[PowerPC] Remove self-copies in pre-emit peephole
[llvm-core.git] / lib / CodeGen / SelectionDAG / ScheduleDAGFast.cpp
blob4b06cfcc7f674ba4a645e31333e231f8da800fc9
1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a fast scheduler.
12 //===----------------------------------------------------------------------===//
14 #include "InstrEmitter.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/SchedulerRegistry.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace llvm;
31 #define DEBUG_TYPE "pre-RA-sched"
33 STATISTIC(NumUnfolds, "Number of nodes unfolded");
34 STATISTIC(NumDups, "Number of duplicated nodes");
35 STATISTIC(NumPRCopies, "Number of physical copies");
37 static RegisterScheduler
38 fastDAGScheduler("fast", "Fast suboptimal list scheduling",
39 createFastDAGScheduler);
40 static RegisterScheduler
41 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
42 createDAGLinearizer);
45 namespace {
46 /// FastPriorityQueue - A degenerate priority queue that considers
47 /// all nodes to have the same priority.
48 ///
49 struct FastPriorityQueue {
50 SmallVector<SUnit *, 16> Queue;
52 bool empty() const { return Queue.empty(); }
54 void push(SUnit *U) {
55 Queue.push_back(U);
58 SUnit *pop() {
59 if (empty()) return nullptr;
60 SUnit *V = Queue.back();
61 Queue.pop_back();
62 return V;
66 //===----------------------------------------------------------------------===//
67 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
68 ///
69 class ScheduleDAGFast : public ScheduleDAGSDNodes {
70 private:
71 /// AvailableQueue - The priority queue to use for the available SUnits.
72 FastPriorityQueue AvailableQueue;
74 /// LiveRegDefs - A set of physical registers and their definition
75 /// that are "live". These nodes must be scheduled before any other nodes that
76 /// modifies the registers can be scheduled.
77 unsigned NumLiveRegs;
78 std::vector<SUnit*> LiveRegDefs;
79 std::vector<unsigned> LiveRegCycles;
81 public:
82 ScheduleDAGFast(MachineFunction &mf)
83 : ScheduleDAGSDNodes(mf) {}
85 void Schedule() override;
87 /// AddPred - adds a predecessor edge to SUnit SU.
88 /// This returns true if this is a new predecessor.
89 void AddPred(SUnit *SU, const SDep &D) {
90 SU->addPred(D);
93 /// RemovePred - removes a predecessor edge from SUnit SU.
94 /// This returns true if an edge was removed.
95 void RemovePred(SUnit *SU, const SDep &D) {
96 SU->removePred(D);
99 private:
100 void ReleasePred(SUnit *SU, SDep *PredEdge);
101 void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
102 void ScheduleNodeBottomUp(SUnit*, unsigned);
103 SUnit *CopyAndMoveSuccessors(SUnit*);
104 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
105 const TargetRegisterClass*,
106 const TargetRegisterClass*,
107 SmallVectorImpl<SUnit*>&);
108 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
109 void ListScheduleBottomUp();
111 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
112 bool forceUnitLatencies() const override { return true; }
114 } // end anonymous namespace
117 /// Schedule - Schedule the DAG using list scheduling.
118 void ScheduleDAGFast::Schedule() {
119 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
121 NumLiveRegs = 0;
122 LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
123 LiveRegCycles.resize(TRI->getNumRegs(), 0);
125 // Build the scheduling graph.
126 BuildSchedGraph(nullptr);
128 LLVM_DEBUG(dump());
130 // Execute the actual scheduling loop.
131 ListScheduleBottomUp();
134 //===----------------------------------------------------------------------===//
135 // Bottom-Up Scheduling
136 //===----------------------------------------------------------------------===//
138 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
139 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
140 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
141 SUnit *PredSU = PredEdge->getSUnit();
143 #ifndef NDEBUG
144 if (PredSU->NumSuccsLeft == 0) {
145 dbgs() << "*** Scheduling failed! ***\n";
146 dumpNode(*PredSU);
147 dbgs() << " has been released too many times!\n";
148 llvm_unreachable(nullptr);
150 #endif
151 --PredSU->NumSuccsLeft;
153 // If all the node's successors are scheduled, this node is ready
154 // to be scheduled. Ignore the special EntrySU node.
