[PowerPC] Remove self-copies in pre-emit peephole
[llvm-core.git] / lib / CodeGen / ScheduleDAG.cpp
blob6c135b3d69d66ec37be8b974b2eba8ec0722d178
1 //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file Implements the ScheduleDAG class, which is a base class used by
11 /// scheduling implementation classes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/ScheduleDAG.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
21 #include "llvm/CodeGen/SelectionDAGNodes.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <iterator>
33 #include <limits>
34 #include <utility>
35 #include <vector>
37 using namespace llvm;
39 #define DEBUG_TYPE "pre-RA-sched"
41 #ifndef NDEBUG
42 static cl::opt<bool> StressSchedOpt(
43 "stress-sched", cl::Hidden, cl::init(false),
44 cl::desc("Stress test instruction scheduling"));
45 #endif
47 void SchedulingPriorityQueue::anchor() {}
49 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
50 : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()),
51 TRI(mf.getSubtarget().getRegisterInfo()), MF(mf),
52 MRI(mf.getRegInfo()) {
53 #ifndef NDEBUG
54 StressSched = StressSchedOpt;
55 #endif
58 ScheduleDAG::~ScheduleDAG() = default;
60 void ScheduleDAG::clearDAG() {
61 SUnits.clear();
62 EntrySU = SUnit();
63 ExitSU = SUnit();
66 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
67 if (!Node || !Node->isMachineOpcode()) return nullptr;
68 return &TII->get(Node->getMachineOpcode());
71 LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const {
72 switch (getKind()) {
73 case Data: dbgs() << "Data"; break;
74 case Anti: dbgs() << "Anti"; break;
75 case Output: dbgs() << "Out "; break;
76 case Order: dbgs() << "Ord "; break;
79 switch (getKind()) {
80 case Data:
81 dbgs() << " Latency=" << getLatency();
82 if (TRI && isAssignedRegDep())
83 dbgs() << " Reg=" << printReg(getReg(), TRI);
84 break;
85 case Anti:
86 case Output:
87 dbgs() << " Latency=" << getLatency();
88 break;
89 case Order:
90 dbgs() << " Latency=" << getLatency();
91 switch(Contents.OrdKind) {
92 case Barrier: dbgs() << " Barrier"; break;
93 case MayAliasMem:
94 case MustAliasMem: dbgs() << " Memory"; break;
95 case Artificial: dbgs() << " Artificial"; break;
96 case Weak: dbgs() << " Weak"; break;
97 case Cluster: dbgs() << " Cluster"; break;
99 break;
103 bool SUnit::addPred(const SDep &D, bool Required) {
104 // If this node already has this dependence, don't add a redundant one.
105 for (SDep &PredDep : Preds) {
106 // Zero-latency weak edges may be added purely for heuristic ordering. Don't
107 // add them if another kind of edge already exists.
108 if (!Required && PredDep.getSUnit() == D.getSUnit())
109 return false;
110 if (PredDep.overlaps(D)) {
111 // Extend the latency if needed. Equivalent to
112 // removePred(PredDep) + addPred(D).
113 if (PredDep.getLatency() < D.getLatency()) {
114 SUnit *PredSU = PredDep.getSUnit();
115 // Find the corresponding successor in N.
116 SDep ForwardD = PredDep;
117 ForwardD.setSUnit(this);
118 for (SDep &SuccDep : PredSU->Succs) {
119 if (SuccDep == ForwardD) {
120 SuccDep.setLatency(D.getLatency());
121 break;
124 PredDep.setLatency(D.getLatency());
126 return false;
129 // Now add a corresponding succ to N.
130 SDep P = D;
131 P.setSUnit(this);
132 SUnit *N = D.getSUnit();
133 // Update the bookkeeping.
