[PowerPC] Remove self-copies in pre-emit peephole
[llvm-core.git] / lib / CodeGen / SelectionDAG / ScheduleDAGRRList.cpp
blob8d75b8133a30263638f5c1fa40e4ddda5267b1f1
1 //===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements bottom-up and top-down register pressure reduction list
11 // schedulers, using standard algorithms. The basic approach uses a priority
12 // queue of available nodes to schedule. One at a time, nodes are taken from
13 // the priority queue (thus in priority order), checked for legality to
14 // schedule, and emitted if legal.
16 //===----------------------------------------------------------------------===//
18 #include "ScheduleDAGSDNodes.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/ScheduleDAG.h"
30 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
31 #include "llvm/CodeGen/SchedulerRegistry.h"
32 #include "llvm/CodeGen/SelectionDAGISel.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetOpcodes.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/MC/MCInstrDesc.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MachineValueType.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstdint>
54 #include <cstdlib>
55 #include <iterator>
56 #include <limits>
57 #include <memory>
58 #include <utility>
59 #include <vector>
61 using namespace llvm;
63 #define DEBUG_TYPE "pre-RA-sched"
65 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
66 STATISTIC(NumUnfolds, "Number of nodes unfolded");
67 STATISTIC(NumDups, "Number of duplicated nodes");
68 STATISTIC(NumPRCopies, "Number of physical register copies");
70 static RegisterScheduler
71 burrListDAGScheduler("list-burr",
72 "Bottom-up register reduction list scheduling",
73 createBURRListDAGScheduler);
75 static RegisterScheduler
76 sourceListDAGScheduler("source",
77 "Similar to list-burr but schedules in source "
78 "order when possible",
79 createSourceListDAGScheduler);
81 static RegisterScheduler
82 hybridListDAGScheduler("list-hybrid",
83 "Bottom-up register pressure aware list scheduling "
84 "which tries to balance latency and register pressure",
85 createHybridListDAGScheduler);
87 static RegisterScheduler
88 ILPListDAGScheduler("list-ilp",
89 "Bottom-up register pressure aware list scheduling "
90 "which tries to balance ILP and register pressure",
91 createILPListDAGScheduler);
93 static cl::opt<bool> DisableSchedCycles(
94 "disable-sched-cycles", cl::Hidden, cl::init(false),
95 cl::desc("Disable cycle-level precision during preRA scheduling"));
97 // Temporary sched=list-ilp flags until the heuristics are robust.
98 // Some options are also available under sched=list-hybrid.
99 static cl::opt<bool> DisableSchedRegPressure(
100 "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
101 cl::desc("Disable regpressure priority in sched=list-ilp"));
102 static cl::opt<bool> DisableSchedLiveUses(
103 "disable-sched-live-uses", cl::Hidden, cl::init(true),
104 cl::desc("Disable live use priority in sched=list-ilp"));
105 static cl::opt<bool> DisableSchedVRegCycle(
106 "disable-sched-vrcycle", cl::Hidden, cl::init(false),
107 cl::desc("Disable virtual register cycle interference checks"));
108 static cl::opt<bool> DisableSchedPhysRegJoin(
109 "disable-sched-physreg-join", cl::Hidden, cl::init(false),
110 cl::desc("Disable physreg def-use affinity"));
111 static cl::opt<bool> DisableSchedStalls(
112 "disable-sched-stalls", cl::Hidden, cl::init(true),
113 cl::desc("Disable no-stall priority in sched=list-ilp"));
114 static cl::opt<bool> DisableSchedCriticalPath(
115 "disable-sched-critical-path", cl::Hidden, cl::init(false),
116 cl::desc("Disable critical path priority in sched=list-ilp"));
117 static cl::opt<bool> DisableSchedHeight(
118 "disable-sched-height", cl::Hidden, cl::init(false),
119 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
120 static cl::opt<bool> Disable2AddrHack(
121 "disable-2addr-hack", cl::Hidden, cl::init(true),
122 cl::desc("Disable scheduler's two-address hack"));
124 static cl::opt<int> MaxReorderWindow(
125 "max-sched-reorder", cl::Hidden, cl::init(6),
126 cl::desc("Number of instructions to allow ahead of the critical path "
127 "in sched=list-ilp"));
129 static cl::opt<unsigned> AvgIPC(
130 "sched-avg-ipc", cl::Hidden, cl::init(1),
131 cl::desc("Average inst/cycle whan no target itinerary exists."));
133 namespace {
135 //===----------------------------------------------------------------------===//
136 /// ScheduleDAGRRList - The actual register reduction list scheduler
137 /// implementation. This supports both top-down and bottom-up scheduling.
139 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
140 private:
141 /// NeedLatency - True if the scheduler will make use of latency information.
142 bool NeedLatency;
144 /// AvailableQueue - The priority queue to use for the available SUnits.
145 SchedulingPriorityQueue *AvailableQueue;
147 /// PendingQueue - This contains all of the instructions whose operands have
148 /// been issued, but their results are not ready yet (due to the latency of
149 /// the operation). Once the operands becomes available, the instruction is
150 /// added to the AvailableQueue.
151 std::vector<SUnit *> PendingQueue;
153 /// HazardRec - The hazard recognizer to use.
154 ScheduleHazardRecognizer *HazardRec;
156 /// CurCycle - The current scheduler state corresponds to this cycle.
157 unsigned CurCycle = 0;
159 /// MinAvailableCycle - Cycle of the soonest available instruction.
160 unsigned MinAvailableCycle;
162 /// IssueCount - Count instructions issued in this cycle
163 /// Currently valid only for bottom-up scheduling.
164 unsigned IssueCount;
166 /// LiveRegDefs - A set of physical registers and their definition
167 /// that are "live". These nodes must be scheduled before any other nodes that
168 /// modifies the registers can be scheduled.
169 unsigned NumLiveRegs;
170 std::unique_ptr<SUnit*[]> LiveRegDefs;
171 std::unique_ptr<SUnit*[]> LiveRegGens;
173 // Collect interferences between physical register use/defs.
174 // Each interference is an SUnit and set of physical registers.
175 SmallVector<SUnit*, 4> Interferences;
177 using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>;
179 LRegsMapT LRegsMap;
181 /// Topo - A topological ordering for SUnits which permits fast IsReachable
182 /// and similar queries.
183 ScheduleDAGTopologicalSort Topo;
185 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
186 // DAG crawling.
187 DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
189 public:
190 ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
191 SchedulingPriorityQueue *availqueue,
192 CodeGenOpt::Level OptLevel)
193 : ScheduleDAGSDNodes(mf),
194 NeedLatency(needlatency), AvailableQueue(availqueue),
195 Topo(SUnits, nullptr) {
196 const TargetSubtargetInfo &STI = mf.getSubtarget();
197 if (DisableSchedCycles || !NeedLatency)
198 HazardRec = new ScheduleHazardRecognizer();
199 else
200 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
203 ~ScheduleDAGRRList() override {
204 delete HazardRec;
205 delete AvailableQueue;
208 void Schedule() override;
210 ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
212 /// IsReachable - Checks if SU is reachable from TargetSU.
213 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
214 return Topo.IsReachable(SU, TargetSU);
217 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
218 /// create a cycle.
219 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
220 return Topo.WillCreateCycle(SU, TargetSU);
223 /// AddPred - adds a predecessor edge to SUnit SU.
224 /// This returns true if this is a new predecessor.
225 /// Updates the topological ordering if required.
226 void AddPred(SUnit *SU, const SDep &D) {
227 Topo.AddPred(SU, D.getSUnit());
228 SU->addPred(D);
231 /// RemovePred - removes a predecessor edge from SUnit SU.
232 /// This returns true if an edge was removed.
233 /// Updates the topological ordering if required.
234 void RemovePred(SUnit *SU, const SDep &D) {
235 Topo.RemovePred(SU, D.getSUnit());
236 SU->removePred(D);
239 private:
240 bool isReady(SUnit *SU) {
241 return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
242 AvailableQueue->isReady(SU);
245 void ReleasePred(SUnit *SU, const SDep *PredEdge);
246 void ReleasePredecessors(SUnit *SU);
247 void ReleasePending();
248 void AdvanceToCycle(unsigned NextCycle);
249 void AdvancePastStalls(SUnit *SU);
250 void EmitNode(SUnit *SU);
251 void ScheduleNodeBottomUp(SUnit*);
252 void CapturePred(SDep *PredEdge);
253 void UnscheduleNodeBottomUp(SUnit*);
254 void RestoreHazardCheckerBottomUp();
255 void BacktrackBottomUp(SUnit*, SUnit*);
256 SUnit *TryUnfoldSU(SUnit *);
257 SUnit *CopyAndMoveSuccessors(SUnit*);
258 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
259 const TargetRegisterClass*,
260 const TargetRegisterClass*,
261 SmallVectorImpl<SUnit*>&);
262 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
264 void releaseInterferences(unsigned Reg = 0);
266 SUnit *PickNodeToScheduleBottomUp();
267 void ListScheduleBottomUp();
269 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
270 /// Updates the topological ordering if required.
271 SUnit *CreateNewSUnit(SDNode *N) {
272 unsigned NumSUnits = SUnits.size();
273 SUnit *NewNode = newSUnit(N);
274 // Update the topological ordering.
275 if (NewNode->NodeNum >= NumSUnits)
276 Topo.InitDAGTopologicalSorting();
277 return NewNode;
280 /// CreateClone - Creates a new SUnit from an existing one.
281 /// Updates the topological ordering if required.
282 SUnit *CreateClone(SUnit *N) {
283 unsigned NumSUnits = SUnits.size();
284 SUnit *NewNode = Clone(N);
285 // Update the topological ordering.
286 if (NewNode->NodeNum >= NumSUnits)
287 Topo.InitDAGTopologicalSorting();
288 return NewNode;
291 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
292 /// need actual latency information but the hybrid scheduler does.
293 bool forceUnitLatencies() const override {
294 return !NeedLatency;
298 } // end anonymous namespace
300 /// GetCostForDef - Looks up the register class and cost for a given definition.
301 /// Typically this just means looking up the representative register class,
302 /// but for untyped values (MVT::Untyped) it means inspecting the node's
303 /// opcode to determine what register class is being generated.
304 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
305 const TargetLowering *TLI,
306 const TargetInstrInfo *TII,
307 const TargetRegisterInfo *TRI,
308 unsigned &RegClass, unsigned &Cost,
309 const MachineFunction &MF) {
310 MVT VT = RegDefPos.GetValue();
312 // Special handling for untyped values. These values can only come from
313 // the expansion of custom DAG-to-DAG patterns.
314 if (VT == MVT::Untyped) {
315 const SDNode *Node = RegDefPos.GetNode();
317 // Special handling for CopyFromReg of untyped values.
318 if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
319 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
320 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
321 RegClass = RC->getID();
322 Cost = 1;
323 return;
326 unsigned Opcode = Node->getMachineOpcode();
327 if (Opcode == TargetOpcode::REG_SEQUENCE) {
328 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
329 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
330 RegClass = RC->getID();
331 Cost = 1;
332 return;
335 unsigned Idx = RegDefPos.GetIdx();
336 const MCInstrDesc Desc = TII->get(Opcode);
337 const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
338 RegClass = RC->getID();
339 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
340 // better way to determine it.
341 Cost = 1;
342 } else {
343 RegClass = TLI->getRepRegClassFor(VT)->getID();
344 Cost = TLI->getRepRegClassCostFor(VT);
348 /// Schedule - Schedule the DAG using list scheduling.
349 void ScheduleDAGRRList::Schedule() {
350 LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)
351 << " '" << BB->getName() << "' **********\n");
353 CurCycle = 0;
354 IssueCount = 0;
355 MinAvailableCycle =
356 DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max();
357 NumLiveRegs = 0;
358 // Allocate slots for each physical register, plus one for a special register
359 // to track the virtual resource of a calling sequence.
360 LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
361 LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
362 CallSeqEndForStart.clear();
363 assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
365 // Build the scheduling graph.
366 BuildSchedGraph(nullptr);
368 LLVM_DEBUG(dump());
369 Topo.InitDAGTopologicalSorting();
371 AvailableQueue->initNodes(SUnits);
373 HazardRec->Reset();
375 // Execute the actual scheduling loop.
