Cand.setBest(TopCand);
3127 LLVM_DEBUG(traceCandidate(Cand));
3130 IsTopNode = Cand.AtTop;
3131 tracePick(Cand);
3132 return Cand.SU;
3135 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3136 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3137 if (DAG->top() == DAG->bottom()) {
3138 assert(Top.Available.empty() && Top.Pending.empty() &&
3139 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3140 return nullptr;
3142 SUnit *SU;
3143 do {
3144 if (RegionPolicy.OnlyTopDown) {
3145 SU = Top.pickOnlyChoice();
3146 if (!SU) {
3147 CandPolicy NoPolicy;
3148 TopCand.reset(NoPolicy);
3149 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3150 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3151 tracePick(TopCand);
3152 SU = TopCand.SU;
3154 IsTopNode = true;
3155 } else if (RegionPolicy.OnlyBottomUp) {
3156 SU = Bot.pickOnlyChoice();
3157 if (!SU) {
3158 CandPolicy NoPolicy;
3159 BotCand.reset(NoPolicy);
3160 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3161 assert(BotCand.Reason != NoCand && "failed to find a candidate");
3162 tracePick(BotCand);
3163 SU = BotCand.SU;
3165 IsTopNode = false;
3166 } else {
3167 SU = pickNodeBidirectional(IsTopNode);
3169 } while (SU->isScheduled);
3171 if (SU->isTopReady())
3172 Top.removeReady(SU);
3173 if (SU->isBottomReady())
3174 Bot.removeReady(SU);
3176 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3177 << *SU->getInstr());
3178 return SU;
3181 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3182 MachineBasicBlock::iterator InsertPos = SU->getInstr();
3183 if (!isTop)
3184 ++InsertPos;
3185 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3187 // Find already scheduled copies with a single physreg dependence and move
3188 // them just above the scheduled instruction.
3189 for (SDep &Dep : Deps) {
3190 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3191 continue;
3192 SUnit *DepSU = Dep.getSUnit();
3193 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3194 continue;
3195 MachineInstr *Copy = DepSU->getInstr();
3196 if (!Copy->isCopy())
3197 continue;
3198 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy ";
3199 DAG->dumpNode(*Dep.getSUnit()));
3200 DAG->moveInstruction(Copy, InsertPos);
3204 /// Update the scheduler's state after scheduling a node. This is the same node
3205 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3206 /// update it's state based on the current cycle before MachineSchedStrategy
3207 /// does.
3209 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3210 /// them here. See comments in biasPhysRegCopy.
3211 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3212 if (IsTopNode) {
3213 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3214 Top.bumpNode(SU);
3215 if (SU->hasPhysRegUses)
3216 reschedulePhysRegCopies(SU, true);
3217 } else {
3218 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3219 Bot.bumpNode(SU);
3220 if (SU->hasPhysRegDefs)
3221 reschedulePhysRegCopies(SU, false);
3225 /// Create the standard converging machine scheduler. This will be used as the
3226 /// default scheduler if the target does not set a default.
3227 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3228 ScheduleDAGMILive *DAG =
3229 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3230 // Register DAG post-processors.
3232 // FIXME: extend the mutation API to allow earlier mutations to instantiate
3233 // data and pass it to later mutations. Have a single mutation that gathers
3234 // the interesting nodes in one pass.
3235 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3236 return DAG;
3239 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3240 return createGenericSchedLive(C);
3243 static MachineSchedRegistry
3244 GenericSchedRegistry("converge", "Standard converging scheduler.",
3245 createConveringSched);
3247 //===----------------------------------------------------------------------===//
3248 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3249 //===----------------------------------------------------------------------===//
3251 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3252 DAG = Dag;
3253 SchedModel = DAG->getSchedModel();
3254 TRI = DAG->TRI;
3256 Rem.init(DAG, SchedModel);
3257 Top.init(DAG, SchedModel, &Rem);
3258 BotRoots.clear();
3260 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3261 // or are disabled, then these HazardRecs will be disabled.