134 if (D.getKind() == SDep::Data) {
135 assert(NumPreds < std::numeric_limits<unsigned>::max() &&
136 "NumPreds will overflow!");
137 assert(N->NumSuccs < std::numeric_limits<unsigned>::max() &&
138 "NumSuccs will overflow!");
139 ++NumPreds;
140 ++N->NumSuccs;
142 if (!N->isScheduled) {
143 if (D.isWeak()) {
144 ++WeakPredsLeft;
146 else {
147 assert(NumPredsLeft < std::numeric_limits<unsigned>::max() &&
148 "NumPredsLeft will overflow!");
149 ++NumPredsLeft;
152 if (!isScheduled) {
153 if (D.isWeak()) {
154 ++N->WeakSuccsLeft;
156 else {
157 assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
158 "NumSuccsLeft will overflow!");
159 ++N->NumSuccsLeft;
162 Preds.push_back(D);
163 N->Succs.push_back(P);
164 if (P.getLatency() != 0) {
165 this->setDepthDirty();
166 N->setHeightDirty();
168 return true;
171 void SUnit::removePred(const SDep &D) {
172 // Find the matching predecessor.
173 SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D);
174 if (I == Preds.end())
175 return;
176 // Find the corresponding successor in N.
177 SDep P = D;
178 P.setSUnit(this);
179 SUnit *N = D.getSUnit();
180 SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P);
181 assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
182 N->Succs.erase(Succ);
183 Preds.erase(I);
184 // Update the bookkeeping.
185 if (P.getKind() == SDep::Data) {
186 assert(NumPreds > 0 && "NumPreds will underflow!");
187 assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
188 --NumPreds;
189 --N->NumSuccs;
191 if (!N->isScheduled) {
192 if (D.isWeak())
193 --WeakPredsLeft;
194 else {
195 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
196 --NumPredsLeft;
199 if (!isScheduled) {
200 if (D.isWeak())
201 --N->WeakSuccsLeft;
202 else {
203 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
204 --N->NumSuccsLeft;
207 if (P.getLatency() != 0) {
208 this->setDepthDirty();
209 N->setHeightDirty();
213 void SUnit::setDepthDirty() {
214 if (!isDepthCurrent) return;
215 SmallVector<SUnit*, 8> WorkList;
216 WorkList.push_back(this);
217 do {
218 SUnit *SU = WorkList.pop_back_val();
219 SU->isDepthCurrent = false;
220 for (SDep &SuccDep : SU->Succs) {
221 SUnit *SuccSU = SuccDep.getSUnit();
222 if (SuccSU->isDepthCurrent)
223 WorkList.push_back(SuccSU);
225 } while (!WorkList.empty());
228 void SUnit::setHeightDirty() {
229 if (!isHeightCurrent) return;
230 SmallVector<SUnit*, 8> WorkList;
231 WorkList.push_back(this);
232 do {
233 SUnit *SU = WorkList.pop_back_val();
234 SU->isHeightCurrent = false;
235 for (SDep &PredDep : SU->Preds) {
236 SUnit *PredSU = PredDep.getSUnit();
237 if (PredSU->isHeightCurrent)
238 WorkList.push_back(PredSU);
240 } while (!WorkList.empty());
243 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
244 if (NewDepth <= getDepth())
245 return;
246 setDepthDirty();
247 Depth = NewDepth;
248 isDepthCurrent = true;
251 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
252 if (NewHeight <= getHeight())
253 return;
254 setHeightDirty();
255 Height = NewHeight;
256 isHeightCurrent = true;
259 /// Calculates the maximal path from the node to the exit.
260 void SUnit::ComputeDepth() {
261 SmallVector<SUnit*, 8> WorkList;
262 WorkList.push_back(this);
263 do {
264 SUnit *Cur = WorkList.back();
266 bool Done = true;
267 unsigned MaxPredDepth = 0;
268 for (const SDep &PredDep : Cur->Preds) {
269 SUnit *PredSU = PredDep.getSUnit();
270 if (PredSU->isDepthCurrent)
271 MaxPredDepth = std::max(MaxPredDepth,
272 PredSU->Depth + PredDep.getLatency());
273 else {
274 Done = false;
275 WorkList.push_back(PredSU);
279 if (Done) {
280 WorkList.pop_back();
281 if (MaxPredDepth != Cur->Depth) {
282 Cur->setDepthDirty();
283 Cur->Depth = MaxPredDepth;
285 Cur->isDepthCurrent = true;
287 } while (!WorkList.empty());
290 /// Calculates the maximal path from the node to the entry.