376 ListScheduleBottomUp();
378 AvailableQueue->releaseState();
380 LLVM_DEBUG({
381 dbgs() << "*** Final schedule ***\n";
382 dumpSchedule();
383 dbgs() << '\n';
387 //===----------------------------------------------------------------------===//
388 // Bottom-Up Scheduling
389 //===----------------------------------------------------------------------===//
391 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
392 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
393 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
394 SUnit *PredSU = PredEdge->getSUnit();
396 #ifndef NDEBUG
397 if (PredSU->NumSuccsLeft == 0) {
398 dbgs() << "*** Scheduling failed! ***\n";
399 dumpNode(*PredSU);
400 dbgs() << " has been released too many times!\n";
401 llvm_unreachable(nullptr);
403 #endif
404 --PredSU->NumSuccsLeft;
406 if (!forceUnitLatencies()) {
407 // Updating predecessor's height. This is now the cycle when the
408 // predecessor can be scheduled without causing a pipeline stall.
409 PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
412 // If all the node's successors are scheduled, this node is ready
413 // to be scheduled. Ignore the special EntrySU node.
414 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
415 PredSU->isAvailable = true;
417 unsigned Height = PredSU->getHeight();
418 if (Height < MinAvailableCycle)
419 MinAvailableCycle = Height;
421 if (isReady(PredSU)) {
422 AvailableQueue->push(PredSU);
424 // CapturePred and others may have left the node in the pending queue, avoid
425 // adding it twice.
426 else if (!PredSU->isPending) {
427 PredSU->isPending = true;
428 PendingQueue.push_back(PredSU);
433 /// IsChainDependent - Test if Outer is reachable from Inner through
434 /// chain dependencies.
435 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
436 unsigned NestLevel,
437 const TargetInstrInfo *TII) {
438 SDNode *N = Outer;
439 while (true) {
440 if (N == Inner)
441 return true;
442 // For a TokenFactor, examine each operand. There may be multiple ways
443 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
444 // most nesting in order to ensure that we find the corresponding match.
445 if (N->getOpcode() == ISD::TokenFactor) {
446 for (const SDValue &Op : N->op_values())
447 if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
448 return true;
449 return false;
451 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
452 if (N->isMachineOpcode()) {
453 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
454 ++NestLevel;
455 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
456 if (NestLevel == 0)
457 return false;
458 --NestLevel;
461 // Otherwise, find the chain and continue climbing.
462 for (const SDValue &Op : N->op_values())
463 if (Op.getValueType() == MVT::Other) {
464 N = Op.getNode();
465 goto found_chain_operand;
467 return false;
468 found_chain_operand:;
469 if (N->getOpcode() == ISD::EntryToken)
470 return false;
474 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
475 /// the corresponding (lowered) CALLSEQ_BEGIN node.
477 /// NestLevel and MaxNested are used in recursion to indcate the current level
478 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
479 /// level seen so far.
481 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
482 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
483 static SDNode *
484 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
485 const TargetInstrInfo *TII) {
486 while (true) {
487 // For a TokenFactor, examine each operand. There may be multiple ways
488 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
489 // most nesting in order to ensure that we find the corresponding match.
490 if (N->getOpcode() == ISD::TokenFactor) {
491 SDNode *Best = nullptr;
492 unsigned BestMaxNest = MaxNest;
493 for (const SDValue &Op : N->op_values()) {
494 unsigned MyNestLevel = NestLevel;
495 unsigned MyMaxNest = MaxNest;
496 if (SDNode *New = FindCallSeqStart(Op.getNode(),
497 MyNestLevel, MyMaxNest, TII))
498 if (!Best || (MyMaxNest > BestMaxNest)) {
499 Best = New;
500 BestMaxNest = MyMaxNest;
503 assert(Best);
504 MaxNest = BestMaxNest;
505 return Best;
507 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
508 if (N->isMachineOpcode()) {
509 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
510 ++NestLevel;
511 MaxNest = std::max(MaxNest, NestLevel);
512 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
513 assert(NestLevel != 0);
514 --NestLevel;
515 if (NestLevel == 0)
516 return N;
519 // Otherwise, find the chain and continue climbing.
520 for (const SDValue &Op : N->op_values())
521 if (Op.getValueType() == MVT::Other) {
522 N = Op.getNode();
523 goto found_chain_operand;
525 return nullptr;
526 found_chain_operand:;
527 if (N->getOpcode() == ISD::EntryToken)
528 return nullptr;
532 /// Call ReleasePred for each predecessor, then update register live def/gen.
533 /// Always update LiveRegDefs for a register dependence even if the current SU
534 /// also defines the register. This effectively create one large live range
535 /// across a sequence of two-address node. This is important because the
536 /// entire chain must be scheduled together. Example:
538 /// flags = (3) add
539 /// flags = (2) addc flags
540 /// flags = (1) addc flags
542 /// results in
544 /// LiveRegDefs[flags] = 3
545 /// LiveRegGens[flags] = 1
547 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
548 /// interference on flags.
549 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
550 // Bottom up: release predecessors
551 for (SDep &Pred : SU->Preds) {
552 ReleasePred(SU, &Pred);
553 if (Pred.isAssignedRegDep()) {
554 // This is a physical register dependency and it's impossible or
555 // expensive to copy the register. Make sure nothing that can
556 // clobber the register is scheduled between the predecessor and
557 // this node.
558 SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef;
559 assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) &&
560 "interference on register dependence");
561 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
562 if (!LiveRegGens[Pred.getReg()]) {
563 ++NumLiveRegs;
564 LiveRegGens[Pred.getReg()] = SU;
569 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
570 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
571 // these nodes, to prevent other calls from being interscheduled with them.
572 unsigned CallResource = TRI->getNumRegs();
573 if (!LiveRegDefs[CallResource])
574 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
575 if (Node->isMachineOpcode() &&
576 Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
577 unsigned NestLevel = 0;
578 unsigned MaxNest = 0;
579 SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
580 assert(N && "Must find call sequence start");
582 SUnit *Def = &SUnits[N->getNodeId()];
583 CallSeqEndForStart[Def] = SU;
585 ++NumLiveRegs;
586 LiveRegDefs[CallResource] = Def;
587 LiveRegGens[CallResource] = SU;
588 break;
592 /// Check to see if any of the pending instructions are ready to issue. If
593 /// so, add them to the available queue.
594 void ScheduleDAGRRList::ReleasePending() {
595 if (DisableSchedCycles) {
596 assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
597 return;
600 // If the available queue is empty, it is safe to reset MinAvailableCycle.
601 if (AvailableQueue->empty())
602 MinAvailableCycle = std::numeric_limits<unsigned>::max();
604 // Check to see if any of the pending instructions are ready to issue. If
605 // so, add them to the available queue.
606 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
607 unsigned ReadyCycle = PendingQueue[i]->getHeight();
608 if (ReadyCycle < MinAvailableCycle)
609 MinAvailableCycle = ReadyCycle;
611 if (PendingQueue[i]->isAvailable) {
612 if (!isReady(PendingQueue[i]))
613 continue;
614 AvailableQueue->push(PendingQueue[i]);
616 PendingQueue[i]->isPending = false;
617 PendingQueue[i] = PendingQueue.back();
618 PendingQueue.pop_back();
619 --i; --e;
623 /// Move the scheduler state forward by the specified number of Cycles.
624 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
625 if (NextCycle <= CurCycle)
626 return;
628 IssueCount = 0;
629 AvailableQueue->setCurCycle(NextCycle);
630 if (!HazardRec->isEnabled()) {
631 // Bypass lots of virtual calls in case of long latency.
632 CurCycle = NextCycle;
634 else {
635 for (; CurCycle != NextCycle; ++CurCycle) {
636 HazardRec->RecedeCycle();
639 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
640 // available Q to release pending nodes at least once before popping.
641 ReleasePending();
644 /// Move the scheduler state forward until the specified node's dependents are
645 /// ready and can be scheduled with no resource conflicts.
646 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
647 if (DisableSchedCycles)
648 return;
650 // FIXME: Nodes such as CopyFromReg probably should not advance the current
651 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
652 // has predecessors the cycle will be advanced when they are scheduled.
653 // But given the crude nature of modeling latency though such nodes, we
654 // currently need to treat these nodes like real instructions.
655 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
657 unsigned ReadyCycle = SU->getHeight();
659 // Bump CurCycle to account for latency. We assume the latency of other
660 // available instructions may be hidden by the stall (not a full pipe stall).
661 // This updates the hazard recognizer's cycle before reserving resources for
662 // this instruction.
663 AdvanceToCycle(ReadyCycle);
665 // Calls are scheduled in their preceding cycle, so don't conflict with
666 // hazards from instructions after the call. EmitNode will reset the
667 // scoreboard state before emitting the call.
668 if (SU->isCall)
669 return;
671 // FIXME: For resource conflicts in very long non-pipelined stages, we
672 // should probably skip ahead here to avoid useless scoreboard checks.
673 int Stalls = 0;
674 while (true) {
675 ScheduleHazardRecognizer::HazardType HT =
676 HazardRec->getHazardType(SU, -Stalls);
678 if (HT == ScheduleHazardRecognizer::NoHazard)
679 break;
681 ++Stalls;
683 AdvanceToCycle(CurCycle + Stalls);
686 /// Record this SUnit in the HazardRecognizer.
687 /// Does not update CurCycle.
688 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
689 if (!HazardRec->isEnabled())
690 return;
692 // Check for phys reg copy.
693 if (!SU->getNode())
694 return;
696 switch (SU->getNode()->getOpcode()) {
697 default:
698 assert(SU->getNode()->isMachineOpcode() &&
699 "This target-independent node should not be scheduled.");
700 break;
701 case ISD::MERGE_VALUES:
702 case ISD::TokenFactor:
703 case ISD::LIFETIME_START:
704 case ISD::LIFETIME_END:
705 case ISD::CopyToReg:
706 case ISD::CopyFromReg:
707 case ISD::EH_LABEL:
708 // Noops don't affect the scoreboard state. Copies are likely to be
709 // removed.
710 return;
711 case ISD::INLINEASM:
712 // For inline asm, clear the pipeline state.
713 HazardRec->Reset();
714 return;
716 if (SU->isCall) {
717 // Calls are scheduled with their preceding instructions. For bottom-up
718 // scheduling, clear the pipeline state before emitting.
719 HazardRec->Reset();
722 HazardRec->EmitInstruction(SU);
725 static void resetVRegCycle(SUnit *SU);
727 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
728 /// count of its predecessors. If a predecessor pending count is zero, add it to
729 /// the Available queue.
730 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
731 LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
732 LLVM_DEBUG(dumpNode(*SU));
734 #ifndef NDEBUG
735 if (CurCycle < SU->getHeight())
736 LLVM_DEBUG(dbgs() << " Height [" << SU->getHeight()
737 << "] pipeline stall!\n");
738 #endif
740 // FIXME: Do not modify node height. It may interfere with
741 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
742 // node its ready cycle can aid heuristics, and after scheduling it can
743 // indicate the scheduled cycle.
744 SU->setHeightToAtLeast(CurCycle);
746 // Reserve resources for the scheduled instruction.
747 EmitNode(SU);
749 Sequence.push_back(SU);
751 AvailableQueue->scheduledNode(SU);
753 // If HazardRec is disabled, and each inst counts as one cycle, then
754 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
755 // PendingQueue for schedulers that implement HasReadyFilter.
756 if (!HazardRec->isEnabled() && AvgIPC < 2)
757 AdvanceToCycle(CurCycle + 1);
759 // Update liveness of predecessors before successors to avoid treating a
760 // two-address node as a live range def.
761 ReleasePredecessors(SU);
763 // Release all the implicit physical register defs that are live.
764 for (SDep &Succ : SU->Succs) {
765 // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
766 if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) {
767 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
768 --NumLiveRegs;
769 LiveRegDefs[Succ.getReg()] = nullptr;
770 LiveRegGens[Succ.getReg()] = nullptr;
771 releaseInterferences(Succ.getReg());
774 // Release the special call resource dependence, if this is the beginning
775 // of a call.
776 unsigned CallResource = TRI->getNumRegs();
777 if (LiveRegDefs[CallResource] == SU)
778 for (const SDNode *SUNode = SU->getNode(); SUNode;
779 SUNode = SUNode->getGluedNode()) {
780 if (SUNode->isMachineOpcode() &&
781 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
782 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
783 --NumLiveRegs;
784 LiveRegDefs[CallResource] = nullptr;
785 LiveRegGens[CallResource] = nullptr;
786 releaseInterferences(CallResource);
790 resetVRegCycle(SU);
792 SU->isScheduled = true;
794 // Conditions under which the scheduler should eagerly advance the cycle:
795 // (1) No available instructions
796 // (2) All pipelines full, so available instructions must have hazards.
