1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Perform peephole optimizations on the machine code:
12 // - Optimize Extensions
14 // Optimization of sign / zero extension instructions. It may be extended to
15 // handle other instructions with similar properties.
17 // On some targets, some instructions, e.g. X86 sign / zero extension, may
18 // leave the source value in the lower part of the result. This optimization
19 // will replace some uses of the pre-extension value with uses of the
20 // sub-register of the results.
22 // - Optimize Comparisons
24 // Optimization of comparison instructions. For instance, in this code:
30 // If the "sub" instruction all ready sets (or could be modified to set) the
31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 // eliminate the "cmp" instruction.
34 // Another instance, in this code:
36 // sub r1, r3 | sub r1, imm
37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm
40 // If the branch instruction can use flag from "sub", then we can replace
41 // "sub" with "subs" and eliminate the "cmp" instruction.
45 // Loads that can be folded into a later instruction. A load is foldable
46 // if it loads to virtual registers and the virtual register defined has
49 // - Optimize Copies and Bitcast (more generally, target specific copies):
51 // Rewrite copies and bitcasts to avoid cross register bank copies
53 // E.g., Consider the following example, where capital and lower
54 // letters denote different register file:
55 // b = copy A <-- cross-bank copy
56 // C = copy b <-- cross-bank copy
58 // b = copy A <-- cross-bank copy
59 // C = copy A <-- same-bank copy
62 // b = bitcast A <-- cross-bank copy
63 // C = bitcast b <-- cross-bank copy
65 // b = bitcast A <-- cross-bank copy
66 // C = copy A <-- same-bank copy
67 //===----------------------------------------------------------------------===//
69 #include "llvm/ADT/DenseMap.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/CodeGen/MachineBasicBlock.h"
76 #include "llvm/CodeGen/MachineDominators.h"
77 #include "llvm/CodeGen/MachineFunction.h"
78 #include "llvm/CodeGen/MachineFunctionPass.h"
79 #include "llvm/CodeGen/MachineInstr.h"
80 #include "llvm/CodeGen/MachineInstrBuilder.h"
81 #include "llvm/CodeGen/MachineLoopInfo.h"
82 #include "llvm/CodeGen/MachineOperand.h"
83 #include "llvm/CodeGen/MachineRegisterInfo.h"
84 #include "llvm/CodeGen/TargetInstrInfo.h"
85 #include "llvm/CodeGen/TargetOpcodes.h"
86 #include "llvm/CodeGen/TargetRegisterInfo.h"
87 #include "llvm/CodeGen/TargetSubtargetInfo.h"
88 #include "llvm/MC/LaneBitmask.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/raw_ostream.h"
100 using namespace llvm
;
101 using RegSubRegPair
= TargetInstrInfo::RegSubRegPair
;
102 using RegSubRegPairAndIdx
= TargetInstrInfo::RegSubRegPairAndIdx
;
104 #define DEBUG_TYPE "peephole-opt"
106 // Optimize Extensions
108 Aggressive("aggressive-ext-opt", cl::Hidden
,
109 cl::desc("Aggressive extension optimization"));
112 DisablePeephole("disable-peephole", cl::Hidden
, cl::init(false),
113 cl::desc("Disable the peephole optimizer"));
115 /// Specifiy whether or not the value tracking looks through
116 /// complex instructions. When this is true, the value tracker
117 /// bails on everything that is not a copy or a bitcast.
119 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden
, cl::init(false),
120 cl::desc("Disable advanced copy optimization"));
122 static cl::opt
<bool> DisableNAPhysCopyOpt(
123 "disable-non-allocatable-phys-copy-opt", cl::Hidden
, cl::init(false),
124 cl::desc("Disable non-allocatable physical register copy optimization"));
126 // Limit the number of PHI instructions to process
127 // in PeepholeOptimizer::getNextSource.
128 static cl::opt
<unsigned> RewritePHILimit(
129 "rewrite-phi-limit", cl::Hidden
, cl::init(10),
130 cl::desc("Limit the length of PHI chains to lookup"));
132 // Limit the length of recurrence chain when evaluating the benefit of
133 // commuting operands.
134 static cl::opt
<unsigned> MaxRecurrenceChain(
135 "recurrence-chain-limit", cl::Hidden
, cl::init(3),
136 cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137 "of commuting operands"));
140 STATISTIC(NumReuse
, "Number of extension results reused");
141 STATISTIC(NumCmps
, "Number of compares eliminated");
142 STATISTIC(NumImmFold
, "Number of move immediate folded");
143 STATISTIC(NumLoadFold
, "Number of loads folded");
144 STATISTIC(NumSelects
, "Number of selects optimized");
145 STATISTIC(NumUncoalescableCopies
, "Number of uncoalescable copies optimized");
146 STATISTIC(NumRewrittenCopies
, "Number of copies rewritten");
147 STATISTIC(NumNAPhysCopies
, "Number of non-allocatable physical copies removed");
151 class ValueTrackerResult
;
152 class RecurrenceInstr
;
154 class PeepholeOptimizer
: public MachineFunctionPass
{
155 const TargetInstrInfo
*TII
;
156 const TargetRegisterInfo
*TRI
;
157 MachineRegisterInfo
*MRI
;
158 MachineDominatorTree
*DT
; // Machine dominator tree
159 MachineLoopInfo
*MLI
;
162 static char ID
; // Pass identification
164 PeepholeOptimizer() : MachineFunctionPass(ID
) {
165 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
168 bool runOnMachineFunction(MachineFunction
&MF
) override
;
170 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
171 AU
.setPreservesCFG();
172 MachineFunctionPass::getAnalysisUsage(AU
);
173 AU
.addRequired
<MachineLoopInfo
>();
174 AU
.addPreserved
<MachineLoopInfo
>();
176 AU
.addRequired
<MachineDominatorTree
>();
177 AU
.addPreserved
<MachineDominatorTree
>();
181 /// Track Def -> Use info used for rewriting copies.
182 using RewriteMapTy
= SmallDenseMap
<RegSubRegPair
, ValueTrackerResult
>;
184 /// Sequence of instructions that formulate recurrence cycle.
185 using RecurrenceCycle
= SmallVector
<RecurrenceInstr
, 4>;
188 bool optimizeCmpInstr(MachineInstr
&MI
);
189 bool optimizeExtInstr(MachineInstr
&MI
, MachineBasicBlock
&MBB
,
190 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
);
191 bool optimizeSelect(MachineInstr
&MI
,
192 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
);
193 bool optimizeCondBranch(MachineInstr
&MI
);
194 bool optimizeCoalescableCopy(MachineInstr
&MI
);
195 bool optimizeUncoalescableCopy(MachineInstr
&MI
,
196 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
);
197 bool optimizeRecurrence(MachineInstr
&PHI
);
198 bool findNextSource(RegSubRegPair RegSubReg
, RewriteMapTy
&RewriteMap
);
199 bool isMoveImmediate(MachineInstr
&MI
,
200 SmallSet
<unsigned, 4> &ImmDefRegs
,
201 DenseMap
<unsigned, MachineInstr
*> &ImmDefMIs
);
202 bool foldImmediate(MachineInstr
&MI
, SmallSet
<unsigned, 4> &ImmDefRegs
,
203 DenseMap
<unsigned, MachineInstr
*> &ImmDefMIs
);
205 /// Finds recurrence cycles, but only ones that formulated around
206 /// a def operand and a use operand that are tied. If there is a use
207 /// operand commutable with the tied use operand, find recurrence cycle
208 /// along that operand as well.
209 bool findTargetRecurrence(unsigned Reg
,
210 const SmallSet
<unsigned, 2> &TargetReg
,
211 RecurrenceCycle
&RC
);
213 /// If copy instruction \p MI is a virtual register copy, track it in
214 /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
215 /// previously seen as a copy, replace the uses of this copy with the
216 /// previously seen copy's destination register.
217 bool foldRedundantCopy(MachineInstr
&MI
,
218 SmallSet
<unsigned, 4> &CopySrcRegs
,
219 DenseMap
<unsigned, MachineInstr
*> &CopyMIs
);
221 /// Is the register \p Reg a non-allocatable physical register?
222 bool isNAPhysCopy(unsigned Reg
);
224 /// If copy instruction \p MI is a non-allocatable virtual<->physical
225 /// register copy, track it in the \p NAPhysToVirtMIs map. If this
226 /// non-allocatable physical register was previously copied to a virtual
227 /// registered and hasn't been clobbered, the virt->phys copy can be
229 bool foldRedundantNAPhysCopy(MachineInstr
&MI
,
230 DenseMap
<unsigned, MachineInstr
*> &NAPhysToVirtMIs
);
232 bool isLoadFoldable(MachineInstr
&MI
,
233 SmallSet
<unsigned, 16> &FoldAsLoadDefCandidates
);
235 /// Check whether \p MI is understood by the register coalescer
236 /// but may require some rewriting.
237 bool isCoalescableCopy(const MachineInstr
&MI
) {
238 // SubregToRegs are not interesting, because they are already register
239 // coalescer friendly.
240 return MI
.isCopy() || (!DisableAdvCopyOpt
&&
241 (MI
.isRegSequence() || MI
.isInsertSubreg() ||
242 MI
.isExtractSubreg()));
245 /// Check whether \p MI is a copy like instruction that is
246 /// not recognized by the register coalescer.
247 bool isUncoalescableCopy(const MachineInstr
&MI
) {
248 return MI
.isBitcast() ||
249 (!DisableAdvCopyOpt
&&
250 (MI
.isRegSequenceLike() || MI
.isInsertSubregLike() ||
251 MI
.isExtractSubregLike()));
254 MachineInstr
&rewriteSource(MachineInstr
&CopyLike
,
255 RegSubRegPair Def
, RewriteMapTy
&RewriteMap
);
258 /// Helper class to hold instructions that are inside recurrence cycles.
259 /// The recurrence cycle is formulated around 1) a def operand and its
260 /// tied use operand, or 2) a def operand and a use operand that is commutable
261 /// with another use operand which is tied to the def operand. In the latter
262 /// case, index of the tied use operand and the commutable use operand are
263 /// maintained with CommutePair.