291 void SUnit::ComputeHeight() {
292 SmallVector<SUnit*, 8> WorkList;
293 WorkList.push_back(this);
294 do {
295 SUnit *Cur = WorkList.back();
297 bool Done = true;
298 unsigned MaxSuccHeight = 0;
299 for (const SDep &SuccDep : Cur->Succs) {
300 SUnit *SuccSU = SuccDep.getSUnit();
301 if (SuccSU->isHeightCurrent)
302 MaxSuccHeight = std::max(MaxSuccHeight,
303 SuccSU->Height + SuccDep.getLatency());
304 else {
305 Done = false;
306 WorkList.push_back(SuccSU);
310 if (Done) {
311 WorkList.pop_back();
312 if (MaxSuccHeight != Cur->Height) {
313 Cur->setHeightDirty();
314 Cur->Height = MaxSuccHeight;
316 Cur->isHeightCurrent = true;
318 } while (!WorkList.empty());
321 void SUnit::biasCriticalPath() {
322 if (NumPreds < 2)
323 return;
325 SUnit::pred_iterator BestI = Preds.begin();
326 unsigned MaxDepth = BestI->getSUnit()->getDepth();
327 for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
328 ++I) {
329 if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
330 BestI = I;
332 if (BestI != Preds.begin())
333 std::swap(*Preds.begin(), *BestI);
336 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
337 LLVM_DUMP_METHOD void SUnit::dumpAttributes() const {
338 dbgs() << " # preds left : " << NumPredsLeft << "\n";
339 dbgs() << " # succs left : " << NumSuccsLeft << "\n";
340 if (WeakPredsLeft)
341 dbgs() << " # weak preds left : " << WeakPredsLeft << "\n";
342 if (WeakSuccsLeft)
343 dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n";
344 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n";
345 dbgs() << " Latency : " << Latency << "\n";
346 dbgs() << " Depth : " << getDepth() << "\n";
347 dbgs() << " Height : " << getHeight() << "\n";
350 LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const {
351 if (&SU == &EntrySU)
352 dbgs() << "EntrySU";
353 else if (&SU == &ExitSU)
354 dbgs() << "ExitSU";
355 else
356 dbgs() << "SU(" << SU.NodeNum << ")";
359 LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const {
360 dumpNode(SU);
361 SU.dumpAttributes();
362 if (SU.Preds.size() > 0) {
363 dbgs() << " Predecessors:\n";
364 for (const SDep &Dep : SU.Preds) {
365 dbgs() << " ";
366 dumpNodeName(*Dep.getSUnit());
367 dbgs() << ": ";
368 Dep.dump(TRI);
369 dbgs() << '\n';
372 if (SU.Succs.size() > 0) {
373 dbgs() << " Successors:\n";
374 for (const SDep &Dep : SU.Succs) {
375 dbgs() << " ";
376 dumpNodeName(*Dep.getSUnit());
377 dbgs() << ": ";
378 Dep.dump(TRI);
379 dbgs() << '\n';
383 #endif
385 #ifndef NDEBUG
386 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
387 bool AnyNotSched = false;
388 unsigned DeadNodes = 0;
389 for (const SUnit &SUnit : SUnits) {
390 if (!SUnit.isScheduled) {
391 if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) {
392 ++DeadNodes;
393 continue;
395 if (!AnyNotSched)
396 dbgs() << "*** Scheduling failed! ***\n";
397 dumpNode(SUnit);
398 dbgs() << "has not been scheduled!\n";
399 AnyNotSched = true;
401 if (SUnit.isScheduled &&
402 (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) >
403 unsigned(std::numeric_limits<int>::max())) {
404 if (!AnyNotSched)
405 dbgs() << "*** Scheduling failed! ***\n";
406 dumpNode(SUnit);
407 dbgs() << "has an unexpected "
408 << (isBottomUp ? "Height" : "Depth") << " value!\n";
409 AnyNotSched = true;
411 if (isBottomUp) {
412 if (SUnit.NumSuccsLeft != 0) {
413 if (!AnyNotSched)
414 dbgs() << "*** Scheduling failed! ***\n";
415 dumpNode(SUnit);
416 dbgs() << "has successors left!\n";
417 AnyNotSched = true;
419 } else {
420 if (SUnit.NumPredsLeft != 0) {
421 if (!AnyNotSched)
422 dbgs() << "*** Scheduling failed! ***\n";
423 dumpNode(SUnit);
424 dbgs() << "has predecessors left!\n";
425 AnyNotSched = true;
429 assert(!AnyNotSched);
430 return SUnits.size() - DeadNodes;
432 #endif
434 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
435 // The idea of the algorithm is taken from
436 // "Online algorithms for managing the topological order of
437 // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
438 // This is the MNR algorithm, which was first introduced by
439 // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
440 // "Maintaining a topological order under edge insertions".
