[PowerPC] Remove self-copies in pre-emit peephole
[llvm-core.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
blob868160c77a3558b2ff05f56b0b2d29a5c8f1d41c
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
123 using namespace llvm;
125 #define DEBUG_TYPE "isel"
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
131 static cl::opt<unsigned, true>
132 LimitFPPrecision("limit-float-precision",
133 cl::desc("Generate low-precision inline sequences "
134 "for some float libcalls"),
135 cl::location(LimitFloatPrecision), cl::Hidden,
136 cl::init(0));
138 static cl::opt<unsigned> SwitchPeelThreshold(
139 "switch-peel-threshold", cl::Hidden, cl::init(66),
140 cl::desc("Set the case probability threshold for peeling the case from a "
141 "switch statement. A value greater than 100 will void this "
142 "optimization"));
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
160 // Return the calling convention if the Value passed requires ABI mangling as it
161 // is a parameter to a function or a return value from a function which is not
162 // an intrinsic.
163 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
164 if (auto *R = dyn_cast<ReturnInst>(V))
165 return R->getParent()->getParent()->getCallingConv();
167 if (auto *CI = dyn_cast<CallInst>(V)) {
168 const bool IsInlineAsm = CI->isInlineAsm();
169 const bool IsIndirectFunctionCall =
170 !IsInlineAsm && !CI->getCalledFunction();
172 // It is possible that the call instruction is an inline asm statement or an
173 // indirect function call in which case the return value of
174 // getCalledFunction() would be nullptr.
175 const bool IsInstrinsicCall =
176 !IsInlineAsm && !IsIndirectFunctionCall &&
177 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
179 if (!IsInlineAsm && !IsInstrinsicCall)
180 return CI->getCallingConv();
183 return None;
186 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
187 const SDValue *Parts, unsigned NumParts,
188 MVT PartVT, EVT ValueVT, const Value *V,
189 Optional<CallingConv::ID> CC);
191 /// getCopyFromParts - Create a value that contains the specified legal parts
192 /// combined into the value they represent. If the parts combine to a type
193 /// larger than ValueVT then AssertOp can be used to specify whether the extra
194 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
195 /// (ISD::AssertSext).
196 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
197 const SDValue *Parts, unsigned NumParts,
198 MVT PartVT, EVT ValueVT, const Value *V,
199 Optional<CallingConv::ID> CC = None,
200 Optional<ISD::NodeType> AssertOp = None) {
201 if (ValueVT.isVector())
202 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
203 CC);
205 assert(NumParts > 0 && "No parts to assemble!");
206 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
207 SDValue Val = Parts[0];
209 if (NumParts > 1) {
210 // Assemble the value from multiple parts.
211 if (ValueVT.isInteger()) {
212 unsigned PartBits = PartVT.getSizeInBits();
213 unsigned ValueBits = ValueVT.getSizeInBits();
215 // Assemble the power of 2 part.
216 unsigned RoundParts = NumParts & (NumParts - 1) ?
217 1 << Log2_32(NumParts) : NumParts;
218 unsigned RoundBits = PartBits * RoundParts;
219 EVT RoundVT = RoundBits == ValueBits ?
220 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
221 SDValue Lo, Hi;
223 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
225 if (RoundParts > 2) {
226 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
227 PartVT, HalfVT, V);
228 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
229 RoundParts / 2, PartVT, HalfVT, V);
230 } else {
231 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
232 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235 if (DAG.getDataLayout().isBigEndian())
236 std::swap(Lo, Hi);
238 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
240 if (RoundParts < NumParts) {
241 // Assemble the trailing non-power-of-2 part.
242 unsigned OddParts = NumParts - RoundParts;
243 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
244 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
245 OddVT, V, CC);
247 // Combine the round and odd parts.