798 // If HazardRec is disabled, the cycle was pre-advanced before calling
799 // ReleasePredecessors. In that case, IssueCount should remain 0.
801 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
802 if (HazardRec->isEnabled() || AvgIPC > 1) {
803 if (SU->getNode() && SU->getNode()->isMachineOpcode())
804 ++IssueCount;
805 if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
806 || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
807 AdvanceToCycle(CurCycle + 1);
811 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
812 /// unscheduled, increase the succ left count of its predecessors. Remove
813 /// them from AvailableQueue if necessary.
814 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
815 SUnit *PredSU = PredEdge->getSUnit();
816 if (PredSU->isAvailable) {
817 PredSU->isAvailable = false;
818 if (!PredSU->isPending)
819 AvailableQueue->remove(PredSU);
822 assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
823 "NumSuccsLeft will overflow!");
824 ++PredSU->NumSuccsLeft;
827 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
828 /// its predecessor states to reflect the change.
829 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
830 LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
831 LLVM_DEBUG(dumpNode(*SU));
833 for (SDep &Pred : SU->Preds) {
834 CapturePred(&Pred);
835 if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){
836 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
837 assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() &&
838 "Physical register dependency violated?");
839 --NumLiveRegs;
840 LiveRegDefs[Pred.getReg()] = nullptr;
841 LiveRegGens[Pred.getReg()] = nullptr;
842 releaseInterferences(Pred.getReg());
846 // Reclaim the special call resource dependence, if this is the beginning
847 // of a call.
848 unsigned CallResource = TRI->getNumRegs();
849 for (const SDNode *SUNode = SU->getNode(); SUNode;
850 SUNode = SUNode->getGluedNode()) {
851 if (SUNode->isMachineOpcode() &&
852 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
853 SUnit *SeqEnd = CallSeqEndForStart[SU];
854 assert(SeqEnd && "Call sequence start/end must be known");
855 assert(!LiveRegDefs[CallResource]);
856 assert(!LiveRegGens[CallResource]);
857 ++NumLiveRegs;
858 LiveRegDefs[CallResource] = SU;
859 LiveRegGens[CallResource] = SeqEnd;
863 // Release the special call resource dependence, if this is the end
864 // of a call.
865 if (LiveRegGens[CallResource] == SU)
866 for (const SDNode *SUNode = SU->getNode(); SUNode;
867 SUNode = SUNode->getGluedNode()) {
868 if (SUNode->isMachineOpcode() &&
869 SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
870 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
871 assert(LiveRegDefs[CallResource]);
872 assert(LiveRegGens[CallResource]);
873 --NumLiveRegs;
874 LiveRegDefs[CallResource] = nullptr;
875 LiveRegGens[CallResource] = nullptr;
876 releaseInterferences(CallResource);
880 for (auto &Succ : SU->Succs) {
881 if (Succ.isAssignedRegDep()) {
882 auto Reg = Succ.getReg();
883 if (!LiveRegDefs[Reg])
884 ++NumLiveRegs;
885 // This becomes the nearest def. Note that an earlier def may still be
886 // pending if this is a two-address node.
887 LiveRegDefs[Reg] = SU;
889 // Update LiveRegGen only if was empty before this unscheduling.
890 // This is to avoid incorrect updating LiveRegGen set in previous run.
891 if (!LiveRegGens[Reg]) {
892 // Find the successor with the lowest height.
893 LiveRegGens[Reg] = Succ.getSUnit();
894 for (auto &Succ2 : SU->Succs) {
895 if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
896 Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
897 LiveRegGens[Reg] = Succ2.getSUnit();
902 if (SU->getHeight() < MinAvailableCycle)
903 MinAvailableCycle = SU->getHeight();
905 SU->setHeightDirty();
906 SU->isScheduled = false;
907 SU->isAvailable = true;
908 if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
909 // Don't make available until backtracking is complete.
910 SU->isPending = true;
911 PendingQueue.push_back(SU);
913 else {
914 AvailableQueue->push(SU);
916 AvailableQueue->unscheduledNode(SU);
919 /// After backtracking, the hazard checker needs to be restored to a state
920 /// corresponding the current cycle.
921 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
922 HazardRec->Reset();
924 unsigned LookAhead = std::min((unsigned)Sequence.size(),
925 HazardRec->getMaxLookAhead());
926 if (LookAhead == 0)
927 return;
929 std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead);
930 unsigned HazardCycle = (*I)->getHeight();
931 for (auto E = Sequence.end(); I != E; ++I) {
932 SUnit *SU = *I;
933 for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
934 HazardRec->RecedeCycle();
936 EmitNode(SU);
940 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
941 /// BTCycle in order to schedule a specific node.
942 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
943 SUnit *OldSU = Sequence.back();
944 while (true) {
945 Sequence.pop_back();
946 // FIXME: use ready cycle instead of height
947 CurCycle = OldSU->getHeight();
948 UnscheduleNodeBottomUp(OldSU);
949 AvailableQueue->setCurCycle(CurCycle);
950 if (OldSU == BtSU)
951 break;
952 OldSU = Sequence.back();
955 assert(!SU->isSucc(OldSU) && "Something is wrong!");
957 RestoreHazardCheckerBottomUp();
959 ReleasePending();
961 ++NumBacktracks;
964 static bool isOperandOf(const SUnit *SU, SDNode *N) {
965 for (const SDNode *SUNode = SU->getNode(); SUNode;
966 SUNode = SUNode->getGluedNode()) {
967 if (SUNode->isOperandOf(N))
968 return true;
970 return false;
973 /// TryUnfold - Attempt to unfold
974 SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) {
975 SDNode *N = SU->getNode();
976 // Use while over if to ease fall through.
977 SmallVector<SDNode *, 2> NewNodes;
978 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
979 return nullptr;
981 // unfolding an x86 DEC64m operation results in store, dec, load which
982 // can't be handled here so quit
983 if (NewNodes.size() == 3)
984 return nullptr;
986 assert(NewNodes.size() == 2 && "Expected a load folding node!");
988 N = NewNodes[1];
989 SDNode *LoadNode = NewNodes[0];
990 unsigned NumVals = N->getNumValues();
991 unsigned OldNumVals = SU->getNode()->getNumValues();
993 // LoadNode may already exist. This can happen when there is another
994 // load from the same location and producing the same type of value
995 // but it has different alignment or volatileness.
996 bool isNewLoad = true;
997 SUnit *LoadSU;
998 if (LoadNode->getNodeId() != -1) {
999 LoadSU = &SUnits[LoadNode->getNodeId()];
1000 // If LoadSU has already been scheduled, we should clone it but
1001 // this would negate the benefit to unfolding so just return SU.
1002 if (LoadSU->isScheduled)
1003 return SU;
1004 isNewLoad = false;
1005 } else {
1006 LoadSU = CreateNewSUnit(LoadNode);
1007 LoadNode->setNodeId(LoadSU->NodeNum);
1009 InitNumRegDefsLeft(LoadSU);
1010 computeLatency(LoadSU);
1013 bool isNewN = true;
1014 SUnit *NewSU;
1015 // This can only happen when isNewLoad is false.
1016 if (N->getNodeId() != -1) {
1017 NewSU = &SUnits[N->getNodeId()];
1018 // If NewSU has already been scheduled, we need to clone it, but this
1019 // negates the benefit to unfolding so just return SU.
1020 if (NewSU->isScheduled)
1021 return SU;
1022 isNewN = false;
1023 } else {
1024 NewSU = CreateNewSUnit(N);
1025 N->setNodeId(NewSU->NodeNum);
1027 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1028 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1029 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1030 NewSU->isTwoAddress = true;
1031 break;
1034 if (MCID.isCommutable())
1035 NewSU->isCommutable = true;
1037 InitNumRegDefsLeft(NewSU);
1038 computeLatency(NewSU);
1041 LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
1043 // Now that we are committed to unfolding replace DAG Uses.
1044 for (unsigned i = 0; i != NumVals; ++i)
1045 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
1046 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals - 1),
1047 SDValue(LoadNode, 1));
1049 // Record all the edges to and from the old SU, by category.
1050 SmallVector<SDep, 4> ChainPreds;
1051 SmallVector<SDep, 4> ChainSuccs;
1052 SmallVector<SDep, 4> LoadPreds;
1053 SmallVector<SDep, 4> NodePreds;
1054 SmallVector<SDep, 4> NodeSuccs;
1055 for (SDep &Pred : SU->Preds) {
1056 if (Pred.isCtrl())
1057 ChainPreds.push_back(Pred);
1058 else if (isOperandOf(Pred.getSUnit(), LoadNode))
1059 LoadPreds.push_back(Pred);
1060 else
1061 NodePreds.push_back(Pred);
1063 for (SDep &Succ : SU->Succs) {
1064 if (Succ.isCtrl())
1065 ChainSuccs.push_back(Succ);
1066 else
1067 NodeSuccs.push_back(Succ);
1070 // Now assign edges to the newly-created nodes.
1071 for (const SDep &Pred : ChainPreds) {
1072 RemovePred(SU, Pred);
1073 if (isNewLoad)
1074 AddPred(LoadSU, Pred);
1076 for (const SDep &Pred : LoadPreds) {
1077 RemovePred(SU, Pred);
1078 if (isNewLoad)
1079 AddPred(LoadSU, Pred);
1081 for (const SDep &Pred : NodePreds) {
1082 RemovePred(SU, Pred);
1083 AddPred(NewSU, Pred);
1085 for (SDep D : NodeSuccs) {
1086 SUnit *SuccDep = D.getSUnit();
1087 D.setSUnit(SU);
1088 RemovePred(SuccDep, D);
1089 D.setSUnit(NewSU);
1090 AddPred(SuccDep, D);
1091 // Balance register pressure.
1092 if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled &&
1093 !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1094 --NewSU->NumRegDefsLeft;
1096 for (SDep D : ChainSuccs) {
1097 SUnit *SuccDep = D.getSUnit();
1098 D.setSUnit(SU);
1099 RemovePred(SuccDep, D);
1100 if (isNewLoad) {
1101 D.setSUnit(LoadSU);
1102 AddPred(SuccDep, D);
1106 // Add a data dependency to reflect that NewSU reads the value defined
1107 // by LoadSU.
1108 SDep D(LoadSU, SDep::Data, 0);
1109 D.setLatency(LoadSU->Latency);
1110 AddPred(NewSU, D);
1112 if (isNewLoad)
1113 AvailableQueue->addNode(LoadSU);
1114 if (isNewN)
1115 AvailableQueue->addNode(NewSU);
1117 ++NumUnfolds;
1119 if (NewSU->NumSuccsLeft == 0)
1120 NewSU->isAvailable = true;
1122 return NewSU;
1125 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
1126 /// successors to the newly created node.
1127 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
1128 SDNode *N = SU->getNode();
1129 if (!N)
1130 return nullptr;
1132 LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n");
1133 LLVM_DEBUG(dumpNode(*SU));
1135 if (N->getGluedNode() &&
1136 !TII->canCopyGluedNodeDuringSchedule(N)) {
1137 LLVM_DEBUG(
1138 dbgs()
1139 << "Giving up because it has incoming glue and the target does not "
1140 "want to copy it\n");
1141 return nullptr;
1144 SUnit *NewSU;
1145 bool TryUnfold = false;
1146 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1147 MVT VT = N->getSimpleValueType(i);
1148 if (VT == MVT::Glue) {
1149 LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n");
1150 return nullptr;
1151 } else if (VT == MVT::Other)
1152 TryUnfold = true;
1154 for (const SDValue &Op : N->op_values()) {
1155 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
1156 if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) {
1157 LLVM_DEBUG(
1158 dbgs() << "Giving up because it one of the operands is glue and "
1159 "the target does not want to copy it\n");
1160 return nullptr;
1164 // If possible unfold instruction.
1165 if (TryUnfold) {
1166 SUnit *UnfoldSU = TryUnfoldSU(SU);
1167 if (!UnfoldSU)
1168 return nullptr;
1169 SU = UnfoldSU;
1170 N = SU->getNode();
1171 // If this can be scheduled don't bother duplicating and just return
1172 if (SU->NumSuccsLeft == 0)
1173 return SU;
1176 LLVM_DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n");
1177 NewSU = CreateClone(SU);
1179 // New SUnit has the exact same predecessors.
1180 for (SDep &Pred : SU->Preds)
1181 if (!Pred.isArtificial())
1182 AddPred(NewSU, Pred);
1184 // Only copy scheduled successors. Cut them from old node's successor
1185 // list and move them over.