3262 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3263 if (!Top.HazardRec) {
3264 Top.HazardRec =
3265 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3266 Itin, DAG);
3270 void PostGenericScheduler::registerRoots() {
3271 Rem.CriticalPath = DAG->ExitSU.getDepth();
3273 // Some roots may not feed into ExitSU. Check all of them in case.
3274 for (const SUnit *SU : BotRoots) {
3275 if (SU->getDepth() > Rem.CriticalPath)
3276 Rem.CriticalPath = SU->getDepth();
3278 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3279 if (DumpCriticalPathLength) {
3280 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3284 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3286 /// \param Cand provides the policy and current best candidate.
3287 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3288 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3289 SchedCandidate &TryCand) {
3290 // Initialize the candidate if needed.
3291 if (!Cand.isValid()) {
3292 TryCand.Reason = NodeOrder;
3293 return;
3296 // Prioritize instructions that read unbuffered resources by stall cycles.
3297 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3298 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3299 return;
3301 // Keep clustered nodes together.
3302 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3303 Cand.SU == DAG->getNextClusterSucc(),
3304 TryCand, Cand, Cluster))
3305 return;
3307 // Avoid critical resource consumption and balance the schedule.
3308 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3309 TryCand, Cand, ResourceReduce))
3310 return;
3311 if (tryGreater(TryCand.ResDelta.DemandedResources,
3312 Cand.ResDelta.DemandedResources,
3313 TryCand, Cand, ResourceDemand))
3314 return;
3316 // Avoid serializing long latency dependence chains.
3317 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3318 return;
3321 // Fall through to original instruction order.
3322 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3323 TryCand.Reason = NodeOrder;
3326 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3327 ReadyQueue &Q = Top.Available;
3328 for (SUnit *SU : Q) {
3329 SchedCandidate TryCand(Cand.Policy);
3330 TryCand.SU = SU;
3331 TryCand.AtTop = true;
3332 TryCand.initResourceDelta(DAG, SchedModel);
3333 tryCandidate(Cand, TryCand);
3334 if (TryCand.Reason != NoCand) {
3335 Cand.setBest(TryCand);
3336 LLVM_DEBUG(traceCandidate(Cand));
3341 /// Pick the next node to schedule.
3342 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3343 if (DAG->top() == DAG->bottom()) {
3344 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3345 return nullptr;
3347 SUnit *SU;
3348 do {
3349 SU = Top.pickOnlyChoice();
3350 if (SU) {
3351 tracePick(Only1, true);
3352 } else {
3353 CandPolicy NoPolicy;
3354 SchedCandidate TopCand(NoPolicy);
3355 // Set the top-down policy based on the state of the current top zone and
3356 // the instructions outside the zone, including the bottom zone.
3357 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3358 pickNodeFromQueue(TopCand);
3359 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3360 tracePick(TopCand);
3361 SU = TopCand.SU;
3363 } while (SU->isScheduled);
3365 IsTopNode = true;
3366 Top.removeReady(SU);
3368 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3369 << *SU->getInstr());
3370 return SU;
3373 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3374 /// scheduled/remaining flags in the DAG nodes.
3375 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3376 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3377 Top.bumpNode(SU);
3380 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3381 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3382 /*RemoveKillFlags=*/true);
3385 //===----------------------------------------------------------------------===//
3386 // ILP Scheduler. Currently for experimental analysis of heuristics.
3387 //===----------------------------------------------------------------------===//
3389 namespace {
3391 /// Order nodes by the ILP metric.
3392 struct ILPOrder {
3393 const SchedDFSResult *DFSResult = nullptr;
3394 const BitVector *ScheduledTrees = nullptr;
3395 bool MaximizeILP;
3397 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3399 /// Apply a less-than relation on node priority.
3401 /// (Return true if A comes after B in the Q.)
3402 bool operator()(const SUnit *A, const SUnit *B) const {
3403 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3404 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3405 if (SchedTreeA != SchedTreeB) {
3406 // Unscheduled trees have lower priority.