248 Lo = Val;
249 if (DAG.getDataLayout().isBigEndian())
250 std::swap(Lo, Hi);
251 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
252 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
253 Hi =
254 DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
255 DAG.getConstant(Lo.getValueSizeInBits(), DL,
256 TLI.getPointerTy(DAG.getDataLayout())));
257 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
258 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
260 } else if (PartVT.isFloatingPoint()) {
261 // FP split into multiple FP parts (for ppcf128)
262 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
263 "Unexpected split");
264 SDValue Lo, Hi;
265 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
266 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
267 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
268 std::swap(Lo, Hi);
269 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
270 } else {
271 // FP split into integer parts (soft fp)
272 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
273 !PartVT.isVector() && "Unexpected split");
274 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
275 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
279 // There is now one part, held in Val. Correct it to match ValueVT.
280 // PartEVT is the type of the register class that holds the value.
281 // ValueVT is the type of the inline asm operation.
282 EVT PartEVT = Val.getValueType();
284 if (PartEVT == ValueVT)
285 return Val;
287 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
288 ValueVT.bitsLT(PartEVT)) {
289 // For an FP value in an integer part, we need to truncate to the right
290 // width first.
291 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
292 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295 // Handle types that have the same size.
296 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
297 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299 // Handle types with different sizes.
300 if (PartEVT.isInteger() && ValueVT.isInteger()) {
301 if (ValueVT.bitsLT(PartEVT)) {
302 // For a truncate, see if we have any information to
303 // indicate whether the truncated bits will always be
304 // zero or sign-extension.
305 if (AssertOp.hasValue())
306 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
307 DAG.getValueType(ValueVT));
308 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
310 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
314 // FP_ROUND's are always exact here.
315 if (ValueVT.bitsLT(Val.getValueType()))
316 return DAG.getNode(
317 ISD::FP_ROUND, DL, ValueVT, Val,
318 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
320 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323 llvm_unreachable("Unknown mismatch!");
326 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
327 const Twine &ErrMsg) {
328 const Instruction *I = dyn_cast_or_null<Instruction>(V);
329 if (!V)
330 return Ctx.emitError(ErrMsg);
332 const char *AsmError = ", possible invalid constraint for vector type";
333 if (const CallInst *CI = dyn_cast<CallInst>(I))
334 if (isa<InlineAsm>(CI->getCalledValue()))
335 return Ctx.emitError(I, ErrMsg + AsmError);
337 return Ctx.emitError(I, ErrMsg);
340 /// getCopyFromPartsVector - Create a value that contains the specified legal
341 /// parts combined into the value they represent. If the parts combine to a
342 /// type larger than ValueVT then AssertOp can be used to specify whether the
343 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
344 /// ValueVT (ISD::AssertSext).
345 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
346 const SDValue *Parts, unsigned NumParts,
347 MVT PartVT, EVT ValueVT, const Value *V,
348 Optional<CallingConv::ID> CallConv) {
349 assert(ValueVT.isVector() && "Not a vector value");
350 assert(NumParts > 0 && "No parts to assemble!");
351 const bool IsABIRegCopy = CallConv.hasValue();
353 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
354 SDValue Val = Parts[0];
356 // Handle a multi-element vector.
357 if (NumParts > 1) {
358 EVT IntermediateVT;
359 MVT RegisterVT;
360 unsigned NumIntermediates;
361 unsigned NumRegs;
363 if (IsABIRegCopy) {
364 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
365 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
366 NumIntermediates, RegisterVT);
367 } else {
368 NumRegs =
369 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
370 NumIntermediates, RegisterVT);
373 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
374 NumParts = NumRegs; // Silence a compiler warning.
375 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
376 assert(RegisterVT.getSizeInBits() ==
377 Parts[0].getSimpleValueType().getSizeInBits() &&
378 "Part type sizes don't match!");
380 // Assemble the parts into intermediate operands.
381 SmallVector<SDValue, 8> Ops(NumIntermediates);
382 if (NumIntermediates == NumParts) {
383 // If the register was not expanded, truncate or copy the value,
384 // as appropriate.
385 for (unsigned i = 0; i != NumParts; ++i)
386 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
387 PartVT, IntermediateVT, V);
388 } else if (NumParts > 0) {
389 // If the intermediate type was expanded, build the intermediate
390 // operands from the parts.