264 class RecurrenceInstr
{
266 using IndexPair
= std::pair
<unsigned, unsigned>;
268 RecurrenceInstr(MachineInstr
*MI
) : MI(MI
) {}
269 RecurrenceInstr(MachineInstr
*MI
, unsigned Idx1
, unsigned Idx2
)
270 : MI(MI
), CommutePair(std::make_pair(Idx1
, Idx2
)) {}
272 MachineInstr
*getMI() const { return MI
; }
273 Optional
<IndexPair
> getCommutePair() const { return CommutePair
; }
277 Optional
<IndexPair
> CommutePair
;
280 /// Helper class to hold a reply for ValueTracker queries.
281 /// Contains the returned sources for a given search and the instructions
282 /// where the sources were tracked from.
283 class ValueTrackerResult
{
285 /// Track all sources found by one ValueTracker query.
286 SmallVector
<RegSubRegPair
, 2> RegSrcs
;
288 /// Instruction using the sources in 'RegSrcs'.
289 const MachineInstr
*Inst
= nullptr;
292 ValueTrackerResult() = default;
294 ValueTrackerResult(unsigned Reg
, unsigned SubReg
) {
295 addSource(Reg
, SubReg
);
298 bool isValid() const { return getNumSources() > 0; }
300 void setInst(const MachineInstr
*I
) { Inst
= I
; }
301 const MachineInstr
*getInst() const { return Inst
; }
308 void addSource(unsigned SrcReg
, unsigned SrcSubReg
) {
309 RegSrcs
.push_back(RegSubRegPair(SrcReg
, SrcSubReg
));
312 void setSource(int Idx
, unsigned SrcReg
, unsigned SrcSubReg
) {
313 assert(Idx
< getNumSources() && "Reg pair source out of index");
314 RegSrcs
[Idx
] = RegSubRegPair(SrcReg
, SrcSubReg
);
317 int getNumSources() const { return RegSrcs
.size(); }
319 RegSubRegPair
getSrc(int Idx
) const {
323 unsigned getSrcReg(int Idx
) const {
324 assert(Idx
< getNumSources() && "Reg source out of index");
325 return RegSrcs
[Idx
].Reg
;
328 unsigned getSrcSubReg(int Idx
) const {
329 assert(Idx
< getNumSources() && "SubReg source out of index");
330 return RegSrcs
[Idx
].SubReg
;
333 bool operator==(const ValueTrackerResult
&Other
) {
334 if (Other
.getInst() != getInst())
337 if (Other
.getNumSources() != getNumSources())
340 for (int i
= 0, e
= Other
.getNumSources(); i
!= e
; ++i
)
341 if (Other
.getSrcReg(i
) != getSrcReg(i
) ||
342 Other
.getSrcSubReg(i
) != getSrcSubReg(i
))
348 /// Helper class to track the possible sources of a value defined by
349 /// a (chain of) copy related instructions.
350 /// Given a definition (instruction and definition index), this class
351 /// follows the use-def chain to find successive suitable sources.
352 /// The given source can be used to rewrite the definition into
355 /// For instance, let us consider the following snippet:
357 /// v2 = INSERT_SUBREG v1, v0, sub0
358 /// def = COPY v2.sub0
360 /// Using a ValueTracker for def = COPY v2.sub0 will give the following
361 /// suitable sources:
363 /// Then, def can be rewritten into def = COPY v0.
366 /// The current point into the use-def chain.
367 const MachineInstr
*Def
= nullptr;
369 /// The index of the definition in Def.
372 /// The sub register index of the definition.
375 /// The register where the value can be found.
378 /// MachineRegisterInfo used to perform tracking.
379 const MachineRegisterInfo
&MRI
;
381 /// Optional TargetInstrInfo used to perform some complex tracking.
382 const TargetInstrInfo
*TII
;
384 /// Dispatcher to the right underlying implementation of getNextSource.
385 ValueTrackerResult
getNextSourceImpl();
387 /// Specialized version of getNextSource for Copy instructions.
388 ValueTrackerResult
getNextSourceFromCopy();
390 /// Specialized version of getNextSource for Bitcast instructions.
391 ValueTrackerResult
getNextSourceFromBitcast();
393 /// Specialized version of getNextSource for RegSequence instructions.
394 ValueTrackerResult
getNextSourceFromRegSequence();
396 /// Specialized version of getNextSource for InsertSubreg instructions.
397 ValueTrackerResult
getNextSourceFromInsertSubreg();
399 /// Specialized version of getNextSource for ExtractSubreg instructions.
400 ValueTrackerResult
getNextSourceFromExtractSubreg();
402 /// Specialized version of getNextSource for SubregToReg instructions.
403 ValueTrackerResult
getNextSourceFromSubregToReg();
405 /// Specialized version of getNextSource for PHI instructions.
406 ValueTrackerResult
getNextSourceFromPHI();
409 /// Create a ValueTracker instance for the value defined by \p Reg.
410 /// \p DefSubReg represents the sub register index the value tracker will
411 /// track. It does not need to match the sub register index used in the
412 /// definition of \p Reg.
413 /// If \p Reg is a physical register, a value tracker constructed with
414 /// this constructor will not find any alternative source.
415 /// Indeed, when \p Reg is a physical register that constructor does not
416 /// know which definition of \p Reg it should track.
417 /// Use the next constructor to track a physical register.
418 ValueTracker(unsigned Reg
, unsigned DefSubReg
,
419 const MachineRegisterInfo
&MRI
,
420 const TargetInstrInfo
*TII
= nullptr)
421 : DefSubReg(DefSubReg
), Reg(Reg
), MRI(MRI
), TII(TII
) {
422 if (!TargetRegisterInfo::isPhysicalRegister(Reg
)) {
423 Def
= MRI
.getVRegDef(Reg
);
424 DefIdx
= MRI
.def_begin(Reg
).getOperandNo();
428 /// Following the use-def chain, get the next available source
429 /// for the tracked value.
430 /// \return A ValueTrackerResult containing a set of registers
431 /// and sub registers with tracked values. A ValueTrackerResult with
432 /// an empty set of registers means no source was found.
433 ValueTrackerResult
getNextSource();
436 } // end anonymous namespace
438 char PeepholeOptimizer::ID
= 0;
440 char &llvm::PeepholeOptimizerID
= PeepholeOptimizer::ID
;
442 INITIALIZE_PASS_BEGIN(PeepholeOptimizer
, DEBUG_TYPE
,
443 "Peephole Optimizations", false, false)
444 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
445 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
446 INITIALIZE_PASS_END(PeepholeOptimizer
, DEBUG_TYPE
,
447 "Peephole Optimizations", false, false)
449 /// If instruction is a copy-like instruction, i.e. it reads a single register
450 /// and writes a single register and it does not modify the source, and if the
451 /// source value is preserved as a sub-register of the result, then replace all
452 /// reachable uses of the source with the subreg of the result.
454 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
455 /// the code. Since this code does not currently share EXTRACTs, just ignore all
457 bool PeepholeOptimizer::
458 optimizeExtInstr(MachineInstr
&MI
, MachineBasicBlock
&MBB
,
459 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
) {
460 unsigned SrcReg
, DstReg
, SubIdx
;
461 if (!TII
->isCoalescableExtInstr(MI
, SrcReg
, DstReg
, SubIdx
))
464 if (TargetRegisterInfo::isPhysicalRegister(DstReg
) ||
465 TargetRegisterInfo::isPhysicalRegister(SrcReg
))
468 if (MRI
->hasOneNonDBGUse(SrcReg
))
472 // Ensure DstReg can get a register class that actually supports
473 // sub-registers. Don't change the class until we commit.
474 const TargetRegisterClass
*DstRC
= MRI
->getRegClass(DstReg
);
475 DstRC
= TRI
->getSubClassWithSubReg(DstRC
, SubIdx
);
479 // The ext instr may be operating on a sub-register of SrcReg as well.
480 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
482 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
483 // SrcReg:SubIdx should be replaced.
485 TRI
->getSubClassWithSubReg(MRI
->getRegClass(SrcReg
), SubIdx
) != nullptr;
487 // The source has other uses. See if we can replace the other uses with use of
488 // the result of the extension.
489 SmallPtrSet
<MachineBasicBlock
*, 4> ReachedBBs
;
490 for (MachineInstr
&UI
: MRI
->use_nodbg_instructions(DstReg
))
491 ReachedBBs
.insert(UI
.getParent());
493 // Uses that are in the same BB of uses of the result of the instruction.
494 SmallVector
<MachineOperand
*, 8> Uses
;
496 // Uses that the result of the instruction can reach.
497 SmallVector
<MachineOperand
*, 8> ExtendedUses
;
499 bool ExtendLife
= true;
500 for (MachineOperand
&UseMO
: MRI
->use_nodbg_operands(SrcReg
)) {
501 MachineInstr
*UseMI
= UseMO
.getParent();
505 if (UseMI
->isPHI()) {
510 // Only accept uses of SrcReg:SubIdx.
511 if (UseSrcSubIdx
&& UseMO
.getSubReg() != SubIdx
)
514 // It's an error to translate this:
516 // %reg1025 = <sext> %reg1024
518 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
522 // %reg1025 = <sext> %reg1024
524 // %reg1027 = COPY %reg1025:4
525 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
527 // The problem here is that SUBREG_TO_REG is there to assert that an
528 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
529 // the COPY here, it will give us the value after the <sext>, not the
530 // original value of %reg1024 before <sext>.
531 if (UseMI
->getOpcode() == TargetOpcode::SUBREG_TO_REG
)
534 MachineBasicBlock
*UseMBB
= UseMI
->getParent();
535 if (UseMBB
== &MBB
) {
536 // Local uses that come after the extension.
537 if (!LocalMIs
.count(UseMI
))
538 Uses
.push_back(&UseMO
);
539 } else if (ReachedBBs
.count(UseMBB
)) {
540 // Non-local uses where the result of the extension is used. Always
541 // replace these unless it's a PHI.
542 Uses
.push_back(&UseMO
);
543 } else if (Aggressive
&& DT
->dominates(&MBB
, UseMBB
)) {
544 // We may want to extend the live range of the extension result in order
545 // to replace these uses.
546 ExtendedUses
.push_back(&UseMO
);
548 // Both will be live out of the def MBB anyway. Don't extend live range of
549 // the extension result.