155 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
156 PredSU->isAvailable = true;
157 AvailableQueue.push(PredSU);
161 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
162 // Bottom up: release predecessors
163 for (SDep &Pred : SU->Preds) {
164 ReleasePred(SU, &Pred);
165 if (Pred.isAssignedRegDep()) {
166 // This is a physical register dependency and it's impossible or
167 // expensive to copy the register. Make sure nothing that can
168 // clobber the register is scheduled between the predecessor and
169 // this node.
170 if (!LiveRegDefs[Pred.getReg()]) {
171 ++NumLiveRegs;
172 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
173 LiveRegCycles[Pred.getReg()] = CurCycle;
179 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
180 /// count of its predecessors. If a predecessor pending count is zero, add it to
181 /// the Available queue.
182 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
183 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
184 LLVM_DEBUG(dumpNode(*SU));
186 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
187 SU->setHeightToAtLeast(CurCycle);
188 Sequence.push_back(SU);
190 ReleasePredecessors(SU, CurCycle);
192 // Release all the implicit physical register defs that are live.
193 for (SDep &Succ : SU->Succs) {
194 if (Succ.isAssignedRegDep()) {
195 if (LiveRegCycles[Succ.getReg()] == Succ.getSUnit()->getHeight()) {
196 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
197 assert(LiveRegDefs[Succ.getReg()] == SU &&
198 "Physical register dependency violated?");
199 --NumLiveRegs;
200 LiveRegDefs[Succ.getReg()] = nullptr;
201 LiveRegCycles[Succ.getReg()] = 0;
206 SU->isScheduled = true;
209 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
210 /// successors to the newly created node.
211 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
212 if (SU->getNode()->getGluedNode())
213 return nullptr;
215 SDNode *N = SU->getNode();
216 if (!N)
217 return nullptr;
219 SUnit *NewSU;
220 bool TryUnfold = false;
221 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
222 MVT VT = N->getSimpleValueType(i);
223 if (VT == MVT::Glue)
224 return nullptr;
225 else if (VT == MVT::Other)
226 TryUnfold = true;
228 for (const SDValue &Op : N->op_values()) {
229 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
230 if (VT == MVT::Glue)
231 return nullptr;
234 if (TryUnfold) {
235 SmallVector<SDNode*, 2> NewNodes;
236 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
237 return nullptr;
239 LLVM_DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
240 assert(NewNodes.size() == 2 && "Expected a load folding node!");
242 N = NewNodes[1];
243 SDNode *LoadNode = NewNodes[0];
244 unsigned NumVals = N->getNumValues();
245 unsigned OldNumVals = SU->getNode()->getNumValues();
246 for (unsigned i = 0; i != NumVals; ++i)
247 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
248 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
249 SDValue(LoadNode, 1));
251 SUnit *NewSU = newSUnit(N);
252 assert(N->getNodeId() == -1 && "Node already inserted!");
253 N->setNodeId(NewSU->NodeNum);
255 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
256 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
257 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
258 NewSU->isTwoAddress = true;
259 break;
262 if (MCID.isCommutable())
263 NewSU->isCommutable = true;
265 // LoadNode may already exist. This can happen when there is another
266 // load from the same location and producing the same type of value
267 // but it has different alignment or volatileness.