391 assert(NumParts % NumIntermediates == 0 &&
392 "Must expand into a divisible number of parts!");
393 unsigned Factor = NumParts / NumIntermediates;
394 for (unsigned i = 0; i != NumIntermediates; ++i)
395 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
396 PartVT, IntermediateVT, V);
399 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
400 // intermediate operands.
401 EVT BuiltVectorTy =
402 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
403 (IntermediateVT.isVector()
404 ? IntermediateVT.getVectorNumElements() * NumParts
405 : NumIntermediates));
406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407 : ISD::BUILD_VECTOR,
408 DL, BuiltVectorTy, Ops);
411 // There is now one part, held in Val. Correct it to match ValueVT.
412 EVT PartEVT = Val.getValueType();
414 if (PartEVT == ValueVT)
415 return Val;
417 if (PartEVT.isVector()) {
418 // If the element type of the source/dest vectors are the same, but the
419 // parts vector has more elements than the value vector, then we have a
420 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
421 // elements we want.
422 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
423 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
424 "Cannot narrow, it would be a lossy transformation");
425 return DAG.getNode(
426 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
427 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430 // Vector/Vector bitcast.
431 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
432 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
435 "Cannot handle this kind of promotion");
436 // Promoted vector extract
437 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
441 // Trivial bitcast if the types are the same size and the destination
442 // vector type is legal.
443 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
444 TLI.isTypeLegal(ValueVT))
445 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
447 if (ValueVT.getVectorNumElements() != 1) {
448 // Certain ABIs require that vectors are passed as integers. For vectors
449 // are the same size, this is an obvious bitcast.
450 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
453 // Bitcast Val back the original type and extract the corresponding
454 // vector we want.
455 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
456 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
457 ValueVT.getVectorElementType(), Elts);
458 Val = DAG.getBitcast(WiderVecType, Val);
459 return DAG.getNode(
460 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
461 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464 diagnosePossiblyInvalidConstraint(
465 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
466 return DAG.getUNDEF(ValueVT);
469 // Handle cases such as i8 -> <1 x i1>
470 EVT ValueSVT = ValueVT.getVectorElementType();
471 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
472 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
473 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
475 return DAG.getBuildVector(ValueVT, DL, Val);
478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
479 SDValue Val, SDValue *Parts, unsigned NumParts,
480 MVT PartVT, const Value *V,
481 Optional<CallingConv::ID> CallConv);
483 /// getCopyToParts - Create a series of nodes that contain the specified value
484 /// split into legal parts. If the parts contain more bits than Val, then, for
485 /// integers, ExtendKind can be used to specify how to generate the extra bits.
486 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
487 SDValue *Parts, unsigned NumParts, MVT PartVT,
488 const Value *V,
489 Optional<CallingConv::ID> CallConv = None,
490 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
491 EVT ValueVT = Val.getValueType();
493 // Handle the vector case separately.
494 if (ValueVT.isVector())
495 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496 CallConv);
498 unsigned PartBits = PartVT.getSizeInBits();
499 unsigned OrigNumParts = NumParts;
500 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501 "Copying to an illegal type!");
503 if (NumParts == 0)
504 return;
506 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507 EVT PartEVT = PartVT;
508 if (PartEVT == ValueVT) {
509 assert(NumParts == 1 && "No-op copy with multiple parts!");
510 Parts[0] = Val;
511 return;
514 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515 // If the parts cover more bits than the value has, promote the value.
516 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517 assert(NumParts == 1 && "Do not know what to promote to!");
518 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519 } else {
520 if (ValueVT.isFloatingPoint()) {
521 // FP values need to be bitcast, then extended if they are being put
522 // into a larger container.
523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
524 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
526 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527 ValueVT.isInteger() &&
528 "Unknown mismatch!");
529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531 if (PartVT == MVT::x86mmx)
532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534 } else if (PartBits == ValueVT.getSizeInBits()) {
535 // Different types of the same size.