555 if (ExtendLife
&& !ExtendedUses
.empty())
556 // Extend the liveness of the extension result.
557 Uses
.append(ExtendedUses
.begin(), ExtendedUses
.end());
559 // Now replace all uses.
560 bool Changed
= false;
562 SmallPtrSet
<MachineBasicBlock
*, 4> PHIBBs
;
564 // Look for PHI uses of the extended result, we don't want to extend the
565 // liveness of a PHI input. It breaks all kinds of assumptions down
566 // stream. A PHI use is expected to be the kill of its source values.
567 for (MachineInstr
&UI
: MRI
->use_nodbg_instructions(DstReg
))
569 PHIBBs
.insert(UI
.getParent());
571 const TargetRegisterClass
*RC
= MRI
->getRegClass(SrcReg
);
572 for (unsigned i
= 0, e
= Uses
.size(); i
!= e
; ++i
) {
573 MachineOperand
*UseMO
= Uses
[i
];
574 MachineInstr
*UseMI
= UseMO
->getParent();
575 MachineBasicBlock
*UseMBB
= UseMI
->getParent();
576 if (PHIBBs
.count(UseMBB
))
579 // About to add uses of DstReg, clear DstReg's kill flags.
581 MRI
->clearKillFlags(DstReg
);
582 MRI
->constrainRegClass(DstReg
, DstRC
);
585 unsigned NewVR
= MRI
->createVirtualRegister(RC
);
586 MachineInstr
*Copy
= BuildMI(*UseMBB
, UseMI
, UseMI
->getDebugLoc(),
587 TII
->get(TargetOpcode::COPY
), NewVR
)
588 .addReg(DstReg
, 0, SubIdx
);
589 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
591 Copy
->getOperand(0).setSubReg(SubIdx
);
592 Copy
->getOperand(0).setIsUndef();
594 UseMO
->setReg(NewVR
);
603 /// If the instruction is a compare and the previous instruction it's comparing
604 /// against already sets (or could be modified to set) the same flag as the
605 /// compare, then we can remove the comparison and use the flag from the
606 /// previous instruction.
607 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr
&MI
) {
608 // If this instruction is a comparison against zero and isn't comparing a
609 // physical register, we can try to optimize it.
610 unsigned SrcReg
, SrcReg2
;
611 int CmpMask
, CmpValue
;
612 if (!TII
->analyzeCompare(MI
, SrcReg
, SrcReg2
, CmpMask
, CmpValue
) ||
613 TargetRegisterInfo::isPhysicalRegister(SrcReg
) ||
614 (SrcReg2
!= 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2
)))
617 // Attempt to optimize the comparison instruction.
618 if (TII
->optimizeCompareInstr(MI
, SrcReg
, SrcReg2
, CmpMask
, CmpValue
, MRI
)) {
626 /// Optimize a select instruction.
627 bool PeepholeOptimizer::optimizeSelect(MachineInstr
&MI
,
628 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
) {
630 unsigned FalseOp
= 0;
631 bool Optimizable
= false;
632 SmallVector
<MachineOperand
, 4> Cond
;
633 if (TII
->analyzeSelect(MI
, Cond
, TrueOp
, FalseOp
, Optimizable
))
637 if (!TII
->optimizeSelect(MI
, LocalMIs
))
639 MI
.eraseFromParent();
644 /// Check if a simpler conditional branch can be generated.
645 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr
&MI
) {
646 return TII
->optimizeCondBranch(MI
);
649 /// Try to find the next source that share the same register file
650 /// for the value defined by \p Reg and \p SubReg.
651 /// When true is returned, the \p RewriteMap can be used by the client to
652 /// retrieve all Def -> Use along the way up to the next source. Any found
653 /// Use that is not itself a key for another entry, is the next source to
654 /// use. During the search for the next source, multiple sources can be found
655 /// given multiple incoming sources of a PHI instruction. In this case, we
656 /// look in each PHI source for the next source; all found next sources must
657 /// share the same register file as \p Reg and \p SubReg. The client should
658 /// then be capable to rewrite all intermediate PHIs to get the next source.
659 /// \return False if no alternative sources are available. True otherwise.
660 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg
,
661 RewriteMapTy
&RewriteMap
) {
662 // Do not try to find a new source for a physical register.
663 // So far we do not have any motivating example for doing that.
664 // Thus, instead of maintaining untested code, we will revisit that if
665 // that changes at some point.
666 unsigned Reg
= RegSubReg
.Reg
;
667 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
669 const TargetRegisterClass
*DefRC
= MRI
->getRegClass(Reg
);
671 SmallVector
<RegSubRegPair
, 4> SrcToLook
;
672 RegSubRegPair CurSrcPair
= RegSubReg
;
673 SrcToLook
.push_back(CurSrcPair
);
675 unsigned PHICount
= 0;
677 CurSrcPair
= SrcToLook
.pop_back_val();
678 // As explained above, do not handle physical registers
679 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair
.Reg
))
682 ValueTracker
ValTracker(CurSrcPair
.Reg
, CurSrcPair
.SubReg
, *MRI
, TII
);
684 // Follow the chain of copies until we find a more suitable source, a phi
687 ValueTrackerResult Res
= ValTracker
.getNextSource();
688 // Abort at the end of a chain (without finding a suitable source).
692 // Insert the Def -> Use entry for the recently found source.
693 ValueTrackerResult CurSrcRes
= RewriteMap
.lookup(CurSrcPair
);
694 if (CurSrcRes
.isValid()) {
695 assert(CurSrcRes
== Res
&& "ValueTrackerResult found must match");
696 // An existent entry with multiple sources is a PHI cycle we must avoid.
697 // Otherwise it's an entry with a valid next source we already found.
698 if (CurSrcRes
.getNumSources() > 1) {
700 << "findNextSource: found PHI cycle, aborting...\n");
705 RewriteMap
.insert(std::make_pair(CurSrcPair
, Res
));
707 // ValueTrackerResult usually have one source unless it's the result from
708 // a PHI instruction. Add the found PHI edges to be looked up further.
709 unsigned NumSrcs
= Res
.getNumSources();
712 if (PHICount
>= RewritePHILimit
) {
713 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
717 for (unsigned i
= 0; i
< NumSrcs
; ++i
)
718 SrcToLook
.push_back(Res
.getSrc(i
));
722 CurSrcPair
= Res
.getSrc(0);
723 // Do not extend the live-ranges of physical registers as they add
724 // constraints to the register allocator. Moreover, if we want to extend
725 // the live-range of a physical register, unlike SSA virtual register,
726 // we will have to check that they aren't redefine before the related use.
727 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair
.Reg
))
730 // Keep following the chain if the value isn't any better yet.
731 const TargetRegisterClass
*SrcRC
= MRI
->getRegClass(CurSrcPair
.Reg
);
732 if (!TRI
->shouldRewriteCopySrc(DefRC
, RegSubReg
.SubReg
, SrcRC
,
736 // We currently cannot deal with subreg operands on PHI instructions
737 // (see insertPHI()).
738 if (PHICount
> 0 && CurSrcPair
.SubReg
!= 0)
741 // We found a suitable source, and are done with this chain.
744 } while (!SrcToLook
.empty());
746 // If we did not find a more suitable source, there is nothing to optimize.
747 return CurSrcPair
.Reg
!= Reg
;
750 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
751 /// guaranteed to have the same register class. This is necessary whenever we
752 /// successfully traverse a PHI instruction and find suitable sources coming
753 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
754 /// suitable to be used in a new COPY instruction.
755 static MachineInstr
&
756 insertPHI(MachineRegisterInfo
&MRI
, const TargetInstrInfo
&TII
,
757 const SmallVectorImpl
<RegSubRegPair
> &SrcRegs
,
758 MachineInstr
&OrigPHI
) {
759 assert(!SrcRegs
.empty() && "No sources to create a PHI instruction?");
761 const TargetRegisterClass
*NewRC
= MRI
.getRegClass(SrcRegs
[0].Reg
);
762 // NewRC is only correct if no subregisters are involved. findNextSource()
763 // should have rejected those cases already.
764 assert(SrcRegs
[0].SubReg
== 0 && "should not have subreg operand");
765 unsigned NewVR
= MRI
.createVirtualRegister(NewRC
);
766 MachineBasicBlock
*MBB
= OrigPHI
.getParent();
767 MachineInstrBuilder MIB
= BuildMI(*MBB
, &OrigPHI
, OrigPHI
.getDebugLoc(),
768 TII
.get(TargetOpcode::PHI
), NewVR
);
770 unsigned MBBOpIdx
= 2;
771 for (const RegSubRegPair
&RegPair
: SrcRegs
) {
772 MIB
.addReg(RegPair
.Reg
, 0, RegPair
.SubReg
);
773 MIB
.addMBB(OrigPHI
.getOperand(MBBOpIdx
).getMBB());
774 // Since we're extended the lifetime of RegPair.Reg, clear the
775 // kill flags to account for that and make RegPair.Reg reaches
777 MRI
.clearKillFlags(RegPair
.Reg
);
786 /// Interface to query instructions amenable to copy rewriting.
789 MachineInstr
&CopyLike
;
790 unsigned CurrentSrcIdx
= 0; ///< The index of the source being rewritten.
792 Rewriter(MachineInstr
&CopyLike
) : CopyLike(CopyLike
) {}
793 virtual ~Rewriter() {}
795 /// Get the next rewritable source (SrcReg, SrcSubReg) and
796 /// the related value that it affects (DstReg, DstSubReg).
797 /// A source is considered rewritable if its register class and the
798 /// register class of the related DstReg may not be register
799 /// coalescer friendly. In other words, given a copy-like instruction
800 /// not all the arguments may be returned at rewritable source, since
801 /// some arguments are none to be register coalescer friendly.
803 /// Each call of this method moves the current source to the next
804 /// rewritable source.
805 /// For instance, let CopyLike be the instruction to rewrite.
806 /// CopyLike has one definition and one source:
807 /// dst.dstSubIdx = CopyLike src.srcSubIdx.
809 /// The first call will give the first rewritable source, i.e.,
810 /// the only source this instruction has:
811 /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
812 /// This source defines the whole definition, i.e.,
813 /// (DstReg, DstSubReg) = (dst, dstSubIdx).