442 // Short description of the algorithm:
444 // Topological ordering, ord, of a DAG maps each node to a topological
445 // index so that for all edges X->Y it is the case that ord(X) < ord(Y).
447 // This means that if there is a path from the node X to the node Z,
448 // then ord(X) < ord(Z).
450 // This property can be used to check for reachability of nodes:
451 // if Z is reachable from X, then an insertion of the edge Z->X would
452 // create a cycle.
454 // The algorithm first computes a topological ordering for the DAG by
455 // initializing the Index2Node and Node2Index arrays and then tries to keep
456 // the ordering up-to-date after edge insertions by reordering the DAG.
458 // On insertion of the edge X->Y, the algorithm first marks by calling DFS
459 // the nodes reachable from Y, and then shifts them using Shift to lie
460 // immediately after X in Index2Node.
461 unsigned DAGSize = SUnits.size();
462 std::vector<SUnit*> WorkList;
463 WorkList.reserve(DAGSize);
465 Index2Node.resize(DAGSize);
466 Node2Index.resize(DAGSize);
468 // Initialize the data structures.
469 if (ExitSU)
470 WorkList.push_back(ExitSU);
471 for (SUnit &SU : SUnits) {
472 int NodeNum = SU.NodeNum;
473 unsigned Degree = SU.Succs.size();
474 // Temporarily use the Node2Index array as scratch space for degree counts.
475 Node2Index[NodeNum] = Degree;
477 // Is it a node without dependencies?
478 if (Degree == 0) {
479 assert(SU.Succs.empty() && "SUnit should have no successors");
480 // Collect leaf nodes.
481 WorkList.push_back(&SU);
485 int Id = DAGSize;
486 while (!WorkList.empty()) {
487 SUnit *SU = WorkList.back();
488 WorkList.pop_back();
489 if (SU->NodeNum < DAGSize)
490 Allocate(SU->NodeNum, --Id);
491 for (const SDep &PredDep : SU->Preds) {
492 SUnit *SU = PredDep.getSUnit();
493 if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
494 // If all dependencies of the node are processed already,
495 // then the node can be computed now.
496 WorkList.push_back(SU);
500 Visited.resize(DAGSize);
502 #ifndef NDEBUG
503 // Check correctness of the ordering
504 for (SUnit &SU : SUnits) {
505 for (const SDep &PD : SU.Preds) {
506 assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] &&
507 "Wrong topological sorting");
510 #endif
513 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
514 int UpperBound, LowerBound;
515 LowerBound = Node2Index[Y->NodeNum];
516 UpperBound = Node2Index[X->NodeNum];
517 bool HasLoop = false;
518 // Is Ord(X) < Ord(Y) ?
519 if (LowerBound < UpperBound) {
520 // Update the topological order.
521 Visited.reset();
522 DFS(Y, UpperBound, HasLoop);
523 assert(!HasLoop && "Inserted edge creates a loop!");
524 // Recompute topological indexes.
525 Shift(Visited, LowerBound, UpperBound);
529 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
530 // InitDAGTopologicalSorting();
533 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
534 bool &HasLoop) {
535 std::vector<const SUnit*> WorkList;
536 WorkList.reserve(SUnits.size());
538 WorkList.push_back(SU);
539 do {
540 SU = WorkList.back();
541 WorkList.pop_back();
542 Visited.set(SU->NodeNum);
543 for (const SDep &SuccDep
544 : make_range(SU->Succs.rbegin(), SU->Succs.rend())) {
545 unsigned s = SuccDep.getSUnit()->NodeNum;
546 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
547 if (s >= Node2Index.size())
548 continue;
549 if (Node2Index[s] == UpperBound) {
550 HasLoop = true;
551 return;
553 // Visit successors if not already and in affected region.