1186 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1187 for (SDep &Succ : SU->Succs) {
1188 if (Succ.isArtificial())
1189 continue;
1190 SUnit *SuccSU = Succ.getSUnit();
1191 if (SuccSU->isScheduled) {
1192 SDep D = Succ;
1193 D.setSUnit(NewSU);
1194 AddPred(SuccSU, D);
1195 D.setSUnit(SU);
1196 DelDeps.push_back(std::make_pair(SuccSU, D));
1199 for (auto &DelDep : DelDeps)
1200 RemovePred(DelDep.first, DelDep.second);
1202 AvailableQueue->updateNode(SU);
1203 AvailableQueue->addNode(NewSU);
1205 ++NumDups;
1206 return NewSU;
1209 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1210 /// scheduled successors of the given SUnit to the last copy.
1211 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1212 const TargetRegisterClass *DestRC,
1213 const TargetRegisterClass *SrcRC,
1214 SmallVectorImpl<SUnit*> &Copies) {
1215 SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1216 CopyFromSU->CopySrcRC = SrcRC;
1217 CopyFromSU->CopyDstRC = DestRC;
1219 SUnit *CopyToSU = CreateNewSUnit(nullptr);
1220 CopyToSU->CopySrcRC = DestRC;
1221 CopyToSU->CopyDstRC = SrcRC;
1223 // Only copy scheduled successors. Cut them from old node's successor
1224 // list and move them over.
1225 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1226 for (SDep &Succ : SU->Succs) {
1227 if (Succ.isArtificial())
1228 continue;
1229 SUnit *SuccSU = Succ.getSUnit();
1230 if (SuccSU->isScheduled) {
1231 SDep D = Succ;
1232 D.setSUnit(CopyToSU);
1233 AddPred(SuccSU, D);
1234 DelDeps.push_back(std::make_pair(SuccSU, Succ));
1236 else {
1237 // Avoid scheduling the def-side copy before other successors. Otherwise
1238 // we could introduce another physreg interference on the copy and
1239 // continue inserting copies indefinitely.
1240 AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1243 for (auto &DelDep : DelDeps)
1244 RemovePred(DelDep.first, DelDep.second);
1246 SDep FromDep(SU, SDep::Data, Reg);
1247 FromDep.setLatency(SU->Latency);
1248 AddPred(CopyFromSU, FromDep);
1249 SDep ToDep(CopyFromSU, SDep::Data, 0);
1250 ToDep.setLatency(CopyFromSU->Latency);
1251 AddPred(CopyToSU, ToDep);
1253 AvailableQueue->updateNode(SU);
1254 AvailableQueue->addNode(CopyFromSU);
1255 AvailableQueue->addNode(CopyToSU);
1256 Copies.push_back(CopyFromSU);
1257 Copies.push_back(CopyToSU);
1259 ++NumPRCopies;
1262 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1263 /// definition of the specified node.
1264 /// FIXME: Move to SelectionDAG?
1265 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1266 const TargetInstrInfo *TII) {
1267 unsigned NumRes;
1268 if (N->getOpcode() == ISD::CopyFromReg) {
1269 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1270 NumRes = 1;
1271 } else {
1272 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1273 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1274 NumRes = MCID.getNumDefs();
1275 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1276 if (Reg == *ImpDef)
1277 break;
1278 ++NumRes;
1281 return N->getSimpleValueType(NumRes);
1284 /// CheckForLiveRegDef - Return true and update live register vector if the
1285 /// specified register def of the specified SUnit clobbers any "live" registers.
1286 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1287 SUnit **LiveRegDefs,
1288 SmallSet<unsigned, 4> &RegAdded,
1289 SmallVectorImpl<unsigned> &LRegs,
1290 const TargetRegisterInfo *TRI) {
1291 for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1293 // Check if Ref is live.
1294 if (!LiveRegDefs[*AliasI]) continue;
1296 // Allow multiple uses of the same def.
1297 if (LiveRegDefs[*AliasI] == SU) continue;
1299 // Add Reg to the set of interfering live regs.
1300 if (RegAdded.insert(*AliasI).second) {
1301 LRegs.push_back(*AliasI);
1306 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1307 /// by RegMask, and add them to LRegs.
1308 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1309 ArrayRef<SUnit*> LiveRegDefs,
1310 SmallSet<unsigned, 4> &RegAdded,
1311 SmallVectorImpl<unsigned> &LRegs) {
1312 // Look at all live registers. Skip Reg0 and the special CallResource.
1313 for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1314 if (!LiveRegDefs[i]) continue;
1315 if (LiveRegDefs[i] == SU) continue;
1316 if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1317 if (RegAdded.insert(i).second)
1318 LRegs.push_back(i);
1322 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1323 static const uint32_t *getNodeRegMask(const SDNode *N) {
1324 for (const SDValue &Op : N->op_values())
1325 if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
1326 return RegOp->getRegMask();
1327 return nullptr;
1330 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1331 /// scheduling of the given node to satisfy live physical register dependencies.
1332 /// If the specific node is the last one that's available to schedule, do
1333 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1334 bool ScheduleDAGRRList::
1335 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1336 if (NumLiveRegs == 0)
1337 return false;
1339 SmallSet<unsigned, 4> RegAdded;
1340 // If this node would clobber any "live" register, then it's not ready.
1342 // If SU is the currently live definition of the same register that it uses,
1343 // then we are free to schedule it.
1344 for (SDep &Pred : SU->Preds) {
1345 if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU)
1346 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs.get(),
1347 RegAdded, LRegs, TRI);
1350 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1351 if (Node->getOpcode() == ISD::INLINEASM) {
1352 // Inline asm can clobber physical defs.
1353 unsigned NumOps = Node->getNumOperands();
1354 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1355 --NumOps; // Ignore the glue operand.
1357 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1358 unsigned Flags =
1359 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1360 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1362 ++i; // Skip the ID value.
1363 if (InlineAsm::isRegDefKind(Flags) ||
1364 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1365 InlineAsm::isClobberKind(Flags)) {
1366 // Check for def of register or earlyclobber register.
1367 for (; NumVals; --NumVals, ++i) {
1368 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1369 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1370 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1372 } else
1373 i += NumVals;
1375 continue;
1378 if (!Node->isMachineOpcode())
1379 continue;
1380 // If we're in the middle of scheduling a call, don't begin scheduling
1381 // another call. Also, don't allow any physical registers to be live across
1382 // the call.
1383 if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
1384 // Check the special calling-sequence resource.
1385 unsigned CallResource = TRI->getNumRegs();
1386 if (LiveRegDefs[CallResource]) {
1387 SDNode *Gen = LiveRegGens[CallResource]->getNode();
1388 while (SDNode *Glued = Gen->getGluedNode())
1389 Gen = Glued;
1390 if (!IsChainDependent(Gen, Node, 0, TII) &&
1391 RegAdded.insert(CallResource).second)
1392 LRegs.push_back(CallResource);
1395 if (const uint32_t *RegMask = getNodeRegMask(Node))
1396 CheckForLiveRegDefMasked(SU, RegMask,
1397 makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
1398 RegAdded, LRegs);
1400 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1401 if (MCID.hasOptionalDef()) {
1402 // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
1403 // This operand can be either a def of CPSR, if the S bit is set; or a use
1404 // of %noreg. When the OptionalDef is set to a valid register, we need to
1405 // handle it in the same way as an ImplicitDef.
1406 for (unsigned i = 0; i < MCID.getNumDefs(); ++i)
1407 if (MCID.OpInfo[i].isOptionalDef()) {
1408 const SDValue &OptionalDef = Node->getOperand(i - Node->getNumValues());
1409 unsigned Reg = cast<RegisterSDNode>(OptionalDef)->getReg();
1410 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1413 if (!MCID.ImplicitDefs)
1414 continue;
1415 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1416 CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1419 return !LRegs.empty();
1422 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1423 // Add the nodes that aren't ready back onto the available list.
1424 for (unsigned i = Interferences.size(); i > 0; --i) {
1425 SUnit *SU = Interferences[i-1];
1426 LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1427 if (Reg) {
1428 SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1429 if (!is_contained(LRegs, Reg))
1430 continue;
1432 SU->isPending = false;
1433 // The interfering node may no longer be available due to backtracking.
1434 // Furthermore, it may have been made available again, in which case it is
1435 // now already in the AvailableQueue.
1436 if (SU->isAvailable && !SU->NodeQueueId) {
1437 LLVM_DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n');
1438 AvailableQueue->push(SU);
1440 if (i < Interferences.size())
1441 Interferences[i-1] = Interferences.back();
1442 Interferences.pop_back();
1443 LRegsMap.erase(LRegsPos);
1447 /// Return a node that can be scheduled in this cycle. Requirements:
1448 /// (1) Ready: latency has been satisfied
1449 /// (2) No Hazards: resources are available
1450 /// (3) No Interferences: may unschedule to break register interferences.
1451 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1452 SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1453 auto FindAvailableNode = [&]() {
1454 while (CurSU) {
1455 SmallVector<unsigned, 4> LRegs;
1456 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1457 break;
1458 LLVM_DEBUG(dbgs() << " Interfering reg ";
1459 if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource";
1460 else dbgs() << printReg(LRegs[0], TRI);
1461 dbgs() << " SU #" << CurSU->NodeNum << '\n');
1462 std::pair<LRegsMapT::iterator, bool> LRegsPair =
1463 LRegsMap.insert(std::make_pair(CurSU, LRegs));
1464 if (LRegsPair.second) {
1465 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
1466 Interferences.push_back(CurSU);
1468 else {
1469 assert(CurSU->isPending && "Interferences are pending");
1470 // Update the interference with current live regs.
1471 LRegsPair.first->second = LRegs;
1473 CurSU = AvailableQueue->pop();
1476 FindAvailableNode();
1477 if (CurSU)
1478 return CurSU;
1480 // All candidates are delayed due to live physical reg dependencies.
1481 // Try backtracking, code duplication, or inserting cross class copies
1482 // to resolve it.
1483 for (SUnit *TrySU : Interferences) {
1484 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1486 // Try unscheduling up to the point where it's safe to schedule
1487 // this node.
1488 SUnit *BtSU = nullptr;
1489 unsigned LiveCycle = std::numeric_limits<unsigned>::max();
1490 for (unsigned Reg : LRegs) {
1491 if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1492 BtSU = LiveRegGens[Reg];
1493 LiveCycle = BtSU->getHeight();
1496 if (!WillCreateCycle(TrySU, BtSU)) {
1497 // BacktrackBottomUp mutates Interferences!
1498 BacktrackBottomUp(TrySU, BtSU);
1500 // Force the current node to be scheduled before the node that
1501 // requires the physical reg dep.
1502 if (BtSU->isAvailable) {
1503 BtSU->isAvailable = false;
1504 if (!BtSU->isPending)
1505 AvailableQueue->remove(BtSU);
1507 LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum
1508 << ") to SU(" << TrySU->NodeNum << ")\n");
1509 AddPred(TrySU, SDep(BtSU, SDep::Artificial));
1511 // If one or more successors has been unscheduled, then the current
1512 // node is no longer available.
1513 if (!TrySU->isAvailable || !TrySU->NodeQueueId) {
1514 LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n");
1515 CurSU = AvailableQueue->pop();
1516 } else {
1517 LLVM_DEBUG(dbgs() << "TrySU available\n");
1518 // Available and in AvailableQueue
1519 AvailableQueue->remove(TrySU);
1520 CurSU = TrySU;
1522 FindAvailableNode();
1523 // Interferences has been mutated. We must break.
1524 break;
1528 if (!CurSU) {
1529 // Can't backtrack. If it's too expensive to copy the value, then try
1530 // duplicate the nodes that produces these "too expensive to copy"
1531 // values to break the dependency. In case even that doesn't work,
1532 // insert cross class copies.
1533 // If it's not too expensive, i.e. cost != -1, issue copies.
1534 SUnit *TrySU = Interferences[0];
1535 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1536 assert(LRegs.size() == 1 && "Can't handle this yet!");
1537 unsigned Reg = LRegs[0];
1538 SUnit *LRDef = LiveRegDefs[Reg];
1539 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1540 const TargetRegisterClass *RC =
1541 TRI->getMinimalPhysRegClass(Reg, VT);
1542 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1544 // If cross copy register class is the same as RC, then it must be possible
1545 // copy the value directly. Do not try duplicate the def.
1546 // If cross copy register class is not the same as RC, then it's possible to
1547 // copy the value but it require cross register class copies and it is
1548 // expensive.
1549 // If cross copy register class is null, then it's not possible to copy
1550 // the value at all.