815 /// The second and subsequent calls will return false, as there is only one
816 /// rewritable source.
818 /// \return True if a rewritable source has been found, false otherwise.
819 /// The output arguments are valid if and only if true is returned.
820 virtual bool getNextRewritableSource(RegSubRegPair
&Src
,
821 RegSubRegPair
&Dst
) = 0;
823 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
824 /// \return True if the rewriting was possible, false otherwise.
825 virtual bool RewriteCurrentSource(unsigned NewReg
, unsigned NewSubReg
) = 0;
828 /// Rewriter for COPY instructions.
829 class CopyRewriter
: public Rewriter
{
831 CopyRewriter(MachineInstr
&MI
) : Rewriter(MI
) {
832 assert(MI
.isCopy() && "Expected copy instruction");
834 virtual ~CopyRewriter() = default;
836 bool getNextRewritableSource(RegSubRegPair
&Src
,
837 RegSubRegPair
&Dst
) override
{
838 // CurrentSrcIdx > 0 means this function has already been called.
839 if (CurrentSrcIdx
> 0)
841 // This is the first call to getNextRewritableSource.
842 // Move the CurrentSrcIdx to remember that we made that call.
844 // The rewritable source is the argument.
845 const MachineOperand
&MOSrc
= CopyLike
.getOperand(1);
846 Src
= RegSubRegPair(MOSrc
.getReg(), MOSrc
.getSubReg());
847 // What we track are the alternative sources of the definition.
848 const MachineOperand
&MODef
= CopyLike
.getOperand(0);
849 Dst
= RegSubRegPair(MODef
.getReg(), MODef
.getSubReg());
853 bool RewriteCurrentSource(unsigned NewReg
, unsigned NewSubReg
) override
{
854 if (CurrentSrcIdx
!= 1)
856 MachineOperand
&MOSrc
= CopyLike
.getOperand(CurrentSrcIdx
);
857 MOSrc
.setReg(NewReg
);
858 MOSrc
.setSubReg(NewSubReg
);
863 /// Helper class to rewrite uncoalescable copy like instructions
864 /// into new COPY (coalescable friendly) instructions.
865 class UncoalescableRewriter
: public Rewriter
{
866 unsigned NumDefs
; ///< Number of defs in the bitcast.
869 UncoalescableRewriter(MachineInstr
&MI
) : Rewriter(MI
) {
870 NumDefs
= MI
.getDesc().getNumDefs();
873 /// \see See Rewriter::getNextRewritableSource()
874 /// All such sources need to be considered rewritable in order to
875 /// rewrite a uncoalescable copy-like instruction. This method return
876 /// each definition that must be checked if rewritable.
877 bool getNextRewritableSource(RegSubRegPair
&Src
,
878 RegSubRegPair
&Dst
) override
{
879 // Find the next non-dead definition and continue from there.
880 if (CurrentSrcIdx
== NumDefs
)
883 while (CopyLike
.getOperand(CurrentSrcIdx
).isDead()) {
885 if (CurrentSrcIdx
== NumDefs
)
889 // What we track are the alternative sources of the definition.
890 Src
= RegSubRegPair(0, 0);
891 const MachineOperand
&MODef
= CopyLike
.getOperand(CurrentSrcIdx
);
892 Dst
= RegSubRegPair(MODef
.getReg(), MODef
.getSubReg());
898 bool RewriteCurrentSource(unsigned NewReg
, unsigned NewSubReg
) override
{
903 /// Specialized rewriter for INSERT_SUBREG instruction.
904 class InsertSubregRewriter
: public Rewriter
{
906 InsertSubregRewriter(MachineInstr
&MI
) : Rewriter(MI
) {
907 assert(MI
.isInsertSubreg() && "Invalid instruction");
910 /// \see See Rewriter::getNextRewritableSource()
911 /// Here CopyLike has the following form:
912 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
913 /// Src1 has the same register class has dst, hence, there is
914 /// nothing to rewrite.
915 /// Src2.src2SubIdx, may not be register coalescer friendly.
916 /// Therefore, the first call to this method returns:
917 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
918 /// (DstReg, DstSubReg) = (dst, subIdx).
920 /// Subsequence calls will return false.
921 bool getNextRewritableSource(RegSubRegPair
&Src
,
922 RegSubRegPair
&Dst
) override
{
923 // If we already get the only source we can rewrite, return false.
924 if (CurrentSrcIdx
== 2)
926 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
928 const MachineOperand
&MOInsertedReg
= CopyLike
.getOperand(2);
929 Src
= RegSubRegPair(MOInsertedReg
.getReg(), MOInsertedReg
.getSubReg());
930 const MachineOperand
&MODef
= CopyLike
.getOperand(0);
932 // We want to track something that is compatible with the
933 // partial definition.
934 if (MODef
.getSubReg())
935 // Bail if we have to compose sub-register indices.
937 Dst
= RegSubRegPair(MODef
.getReg(),
938 (unsigned)CopyLike
.getOperand(3).getImm());
942 bool RewriteCurrentSource(unsigned NewReg
, unsigned NewSubReg
) override
{
943 if (CurrentSrcIdx
!= 2)
945 // We are rewriting the inserted reg.
946 MachineOperand
&MO
= CopyLike
.getOperand(CurrentSrcIdx
);
948 MO
.setSubReg(NewSubReg
);
953 /// Specialized rewriter for EXTRACT_SUBREG instruction.
954 class ExtractSubregRewriter
: public Rewriter
{
955 const TargetInstrInfo
&TII
;
958 ExtractSubregRewriter(MachineInstr
&MI
, const TargetInstrInfo
&TII
)
959 : Rewriter(MI
), TII(TII
) {
960 assert(MI
.isExtractSubreg() && "Invalid instruction");
963 /// \see Rewriter::getNextRewritableSource()
964 /// Here CopyLike has the following form:
965 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
966 /// There is only one rewritable source: Src.subIdx,
967 /// which defines dst.dstSubIdx.
968 bool getNextRewritableSource(RegSubRegPair
&Src
,
969 RegSubRegPair
&Dst
) override
{
970 // If we already get the only source we can rewrite, return false.
971 if (CurrentSrcIdx
== 1)
973 // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
975 const MachineOperand
&MOExtractedReg
= CopyLike
.getOperand(1);
976 // If we have to compose sub-register indices, bail out.
977 if (MOExtractedReg
.getSubReg())
980 Src
= RegSubRegPair(MOExtractedReg
.getReg(),
981 CopyLike
.getOperand(2).getImm());
983 // We want to track something that is compatible with the definition.
984 const MachineOperand
&MODef
= CopyLike
.getOperand(0);
985 Dst
= RegSubRegPair(MODef
.getReg(), MODef
.getSubReg());
989 bool RewriteCurrentSource(unsigned NewReg
, unsigned NewSubReg
) override
{
990 // The only source we can rewrite is the input register.
991 if (CurrentSrcIdx
!= 1)
994 CopyLike
.getOperand(CurrentSrcIdx
).setReg(NewReg
);
996 // If we find a source that does not require to extract something,
997 // rewrite the operation with a copy.
999 // Move the current index to an invalid position.
1000 // We do not want another call to this method to be able
1001 // to do any change.
1003 // Rewrite the operation as a COPY.
1004 // Get rid of the sub-register index.
1005 CopyLike
.RemoveOperand(2);
1006 // Morph the operation into a COPY.
1007 CopyLike
.setDesc(TII
.get(TargetOpcode::COPY
));
1010 CopyLike
.getOperand(CurrentSrcIdx
+ 1).setImm(NewSubReg
);
1015 /// Specialized rewriter for REG_SEQUENCE instruction.
1016 class RegSequenceRewriter
: public Rewriter
{
1018 RegSequenceRewriter(MachineInstr
&MI
) : Rewriter(MI
) {
1019 assert(MI
.isRegSequence() && "Invalid instruction");
1022 /// \see Rewriter::getNextRewritableSource()
1023 /// Here CopyLike has the following form:
1024 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1025 /// Each call will return a different source, walking all the available
1028 /// The first call returns:
1029 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1030 /// (DstReg, DstSubReg) = (dst, subIdx1).
1032 /// The second call returns:
1033 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1034 /// (DstReg, DstSubReg) = (dst, subIdx2).
1036 /// And so on, until all the sources have been traversed, then
1037 /// it returns false.
1038 bool getNextRewritableSource(RegSubRegPair
&Src
,
1039 RegSubRegPair
&Dst
) override
{
1040 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1042 // If this is the first call, move to the first argument.
1043 if (CurrentSrcIdx
== 0) {
1046 // Otherwise, move to the next argument and check that it is valid.
1048 if (CurrentSrcIdx
>= CopyLike
.getNumOperands())
1051 const MachineOperand
&MOInsertedReg
= CopyLike
.getOperand(CurrentSrcIdx
);
1052 Src
.Reg
= MOInsertedReg
.getReg();
1053 // If we have to compose sub-register indices, bail out.
1054 if ((Src
.SubReg
= MOInsertedReg
.getSubReg()))
1057 // We want to track something that is compatible with the related
1058 // partial definition.
1059 Dst
.SubReg
= CopyLike
.getOperand(CurrentSrcIdx
+ 1).getImm();
1061 const MachineOperand
&MODef
= CopyLike
.getOperand(0);
1062 Dst
.Reg
= MODef
.getReg();
1063 // If we have to compose sub-registers, bail.
1064 return MODef
.getSubReg() == 0;
1067 bool RewriteCurrentSource(unsigned NewReg
, unsigned NewSubReg
) override
{
1068 // We cannot rewrite out of bound operands.
1069 // Moreover, rewritable sources are at odd positions.
1070 if ((CurrentSrcIdx
& 1) != 1 || CurrentSrcIdx
> CopyLike
.getNumOperands())
1073 MachineOperand
&MO
= CopyLike
.getOperand(CurrentSrcIdx
);
1075 MO
.setSubReg(NewSubReg
);
1080 } // end anonymous namespace
1082 /// Get the appropriated Rewriter for \p MI.
1083 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1084 /// rewriter works for \p MI.
1085 static Rewriter
*getCopyRewriter(MachineInstr
&MI
, const TargetInstrInfo
&TII
) {
1086 // Handle uncoalescable copy-like instructions.