268 bool isNewLoad = true;
269 SUnit *LoadSU;
270 if (LoadNode->getNodeId() != -1) {
271 LoadSU = &SUnits[LoadNode->getNodeId()];
272 isNewLoad = false;
273 } else {
274 LoadSU = newSUnit(LoadNode);
275 LoadNode->setNodeId(LoadSU->NodeNum);
278 SDep ChainPred;
279 SmallVector<SDep, 4> ChainSuccs;
280 SmallVector<SDep, 4> LoadPreds;
281 SmallVector<SDep, 4> NodePreds;
282 SmallVector<SDep, 4> NodeSuccs;
283 for (SDep &Pred : SU->Preds) {
284 if (Pred.isCtrl())
285 ChainPred = Pred;
286 else if (Pred.getSUnit()->getNode() &&
287 Pred.getSUnit()->getNode()->isOperandOf(LoadNode))
288 LoadPreds.push_back(Pred);
289 else
290 NodePreds.push_back(Pred);
292 for (SDep &Succ : SU->Succs) {
293 if (Succ.isCtrl())
294 ChainSuccs.push_back(Succ);
295 else
296 NodeSuccs.push_back(Succ);
299 if (ChainPred.getSUnit()) {
300 RemovePred(SU, ChainPred);
301 if (isNewLoad)
302 AddPred(LoadSU, ChainPred);
304 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
305 const SDep &Pred = LoadPreds[i];
306 RemovePred(SU, Pred);
307 if (isNewLoad) {
308 AddPred(LoadSU, Pred);
311 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
312 const SDep &Pred = NodePreds[i];
313 RemovePred(SU, Pred);
314 AddPred(NewSU, Pred);
316 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
317 SDep D = NodeSuccs[i];
318 SUnit *SuccDep = D.getSUnit();
319 D.setSUnit(SU);
320 RemovePred(SuccDep, D);
321 D.setSUnit(NewSU);
322 AddPred(SuccDep, D);
324 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
325 SDep D = ChainSuccs[i];
326 SUnit *SuccDep = D.getSUnit();
327 D.setSUnit(SU);
328 RemovePred(SuccDep, D);
329 if (isNewLoad) {
330 D.setSUnit(LoadSU);
331 AddPred(SuccDep, D);
334 if (isNewLoad) {
335 SDep D(LoadSU, SDep::Barrier);
336 D.setLatency(LoadSU->Latency);
337 AddPred(NewSU, D);
340 ++NumUnfolds;
342 if (NewSU->NumSuccsLeft == 0) {
343 NewSU->isAvailable = true;
344 return NewSU;
346 SU = NewSU;
349 LLVM_DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
350 NewSU = Clone(SU);
352 // New SUnit has the exact same predecessors.
353 for (SDep &Pred : SU->Preds)
354 if (!Pred.isArtificial())
355 AddPred(NewSU, Pred);
357 // Only copy scheduled successors. Cut them from old node's successor
358 // list and move them over.
359 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
360 for (SDep &Succ : SU->Succs) {
361 if (Succ.isArtificial())
362 continue;
363 SUnit *SuccSU = Succ.getSUnit();
364 if (SuccSU->isScheduled) {
365 SDep D = Succ;
366 D.setSUnit(NewSU);
367 AddPred(SuccSU, D);
368 D.setSUnit(SU);
369 DelDeps.push_back(std::make_pair(SuccSU, D));
372 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
373 RemovePred(DelDeps[i].first, DelDeps[i].second);
375 ++NumDups;
376 return NewSU;
379 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
380 /// scheduled successors of the given SUnit to the last copy.
381 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
382 const TargetRegisterClass *DestRC,
383 const TargetRegisterClass *SrcRC,
384 SmallVectorImpl<SUnit*> &Copies) {
385 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
386 CopyFromSU->CopySrcRC = SrcRC;
387 CopyFromSU->CopyDstRC = DestRC;
389 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
390 CopyToSU->CopySrcRC = DestRC;
391 CopyToSU->CopyDstRC = SrcRC;
393 // Only copy scheduled successors. Cut them from old node's successor
394 // list and move them over.