1551 SUnit *NewDef = nullptr;
1552 if (DestRC != RC) {
1553 NewDef = CopyAndMoveSuccessors(LRDef);
1554 if (!DestRC && !NewDef)
1555 report_fatal_error("Can't handle live physical register dependency!");
1557 if (!NewDef) {
1558 // Issue copies, these can be expensive cross register class copies.
1559 SmallVector<SUnit*, 2> Copies;
1560 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1561 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum
1562 << " to SU #" << Copies.front()->NodeNum << "\n");
1563 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
1564 NewDef = Copies.back();
1567 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum
1568 << " to SU #" << TrySU->NodeNum << "\n");
1569 LiveRegDefs[Reg] = NewDef;
1570 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
1571 TrySU->isAvailable = false;
1572 CurSU = NewDef;
1574 assert(CurSU && "Unable to resolve live physical register dependencies!");
1575 return CurSU;
1578 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1579 /// schedulers.
1580 void ScheduleDAGRRList::ListScheduleBottomUp() {
1581 // Release any predecessors of the special Exit node.
1582 ReleasePredecessors(&ExitSU);
1584 // Add root to Available queue.
1585 if (!SUnits.empty()) {
1586 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1587 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1588 RootSU->isAvailable = true;
1589 AvailableQueue->push(RootSU);
1592 // While Available queue is not empty, grab the node with the highest
1593 // priority. If it is not ready put it back. Schedule the node.
1594 Sequence.reserve(SUnits.size());
1595 while (!AvailableQueue->empty() || !Interferences.empty()) {
1596 LLVM_DEBUG(dbgs() << "\nExamining Available:\n";
1597 AvailableQueue->dump(this));
1599 // Pick the best node to schedule taking all constraints into
1600 // consideration.
1601 SUnit *SU = PickNodeToScheduleBottomUp();
1603 AdvancePastStalls(SU);
1605 ScheduleNodeBottomUp(SU);
1607 while (AvailableQueue->empty() && !PendingQueue.empty()) {
1608 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1609 assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() &&
1610 "MinAvailableCycle uninitialized");
1611 AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1615 // Reverse the order if it is bottom up.
1616 std::reverse(Sequence.begin(), Sequence.end());
1618 #ifndef NDEBUG
1619 VerifyScheduledSequence(/*isBottomUp=*/true);
1620 #endif
1623 namespace {
1625 class RegReductionPQBase;
1627 struct queue_sort {
1628 bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1631 #ifndef NDEBUG
1632 template<class SF>
1633 struct reverse_sort : public queue_sort {
1634 SF &SortFunc;
1636 reverse_sort(SF &sf) : SortFunc(sf) {}
1638 bool operator()(SUnit* left, SUnit* right) const {
1639 // reverse left/right rather than simply !SortFunc(left, right)
1640 // to expose different paths in the comparison logic.
1641 return SortFunc(right, left);
1644 #endif // NDEBUG
1646 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1647 // reduction scheduler.
1648 struct bu_ls_rr_sort : public queue_sort {
1649 enum {
1650 IsBottomUp = true,
1651 HasReadyFilter = false
1654 RegReductionPQBase *SPQ;
1656 bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1658 bool operator()(SUnit* left, SUnit* right) const;
1661 // src_ls_rr_sort - Priority function for source order scheduler.
1662 struct src_ls_rr_sort : public queue_sort {
1663 enum {
1664 IsBottomUp = true,
1665 HasReadyFilter = false
1668 RegReductionPQBase *SPQ;
1670 src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1672 bool operator()(SUnit* left, SUnit* right) const;
1675 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1676 struct hybrid_ls_rr_sort : public queue_sort {
1677 enum {
1678 IsBottomUp = true,
1679 HasReadyFilter = false
1682 RegReductionPQBase *SPQ;
1684 hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1686 bool isReady(SUnit *SU, unsigned CurCycle) const;
1688 bool operator()(SUnit* left, SUnit* right) const;
1691 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1692 // scheduler.
1693 struct ilp_ls_rr_sort : public queue_sort {
1694 enum {
1695 IsBottomUp = true,
1696 HasReadyFilter = false
1699 RegReductionPQBase *SPQ;
1701 ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1703 bool isReady(SUnit *SU, unsigned CurCycle) const;
1705 bool operator()(SUnit* left, SUnit* right) const;
1708 class RegReductionPQBase : public SchedulingPriorityQueue {
1709 protected:
1710 std::vector<SUnit *> Queue;
1711 unsigned CurQueueId = 0;
1712 bool TracksRegPressure;
1713 bool SrcOrder;
1715 // SUnits - The SUnits for the current graph.
1716 std::vector<SUnit> *SUnits;
1718 MachineFunction &MF;
1719 const TargetInstrInfo *TII;
1720 const TargetRegisterInfo *TRI;
1721 const TargetLowering *TLI;
1722 ScheduleDAGRRList *scheduleDAG = nullptr;
1724 // SethiUllmanNumbers - The SethiUllman number for each node.
1725 std::vector<unsigned> SethiUllmanNumbers;
1727 /// RegPressure - Tracking current reg pressure per register class.
1728 std::vector<unsigned> RegPressure;
1730 /// RegLimit - Tracking the number of allocatable registers per register
1731 /// class.
1732 std::vector<unsigned> RegLimit;
1734 public:
1735 RegReductionPQBase(MachineFunction &mf,
1736 bool hasReadyFilter,
1737 bool tracksrp,
1738 bool srcorder,
1739 const TargetInstrInfo *tii,
1740 const TargetRegisterInfo *tri,
1741 const TargetLowering *tli)
1742 : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp),
1743 SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) {
1744 if (TracksRegPressure) {
1745 unsigned NumRC = TRI->getNumRegClasses();
1746 RegLimit.resize(NumRC);
1747 RegPressure.resize(NumRC);
1748 std::fill(RegLimit.begin(), RegLimit.end(), 0);
1749 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1750 for (const TargetRegisterClass *RC : TRI->regclasses())
1751 RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF);
1755 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1756 scheduleDAG = scheduleDag;
1759 ScheduleHazardRecognizer* getHazardRec() {
1760 return scheduleDAG->getHazardRec();
1763 void initNodes(std::vector<SUnit> &sunits) override;
1765 void addNode(const SUnit *SU) override;
1767 void updateNode(const SUnit *SU) override;
1769 void releaseState() override {
1770 SUnits = nullptr;
1771 SethiUllmanNumbers.clear();
1772 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1775 unsigned getNodePriority(const SUnit *SU) const;
1777 unsigned getNodeOrdering(const SUnit *SU) const {
1778 if (!SU->getNode()) return 0;
1780 return SU->getNode()->getIROrder();
1783 bool empty() const override { return Queue.empty(); }
1785 void push(SUnit *U) override {
1786 assert(!U->NodeQueueId && "Node in the queue already");
1787 U->NodeQueueId = ++CurQueueId;
1788 Queue.push_back(U);
1791 void remove(SUnit *SU) override {
1792 assert(!Queue.empty() && "Queue is empty!");
1793 assert(SU->NodeQueueId != 0 && "Not in queue!");
1794 std::vector<SUnit *>::iterator I = llvm::find(Queue, SU);
1795 if (I != std::prev(Queue.end()))
1796 std::swap(*I, Queue.back());
1797 Queue.pop_back();
1798 SU->NodeQueueId = 0;
1801 bool tracksRegPressure() const override { return TracksRegPressure; }
1803 void dumpRegPressure() const;
1805 bool HighRegPressure(const SUnit *SU) const;
1807 bool MayReduceRegPressure(SUnit *SU) const;
1809 int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1811 void scheduledNode(SUnit *SU) override;
1813 void unscheduledNode(SUnit *SU) override;
1815 protected:
1816 bool canClobber(const SUnit *SU, const SUnit *Op);
1817 void AddPseudoTwoAddrDeps();
1818 void PrescheduleNodesWithMultipleUses();
1819 void CalculateSethiUllmanNumbers();
1822 template<class SF>
1823 static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) {
1824 std::vector<SUnit *>::iterator Best = Q.begin();
1825 for (auto I = std::next(Q.begin()), E = Q.end(); I != E; ++I)
1826 if (Picker(*Best, *I))
1827 Best = I;
1828 SUnit *V = *Best;
1829 if (Best != std::prev(Q.end()))
1830 std::swap(*Best, Q.back());
1831 Q.pop_back();
1832 return V;
1835 template<class SF>
1836 SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) {
1837 #ifndef NDEBUG
1838 if (DAG->StressSched) {
1839 reverse_sort<SF> RPicker(Picker);
1840 return popFromQueueImpl(Q, RPicker);
1842 #endif
1843 (void)DAG;
1844 return popFromQueueImpl(Q, Picker);
1847 //===----------------------------------------------------------------------===//
1848 // RegReductionPriorityQueue Definition
1849 //===----------------------------------------------------------------------===//
1851 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1852 // to reduce register pressure.
1854 template<class SF>
1855 class RegReductionPriorityQueue : public RegReductionPQBase {
1856 SF Picker;
1858 public:
1859 RegReductionPriorityQueue(MachineFunction &mf,
1860 bool tracksrp,
1861 bool srcorder,
1862 const TargetInstrInfo *tii,
1863 const TargetRegisterInfo *tri,
1864 const TargetLowering *tli)
1865 : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1866 tii, tri, tli),
1867 Picker(this) {}
1869 bool isBottomUp() const override { return SF::IsBottomUp; }
1871 bool isReady(SUnit *U) const override {
1872 return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1875 SUnit *pop() override {
1876 if (Queue.empty()) return nullptr;
1878 SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1879 V->NodeQueueId = 0;
1880 return V;
1883 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1884 LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override {
1885 // Emulate pop() without clobbering NodeQueueIds.
1886 std::vector<SUnit *> DumpQueue = Queue;
1887 SF DumpPicker = Picker;
1888 while (!DumpQueue.empty()) {
1889 SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1890 dbgs() << "Height " << SU->getHeight() << ": ";
1891 DAG->dumpNode(*SU);
1894 #endif
1897 using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>;
1898 using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>;
1899 using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>;
1900 using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>;
1902 } // end anonymous namespace
1904 //===----------------------------------------------------------------------===//
1905 // Static Node Priority for Register Pressure Reduction
1906 //===----------------------------------------------------------------------===//
1908 // Check for special nodes that bypass scheduling heuristics.
1909 // Currently this pushes TokenFactor nodes down, but may be used for other
1910 // pseudo-ops as well.
1912 // Return -1 to schedule right above left, 1 for left above right.
1913 // Return 0 if no bias exists.
1914 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1915 bool LSchedLow = left->isScheduleLow;
1916 bool RSchedLow = right->isScheduleLow;
1917 if (LSchedLow != RSchedLow)
1918 return LSchedLow < RSchedLow ? 1 : -1;
1919 return 0;
1922 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1923 /// Smaller number is the higher priority.
1924 static unsigned
1925 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1926 if (SUNumbers[SU->NodeNum] != 0)
1927 return SUNumbers[SU->NodeNum];
1929 // Use WorkList to avoid stack overflow on excessively large IRs.
1930 struct WorkState {
1931 WorkState(const SUnit *SU) : SU(SU) {}
1932 const SUnit *SU;
1933 unsigned PredsProcessed = 0;
1936 SmallVector<WorkState, 16> WorkList;
1937 WorkList.push_back(SU);
1938 while (!WorkList.empty()) {
1939 auto &Temp = WorkList.back();
1940 auto *TempSU = Temp.SU;
1941 bool AllPredsKnown = true;
1942 // Try to find a non-evaluated pred and push it into the processing stack.
1943 for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) {
1944 auto &Pred = TempSU->Preds[P];
1945 if (Pred.isCtrl()) continue; // ignore chain preds
1946 SUnit *PredSU = Pred.getSUnit();
1947 if (SUNumbers[PredSU->NodeNum] == 0) {
1948 #ifndef NDEBUG
1949 // In debug mode, check that we don't have such element in the stack.
1950 for (auto It : WorkList)
1951 assert(It.SU != PredSU && "Trying to push an element twice?");
1952 #endif
1953 // Next time start processing this one starting from the next pred.
1954 Temp.PredsProcessed = P + 1;
1955 WorkList.push_back(PredSU);
1956 AllPredsKnown = false;
1957 break;
1961 if (!AllPredsKnown)
1962 continue;
1964 // Once all preds are known, we can calculate the answer for this one.