1087 if (MI
.isBitcast() || MI
.isRegSequenceLike() || MI
.isInsertSubregLike() ||
1088 MI
.isExtractSubregLike())
1089 return new UncoalescableRewriter(MI
);
1091 switch (MI
.getOpcode()) {
1094 case TargetOpcode::COPY
:
1095 return new CopyRewriter(MI
);
1096 case TargetOpcode::INSERT_SUBREG
:
1097 return new InsertSubregRewriter(MI
);
1098 case TargetOpcode::EXTRACT_SUBREG
:
1099 return new ExtractSubregRewriter(MI
, TII
);
1100 case TargetOpcode::REG_SEQUENCE
:
1101 return new RegSequenceRewriter(MI
);
1105 /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
1106 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1107 /// multiple sources for a given \p Def are found along the way, we found a
1108 /// PHI instructions that needs to be rewritten.
1109 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1110 /// with coalescable copies.
1111 static RegSubRegPair
1112 getNewSource(MachineRegisterInfo
*MRI
, const TargetInstrInfo
*TII
,
1114 const PeepholeOptimizer::RewriteMapTy
&RewriteMap
,
1115 bool HandleMultipleSources
= true) {
1116 RegSubRegPair
LookupSrc(Def
.Reg
, Def
.SubReg
);
1118 ValueTrackerResult Res
= RewriteMap
.lookup(LookupSrc
);
1119 // If there are no entries on the map, LookupSrc is the new source.
1123 // There's only one source for this definition, keep searching...
1124 unsigned NumSrcs
= Res
.getNumSources();
1126 LookupSrc
.Reg
= Res
.getSrcReg(0);
1127 LookupSrc
.SubReg
= Res
.getSrcSubReg(0);
1131 // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1132 if (!HandleMultipleSources
)
1135 // Multiple sources, recurse into each source to find a new source
1136 // for it. Then, rewrite the PHI accordingly to its new edges.
1137 SmallVector
<RegSubRegPair
, 4> NewPHISrcs
;
1138 for (unsigned i
= 0; i
< NumSrcs
; ++i
) {
1139 RegSubRegPair
PHISrc(Res
.getSrcReg(i
), Res
.getSrcSubReg(i
));
1140 NewPHISrcs
.push_back(
1141 getNewSource(MRI
, TII
, PHISrc
, RewriteMap
, HandleMultipleSources
));
1144 // Build the new PHI node and return its def register as the new source.
1145 MachineInstr
&OrigPHI
= const_cast<MachineInstr
&>(*Res
.getInst());
1146 MachineInstr
&NewPHI
= insertPHI(*MRI
, *TII
, NewPHISrcs
, OrigPHI
);
1147 LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1148 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI
);
1149 LLVM_DEBUG(dbgs() << " With: " << NewPHI
);
1150 const MachineOperand
&MODef
= NewPHI
.getOperand(0);
1151 return RegSubRegPair(MODef
.getReg(), MODef
.getSubReg());
1154 return RegSubRegPair(0, 0);
1157 /// Optimize generic copy instructions to avoid cross register bank copy.
1158 /// The optimization looks through a chain of copies and tries to find a source
1159 /// that has a compatible register class.
1160 /// Two register classes are considered to be compatible if they share the same
1162 /// New copies issued by this optimization are register allocator
1163 /// friendly. This optimization does not remove any copy as it may
1164 /// overconstrain the register allocator, but replaces some operands
1166 /// \pre isCoalescableCopy(*MI) is true.
1167 /// \return True, when \p MI has been rewritten. False otherwise.
1168 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr
&MI
) {
1169 assert(isCoalescableCopy(MI
) && "Invalid argument");
1170 assert(MI
.getDesc().getNumDefs() == 1 &&
1171 "Coalescer can understand multiple defs?!");
1172 const MachineOperand
&MODef
= MI
.getOperand(0);
1173 // Do not rewrite physical definitions.
1174 if (TargetRegisterInfo::isPhysicalRegister(MODef
.getReg()))
1177 bool Changed
= false;
1178 // Get the right rewriter for the current copy.
1179 std::unique_ptr
<Rewriter
> CpyRewriter(getCopyRewriter(MI
, *TII
));
1180 // If none exists, bail out.
1183 // Rewrite each rewritable source.
1185 RegSubRegPair TrackPair
;
1186 while (CpyRewriter
->getNextRewritableSource(Src
, TrackPair
)) {
1187 // Keep track of PHI nodes and its incoming edges when looking for sources.
1188 RewriteMapTy RewriteMap
;
1189 // Try to find a more suitable source. If we failed to do so, or get the
1190 // actual source, move to the next source.
1191 if (!findNextSource(TrackPair
, RewriteMap
))
1194 // Get the new source to rewrite. TODO: Only enable handling of multiple
1195 // sources (PHIs) once we have a motivating example and testcases for it.
1196 RegSubRegPair NewSrc
= getNewSource(MRI
, TII
, TrackPair
, RewriteMap
,
1197 /*HandleMultipleSources=*/false);
1198 if (Src
.Reg
== NewSrc
.Reg
|| NewSrc
.Reg
== 0)
1202 if (CpyRewriter
->RewriteCurrentSource(NewSrc
.Reg
, NewSrc
.SubReg
)) {
1203 // We may have extended the live-range of NewSrc, account for that.
1204 MRI
->clearKillFlags(NewSrc
.Reg
);
1208 // TODO: We could have a clean-up method to tidy the instruction.
1209 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1211 // Currently we haven't seen motivating example for that and we
1212 // want to avoid untested code.
1213 NumRewrittenCopies
+= Changed
;
1217 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1218 /// and create a new COPY instruction. More info about RewriteMap in
1219 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1220 /// Uncoalescable copies, since they are copy like instructions that aren't
1221 /// recognized by the register allocator.
1223 PeepholeOptimizer::rewriteSource(MachineInstr
&CopyLike
,
1224 RegSubRegPair Def
, RewriteMapTy
&RewriteMap
) {
1225 assert(!TargetRegisterInfo::isPhysicalRegister(Def
.Reg
) &&
1226 "We do not rewrite physical registers");
1228 // Find the new source to use in the COPY rewrite.
1229 RegSubRegPair NewSrc
= getNewSource(MRI
, TII
, Def
, RewriteMap
);
1232 const TargetRegisterClass
*DefRC
= MRI
->getRegClass(Def
.Reg
);
1233 unsigned NewVReg
= MRI
->createVirtualRegister(DefRC
);
1235 MachineInstr
*NewCopy
=
1236 BuildMI(*CopyLike
.getParent(), &CopyLike
, CopyLike
.getDebugLoc(),
1237 TII
->get(TargetOpcode::COPY
), NewVReg
)
1238 .addReg(NewSrc
.Reg
, 0, NewSrc
.SubReg
);
1241 NewCopy
->getOperand(0).setSubReg(Def
.SubReg
);
1242 NewCopy
->getOperand(0).setIsUndef();
1245 LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1246 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike
);
1247 LLVM_DEBUG(dbgs() << " With: " << *NewCopy
);
1248 MRI
->replaceRegWith(Def
.Reg
, NewVReg
);
1249 MRI
->clearKillFlags(NewVReg
);
1251 // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1252 // account for that.
1253 MRI
->clearKillFlags(NewSrc
.Reg
);
1258 /// Optimize copy-like instructions to create
1259 /// register coalescer friendly instruction.
1260 /// The optimization tries to kill-off the \p MI by looking
1261 /// through a chain of copies to find a source that has a compatible
1263 /// If such a source is found, it replace \p MI by a generic COPY
1265 /// \pre isUncoalescableCopy(*MI) is true.
1266 /// \return True, when \p MI has been optimized. In that case, \p MI has
1267 /// been removed from its parent.
1268 /// All COPY instructions created, are inserted in \p LocalMIs.
1269 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1270 MachineInstr
&MI
, SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
) {
1271 assert(isUncoalescableCopy(MI
) && "Invalid argument");
1272 UncoalescableRewriter
CpyRewriter(MI
);
1274 // Rewrite each rewritable source by generating new COPYs. This works
1275 // differently from optimizeCoalescableCopy since it first makes sure that all
1276 // definitions can be rewritten.
1277 RewriteMapTy RewriteMap
;
1280 SmallVector
<RegSubRegPair
, 4> RewritePairs
;
1281 while (CpyRewriter
.getNextRewritableSource(Src
, Def
)) {
1282 // If a physical register is here, this is probably for a good reason.
1283 // Do not rewrite that.
1284 if (TargetRegisterInfo::isPhysicalRegister(Def
.Reg
))
1287 // If we do not know how to rewrite this definition, there is no point
1288 // in trying to kill this instruction.
1289 if (!findNextSource(Def
, RewriteMap
))
1292 RewritePairs
.push_back(Def
);
1295 // The change is possible for all defs, do it.
1296 for (const RegSubRegPair
&Def
: RewritePairs
) {
1297 // Rewrite the "copy" in a way the register coalescer understands.
1298 MachineInstr
&NewCopy
= rewriteSource(MI
, Def
, RewriteMap
);
1299 LocalMIs
.insert(&NewCopy
);
1303 MI
.eraseFromParent();
1304 ++NumUncoalescableCopies
;
1308 /// Check whether MI is a candidate for folding into a later instruction.
1309 /// We only fold loads to virtual registers and the virtual register defined
1310 /// has a single use.
1311 bool PeepholeOptimizer::isLoadFoldable(
1312 MachineInstr
&MI
, SmallSet
<unsigned, 16> &FoldAsLoadDefCandidates
) {
1313 if (!MI
.canFoldAsLoad() || !MI
.mayLoad())
1315 const MCInstrDesc
&MCID
= MI
.getDesc();
1316 if (MCID
.getNumDefs() != 1)
1319 unsigned Reg
= MI
.getOperand(0).getReg();
1320 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
1321 // loads. It should be checked when processing uses of the load, since
1322 // uses can be removed during peephole.