395 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
396 for (SDep &Succ : SU->Succs) {
397 if (Succ.isArtificial())
398 continue;
399 SUnit *SuccSU = Succ.getSUnit();
400 if (SuccSU->isScheduled) {
401 SDep D = Succ;
402 D.setSUnit(CopyToSU);
403 AddPred(SuccSU, D);
404 DelDeps.push_back(std::make_pair(SuccSU, Succ));
407 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
408 RemovePred(DelDeps[i].first, DelDeps[i].second);
410 SDep FromDep(SU, SDep::Data, Reg);
411 FromDep.setLatency(SU->Latency);
412 AddPred(CopyFromSU, FromDep);
413 SDep ToDep(CopyFromSU, SDep::Data, 0);
414 ToDep.setLatency(CopyFromSU->Latency);
415 AddPred(CopyToSU, ToDep);
417 Copies.push_back(CopyFromSU);
418 Copies.push_back(CopyToSU);
420 ++NumPRCopies;
423 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
424 /// definition of the specified node.
425 /// FIXME: Move to SelectionDAG?
426 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
427 const TargetInstrInfo *TII) {
428 unsigned NumRes;
429 if (N->getOpcode() == ISD::CopyFromReg) {
430 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
431 NumRes = 1;
432 } else {
433 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
434 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
435 NumRes = MCID.getNumDefs();
436 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
437 if (Reg == *ImpDef)
438 break;
439 ++NumRes;
442 return N->getSimpleValueType(NumRes);
445 /// CheckForLiveRegDef - Return true and update live register vector if the
446 /// specified register def of the specified SUnit clobbers any "live" registers.
447 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
448 std::vector<SUnit*> &LiveRegDefs,
449 SmallSet<unsigned, 4> &RegAdded,
450 SmallVectorImpl<unsigned> &LRegs,
451 const TargetRegisterInfo *TRI) {
452 bool Added = false;
453 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
454 if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
455 if (RegAdded.insert(*AI).second) {
456 LRegs.push_back(*AI);
457 Added = true;
461 return Added;
464 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
465 /// scheduling of the given node to satisfy live physical register dependencies.
466 /// If the specific node is the last one that's available to schedule, do
467 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
468 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
469 SmallVectorImpl<unsigned> &LRegs){
470 if (NumLiveRegs == 0)
471 return false;
473 SmallSet<unsigned, 4> RegAdded;
474 // If this node would clobber any "live" register, then it's not ready.
475 for (SDep &Pred : SU->Preds) {
476 if (Pred.isAssignedRegDep()) {
477 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs,
478 RegAdded, LRegs, TRI);
482 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
483 if (Node->getOpcode() == ISD::INLINEASM) {
484 // Inline asm can clobber physical defs.
485 unsigned NumOps = Node->getNumOperands();
486 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
487 --NumOps; // Ignore the glue operand.
489 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
490 unsigned Flags =
491 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
492 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
494 ++i; // Skip the ID value.
495 if (InlineAsm::isRegDefKind(Flags) ||
496 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
497 InlineAsm::isClobberKind(Flags)) {
498 // Check for def of register or earlyclobber register.
499 for (; NumVals; --NumVals, ++i) {
500 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
501 if (TargetRegisterInfo::isPhysicalRegister(Reg))
502 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
504 } else
505 i += NumVals;
507 continue;
509 if (!Node->isMachineOpcode())
510 continue;
511 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
512 if (!MCID.ImplicitDefs)
513 continue;
514 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
515 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
518 return !LRegs.empty();
522 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
523 /// schedulers.
524 void ScheduleDAGFast::ListScheduleBottomUp() {
525 unsigned CurCycle = 0;
527 // Release any predecessors of the special Exit node.
528 ReleasePredecessors(&ExitSU, CurCycle);
530 // Add root to Available queue.
531 if (!SUnits.empty()) {
532 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
533 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
534 RootSU->isAvailable = true;
535 AvailableQueue.push(RootSU);
538 // While Available queue is not empty, grab the node with the highest
539 // priority. If it is not ready put it back. Schedule the node.