1965 unsigned SethiUllmanNumber = 0;
1966 unsigned Extra = 0;
1967 for (const SDep &Pred : TempSU->Preds) {
1968 if (Pred.isCtrl()) continue; // ignore chain preds
1969 SUnit *PredSU = Pred.getSUnit();
1970 unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum];
1971 assert(PredSethiUllman > 0 && "We should have evaluated this pred!");
1972 if (PredSethiUllman > SethiUllmanNumber) {
1973 SethiUllmanNumber = PredSethiUllman;
1974 Extra = 0;
1975 } else if (PredSethiUllman == SethiUllmanNumber)
1976 ++Extra;
1979 SethiUllmanNumber += Extra;
1980 if (SethiUllmanNumber == 0)
1981 SethiUllmanNumber = 1;
1982 SUNumbers[TempSU->NodeNum] = SethiUllmanNumber;
1983 WorkList.pop_back();
1986 assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!");
1987 return SUNumbers[SU->NodeNum];
1990 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1991 /// scheduling units.
1992 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1993 SethiUllmanNumbers.assign(SUnits->size(), 0);
1995 for (const SUnit &SU : *SUnits)
1996 CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
1999 void RegReductionPQBase::addNode(const SUnit *SU) {
2000 unsigned SUSize = SethiUllmanNumbers.size();
2001 if (SUnits->size() > SUSize)
2002 SethiUllmanNumbers.resize(SUSize*2, 0);
2003 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2006 void RegReductionPQBase::updateNode(const SUnit *SU) {
2007 SethiUllmanNumbers[SU->NodeNum] = 0;
2008 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2011 // Lower priority means schedule further down. For bottom-up scheduling, lower
2012 // priority SUs are scheduled before higher priority SUs.
2013 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
2014 assert(SU->NodeNum < SethiUllmanNumbers.size());
2015 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2016 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2017 // CopyToReg should be close to its uses to facilitate coalescing and
2018 // avoid spilling.
2019 return 0;
2020 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2021 Opc == TargetOpcode::SUBREG_TO_REG ||
2022 Opc == TargetOpcode::INSERT_SUBREG)
2023 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2024 // close to their uses to facilitate coalescing.
2025 return 0;
2026 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
2027 // If SU does not have a register use, i.e. it doesn't produce a value
2028 // that would be consumed (e.g. store), then it terminates a chain of
2029 // computation. Give it a large SethiUllman number so it will be
2030 // scheduled right before its predecessors that it doesn't lengthen
2031 // their live ranges.
2032 return 0xffff;
2033 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2034 // If SU does not have a register def, schedule it close to its uses
2035 // because it does not lengthen any live ranges.
2036 return 0;
2037 #if 1
2038 return SethiUllmanNumbers[SU->NodeNum];
2039 #else
2040 unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
2041 if (SU->isCallOp) {
2042 // FIXME: This assumes all of the defs are used as call operands.
2043 int NP = (int)Priority - SU->getNode()->getNumValues();
2044 return (NP > 0) ? NP : 0;
2046 return Priority;
2047 #endif
2050 //===----------------------------------------------------------------------===//
2051 // Register Pressure Tracking
2052 //===----------------------------------------------------------------------===//
2054 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2055 LLVM_DUMP_METHOD void RegReductionPQBase::dumpRegPressure() const {
2056 for (const TargetRegisterClass *RC : TRI->regclasses()) {
2057 unsigned Id = RC->getID();
2058 unsigned RP = RegPressure[Id];
2059 if (!RP) continue;
2060 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
2061 << RegLimit[Id] << '\n');
2064 #endif
2066 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
2067 if (!TLI)
2068 return false;
2070 for (const SDep &Pred : SU->Preds) {
2071 if (Pred.isCtrl())
2072 continue;
2073 SUnit *PredSU = Pred.getSUnit();
2074 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2075 // to cover the number of registers defined (they are all live).
2076 if (PredSU->NumRegDefsLeft == 0) {
2077 continue;
2079 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2080 RegDefPos.IsValid(); RegDefPos.Advance()) {
2081 unsigned RCId, Cost;
2082 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2084 if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
2085 return true;
2088 return false;
2091 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
2092 const SDNode *N = SU->getNode();
2094 if (!N->isMachineOpcode() || !SU->NumSuccs)
2095 return false;
2097 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2098 for (unsigned i = 0; i != NumDefs; ++i) {
2099 MVT VT = N->getSimpleValueType(i);
2100 if (!N->hasAnyUseOfValue(i))
2101 continue;
2102 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2103 if (RegPressure[RCId] >= RegLimit[RCId])
2104 return true;
2106 return false;
2109 // Compute the register pressure contribution by this instruction by count up
2110 // for uses that are not live and down for defs. Only count register classes
2111 // that are already under high pressure. As a side effect, compute the number of
2112 // uses of registers that are already live.
2114 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
2115 // so could probably be factored.
2116 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
2117 LiveUses = 0;
2118 int PDiff = 0;
2119 for (const SDep &Pred : SU->Preds) {
2120 if (Pred.isCtrl())
2121 continue;
2122 SUnit *PredSU = Pred.getSUnit();
2123 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2124 // to cover the number of registers defined (they are all live).
2125 if (PredSU->NumRegDefsLeft == 0) {
2126 if (PredSU->getNode()->isMachineOpcode())
2127 ++LiveUses;
2128 continue;
2130 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2131 RegDefPos.IsValid(); RegDefPos.Advance()) {
2132 MVT VT = RegDefPos.GetValue();
2133 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2134 if (RegPressure[RCId] >= RegLimit[RCId])
2135 ++PDiff;
2138 const SDNode *N = SU->getNode();
2140 if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2141 return PDiff;
2143 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2144 for (unsigned i = 0; i != NumDefs; ++i) {
2145 MVT VT = N->getSimpleValueType(i);
2146 if (!N->hasAnyUseOfValue(i))
2147 continue;
2148 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2149 if (RegPressure[RCId] >= RegLimit[RCId])
2150 --PDiff;
2152 return PDiff;
2155 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2156 if (!TracksRegPressure)
2157 return;
2159 if (!SU->getNode())
2160 return;
2162 for (const SDep &Pred : SU->Preds) {
2163 if (Pred.isCtrl())
2164 continue;
2165 SUnit *PredSU = Pred.getSUnit();
2166 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2167 // to cover the number of registers defined (they are all live).
2168 if (PredSU->NumRegDefsLeft == 0) {
2169 continue;
2171 // FIXME: The ScheduleDAG currently loses information about which of a
2172 // node's values is consumed by each dependence. Consequently, if the node
2173 // defines multiple register classes, we don't know which to pressurize
2174 // here. Instead the following loop consumes the register defs in an
2175 // arbitrary order. At least it handles the common case of clustered loads
2176 // to the same class. For precise liveness, each SDep needs to indicate the
2177 // result number. But that tightly couples the ScheduleDAG with the
2178 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2179 // value type or register class to SDep.
2181 // The most important aspect of register tracking is balancing the increase
2182 // here with the reduction further below. Note that this SU may use multiple
2183 // defs in PredSU. The can't be determined here, but we've already
2184 // compensated by reducing NumRegDefsLeft in PredSU during
2185 // ScheduleDAGSDNodes::AddSchedEdges.
2186 --PredSU->NumRegDefsLeft;
2187 unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2188 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2189 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2190 if (SkipRegDefs)
2191 continue;
2193 unsigned RCId, Cost;
2194 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2195 RegPressure[RCId] += Cost;
2196 break;
2200 // We should have this assert, but there may be dead SDNodes that never
2201 // materialize as SUnits, so they don't appear to generate liveness.
2202 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2203 int SkipRegDefs = (int)SU->NumRegDefsLeft;
2204 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2205 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2206 if (SkipRegDefs > 0)
2207 continue;
2208 unsigned RCId, Cost;
2209 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2210 if (RegPressure[RCId] < Cost) {
2211 // Register pressure tracking is imprecise. This can happen. But we try
2212 // hard not to let it happen because it likely results in poor scheduling.
2213 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum
2214 << ") has too many regdefs\n");
2215 RegPressure[RCId] = 0;
2217 else {
2218 RegPressure[RCId] -= Cost;
2221 LLVM_DEBUG(dumpRegPressure());
2224 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2225 if (!TracksRegPressure)
2226 return;
2228 const SDNode *N = SU->getNode();
2229 if (!N) return;
2231 if (!N->isMachineOpcode()) {
2232 if (N->getOpcode() != ISD::CopyToReg)
2233 return;
2234 } else {
2235 unsigned Opc = N->getMachineOpcode();
2236 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2237 Opc == TargetOpcode::INSERT_SUBREG ||
2238 Opc == TargetOpcode::SUBREG_TO_REG ||
2239 Opc == TargetOpcode::REG_SEQUENCE ||
2240 Opc == TargetOpcode::IMPLICIT_DEF)
2241 return;
2244 for (const SDep &Pred : SU->Preds) {
2245 if (Pred.isCtrl())
2246 continue;
2247 SUnit *PredSU = Pred.getSUnit();
2248 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2249 // counts data deps.
2250 if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2251 continue;
2252 const SDNode *PN = PredSU->getNode();
2253 if (!PN->isMachineOpcode()) {
2254 if (PN->getOpcode() == ISD::CopyFromReg) {
2255 MVT VT = PN->getSimpleValueType(0);
2256 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2257 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2259 continue;
2261 unsigned POpc = PN->getMachineOpcode();
2262 if (POpc == TargetOpcode::IMPLICIT_DEF)
2263 continue;
2264 if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2265 POpc == TargetOpcode::INSERT_SUBREG ||
2266 POpc == TargetOpcode::SUBREG_TO_REG) {
2267 MVT VT = PN->getSimpleValueType(0);
2268 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2269 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2270 continue;
2272 unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2273 for (unsigned i = 0; i != NumDefs; ++i) {
2274 MVT VT = PN->getSimpleValueType(i);
2275 if (!PN->hasAnyUseOfValue(i))
2276 continue;
2277 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2278 if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2279 // Register pressure tracking is imprecise. This can happen.
2280 RegPressure[RCId] = 0;
2281 else
2282 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2286 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2287 // may transfer data dependencies to CopyToReg.
2288 if (SU->NumSuccs && N->isMachineOpcode()) {
2289 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2290 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2291 MVT VT = N->getSimpleValueType(i);
2292 if (VT == MVT::Glue || VT == MVT::Other)
2293 continue;
2294 if (!N->hasAnyUseOfValue(i))
2295 continue;
2296 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2297 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2301 LLVM_DEBUG(dumpRegPressure());
2304 //===----------------------------------------------------------------------===//
2305 // Dynamic Node Priority for Register Pressure Reduction
2306 //===----------------------------------------------------------------------===//
2308 /// closestSucc - Returns the scheduled cycle of the successor which is
2309 /// closest to the current cycle.
2310 static unsigned closestSucc(const SUnit *SU) {
2311 unsigned MaxHeight = 0;
2312 for (const SDep &Succ : SU->Succs) {
2313 if (Succ.isCtrl()) continue; // ignore chain succs
2314 unsigned Height = Succ.getSUnit()->getHeight();
2315 // If there are bunch of CopyToRegs stacked up, they should be considered
2316 // to be at the same position.
2317 if (Succ.getSUnit()->getNode() &&
2318 Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2319 Height = closestSucc(Succ.getSUnit())+1;
2320 if (Height > MaxHeight)
2321 MaxHeight = Height;
2323 return MaxHeight;
2326 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2327 /// for scratch registers, i.e. number of data dependencies.
2328 static unsigned calcMaxScratches(const SUnit *SU) {
2329 unsigned Scratches = 0;
2330 for (const SDep &Pred : SU->Preds) {
2331 if (Pred.isCtrl()) continue; // ignore chain preds
2332 Scratches++;
2334 return Scratches;
2337 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2338 /// CopyFromReg from a virtual register.
2339 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2340 bool RetVal = false;
2341 for (const SDep &Pred : SU->Preds) {
2342 if (Pred.isCtrl()) continue;
2343 const SUnit *PredSU = Pred.getSUnit();
2344 if (PredSU->getNode() &&
2345 PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2346 unsigned Reg =
2347 cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2348 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2349 RetVal = true;
2350 continue;
2353 return false;
2355 return RetVal;
2358 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2359 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2360 /// it has no other use. It should be scheduled closer to the terminator.
2361 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2362 bool RetVal = false;
2363 for (const SDep &Succ : SU->Succs) {
2364 if (Succ.isCtrl()) continue;
2365 const SUnit *SuccSU = Succ.getSUnit();
2366 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2367 unsigned Reg =
2368 cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2369 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2370 RetVal = true;
2371 continue;
2374 return false;
2376 return RetVal;
2379 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2380 // set isVRegCycle for its CopyFromReg operands.