1323 if (!MI
.getOperand(0).getSubReg() &&
1324 TargetRegisterInfo::isVirtualRegister(Reg
) &&
1325 MRI
->hasOneNonDBGUse(Reg
)) {
1326 FoldAsLoadDefCandidates
.insert(Reg
);
1332 bool PeepholeOptimizer::isMoveImmediate(
1333 MachineInstr
&MI
, SmallSet
<unsigned, 4> &ImmDefRegs
,
1334 DenseMap
<unsigned, MachineInstr
*> &ImmDefMIs
) {
1335 const MCInstrDesc
&MCID
= MI
.getDesc();
1336 if (!MI
.isMoveImmediate())
1338 if (MCID
.getNumDefs() != 1)
1340 unsigned Reg
= MI
.getOperand(0).getReg();
1341 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
1342 ImmDefMIs
.insert(std::make_pair(Reg
, &MI
));
1343 ImmDefRegs
.insert(Reg
);
1350 /// Try folding register operands that are defined by move immediate
1351 /// instructions, i.e. a trivial constant folding optimization, if
1352 /// and only if the def and use are in the same BB.
1353 bool PeepholeOptimizer::foldImmediate(MachineInstr
&MI
,
1354 SmallSet
<unsigned, 4> &ImmDefRegs
,
1355 DenseMap
<unsigned, MachineInstr
*> &ImmDefMIs
) {
1356 for (unsigned i
= 0, e
= MI
.getDesc().getNumOperands(); i
!= e
; ++i
) {
1357 MachineOperand
&MO
= MI
.getOperand(i
);
1358 if (!MO
.isReg() || MO
.isDef())
1360 // Ignore dead implicit defs.
1361 if (MO
.isImplicit() && MO
.isDead())
1363 unsigned Reg
= MO
.getReg();
1364 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
1366 if (ImmDefRegs
.count(Reg
) == 0)
1368 DenseMap
<unsigned, MachineInstr
*>::iterator II
= ImmDefMIs
.find(Reg
);
1369 assert(II
!= ImmDefMIs
.end() && "couldn't find immediate definition");
1370 if (TII
->FoldImmediate(MI
, *II
->second
, Reg
, MRI
)) {
1378 // FIXME: This is very simple and misses some cases which should be handled when
1379 // motivating examples are found.
1381 // The copy rewriting logic should look at uses as well as defs and be able to
1382 // eliminate copies across blocks.
1384 // Later copies that are subregister extracts will also not be eliminated since
1385 // only the first copy is considered.
1389 // %2 = COPY %0:sub1
1391 // Should replace %2 uses with %1:sub1
1392 bool PeepholeOptimizer::foldRedundantCopy(MachineInstr
&MI
,
1393 SmallSet
<unsigned, 4> &CopySrcRegs
,
1394 DenseMap
<unsigned, MachineInstr
*> &CopyMIs
) {
1395 assert(MI
.isCopy() && "expected a COPY machine instruction");
1397 unsigned SrcReg
= MI
.getOperand(1).getReg();
1398 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
1401 unsigned DstReg
= MI
.getOperand(0).getReg();
1402 if (!TargetRegisterInfo::isVirtualRegister(DstReg
))
1405 if (CopySrcRegs
.insert(SrcReg
).second
) {
1406 // First copy of this reg seen.
1407 CopyMIs
.insert(std::make_pair(SrcReg
, &MI
));
1411 MachineInstr
*PrevCopy
= CopyMIs
.find(SrcReg
)->second
;
1413 unsigned SrcSubReg
= MI
.getOperand(1).getSubReg();
1414 unsigned PrevSrcSubReg
= PrevCopy
->getOperand(1).getSubReg();
1416 // Can't replace different subregister extracts.
1417 if (SrcSubReg
!= PrevSrcSubReg
)
1420 unsigned PrevDstReg
= PrevCopy
->getOperand(0).getReg();
1422 // Only replace if the copy register class is the same.
1424 // TODO: If we have multiple copies to different register classes, we may want
1425 // to track multiple copies of the same source register.
1426 if (MRI
->getRegClass(DstReg
) != MRI
->getRegClass(PrevDstReg
))
1429 MRI
->replaceRegWith(DstReg
, PrevDstReg
);
1431 // Lifetime of the previous copy has been extended.
1432 MRI
->clearKillFlags(PrevDstReg
);
1436 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg
) {
1437 return TargetRegisterInfo::isPhysicalRegister(Reg
) &&
1438 !MRI
->isAllocatable(Reg
);
1441 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1442 MachineInstr
&MI
, DenseMap
<unsigned, MachineInstr
*> &NAPhysToVirtMIs
) {
1443 assert(MI
.isCopy() && "expected a COPY machine instruction");
1445 if (DisableNAPhysCopyOpt
)
1448 unsigned DstReg
= MI
.getOperand(0).getReg();
1449 unsigned SrcReg
= MI
.getOperand(1).getReg();
1450 if (isNAPhysCopy(SrcReg
) && TargetRegisterInfo::isVirtualRegister(DstReg
)) {
1451 // %vreg = COPY %physreg
1452 // Avoid using a datastructure which can track multiple live non-allocatable
1453 // phys->virt copies since LLVM doesn't seem to do this.
1454 NAPhysToVirtMIs
.insert({SrcReg
, &MI
});
1458 if (!(TargetRegisterInfo::isVirtualRegister(SrcReg
) && isNAPhysCopy(DstReg
)))
1461 // %physreg = COPY %vreg
1462 auto PrevCopy
= NAPhysToVirtMIs
.find(DstReg
);
1463 if (PrevCopy
== NAPhysToVirtMIs
.end()) {
1464 // We can't remove the copy: there was an intervening clobber of the
1465 // non-allocatable physical register after the copy to virtual.
1466 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1471 unsigned PrevDstReg
= PrevCopy
->second
->getOperand(0).getReg();
1472 if (PrevDstReg
== SrcReg
) {
1473 // Remove the virt->phys copy: we saw the virtual register definition, and
1474 // the non-allocatable physical register's state hasn't changed since then.
1475 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI
);
1480 // Potential missed optimization opportunity: we saw a different virtual
1481 // register get a copy of the non-allocatable physical register, and we only
1482 // track one such copy. Avoid getting confused by this new non-allocatable
1483 // physical register definition, and remove it from the tracked copies.
1484 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI
);
1485 NAPhysToVirtMIs
.erase(PrevCopy
);
1489 /// \bried Returns true if \p MO is a virtual register operand.
1490 static bool isVirtualRegisterOperand(MachineOperand
&MO
) {
1493 return TargetRegisterInfo::isVirtualRegister(MO
.getReg());
1496 bool PeepholeOptimizer::findTargetRecurrence(
1497 unsigned Reg
, const SmallSet
<unsigned, 2> &TargetRegs
,
1498 RecurrenceCycle
&RC
) {
1499 // Recurrence found if Reg is in TargetRegs.
1500 if (TargetRegs
.count(Reg
))
1503 // TODO: Curerntly, we only allow the last instruction of the recurrence
1504 // cycle (the instruction that feeds the PHI instruction) to have more than
1505 // one uses to guarantee that commuting operands does not tie registers
1506 // with overlapping live range. Once we have actual live range info of
1507 // each register, this constraint can be relaxed.
1508 if (!MRI
->hasOneNonDBGUse(Reg
))
1511 // Give up if the reccurrence chain length is longer than the limit.
1512 if (RC
.size() >= MaxRecurrenceChain
)
1515 MachineInstr
&MI
= *(MRI
->use_instr_nodbg_begin(Reg
));
1516 unsigned Idx
= MI
.findRegisterUseOperandIdx(Reg
);
1518 // Only interested in recurrences whose instructions have only one def, which
1519 // is a virtual register.
1520 if (MI
.getDesc().getNumDefs() != 1)
1523 MachineOperand
&DefOp
= MI
.getOperand(0);
1524 if (!isVirtualRegisterOperand(DefOp
))
1527 // Check if def operand of MI is tied to any use operand. We are only
1528 // interested in the case that all the instructions in the recurrence chain
1529 // have there def operand tied with one of the use operand.
1530 unsigned TiedUseIdx
;
1531 if (!MI
.isRegTiedToUseOperand(0, &TiedUseIdx
))
1534 if (Idx
== TiedUseIdx
) {
1535 RC
.push_back(RecurrenceInstr(&MI
));
1536 return findTargetRecurrence(DefOp
.getReg(), TargetRegs
, RC
);
1538 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1539 unsigned CommIdx
= TargetInstrInfo::CommuteAnyOperandIndex
;
1540 if (TII
->findCommutedOpIndices(MI
, Idx
, CommIdx
) && CommIdx
== TiedUseIdx
) {
1541 RC
.push_back(RecurrenceInstr(&MI
, Idx
, CommIdx
));
1542 return findTargetRecurrence(DefOp
.getReg(), TargetRegs
, RC
);
1549 /// Phi instructions will eventually be lowered to copy instructions.
1550 /// If phi is in a loop header, a recurrence may formulated around the source
1551 /// and destination of the phi. For such case commuting operands of the
1552 /// instructions in the recurrence may enable coalescing of the copy instruction
1553 /// generated from the phi. For example, if there is a recurrence of
1556 /// %1 = phi(%0, %100)
1558 /// %0<def, tied1> = ADD %2<def, tied0>, %1
1560 /// , the fact that %0 and %2 are in the same tied operands set makes
1561 /// the coalescing of copy instruction generated from the phi in
1562 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1563 /// %2 have overlapping live range. This introduces additional move
1564 /// instruction to the final assembly. However, if we commute %2 and
1565 /// %1 of ADD instruction, the redundant move instruction can be
1567 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr
&PHI
) {
1568 SmallSet
<unsigned, 2> TargetRegs
;
1569 for (unsigned Idx
= 1; Idx
< PHI
.getNumOperands(); Idx
+= 2) {
1570 MachineOperand
&MO
= PHI
.getOperand(Idx
);
1571 assert(isVirtualRegisterOperand(MO
) && "Invalid PHI instruction");
1572 TargetRegs
.insert(MO
.getReg());
1575 bool Changed
= false;
1577 if (findTargetRecurrence(PHI
.getOperand(0).getReg(), TargetRegs
, RC
)) {
1578 // Commutes operands of instructions in RC if necessary so that the copy to
1579 // be generated from PHI can be coalesced.