3407 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3408 return ScheduledTrees->test(SchedTreeB);
3410 // Trees with shallower connections have have lower priority.
3411 if (DFSResult->getSubtreeLevel(SchedTreeA)
3412 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3413 return DFSResult->getSubtreeLevel(SchedTreeA)
3414 < DFSResult->getSubtreeLevel(SchedTreeB);
3417 if (MaximizeILP)
3418 return DFSResult->getILP(A) < DFSResult->getILP(B);
3419 else
3420 return DFSResult->getILP(A) > DFSResult->getILP(B);
3424 /// Schedule based on the ILP metric.
3425 class ILPScheduler : public MachineSchedStrategy {
3426 ScheduleDAGMILive *DAG = nullptr;
3427 ILPOrder Cmp;
3429 std::vector<SUnit*> ReadyQ;
3431 public:
3432 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3434 void initialize(ScheduleDAGMI *dag) override {
3435 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3436 DAG = static_cast<ScheduleDAGMILive*>(dag);
3437 DAG->computeDFSResult();
3438 Cmp.DFSResult = DAG->getDFSResult();
3439 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3440 ReadyQ.clear();
3443 void registerRoots() override {
3444 // Restore the heap in ReadyQ with the updated DFS results.
3445 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3448 /// Implement MachineSchedStrategy interface.
3449 /// -----------------------------------------
3451 /// Callback to select the highest priority node from the ready Q.
3452 SUnit *pickNode(bool &IsTopNode) override {
3453 if (ReadyQ.empty()) return nullptr;
3454 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3455 SUnit *SU = ReadyQ.back();
3456 ReadyQ.pop_back();
3457 IsTopNode = false;
3458 LLVM_DEBUG(dbgs() << "Pick node "
3459 << "SU(" << SU->NodeNum << ") "
3460 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3461 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3462 << " @"
3463 << DAG->getDFSResult()->getSubtreeLevel(
3464 DAG->getDFSResult()->getSubtreeID(SU))
3465 << '\n'
3466 << "Scheduling " << *SU->getInstr());
3467 return SU;
3470 /// Scheduler callback to notify that a new subtree is scheduled.
3471 void scheduleTree(unsigned SubtreeID) override {
3472 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3475 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3476 /// DFSResults, and resort the priority Q.
3477 void schedNode(SUnit *SU, bool IsTopNode) override {
3478 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3481 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3483 void releaseBottomNode(SUnit *SU) override {
3484 ReadyQ.push_back(SU);
3485 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3489 } // end anonymous namespace
3491 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3492 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3494 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3495 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3498 static MachineSchedRegistry ILPMaxRegistry(
3499 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3500 static MachineSchedRegistry ILPMinRegistry(
3501 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3503 //===----------------------------------------------------------------------===//
3504 // Machine Instruction Shuffler for Correctness Testing
3505 //===----------------------------------------------------------------------===//
3507 #ifndef NDEBUG
3508 namespace {
3510 /// Apply a less-than relation on the node order, which corresponds to the
3511 /// instruction order prior to scheduling. IsReverse implements greater-than.
3512 template<bool IsReverse>
3513 struct SUnitOrder {
3514 bool operator()(SUnit *A, SUnit *B) const {
3515 if (IsReverse)
3516 return A->NodeNum > B->NodeNum;
3517 else
3518 return A->NodeNum < B->NodeNum;
3522 /// Reorder instructions as much as possible.
3523 class InstructionShuffler : public MachineSchedStrategy {
3524 bool IsAlternating;
3525 bool IsTopDown;
3527 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3528 // gives nodes with a higher number higher priority causing the latest
3529 // instructions to be scheduled first.
3530 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3531 TopQ;
3533 // When scheduling bottom-up, use greater-than as the queue priority.
3534 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3535 BottomQ;
3537 public:
3538 InstructionShuffler(bool alternate, bool topdown)
3539 : IsAlternating(alternate), IsTopDown(topdown) {}
3541 void initialize(ScheduleDAGMI*) override {
3542 TopQ.clear();
3543 BottomQ.clear();
3546 /// Implement MachineSchedStrategy interface.