536 assert(NumParts == 1 && PartEVT != ValueVT);
537 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539 // If the parts cover less bits than value has, truncate the value.
540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541 ValueVT.isInteger() &&
542 "Unknown mismatch!");
543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545 if (PartVT == MVT::x86mmx)
546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549 // The value may have changed - recompute ValueVT.
550 ValueVT = Val.getValueType();
551 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552 "Failed to tile the value with PartVT!");
554 if (NumParts == 1) {
555 if (PartEVT != ValueVT) {
556 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557 "scalar-to-vector conversion failed");
558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561 Parts[0] = Val;
562 return;
565 // Expand the value into multiple parts.
566 if (NumParts & (NumParts - 1)) {
567 // The number of parts is not a power of 2. Split off and copy the tail.
568 assert(PartVT.isInteger() && ValueVT.isInteger() &&
569 "Do not know what to expand to!");
570 unsigned RoundParts = 1 << Log2_32(NumParts);
571 unsigned RoundBits = RoundParts * PartBits;
572 unsigned OddParts = NumParts - RoundParts;
573 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574 DAG.getIntPtrConstant(RoundBits, DL));
575 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
576 CallConv);
578 if (DAG.getDataLayout().isBigEndian())
579 // The odd parts were reversed by getCopyToParts - unreverse them.
580 std::reverse(Parts + RoundParts, Parts + NumParts);
582 NumParts = RoundParts;
583 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
584 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587 // The number of parts is a power of 2. Repeatedly bisect the value using
588 // EXTRACT_ELEMENT.
589 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
590 EVT::getIntegerVT(*DAG.getContext(),
591 ValueVT.getSizeInBits()),
592 Val);
594 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
595 for (unsigned i = 0; i < NumParts; i += StepSize) {
596 unsigned ThisBits = StepSize * PartBits / 2;
597 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
598 SDValue &Part0 = Parts[i];
599 SDValue &Part1 = Parts[i+StepSize/2];
601 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
602 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
603 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
606 if (ThisBits == PartBits && ThisVT != PartVT) {
607 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
608 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
613 if (DAG.getDataLayout().isBigEndian())
614 std::reverse(Parts, Parts + OrigNumParts);
617 static SDValue widenVectorToPartType(SelectionDAG &DAG,
618 SDValue Val, const SDLoc &DL, EVT PartVT) {
619 if (!PartVT.isVector())
620 return SDValue();
622 EVT ValueVT = Val.getValueType();
623 unsigned PartNumElts = PartVT.getVectorNumElements();
624 unsigned ValueNumElts = ValueVT.getVectorNumElements();
625 if (PartNumElts > ValueNumElts &&
626 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
627 EVT ElementVT = PartVT.getVectorElementType();
628 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
629 // undef elements.
630 SmallVector<SDValue, 16> Ops;
631 DAG.ExtractVectorElements(Val, Ops);
632 SDValue EltUndef = DAG.getUNDEF(ElementVT);
633 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
634 Ops.push_back(EltUndef);
636 // FIXME: Use CONCAT for 2x -> 4x.
637 return DAG.getBuildVector(PartVT, DL, Ops);
640 return SDValue();
643 /// getCopyToPartsVector - Create a series of nodes that contain the specified
644 /// value split into legal parts.
645 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
646 SDValue Val, SDValue *Parts, unsigned NumParts,
647 MVT PartVT, const Value *V,
648 Optional<CallingConv::ID> CallConv) {
649 EVT ValueVT = Val.getValueType();
650 assert(ValueVT.isVector() && "Not a vector");
651 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
652 const bool IsABIRegCopy = CallConv.hasValue();
654 if (NumParts == 1) {
655 EVT PartEVT = PartVT;
656 if (PartEVT == ValueVT) {
657 // Nothing to do.
658 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
659 // Bitconvert vector->vector case.