2382 // This is only relevant for single-block loops, in which case the VRegCycle
2383 // node is likely an induction variable in which the operand and target virtual
2384 // registers should be coalesced (e.g. pre/post increment values). Setting the
2385 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2386 // CopyFromReg so that this node becomes the virtual register "kill". This
2387 // avoids interference between the values live in and out of the block and
2388 // eliminates a copy inside the loop.
2389 static void initVRegCycle(SUnit *SU) {
2390 if (DisableSchedVRegCycle)
2391 return;
2393 if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2394 return;
2396 LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2398 SU->isVRegCycle = true;
2400 for (const SDep &Pred : SU->Preds) {
2401 if (Pred.isCtrl()) continue;
2402 Pred.getSUnit()->isVRegCycle = true;
2406 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2407 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
2408 static void resetVRegCycle(SUnit *SU) {
2409 if (!SU->isVRegCycle)
2410 return;
2412 for (const SDep &Pred : SU->Preds) {
2413 if (Pred.isCtrl()) continue; // ignore chain preds
2414 SUnit *PredSU = Pred.getSUnit();
2415 if (PredSU->isVRegCycle) {
2416 assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2417 "VRegCycle def must be CopyFromReg");
2418 Pred.getSUnit()->isVRegCycle = false;
2423 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2424 // means a node that defines the VRegCycle has not been scheduled yet.
2425 static bool hasVRegCycleUse(const SUnit *SU) {
2426 // If this SU also defines the VReg, don't hoist it as a "use".
2427 if (SU->isVRegCycle)
2428 return false;
2430 for (const SDep &Pred : SU->Preds) {
2431 if (Pred.isCtrl()) continue; // ignore chain preds
2432 if (Pred.getSUnit()->isVRegCycle &&
2433 Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2434 LLVM_DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n");
2435 return true;
2438 return false;
2441 // Check for either a dependence (latency) or resource (hazard) stall.
2443 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2444 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2445 if ((int)SPQ->getCurCycle() < Height) return true;
2446 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2447 != ScheduleHazardRecognizer::NoHazard)
2448 return true;
2449 return false;
2452 // Return -1 if left has higher priority, 1 if right has higher priority.
2453 // Return 0 if latency-based priority is equivalent.
2454 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2455 RegReductionPQBase *SPQ) {
2456 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2457 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2458 int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2459 int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2460 int LHeight = (int)left->getHeight() + LPenalty;
2461 int RHeight = (int)right->getHeight() + RPenalty;
2463 bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2464 BUHasStall(left, LHeight, SPQ);
2465 bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2466 BUHasStall(right, RHeight, SPQ);
2468 // If scheduling one of the node will cause a pipeline stall, delay it.
2469 // If scheduling either one of the node will cause a pipeline stall, sort
2470 // them according to their height.
2471 if (LStall) {
2472 if (!RStall)
2473 return 1;
2474 if (LHeight != RHeight)
2475 return LHeight > RHeight ? 1 : -1;
2476 } else if (RStall)
2477 return -1;
2479 // If either node is scheduling for latency, sort them by height/depth
2480 // and latency.
2481 if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2482 right->SchedulingPref == Sched::ILP)) {
2483 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2484 // is enabled, grouping instructions by cycle, then its height is already
2485 // covered so only its depth matters. We also reach this point if both stall
2486 // but have the same height.
2487 if (!SPQ->getHazardRec()->isEnabled()) {
2488 if (LHeight != RHeight)
2489 return LHeight > RHeight ? 1 : -1;
2491 int LDepth = left->getDepth() - LPenalty;
2492 int RDepth = right->getDepth() - RPenalty;
2493 if (LDepth != RDepth) {
2494 LLVM_DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
2495 << ") depth " << LDepth << " vs SU (" << right->NodeNum
2496 << ") depth " << RDepth << "\n");
2497 return LDepth < RDepth ? 1 : -1;
2499 if (left->Latency != right->Latency)
2500 return left->Latency > right->Latency ? 1 : -1;
2502 return 0;
2505 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2506 // Schedule physical register definitions close to their use. This is
2507 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2508 // long as shortening physreg live ranges is generally good, we can defer
2509 // creating a subtarget hook.
2510 if (!DisableSchedPhysRegJoin) {
2511 bool LHasPhysReg = left->hasPhysRegDefs;
2512 bool RHasPhysReg = right->hasPhysRegDefs;
2513 if (LHasPhysReg != RHasPhysReg) {
2514 #ifndef NDEBUG
2515 static const char *const PhysRegMsg[] = { " has no physreg",
2516 " defines a physreg" };
2517 #endif
2518 LLVM_DEBUG(dbgs() << " SU (" << left->NodeNum << ") "
2519 << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum
2520 << ") " << PhysRegMsg[RHasPhysReg] << "\n");
2521 return LHasPhysReg < RHasPhysReg;
2525 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2526 unsigned LPriority = SPQ->getNodePriority(left);
2527 unsigned RPriority = SPQ->getNodePriority(right);
2529 // Be really careful about hoisting call operands above previous calls.
2530 // Only allows it if it would reduce register pressure.
2531 if (left->isCall && right->isCallOp) {
2532 unsigned RNumVals = right->getNode()->getNumValues();
2533 RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2535 if (right->isCall && left->isCallOp) {
2536 unsigned LNumVals = left->getNode()->getNumValues();
2537 LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2540 if (LPriority != RPriority)
2541 return LPriority > RPriority;
2543 // One or both of the nodes are calls and their sethi-ullman numbers are the
2544 // same, then keep source order.
2545 if (left->isCall || right->isCall) {
2546 unsigned LOrder = SPQ->getNodeOrdering(left);
2547 unsigned ROrder = SPQ->getNodeOrdering(right);
2549 // Prefer an ordering where the lower the non-zero order number, the higher
2550 // the preference.
2551 if ((LOrder || ROrder) && LOrder != ROrder)
2552 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2555 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2556 // e.g.
2557 // t1 = op t2, c1
2558 // t3 = op t4, c2
2560 // and the following instructions are both ready.
2561 // t2 = op c3
2562 // t4 = op c4
2564 // Then schedule t2 = op first.
2565 // i.e.
2566 // t4 = op c4
2567 // t2 = op c3
2568 // t1 = op t2, c1
2569 // t3 = op t4, c2
2571 // This creates more short live intervals.
2572 unsigned LDist = closestSucc(left);
2573 unsigned RDist = closestSucc(right);
2574 if (LDist != RDist)
2575 return LDist < RDist;
2577 // How many registers becomes live when the node is scheduled.
2578 unsigned LScratch = calcMaxScratches(left);
2579 unsigned RScratch = calcMaxScratches(right);
2580 if (LScratch != RScratch)
2581 return LScratch > RScratch;
2583 // Comparing latency against a call makes little sense unless the node
2584 // is register pressure-neutral.
2585 if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2586 return (left->NodeQueueId > right->NodeQueueId);
2588 // Do not compare latencies when one or both of the nodes are calls.
2589 if (!DisableSchedCycles &&
2590 !(left->isCall || right->isCall)) {
2591 int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2592 if (result != 0)
2593 return result > 0;
2595 else {
2596 if (left->getHeight() != right->getHeight())
2597 return left->getHeight() > right->getHeight();
2599 if (left->getDepth() != right->getDepth())
2600 return left->getDepth() < right->getDepth();
2603 assert(left->NodeQueueId && right->NodeQueueId &&
2604 "NodeQueueId cannot be zero");
2605 return (left->NodeQueueId > right->NodeQueueId);
2608 // Bottom up
2609 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2610 if (int res = checkSpecialNodes(left, right))
2611 return res > 0;
2613 return BURRSort(left, right, SPQ);
2616 // Source order, otherwise bottom up.
2617 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2618 if (int res = checkSpecialNodes(left, right))
2619 return res > 0;
2621 unsigned LOrder = SPQ->getNodeOrdering(left);
2622 unsigned ROrder = SPQ->getNodeOrdering(right);
2624 // Prefer an ordering where the lower the non-zero order number, the higher
2625 // the preference.
2626 if ((LOrder || ROrder) && LOrder != ROrder)
2627 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2629 return BURRSort(left, right, SPQ);
2632 // If the time between now and when the instruction will be ready can cover
2633 // the spill code, then avoid adding it to the ready queue. This gives long
2634 // stalls highest priority and allows hoisting across calls. It should also
2635 // speed up processing the available queue.
2636 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2637 static const unsigned ReadyDelay = 3;
2639 if (SPQ->MayReduceRegPressure(SU)) return true;
2641 if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2643 if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2644 != ScheduleHazardRecognizer::NoHazard)
2645 return false;
2647 return true;
2650 // Return true if right should be scheduled with higher priority than left.
2651 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2652 if (int res = checkSpecialNodes(left, right))
2653 return res > 0;
2655 if (left->isCall || right->isCall)
2656 // No way to compute latency of calls.
2657 return BURRSort(left, right, SPQ);
2659 bool LHigh = SPQ->HighRegPressure(left);
2660 bool RHigh = SPQ->HighRegPressure(right);
2661 // Avoid causing spills. If register pressure is high, schedule for
2662 // register pressure reduction.
2663 if (LHigh && !RHigh) {
2664 LLVM_DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("
2665 << right->NodeNum << ")\n");
2666 return true;
2668 else if (!LHigh && RHigh) {
2669 LLVM_DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("
2670 << left->NodeNum << ")\n");
2671 return false;
2673 if (!LHigh && !RHigh) {
2674 int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2675 if (result != 0)
2676 return result > 0;
2678 return BURRSort(left, right, SPQ);
2681 // Schedule as many instructions in each cycle as possible. So don't make an
2682 // instruction available unless it is ready in the current cycle.
2683 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2684 if (SU->getHeight() > CurCycle) return false;
2686 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2687 != ScheduleHazardRecognizer::NoHazard)
2688 return false;
2690 return true;
2693 static bool canEnableCoalescing(SUnit *SU) {
2694 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2695 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2696 // CopyToReg should be close to its uses to facilitate coalescing and
2697 // avoid spilling.
2698 return true;
2700 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2701 Opc == TargetOpcode::SUBREG_TO_REG ||
2702 Opc == TargetOpcode::INSERT_SUBREG)
2703 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2704 // close to their uses to facilitate coalescing.
2705 return true;
2707 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2708 // If SU does not have a register def, schedule it close to its uses
2709 // because it does not lengthen any live ranges.
2710 return true;
2712 return false;
2715 // list-ilp is currently an experimental scheduler that allows various
2716 // heuristics to be enabled prior to the normal register reduction logic.
2717 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2718 if (int res = checkSpecialNodes(left, right))
2719 return res > 0;
2721 if (left->isCall || right->isCall)
2722 // No way to compute latency of calls.
2723 return BURRSort(left, right, SPQ);
2725 unsigned LLiveUses = 0, RLiveUses = 0;
2726 int LPDiff = 0, RPDiff = 0;
2727 if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2728 LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2729 RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2731 if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2732 LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum
2733 << "): " << LPDiff << " != SU(" << right->NodeNum
2734 << "): " << RPDiff << "\n");
2735 return LPDiff > RPDiff;
2738 if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2739 bool LReduce = canEnableCoalescing(left);
2740 bool RReduce = canEnableCoalescing(right);
2741 if (LReduce && !RReduce) return false;
2742 if (RReduce && !LReduce) return true;
2745 if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2746 LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2747 << " != SU(" << right->NodeNum << "): " << RLiveUses
2748 << "\n");
2749 return LLiveUses < RLiveUses;
2752 if (!DisableSchedStalls) {
2753 bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2754 bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2755 if (LStall != RStall)
2756 return left->getHeight() > right->getHeight();
2759 if (!DisableSchedCriticalPath) {
2760 int spread = (int)left->getDepth() - (int)right->getDepth();
2761 if (std::abs(spread) > MaxReorderWindow) {
2762 LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2763 << left->getDepth() << " != SU(" << right->NodeNum
2764 << "): " << right->getDepth() << "\n");
2765 return left->getDepth() < right->getDepth();
2769 if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2770 int spread = (int)left->getHeight() - (int)right->getHeight();
2771 if (std::abs(spread) > MaxReorderWindow)
2772 return left->getHeight() > right->getHeight();
2775 return BURRSort(left, right, SPQ);
2778 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2779 SUnits = &sunits;
2780 // Add pseudo dependency edges for two-address nodes.