540 SmallVector<SUnit*, 4> NotReady;
541 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
542 Sequence.reserve(SUnits.size());
543 while (!AvailableQueue.empty()) {
544 bool Delayed = false;
545 LRegsMap.clear();
546 SUnit *CurSU = AvailableQueue.pop();
547 while (CurSU) {
548 SmallVector<unsigned, 4> LRegs;
549 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
550 break;
551 Delayed = true;
552 LRegsMap.insert(std::make_pair(CurSU, LRegs));
554 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
555 NotReady.push_back(CurSU);
556 CurSU = AvailableQueue.pop();
559 // All candidates are delayed due to live physical reg dependencies.
560 // Try code duplication or inserting cross class copies
561 // to resolve it.
562 if (Delayed && !CurSU) {
563 if (!CurSU) {
564 // Try duplicating the nodes that produces these
565 // "expensive to copy" values to break the dependency. In case even
566 // that doesn't work, insert cross class copies.
567 SUnit *TrySU = NotReady[0];
568 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
569 assert(LRegs.size() == 1 && "Can't handle this yet!");
570 unsigned Reg = LRegs[0];
571 SUnit *LRDef = LiveRegDefs[Reg];
572 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
573 const TargetRegisterClass *RC =
574 TRI->getMinimalPhysRegClass(Reg, VT);
575 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
577 // If cross copy register class is the same as RC, then it must be
578 // possible copy the value directly. Do not try duplicate the def.
579 // If cross copy register class is not the same as RC, then it's
580 // possible to copy the value but it require cross register class copies
581 // and it is expensive.
582 // If cross copy register class is null, then it's not possible to copy
583 // the value at all.
584 SUnit *NewDef = nullptr;
585 if (DestRC != RC) {
586 NewDef = CopyAndMoveSuccessors(LRDef);
587 if (!DestRC && !NewDef)
588 report_fatal_error("Can't handle live physical "
589 "register dependency!");
591 if (!NewDef) {
592 // Issue copies, these can be expensive cross register class copies.
593 SmallVector<SUnit*, 2> Copies;
594 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
595 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
596 << " to SU #" << Copies.front()->NodeNum << "\n");
597 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
598 NewDef = Copies.back();
601 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
602 << " to SU #" << TrySU->NodeNum << "\n");
603 LiveRegDefs[Reg] = NewDef;
604 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
605 TrySU->isAvailable = false;
606 CurSU = NewDef;
609 if (!CurSU) {
610 llvm_unreachable("Unable to resolve live physical register dependencies!");
614 // Add the nodes that aren't ready back onto the available list.
615 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
616 NotReady[i]->isPending = false;
617 // May no longer be available due to backtracking.
618 if (NotReady[i]->isAvailable)
619 AvailableQueue.push(NotReady[i]);
621 NotReady.clear();
623 if (CurSU)
624 ScheduleNodeBottomUp(CurSU, CurCycle);
625 ++CurCycle;
628 // Reverse the order since it is bottom up.
629 std::reverse(Sequence.begin(), Sequence.end());
631 #ifndef NDEBUG
632 VerifyScheduledSequence(/*isBottomUp=*/true);
633 #endif
637 namespace {
638 //===----------------------------------------------------------------------===//
639 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
640 // DAG in topological order.
641 // IMPORTANT: this may not work for targets with phyreg dependency.
643 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
644 public:
645 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
647 void Schedule() override;
649 MachineBasicBlock *
650 EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
652 private:
653 std::vector<SDNode*> Sequence;
654 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user
656 void ScheduleNode(SDNode *N);
658 } // end anonymous namespace
660 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
661 if (N->getNodeId() != 0)
662 llvm_unreachable(nullptr);
664 if (!N->isMachineOpcode() &&
665 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
666 // These nodes do not need to be translated into MIs.
667 return;
669 LLVM_DEBUG(dbgs() << "\n*** Scheduling: ");
670 LLVM_DEBUG(N->dump(DAG));
671 Sequence.push_back(N);
673 unsigned NumOps = N->getNumOperands();
674 if (unsigned NumLeft = NumOps) {
675 SDNode *GluedOpN = nullptr;
676 do {
677 const SDValue &Op = N->getOperand(NumLeft-1);
678 SDNode *OpN = Op.getNode();
680 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
681 // Schedule glue operand right above N.