660 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
661 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
662 Val = Widened;
663 } else if (PartVT.isVector() &&
664 PartEVT.getVectorElementType().bitsGE(
665 ValueVT.getVectorElementType()) &&
666 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
668 // Promoted vector extract
669 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
670 } else {
671 if (ValueVT.getVectorNumElements() == 1) {
672 Val = DAG.getNode(
673 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
674 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
675 } else {
676 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
677 "lossy conversion of vector to scalar type");
678 EVT IntermediateType =
679 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
680 Val = DAG.getBitcast(IntermediateType, Val);
681 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
686 Parts[0] = Val;
687 return;
690 // Handle a multi-element vector.
691 EVT IntermediateVT;
692 MVT RegisterVT;
693 unsigned NumIntermediates;
694 unsigned NumRegs;
695 if (IsABIRegCopy) {
696 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
697 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
698 NumIntermediates, RegisterVT);
699 } else {
700 NumRegs =
701 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
702 NumIntermediates, RegisterVT);
705 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
706 NumParts = NumRegs; // Silence a compiler warning.
707 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
709 unsigned IntermediateNumElts = IntermediateVT.isVector() ?
710 IntermediateVT.getVectorNumElements() : 1;
712 // Convert the vector to the appropiate type if necessary.
713 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
715 EVT BuiltVectorTy = EVT::getVectorVT(
716 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
717 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
718 if (ValueVT != BuiltVectorTy) {
719 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
720 Val = Widened;
722 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
725 // Split the vector into intermediate operands.
726 SmallVector<SDValue, 8> Ops(NumIntermediates);
727 for (unsigned i = 0; i != NumIntermediates; ++i) {
728 if (IntermediateVT.isVector()) {
729 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
730 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
731 } else {
732 Ops[i] = DAG.getNode(
733 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
734 DAG.getConstant(i, DL, IdxVT));
738 // Split the intermediate operands into legal parts.
739 if (NumParts == NumIntermediates) {
740 // If the register was not expanded, promote or copy the value,
741 // as appropriate.
742 for (unsigned i = 0; i != NumParts; ++i)
743 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
744 } else if (NumParts > 0) {
745 // If the intermediate type was expanded, split each the value into
746 // legal parts.
747 assert(NumIntermediates != 0 && "division by zero");
748 assert(NumParts % NumIntermediates == 0 &&
749 "Must expand into a divisible number of parts!");
750 unsigned Factor = NumParts / NumIntermediates;
751 for (unsigned i = 0; i != NumIntermediates; ++i)
752 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
753 CallConv);
757 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
758 EVT valuevt, Optional<CallingConv::ID> CC)
759 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
760 RegCount(1, regs.size()), CallConv(CC) {}
762 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
763 const DataLayout &DL, unsigned Reg, Type *Ty,
764 Optional<CallingConv::ID> CC) {
765 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
767 CallConv = CC;
769 for (EVT ValueVT : ValueVTs) {
770 unsigned NumRegs =
771 isABIMangled()
772 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
773 : TLI.getNumRegisters(Context, ValueVT);
774 MVT RegisterVT =
775 isABIMangled()
776 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
777 : TLI.getRegisterType(Context, ValueVT);
778 for (unsigned i = 0; i != NumRegs; ++i)
779 Regs.push_back(Reg + i);
780 RegVTs.push_back(RegisterVT);
781 RegCount.push_back(NumRegs);
782 Reg += NumRegs;
786 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
787 FunctionLoweringInfo &FuncInfo,
788 const SDLoc &dl, SDValue &Chain,
789 SDValue *Flag, const Value *V) const {
790 // A Value with type {} or [0 x %t] needs no registers.
791 if (ValueVTs.empty())
792 return SDValue();
794 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
796 // Assemble the legal parts into the final values.
797 SmallVector<SDValue, 4> Values(ValueVTs.size());
798 SmallVector<SDValue, 8> Parts;
799 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
800 // Copy the legal parts from the registers.