554 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
555 WorkList.push_back(SuccDep.getSUnit());
558 } while (!WorkList.empty());
561 std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU,
562 const SUnit &TargetSU,
563 bool &Success) {
564 std::vector<const SUnit*> WorkList;
565 int LowerBound = Node2Index[StartSU.NodeNum];
566 int UpperBound = Node2Index[TargetSU.NodeNum];
567 bool Found = false;
568 BitVector VisitedBack;
569 std::vector<int> Nodes;
571 if (LowerBound > UpperBound) {
572 Success = false;
573 return Nodes;
576 WorkList.reserve(SUnits.size());
577 Visited.reset();
579 // Starting from StartSU, visit all successors up
580 // to UpperBound.
581 WorkList.push_back(&StartSU);
582 do {
583 const SUnit *SU = WorkList.back();
584 WorkList.pop_back();
585 for (int I = SU->Succs.size()-1; I >= 0; --I) {
586 const SUnit *Succ = SU->Succs[I].getSUnit();
587 unsigned s = Succ->NodeNum;
588 // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
589 if (Succ->isBoundaryNode())
590 continue;
591 if (Node2Index[s] == UpperBound) {
592 Found = true;
593 continue;
595 // Visit successors if not already and in affected region.
596 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
597 Visited.set(s);
598 WorkList.push_back(Succ);
601 } while (!WorkList.empty());
603 if (!Found) {
604 Success = false;
605 return Nodes;
608 WorkList.clear();
609 VisitedBack.resize(SUnits.size());
610 Found = false;
612 // Starting from TargetSU, visit all predecessors up
613 // to LowerBound. SUs that are visited by the two
614 // passes are added to Nodes.
615 WorkList.push_back(&TargetSU);
616 do {
617 const SUnit *SU = WorkList.back();
618 WorkList.pop_back();
619 for (int I = SU->Preds.size()-1; I >= 0; --I) {
620 const SUnit *Pred = SU->Preds[I].getSUnit();
621 unsigned s = Pred->NodeNum;
622 // Edges to non-SUnits are allowed but ignored (e.g. EntrySU).
623 if (Pred->isBoundaryNode())
624 continue;
625 if (Node2Index[s] == LowerBound) {
626 Found = true;
627 continue;
629 if (!VisitedBack.test(s) && Visited.test(s)) {
630 VisitedBack.set(s);
631 WorkList.push_back(Pred);
632 Nodes.push_back(s);
635 } while (!WorkList.empty());
637 assert(Found && "Error in SUnit Graph!");
638 Success = true;
639 return Nodes;
642 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
643 int UpperBound) {
644 std::vector<int> L;
645 int shift = 0;
646 int i;
648 for (i = LowerBound; i <= UpperBound; ++i) {
649 // w is node at topological index i.
650 int w = Index2Node[i];
651 if (Visited.test(w)) {
652 // Unmark.
653 Visited.reset(w);
654 L.push_back(w);
655 shift = shift + 1;
656 } else {
657 Allocate(w, i - shift);
661 for (unsigned LI : L) {
662 Allocate(LI, i - shift);
663 i = i + 1;
667 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
668 // Is SU reachable from TargetSU via successor edges?
669 if (IsReachable(SU, TargetSU))
670 return true;
671 for (const SDep &PredDep : TargetSU->Preds)
672 if (PredDep.isAssignedRegDep() &&
673 IsReachable(SU, PredDep.getSUnit()))
674 return true;
675 return false;
678 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
679 const SUnit *TargetSU) {
680 // If insertion of the edge SU->TargetSU would create a cycle
681 // then there is a path from TargetSU to SU.
682 int UpperBound, LowerBound;
683 LowerBound = Node2Index[TargetSU->NodeNum];
684 UpperBound = Node2Index[SU->NodeNum];
685 bool HasLoop = false;
686 // Is Ord(TargetSU) < Ord(SU) ?
687 if (LowerBound < UpperBound) {
688 Visited.reset();
689 // There may be a path from TargetSU to SU. Check for it.
690 DFS(TargetSU, UpperBound, HasLoop);
692 return HasLoop;
695 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
696 Node2Index[n] = index;
697 Index2Node[index] = n;
700 ScheduleDAGTopologicalSort::
701 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
702 : SUnits(sunits), ExitSU(exitsu) {}
704 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default;