682 GluedOpN = OpN;
683 assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
684 OpN->setNodeId(0);
685 ScheduleNode(OpN);
686 continue;
689 if (OpN == GluedOpN)
690 // Glue operand is already scheduled.
691 continue;
693 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
694 if (DI != GluedMap.end() && DI->second != N)
695 // Users of glues are counted against the glued users.
696 OpN = DI->second;
698 unsigned Degree = OpN->getNodeId();
699 assert(Degree > 0 && "Predecessor over-released!");
700 OpN->setNodeId(--Degree);
701 if (Degree == 0)
702 ScheduleNode(OpN);
703 } while (--NumLeft);
707 /// findGluedUser - Find the representative use of a glue value by walking
708 /// the use chain.
709 static SDNode *findGluedUser(SDNode *N) {
710 while (SDNode *Glued = N->getGluedUser())
711 N = Glued;
712 return N;
715 void ScheduleDAGLinearize::Schedule() {
716 LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n");
718 SmallVector<SDNode*, 8> Glues;
719 unsigned DAGSize = 0;
720 for (SDNode &Node : DAG->allnodes()) {
721 SDNode *N = &Node;
723 // Use node id to record degree.
724 unsigned Degree = N->use_size();
725 N->setNodeId(Degree);
726 unsigned NumVals = N->getNumValues();
727 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
728 N->hasAnyUseOfValue(NumVals-1)) {
729 SDNode *User = findGluedUser(N);
730 if (User) {
731 Glues.push_back(N);
732 GluedMap.insert(std::make_pair(N, User));
736 if (N->isMachineOpcode() ||
737 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
738 ++DAGSize;
741 for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
742 SDNode *Glue = Glues[i];
743 SDNode *GUser = GluedMap[Glue];
744 unsigned Degree = Glue->getNodeId();
745 unsigned UDegree = GUser->getNodeId();
747 // Glue user must be scheduled together with the glue operand. So other
748 // users of the glue operand must be treated as its users.
749 SDNode *ImmGUser = Glue->getGluedUser();
750 for (const SDNode *U : Glue->uses())
751 if (U == ImmGUser)
752 --Degree;
753 GUser->setNodeId(UDegree + Degree);
754 Glue->setNodeId(1);
757 Sequence.reserve(DAGSize);
758 ScheduleNode(DAG->getRoot().getNode());
761 MachineBasicBlock*
762 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
763 InstrEmitter Emitter(BB, InsertPos);
764 DenseMap<SDValue, unsigned> VRBaseMap;
766 LLVM_DEBUG({ dbgs() << "\n*** Final schedule ***\n"; });
768 unsigned NumNodes = Sequence.size();
769 MachineBasicBlock *BB = Emitter.getBlock();
770 for (unsigned i = 0; i != NumNodes; ++i) {
771 SDNode *N = Sequence[NumNodes-i-1];
772 LLVM_DEBUG(N->dump(DAG));
773 Emitter.EmitNode(N, false, false, VRBaseMap);
775 // Emit any debug values associated with the node.
776 if (N->getHasDebugValue()) {
777 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
778 for (auto DV : DAG->GetDbgValues(N)) {
779 if (DV->isInvalidated())
780 continue;
781 if (auto *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap))
782 BB->insert(InsertPos, DbgMI);
783 DV->setIsInvalidated();
788 LLVM_DEBUG(dbgs() << '\n');
790 InsertPos = Emitter.getInsertPos();
791 return Emitter.getBlock();
794 //===----------------------------------------------------------------------===//
795 // Public Constructor Functions
796 //===----------------------------------------------------------------------===//
798 llvm::ScheduleDAGSDNodes *
799 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
800 return new ScheduleDAGFast(*IS->MF);
803 llvm::ScheduleDAGSDNodes *
804 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
805 return new ScheduleDAGLinearize(*IS->MF);