801 EVT ValueVT = ValueVTs[Value];
802 unsigned NumRegs = RegCount[Value];
803 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
804 *DAG.getContext(),
805 CallConv.getValue(), RegVTs[Value])
806 : RegVTs[Value];
808 Parts.resize(NumRegs);
809 for (unsigned i = 0; i != NumRegs; ++i) {
810 SDValue P;
811 if (!Flag) {
812 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
813 } else {
814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
815 *Flag = P.getValue(2);
818 Chain = P.getValue(1);
819 Parts[i] = P;
821 // If the source register was virtual and if we know something about it,
822 // add an assert node.
823 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
824 !RegisterVT.isInteger() || RegisterVT.isVector())
825 continue;
827 const FunctionLoweringInfo::LiveOutInfo *LOI =
828 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
829 if (!LOI)
830 continue;
832 unsigned RegSize = RegisterVT.getSizeInBits();
833 unsigned NumSignBits = LOI->NumSignBits;
834 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
836 if (NumZeroBits == RegSize) {
837 // The current value is a zero.
838 // Explicitly express that as it would be easier for
839 // optimizations to kick in.
840 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
841 continue;
844 // FIXME: We capture more information than the dag can represent. For
845 // now, just use the tightest assertzext/assertsext possible.
846 bool isSExt;
847 EVT FromVT(MVT::Other);
848 if (NumZeroBits) {
849 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
850 isSExt = false;
851 } else if (NumSignBits > 1) {
852 FromVT =
853 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
854 isSExt = true;
855 } else {
856 continue;
858 // Add an assertion node.
859 assert(FromVT != MVT::Other);
860 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
861 RegisterVT, P, DAG.getValueType(FromVT));
864 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
865 RegisterVT, ValueVT, V, CallConv);
866 Part += NumRegs;
867 Parts.clear();
870 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
874 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
875 const Value *V,
876 ISD::NodeType PreferredExtendType) const {
877 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
878 ISD::NodeType ExtendKind = PreferredExtendType;
880 // Get the list of the values's legal parts.
881 unsigned NumRegs = Regs.size();
882 SmallVector<SDValue, 8> Parts(NumRegs);
883 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
884 unsigned NumParts = RegCount[Value];
886 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
887 *DAG.getContext(),
888 CallConv.getValue(), RegVTs[Value])
889 : RegVTs[Value];
891 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
892 ExtendKind = ISD::ZERO_EXTEND;
894 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
895 NumParts, RegisterVT, V, CallConv, ExtendKind);
896 Part += NumParts;
899 // Copy the parts into the registers.
900 SmallVector<SDValue, 8> Chains(NumRegs);
901 for (unsigned i = 0; i != NumRegs; ++i) {
902 SDValue Part;
903 if (!Flag) {
904 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
905 } else {
906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
907 *Flag = Part.getValue(1);
910 Chains[i] = Part.getValue(0);
913 if (NumRegs == 1 || Flag)
914 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
915 // flagged to it. That is the CopyToReg nodes and the user are considered
916 // a single scheduling unit. If we create a TokenFactor and return it as
917 // chain, then the TokenFactor is both a predecessor (operand) of the
918 // user as well as a successor (the TF operands are flagged to the user).
919 // c1, f1 = CopyToReg
920 // c2, f2 = CopyToReg
921 // c3 = TokenFactor c1, c2
922 // ...
923 // = op c3, ..., f2
924 Chain = Chains[NumRegs-1];
925 else
926 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
930 unsigned MatchingIdx, const SDLoc &dl,
931 SelectionDAG &DAG,
932 std::vector<SDValue> &Ops) const {
933 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
935 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
936 if (HasMatching)
937 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
938 else if (!Regs.empty() &&
939 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
940 // Put the register class of the virtual registers in the flag word. That
941 // way, later passes can recompute register class constraints for inline
942 // assembly as well as normal instructions.
943 // Don't do this for tied operands that can use the regclass information
944 // from the def.
945 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
946 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
947 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
950 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
951 Ops.push_back(Res);
953 if (Code == InlineAsm::Kind_Clobber) {
954 // Clobbers should always have a 1:1 mapping with registers, and may
955 // reference registers that have illegal (e.g. vector) types. Hence, we
956 // shouldn't try to apply any sort of splitting logic to them.