1580 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI
);
1581 for (auto &RI
: RC
) {
1582 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI
.getMI()));
1583 auto CP
= RI
.getCommutePair();
1586 TII
->commuteInstruction(*(RI
.getMI()), false, (*CP
).first
,
1588 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI
.getMI()));
1596 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction
&MF
) {
1597 if (skipFunction(MF
.getFunction()))
1600 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1601 LLVM_DEBUG(dbgs() << "********** Function: " << MF
.getName() << '\n');
1603 if (DisablePeephole
)
1606 TII
= MF
.getSubtarget().getInstrInfo();
1607 TRI
= MF
.getSubtarget().getRegisterInfo();
1608 MRI
= &MF
.getRegInfo();
1609 DT
= Aggressive
? &getAnalysis
<MachineDominatorTree
>() : nullptr;
1610 MLI
= &getAnalysis
<MachineLoopInfo
>();
1612 bool Changed
= false;
1614 for (MachineBasicBlock
&MBB
: MF
) {
1615 bool SeenMoveImm
= false;
1617 // During this forward scan, at some point it needs to answer the question
1618 // "given a pointer to an MI in the current BB, is it located before or
1619 // after the current instruction".
1620 // To perform this, the following set keeps track of the MIs already seen
1621 // during the scan, if a MI is not in the set, it is assumed to be located
1622 // after. Newly created MIs have to be inserted in the set as well.
1623 SmallPtrSet
<MachineInstr
*, 16> LocalMIs
;
1624 SmallSet
<unsigned, 4> ImmDefRegs
;
1625 DenseMap
<unsigned, MachineInstr
*> ImmDefMIs
;
1626 SmallSet
<unsigned, 16> FoldAsLoadDefCandidates
;
1628 // Track when a non-allocatable physical register is copied to a virtual
1629 // register so that useless moves can be removed.
1631 // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
1632 // without any intervening re-definition of %physreg.
1633 DenseMap
<unsigned, MachineInstr
*> NAPhysToVirtMIs
;
1635 // Set of virtual registers that are copied from.
1636 SmallSet
<unsigned, 4> CopySrcRegs
;
1637 DenseMap
<unsigned, MachineInstr
*> CopySrcMIs
;
1639 bool IsLoopHeader
= MLI
->isLoopHeader(&MBB
);
1641 for (MachineBasicBlock::iterator MII
= MBB
.begin(), MIE
= MBB
.end();
1643 MachineInstr
*MI
= &*MII
;
1644 // We may be erasing MI below, increment MII now.
1646 LocalMIs
.insert(MI
);
1648 // Skip debug instructions. They should not affect this peephole optimization.
1649 if (MI
->isDebugInstr())
1652 if (MI
->isPosition())
1655 if (IsLoopHeader
&& MI
->isPHI()) {
1656 if (optimizeRecurrence(*MI
)) {
1662 if (!MI
->isCopy()) {
1663 for (const MachineOperand
&MO
: MI
->operands()) {
1664 // Visit all operands: definitions can be implicit or explicit.
1666 unsigned Reg
= MO
.getReg();
1667 if (MO
.isDef() && isNAPhysCopy(Reg
)) {
1668 const auto &Def
= NAPhysToVirtMIs
.find(Reg
);
1669 if (Def
!= NAPhysToVirtMIs
.end()) {
1670 // A new definition of the non-allocatable physical register
1671 // invalidates previous copies.
1673 << "NAPhysCopy: invalidating because of " << *MI
);
1674 NAPhysToVirtMIs
.erase(Def
);
1677 } else if (MO
.isRegMask()) {
1678 const uint32_t *RegMask
= MO
.getRegMask();
1679 for (auto &RegMI
: NAPhysToVirtMIs
) {
1680 unsigned Def
= RegMI
.first
;
1681 if (MachineOperand::clobbersPhysReg(RegMask
, Def
)) {
1683 << "NAPhysCopy: invalidating because of " << *MI
);
1684 NAPhysToVirtMIs
.erase(Def
);
1691 if (MI
->isImplicitDef() || MI
->isKill())
1694 if (MI
->isInlineAsm() || MI
->hasUnmodeledSideEffects()) {
1695 // Blow away all non-allocatable physical registers knowledge since we
1696 // don't know what's correct anymore.
1698 // FIXME: handle explicit asm clobbers.
1699 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1701 NAPhysToVirtMIs
.clear();
1704 if ((isUncoalescableCopy(*MI
) &&
1705 optimizeUncoalescableCopy(*MI
, LocalMIs
)) ||
1706 (MI
->isCompare() && optimizeCmpInstr(*MI
)) ||
1707 (MI
->isSelect() && optimizeSelect(*MI
, LocalMIs
))) {
1714 if (MI
->isConditionalBranch() && optimizeCondBranch(*MI
)) {
1719 if (isCoalescableCopy(*MI
) && optimizeCoalescableCopy(*MI
)) {
1720 // MI is just rewritten.
1726 (foldRedundantCopy(*MI
, CopySrcRegs
, CopySrcMIs
) ||
1727 foldRedundantNAPhysCopy(*MI
, NAPhysToVirtMIs
))) {
1729 MI
->eraseFromParent();
1734 if (isMoveImmediate(*MI
, ImmDefRegs
, ImmDefMIs
)) {
1737 Changed
|= optimizeExtInstr(*MI
, MBB
, LocalMIs
);
1738 // optimizeExtInstr might have created new instructions after MI
1739 // and before the already incremented MII. Adjust MII so that the
1740 // next iteration sees the new instructions.
1744 Changed
|= foldImmediate(*MI
, ImmDefRegs
, ImmDefMIs
);
1747 // Check whether MI is a load candidate for folding into a later
1748 // instruction. If MI is not a candidate, check whether we can fold an
1749 // earlier load into MI.
1750 if (!isLoadFoldable(*MI
, FoldAsLoadDefCandidates
) &&
1751 !FoldAsLoadDefCandidates
.empty()) {
1753 // We visit each operand even after successfully folding a previous
1754 // one. This allows us to fold multiple loads into a single
1755 // instruction. We do assume that optimizeLoadInstr doesn't insert
1756 // foldable uses earlier in the argument list. Since we don't restart
1757 // iteration, we'd miss such cases.
1758 const MCInstrDesc
&MIDesc
= MI
->getDesc();
1759 for (unsigned i
= MIDesc
.getNumDefs(); i
!= MI
->getNumOperands();
1761 const MachineOperand
&MOp
= MI
->getOperand(i
);
1764 unsigned FoldAsLoadDefReg
= MOp
.getReg();
1765 if (FoldAsLoadDefCandidates
.count(FoldAsLoadDefReg
)) {
1766 // We need to fold load after optimizeCmpInstr, since
1767 // optimizeCmpInstr can enable folding by converting SUB to CMP.
1768 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1769 // we need it for markUsesInDebugValueAsUndef().
1770 unsigned FoldedReg
= FoldAsLoadDefReg
;
1771 MachineInstr
*DefMI
= nullptr;
1772 if (MachineInstr
*FoldMI
=
1773 TII
->optimizeLoadInstr(*MI
, MRI
, FoldAsLoadDefReg
, DefMI
)) {
1774 // Update LocalMIs since we replaced MI with FoldMI and deleted
1776 LLVM_DEBUG(dbgs() << "Replacing: " << *MI
);
1777 LLVM_DEBUG(dbgs() << " With: " << *FoldMI
);
1779 LocalMIs
.erase(DefMI
);
1780 LocalMIs
.insert(FoldMI
);
1781 MI
->eraseFromParent();
1782 DefMI
->eraseFromParent();
1783 MRI
->markUsesInDebugValueAsUndef(FoldedReg
);
1784 FoldAsLoadDefCandidates
.erase(FoldedReg
);
1787 // MI is replaced with FoldMI so we can continue trying to fold
1795 // If we run into an instruction we can't fold across, discard
1796 // the load candidates. Note: We might be able to fold *into* this
1797 // instruction, so this needs to be after the folding logic.
1798 if (MI
->isLoadFoldBarrier()) {
1799 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI
);
1800 FoldAsLoadDefCandidates
.clear();
1808 ValueTrackerResult
ValueTracker::getNextSourceFromCopy() {
1809 assert(Def
->isCopy() && "Invalid definition");
1810 // Copy instruction are supposed to be: Def = Src.
1811 // If someone breaks this assumption, bad things will happen everywhere.
1812 assert(Def
->getNumOperands() == 2 && "Invalid number of operands");
1814 if (Def
->getOperand(DefIdx
).getSubReg() != DefSubReg
)
1815 // If we look for a different subreg, it means we want a subreg of src.
1816 // Bails as we do not support composing subregs yet.
1817 return ValueTrackerResult();
1818 // Otherwise, we want the whole source.
1819 const MachineOperand
&Src
= Def
->getOperand(1);
1821 return ValueTrackerResult();
1822 return ValueTrackerResult(Src
.getReg(), Src
.getSubReg());
1825 ValueTrackerResult
ValueTracker::getNextSourceFromBitcast() {
1826 assert(Def
->isBitcast() && "Invalid definition");
1828 // Bail if there are effects that a plain copy will not expose.
1829 if (Def
->hasUnmodeledSideEffects())
1830 return ValueTrackerResult();
1832 // Bitcasts with more than one def are not supported.
1833 if (Def
->getDesc().getNumDefs() != 1)
1834 return ValueTrackerResult();
1835 const MachineOperand DefOp
= Def
->getOperand(DefIdx
);
1836 if (DefOp
.getSubReg() != DefSubReg
)
1837 // If we look for a different subreg, it means we want a subreg of the src.
1838 // Bails as we do not support composing subregs yet.
1839 return ValueTrackerResult();
1841 unsigned SrcIdx
= Def
->getNumOperands();
1842 for (unsigned OpIdx
= DefIdx
+ 1, EndOpIdx
= SrcIdx
; OpIdx
!= EndOpIdx
;
1844 const MachineOperand
&MO
= Def
->getOperand(OpIdx
);
1845 if (!MO
.isReg() || !MO
.getReg())
1847 // Ignore dead implicit defs.
1848 if (MO
.isImplicit() && MO
.isDead())
1850 assert(!MO
.isDef() && "We should have skipped all the definitions by now");
1851 if (SrcIdx
!= EndOpIdx
)
1852 // Multiple sources?
1853 return ValueTrackerResult();
1857 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1858 // will break the assumed guarantees for the upper bits.