3547 /// -----------------------------------------
3549 SUnit *pickNode(bool &IsTopNode) override {
3550 SUnit *SU;
3551 if (IsTopDown) {
3552 do {
3553 if (TopQ.empty()) return nullptr;
3554 SU = TopQ.top();
3555 TopQ.pop();
3556 } while (SU->isScheduled);
3557 IsTopNode = true;
3558 } else {
3559 do {
3560 if (BottomQ.empty()) return nullptr;
3561 SU = BottomQ.top();
3562 BottomQ.pop();
3563 } while (SU->isScheduled);
3564 IsTopNode = false;
3566 if (IsAlternating)
3567 IsTopDown = !IsTopDown;
3568 return SU;
3571 void schedNode(SUnit *SU, bool IsTopNode) override {}
3573 void releaseTopNode(SUnit *SU) override {
3574 TopQ.push(SU);
3576 void releaseBottomNode(SUnit *SU) override {
3577 BottomQ.push(SU);
3581 } // end anonymous namespace
3583 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3584 bool Alternate = !ForceTopDown && !ForceBottomUp;
3585 bool TopDown = !ForceBottomUp;
3586 assert((TopDown || !ForceTopDown) &&
3587 "-misched-topdown incompatible with -misched-bottomup");
3588 return new ScheduleDAGMILive(
3589 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3592 static MachineSchedRegistry ShufflerRegistry(
3593 "shuffle", "Shuffle machine instructions alternating directions",
3594 createInstructionShuffler);
3595 #endif // !NDEBUG
3597 //===----------------------------------------------------------------------===//
3598 // GraphWriter support for ScheduleDAGMILive.
3599 //===----------------------------------------------------------------------===//
3601 #ifndef NDEBUG
3602 namespace llvm {
3604 template<> struct GraphTraits<
3605 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3607 template<>
3608 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3609 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3611 static std::string getGraphName(const ScheduleDAG *G) {
3612 return G->MF.getName();
3615 static bool renderGraphFromBottomUp() {
3616 return true;
3619 static bool isNodeHidden(const SUnit *Node) {
3620 if (ViewMISchedCutoff == 0)
3621 return false;
3622 return (Node->Preds.size() > ViewMISchedCutoff
3623 || Node->Succs.size() > ViewMISchedCutoff);
3626 /// If you want to override the dot attributes printed for a particular
3627 /// edge, override this method.
3628 static std::string getEdgeAttributes(const SUnit *Node,
3629 SUnitIterator EI,
3630 const ScheduleDAG *Graph) {
3631 if (EI.isArtificialDep())
3632 return "color=cyan,style=dashed";
3633 if (EI.isCtrlDep())
3634 return "color=blue,style=dashed";
3635 return "";
3638 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3639 std::string Str;
3640 raw_string_ostream SS(Str);
3641 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3642 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3643 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3644 SS << "SU:" << SU->NodeNum;
3645 if (DFS)
3646 SS << " I:" << DFS->getNumInstrs(SU);
3647 return SS.str();
3650 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3651 return G->getGraphNodeLabel(SU);
3654 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3655 std::string Str("shape=Mrecord");
3656 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3657 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3658 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3659 if (DFS) {
3660 Str += ",style=filled,fillcolor=\"#";
3661 Str += DOT::getColorString(DFS->getSubtreeID(N));
3662 Str += '"';
3664 return Str;
3668 } // end namespace llvm
3669 #endif // NDEBUG
3671 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3672 /// rendered using 'dot'.
3673 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3674 #ifndef NDEBUG
3675 ViewGraph(this, Name, false, Title);
3676 #else
3677 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3678 << "systems with Graphviz or gv!\n";
3679 #endif // NDEBUG
3682 /// Out-of-line implementation with no arguments is handy for gdb.
3683 void ScheduleDAGMI::viewGraph() {
3684 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());