2781 if (!Disable2AddrHack)
2782 AddPseudoTwoAddrDeps();
2783 // Reroute edges to nodes with multiple uses.
2784 if (!TracksRegPressure && !SrcOrder)
2785 PrescheduleNodesWithMultipleUses();
2786 // Calculate node priorities.
2787 CalculateSethiUllmanNumbers();
2789 // For single block loops, mark nodes that look like canonical IV increments.
2790 if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
2791 for (SUnit &SU : sunits)
2792 initVRegCycle(&SU);
2795 //===----------------------------------------------------------------------===//
2796 // Preschedule for Register Pressure
2797 //===----------------------------------------------------------------------===//
2799 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2800 if (SU->isTwoAddress) {
2801 unsigned Opc = SU->getNode()->getMachineOpcode();
2802 const MCInstrDesc &MCID = TII->get(Opc);
2803 unsigned NumRes = MCID.getNumDefs();
2804 unsigned NumOps = MCID.getNumOperands() - NumRes;
2805 for (unsigned i = 0; i != NumOps; ++i) {
2806 if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2807 SDNode *DU = SU->getNode()->getOperand(i).getNode();
2808 if (DU->getNodeId() != -1 &&
2809 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2810 return true;
2814 return false;
2817 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2818 /// successor's explicit physregs whose definition can reach DepSU.
2819 /// i.e. DepSU should not be scheduled above SU.
2820 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2821 ScheduleDAGRRList *scheduleDAG,
2822 const TargetInstrInfo *TII,
2823 const TargetRegisterInfo *TRI) {
2824 const MCPhysReg *ImpDefs
2825 = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2826 const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2827 if(!ImpDefs && !RegMask)
2828 return false;
2830 for (const SDep &Succ : SU->Succs) {
2831 SUnit *SuccSU = Succ.getSUnit();
2832 for (const SDep &SuccPred : SuccSU->Preds) {
2833 if (!SuccPred.isAssignedRegDep())
2834 continue;
2836 if (RegMask &&
2837 MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
2838 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2839 return true;
2841 if (ImpDefs)
2842 for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2843 // Return true if SU clobbers this physical register use and the
2844 // definition of the register reaches from DepSU. IsReachable queries
2845 // a topological forward sort of the DAG (following the successors).
2846 if (TRI->regsOverlap(*ImpDef, SuccPred.getReg()) &&
2847 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2848 return true;
2851 return false;
2854 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2855 /// physical register defs.
2856 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2857 const TargetInstrInfo *TII,
2858 const TargetRegisterInfo *TRI) {
2859 SDNode *N = SuccSU->getNode();
2860 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2861 const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2862 assert(ImpDefs && "Caller should check hasPhysRegDefs");
2863 for (const SDNode *SUNode = SU->getNode(); SUNode;
2864 SUNode = SUNode->getGluedNode()) {
2865 if (!SUNode->isMachineOpcode())
2866 continue;
2867 const MCPhysReg *SUImpDefs =
2868 TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2869 const uint32_t *SURegMask = getNodeRegMask(SUNode);
2870 if (!SUImpDefs && !SURegMask)
2871 continue;
2872 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2873 MVT VT = N->getSimpleValueType(i);
2874 if (VT == MVT::Glue || VT == MVT::Other)
2875 continue;
2876 if (!N->hasAnyUseOfValue(i))
2877 continue;
2878 unsigned Reg = ImpDefs[i - NumDefs];
2879 if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2880 return true;
2881 if (!SUImpDefs)
2882 continue;
2883 for (;*SUImpDefs; ++SUImpDefs) {
2884 unsigned SUReg = *SUImpDefs;
2885 if (TRI->regsOverlap(Reg, SUReg))
2886 return true;
2890 return false;
2893 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2894 /// are not handled well by the general register pressure reduction
2895 /// heuristics. When presented with code like this:
2897 /// N
2898 /// / |
2899 /// / |
2900 /// U store
2901 /// |
2902 /// ...
2904 /// the heuristics tend to push the store up, but since the
2905 /// operand of the store has another use (U), this would increase
2906 /// the length of that other use (the U->N edge).
2908 /// This function transforms code like the above to route U's
2909 /// dependence through the store when possible, like this:
2911 /// N
2912 /// ||
2913 /// ||
2914 /// store
2915 /// |
2916 /// U
2917 /// |
2918 /// ...
2920 /// This results in the store being scheduled immediately
2921 /// after N, which shortens the U->N live range, reducing
2922 /// register pressure.
2923 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2924 // Visit all the nodes in topological order, working top-down.
2925 for (SUnit &SU : *SUnits) {
2926 // For now, only look at nodes with no data successors, such as stores.
2927 // These are especially important, due to the heuristics in
2928 // getNodePriority for nodes with no data successors.
2929 if (SU.NumSuccs != 0)
2930 continue;
2931 // For now, only look at nodes with exactly one data predecessor.
2932 if (SU.NumPreds != 1)
2933 continue;
2934 // Avoid prescheduling copies to virtual registers, which don't behave
2935 // like other nodes from the perspective of scheduling heuristics.
2936 if (SDNode *N = SU.getNode())
2937 if (N->getOpcode() == ISD::CopyToReg &&
2938 TargetRegisterInfo::isVirtualRegister
2939 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2940 continue;
2942 // Locate the single data predecessor.
2943 SUnit *PredSU = nullptr;
2944 for (const SDep &Pred : SU.Preds)
2945 if (!Pred.isCtrl()) {
2946 PredSU = Pred.getSUnit();
2947 break;
2949 assert(PredSU);
2951 // Don't rewrite edges that carry physregs, because that requires additional
2952 // support infrastructure.
2953 if (PredSU->hasPhysRegDefs)
2954 continue;
2955 // Short-circuit the case where SU is PredSU's only data successor.
2956 if (PredSU->NumSuccs == 1)
2957 continue;
2958 // Avoid prescheduling to copies from virtual registers, which don't behave
2959 // like other nodes from the perspective of scheduling heuristics.
2960 if (SDNode *N = SU.getNode())
2961 if (N->getOpcode() == ISD::CopyFromReg &&
2962 TargetRegisterInfo::isVirtualRegister
2963 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2964 continue;
2966 // Perform checks on the successors of PredSU.
2967 for (const SDep &PredSucc : PredSU->Succs) {
2968 SUnit *PredSuccSU = PredSucc.getSUnit();
2969 if (PredSuccSU == &SU) continue;
2970 // If PredSU has another successor with no data successors, for
2971 // now don't attempt to choose either over the other.
2972 if (PredSuccSU->NumSuccs == 0)
2973 goto outer_loop_continue;
2974 // Don't break physical register dependencies.
2975 if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2976 if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
2977 goto outer_loop_continue;
2978 // Don't introduce graph cycles.
2979 if (scheduleDAG->IsReachable(&SU, PredSuccSU))
2980 goto outer_loop_continue;
2983 // Ok, the transformation is safe and the heuristics suggest it is
2984 // profitable. Update the graph.
2985 LLVM_DEBUG(
2986 dbgs() << " Prescheduling SU #" << SU.NodeNum << " next to PredSU #"
2987 << PredSU->NodeNum
2988 << " to guide scheduling in the presence of multiple uses\n");
2989 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2990 SDep Edge = PredSU->Succs[i];
2991 assert(!Edge.isAssignedRegDep());
2992 SUnit *SuccSU = Edge.getSUnit();
2993 if (SuccSU != &SU) {
2994 Edge.setSUnit(PredSU);
2995 scheduleDAG->RemovePred(SuccSU, Edge);
2996 scheduleDAG->AddPred(&SU, Edge);
2997 Edge.setSUnit(&SU);
2998 scheduleDAG->AddPred(SuccSU, Edge);
2999 --i;
3002 outer_loop_continue:;
3006 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
3007 /// it as a def&use operand. Add a pseudo control edge from it to the other
3008 /// node (if it won't create a cycle) so the two-address one will be scheduled
3009 /// first (lower in the schedule). If both nodes are two-address, favor the
3010 /// one that has a CopyToReg use (more likely to be a loop induction update).
3011 /// If both are two-address, but one is commutable while the other is not
3012 /// commutable, favor the one that's not commutable.
3013 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
3014 for (SUnit &SU : *SUnits) {
3015 if (!SU.isTwoAddress)
3016 continue;
3018 SDNode *Node = SU.getNode();
3019 if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
3020 continue;
3022 bool isLiveOut = hasOnlyLiveOutUses(&SU);
3023 unsigned Opc = Node->getMachineOpcode();
3024 const MCInstrDesc &MCID = TII->get(Opc);
3025 unsigned NumRes = MCID.getNumDefs();
3026 unsigned NumOps = MCID.getNumOperands() - NumRes;
3027 for (unsigned j = 0; j != NumOps; ++j) {
3028 if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
3029 continue;
3030 SDNode *DU = SU.getNode()->getOperand(j).getNode();
3031 if (DU->getNodeId() == -1)
3032 continue;
3033 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
3034 if (!DUSU)
3035 continue;
3036 for (const SDep &Succ : DUSU->Succs) {
3037 if (Succ.isCtrl())
3038 continue;
3039 SUnit *SuccSU = Succ.getSUnit();
3040 if (SuccSU == &SU)
3041 continue;
3042 // Be conservative. Ignore if nodes aren't at roughly the same
3043 // depth and height.
3044 if (SuccSU->getHeight() < SU.getHeight() &&
3045 (SU.getHeight() - SuccSU->getHeight()) > 1)
3046 continue;
3047 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
3048 // constrains whatever is using the copy, instead of the copy
3049 // itself. In the case that the copy is coalesced, this
3050 // preserves the intent of the pseudo two-address heurietics.
3051 while (SuccSU->Succs.size() == 1 &&
3052 SuccSU->getNode()->isMachineOpcode() &&
3053 SuccSU->getNode()->getMachineOpcode() ==
3054 TargetOpcode::COPY_TO_REGCLASS)
3055 SuccSU = SuccSU->Succs.front().getSUnit();
3056 // Don't constrain non-instruction nodes.
3057 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
3058 continue;
3059 // Don't constrain nodes with physical register defs if the
3060 // predecessor can clobber them.
3061 if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
3062 if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
3063 continue;
3065 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
3066 // these may be coalesced away. We want them close to their uses.
3067 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
3068 if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
3069 SuccOpc == TargetOpcode::INSERT_SUBREG ||
3070 SuccOpc == TargetOpcode::SUBREG_TO_REG)
3071 continue;
3072 if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
3073 (!canClobber(SuccSU, DUSU) ||
3074 (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
3075 (!SU.isCommutable && SuccSU->isCommutable)) &&
3076 !scheduleDAG->IsReachable(SuccSU, &SU)) {
3077 LLVM_DEBUG(dbgs()
3078 << " Adding a pseudo-two-addr edge from SU #"
3079 << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
3080 scheduleDAG->AddPred(&SU, SDep(SuccSU, SDep::Artificial));
3087 //===----------------------------------------------------------------------===//
3088 // Public Constructor Functions
3089 //===----------------------------------------------------------------------===//
3091 ScheduleDAGSDNodes *
3092 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
3093 CodeGenOpt::Level OptLevel) {
3094 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3095 const TargetInstrInfo *TII = STI.getInstrInfo();
3096 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3098 BURegReductionPriorityQueue *PQ =
3099 new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
3100 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3101 PQ->setScheduleDAG(SD);
3102 return SD;
3105 ScheduleDAGSDNodes *
3106 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
3107 CodeGenOpt::Level OptLevel) {
3108 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3109 const TargetInstrInfo *TII = STI.getInstrInfo();
3110 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3112 SrcRegReductionPriorityQueue *PQ =
3113 new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3114 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3115 PQ->setScheduleDAG(SD);
3116 return SD;
3119 ScheduleDAGSDNodes *
3120 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3121 CodeGenOpt::Level OptLevel) {
3122 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3123 const TargetInstrInfo *TII = STI.getInstrInfo();
3124 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3125 const TargetLowering *TLI = IS->TLI;
3127 HybridBURRPriorityQueue *PQ =
3128 new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3130 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3131 PQ->setScheduleDAG(SD);
3132 return SD;
3135 ScheduleDAGSDNodes *
3136 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3137 CodeGenOpt::Level OptLevel) {
3138 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3139 const TargetInstrInfo *TII = STI.getInstrInfo();
3140 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3141 const TargetLowering *TLI = IS->TLI;
3143 ILPBURRPriorityQueue *PQ =
3144 new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3145 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3146 PQ->setScheduleDAG(SD);
3147 return SD;