1859 for (const MachineInstr
&UseMI
: MRI
.use_nodbg_instructions(DefOp
.getReg())) {
1860 if (UseMI
.isSubregToReg())
1861 return ValueTrackerResult();
1864 const MachineOperand
&Src
= Def
->getOperand(SrcIdx
);
1866 return ValueTrackerResult();
1867 return ValueTrackerResult(Src
.getReg(), Src
.getSubReg());
1870 ValueTrackerResult
ValueTracker::getNextSourceFromRegSequence() {
1871 assert((Def
->isRegSequence() || Def
->isRegSequenceLike()) &&
1872 "Invalid definition");
1874 if (Def
->getOperand(DefIdx
).getSubReg())
1875 // If we are composing subregs, bail out.
1876 // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1877 // This should almost never happen as the SSA property is tracked at
1878 // the register level (as opposed to the subreg level).
1882 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1883 // Def. Thus, it must not be generated.
1884 // However, some code could theoretically generates a single
1885 // Def.sub0 (i.e, not defining the other subregs) and we would
1887 // If we can ascertain (or force) that this never happens, we could
1888 // turn that into an assertion.
1889 return ValueTrackerResult();
1892 // We could handle the REG_SEQUENCE here, but we do not want to
1893 // duplicate the code from the generic TII.
1894 return ValueTrackerResult();
1896 SmallVector
<RegSubRegPairAndIdx
, 8> RegSeqInputRegs
;
1897 if (!TII
->getRegSequenceInputs(*Def
, DefIdx
, RegSeqInputRegs
))
1898 return ValueTrackerResult();
1900 // We are looking at:
1901 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1902 // Check if one of the operand defines the subreg we are interested in.
1903 for (const RegSubRegPairAndIdx
&RegSeqInput
: RegSeqInputRegs
) {
1904 if (RegSeqInput
.SubIdx
== DefSubReg
) {
1905 if (RegSeqInput
.SubReg
)
1906 // Bail if we have to compose sub registers.
1907 return ValueTrackerResult();
1909 return ValueTrackerResult(RegSeqInput
.Reg
, RegSeqInput
.SubReg
);
1913 // If the subreg we are tracking is super-defined by another subreg,
1914 // we could follow this value. However, this would require to compose
1915 // the subreg and we do not do that for now.
1916 return ValueTrackerResult();
1919 ValueTrackerResult
ValueTracker::getNextSourceFromInsertSubreg() {
1920 assert((Def
->isInsertSubreg() || Def
->isInsertSubregLike()) &&
1921 "Invalid definition");
1923 if (Def
->getOperand(DefIdx
).getSubReg())
1924 // If we are composing subreg, bail out.
1925 // Same remark as getNextSourceFromRegSequence.
1926 // I.e., this may be turned into an assert.
1927 return ValueTrackerResult();
1930 // We could handle the REG_SEQUENCE here, but we do not want to
1931 // duplicate the code from the generic TII.
1932 return ValueTrackerResult();
1934 RegSubRegPair BaseReg
;
1935 RegSubRegPairAndIdx InsertedReg
;
1936 if (!TII
->getInsertSubregInputs(*Def
, DefIdx
, BaseReg
, InsertedReg
))
1937 return ValueTrackerResult();
1939 // We are looking at:
1940 // Def = INSERT_SUBREG v0, v1, sub1
1941 // There are two cases:
1942 // 1. DefSubReg == sub1, get v1.
1943 // 2. DefSubReg != sub1, the value may be available through v0.
1945 // #1 Check if the inserted register matches the required sub index.
1946 if (InsertedReg
.SubIdx
== DefSubReg
) {
1947 return ValueTrackerResult(InsertedReg
.Reg
, InsertedReg
.SubReg
);
1949 // #2 Otherwise, if the sub register we are looking for is not partial
1950 // defined by the inserted element, we can look through the main
1952 const MachineOperand
&MODef
= Def
->getOperand(DefIdx
);
1953 // If the result register (Def) and the base register (v0) do not
1954 // have the same register class or if we have to compose
1955 // subregisters, bail out.
1956 if (MRI
.getRegClass(MODef
.getReg()) != MRI
.getRegClass(BaseReg
.Reg
) ||
1958 return ValueTrackerResult();
1960 // Get the TRI and check if the inserted sub-register overlaps with the
1961 // sub-register we are tracking.
1962 const TargetRegisterInfo
*TRI
= MRI
.getTargetRegisterInfo();
1964 !(TRI
->getSubRegIndexLaneMask(DefSubReg
) &
1965 TRI
->getSubRegIndexLaneMask(InsertedReg
.SubIdx
)).none())
1966 return ValueTrackerResult();
1967 // At this point, the value is available in v0 via the same subreg
1969 return ValueTrackerResult(BaseReg
.Reg
, DefSubReg
);
1972 ValueTrackerResult
ValueTracker::getNextSourceFromExtractSubreg() {
1973 assert((Def
->isExtractSubreg() ||
1974 Def
->isExtractSubregLike()) && "Invalid definition");
1975 // We are looking at:
1976 // Def = EXTRACT_SUBREG v0, sub0
1978 // Bail if we have to compose sub registers.
1979 // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1981 return ValueTrackerResult();
1984 // We could handle the EXTRACT_SUBREG here, but we do not want to
1985 // duplicate the code from the generic TII.
1986 return ValueTrackerResult();
1988 RegSubRegPairAndIdx ExtractSubregInputReg
;
1989 if (!TII
->getExtractSubregInputs(*Def
, DefIdx
, ExtractSubregInputReg
))
1990 return ValueTrackerResult();
1992 // Bail if we have to compose sub registers.
1993 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1994 if (ExtractSubregInputReg
.SubReg
)
1995 return ValueTrackerResult();
1996 // Otherwise, the value is available in the v0.sub0.
1997 return ValueTrackerResult(ExtractSubregInputReg
.Reg
,
1998 ExtractSubregInputReg
.SubIdx
);
2001 ValueTrackerResult
ValueTracker::getNextSourceFromSubregToReg() {
2002 assert(Def
->isSubregToReg() && "Invalid definition");
2003 // We are looking at:
2004 // Def = SUBREG_TO_REG Imm, v0, sub0
2006 // Bail if we have to compose sub registers.
2007 // If DefSubReg != sub0, we would have to check that all the bits
2008 // we track are included in sub0 and if yes, we would have to
2009 // determine the right subreg in v0.
2010 if (DefSubReg
!= Def
->getOperand(3).getImm())
2011 return ValueTrackerResult();
2012 // Bail if we have to compose sub registers.
2013 // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2014 if (Def
->getOperand(2).getSubReg())
2015 return ValueTrackerResult();
2017 return ValueTrackerResult(Def
->getOperand(2).getReg(),
2018 Def
->getOperand(3).getImm());
2021 /// Explore each PHI incoming operand and return its sources.
2022 ValueTrackerResult
ValueTracker::getNextSourceFromPHI() {
2023 assert(Def
->isPHI() && "Invalid definition");
2024 ValueTrackerResult Res
;
2026 // If we look for a different subreg, bail as we do not support composing
2028 if (Def
->getOperand(0).getSubReg() != DefSubReg
)
2029 return ValueTrackerResult();
2031 // Return all register sources for PHI instructions.
2032 for (unsigned i
= 1, e
= Def
->getNumOperands(); i
< e
; i
+= 2) {
2033 const MachineOperand
&MO
= Def
->getOperand(i
);
2034 assert(MO
.isReg() && "Invalid PHI instruction");
2035 // We have no code to deal with undef operands. They shouldn't happen in
2036 // normal programs anyway.
2038 return ValueTrackerResult();
2039 Res
.addSource(MO
.getReg(), MO
.getSubReg());
2045 ValueTrackerResult
ValueTracker::getNextSourceImpl() {
2046 assert(Def
&& "This method needs a valid definition");
2048 assert(((Def
->getOperand(DefIdx
).isDef() &&
2049 (DefIdx
< Def
->getDesc().getNumDefs() ||
2050 Def
->getDesc().isVariadic())) ||
2051 Def
->getOperand(DefIdx
).isImplicit()) &&
2054 return getNextSourceFromCopy();
2055 if (Def
->isBitcast())
2056 return getNextSourceFromBitcast();
2057 // All the remaining cases involve "complex" instructions.
2058 // Bail if we did not ask for the advanced tracking.
2059 if (DisableAdvCopyOpt
)
2060 return ValueTrackerResult();
2061 if (Def
->isRegSequence() || Def
->isRegSequenceLike())
2062 return getNextSourceFromRegSequence();
2063 if (Def
->isInsertSubreg() || Def
->isInsertSubregLike())
2064 return getNextSourceFromInsertSubreg();
2065 if (Def
->isExtractSubreg() || Def
->isExtractSubregLike())
2066 return getNextSourceFromExtractSubreg();
2067 if (Def
->isSubregToReg())
2068 return getNextSourceFromSubregToReg();
2070 return getNextSourceFromPHI();
2071 return ValueTrackerResult();
2074 ValueTrackerResult
ValueTracker::getNextSource() {
2075 // If we reach a point where we cannot move up in the use-def chain,
2076 // there is nothing we can get.
2078 return ValueTrackerResult();
2080 ValueTrackerResult Res
= getNextSourceImpl();
2081 if (Res
.isValid()) {
2082 // Update definition, definition index, and subregister for the
2083 // next call of getNextSource.
2084 // Update the current register.
2085 bool OneRegSrc
= Res
.getNumSources() == 1;
2087 Reg
= Res
.getSrcReg(0);
2088 // Update the result before moving up in the use-def chain
2089 // with the instruction containing the last found sources.
2092 // If we can still move up in the use-def chain, move to the next
2094 if (!TargetRegisterInfo::isPhysicalRegister(Reg
) && OneRegSrc
) {
2095 MachineRegisterInfo::def_iterator DI
= MRI
.def_begin(Reg
);
2096 if (DI
!= MRI
.def_end()) {
2097 Def
= DI
->getParent();
2098 DefIdx
= DI
.getOperandNo();
2099 DefSubReg
= Res
.getSrcSubReg(0);
2106 // If we end up here, this means we will not be able to find another source
2107 // for the next iteration. Make sure any new call to getNextSource bails out
2108 // early by cutting the use-def chain.