957 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
958 "No 1:1 mapping from clobbers to regs?");
959 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
960 (void)SP;
961 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
962 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
963 assert(
964 (Regs[I] != SP ||
965 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
966 "If we clobbered the stack pointer, MFI should know about it.");
968 return;
971 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
972 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
973 MVT RegisterVT = RegVTs[Value];
974 for (unsigned i = 0; i != NumRegs; ++i) {
975 assert(Reg < Regs.size() && "Mismatch in # registers expected");
976 unsigned TheReg = Regs[Reg++];
977 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
982 SmallVector<std::pair<unsigned, unsigned>, 4>
983 RegsForValue::getRegsAndSizes() const {
984 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
985 unsigned I = 0;
986 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
987 unsigned RegCount = std::get<0>(CountAndVT);
988 MVT RegisterVT = std::get<1>(CountAndVT);
989 unsigned RegisterSize = RegisterVT.getSizeInBits();
990 for (unsigned E = I + RegCount; I != E; ++I)
991 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
993 return OutVec;
996 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
997 const TargetLibraryInfo *li) {
998 AA = aa;
999 GFI = gfi;
1000 LibInfo = li;
1001 DL = &DAG.getDataLayout();
1002 Context = DAG.getContext();
1003 LPadToCallSiteMap.clear();
1006 void SelectionDAGBuilder::clear() {
1007 NodeMap.clear();
1008 UnusedArgNodeMap.clear();
1009 PendingLoads.clear();
1010 PendingExports.clear();
1011 CurInst = nullptr;
1012 HasTailCall = false;
1013 SDNodeOrder = LowestSDNodeOrder;
1014 StatepointLowering.clear();
1017 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1018 DanglingDebugInfoMap.clear();
1021 SDValue SelectionDAGBuilder::getRoot() {
1022 if (PendingLoads.empty())
1023 return DAG.getRoot();
1025 if (PendingLoads.size() == 1) {
1026 SDValue Root = PendingLoads[0];
1027 DAG.setRoot(Root);
1028 PendingLoads.clear();
1029 return Root;
1032 // Otherwise, we have to make a token factor node.
1033 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1034 PendingLoads);
1035 PendingLoads.clear();
1036 DAG.setRoot(Root);
1037 return Root;
1040 SDValue SelectionDAGBuilder::getControlRoot() {
1041 SDValue Root = DAG.getRoot();
1043 if (PendingExports.empty())
1044 return Root;
1046 // Turn all of the CopyToReg chains into one factored node.
1047 if (Root.getOpcode() != ISD::EntryToken) {
1048 unsigned i = 0, e = PendingExports.size();
1049 for (; i != e; ++i) {
1050 assert(PendingExports[i].getNode()->getNumOperands() > 1);
1051 if (PendingExports[i].getNode()->getOperand(0) == Root)
1052 break; // Don't add the root if we already indirectly depend on it.
1055 if (i == e)
1056 PendingExports.push_back(Root);
1059 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1060 PendingExports);
1061 PendingExports.clear();
1062 DAG.setRoot(Root);
1063 return Root;
1066 void SelectionDAGBuilder::visit(const Instruction &I) {
1067 // Set up outgoing PHI node register values before emitting the terminator.
1068 if (I.isTerminator()) {
1069 HandlePHINodesInSuccessorBlocks(I.getParent());
1072 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1073 if (!isa<DbgInfoIntrinsic>(I))
1074 ++SDNodeOrder;
1076 CurInst = &I;
1078 visit(I.getOpcode(), I);
1080 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1081 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1082 // maps to this instruction.
1083 // TODO: We could handle all flags (nsw, etc) here.
1084 // TODO: If an IR instruction maps to >1 node, only the final node will have
1085 // flags set.
1086 if (SDNode *Node = getNodeForIRValue(&I)) {
1087 SDNodeFlags IncomingFlags;
1088 IncomingFlags.copyFMF(*FPMO);
1089 if (!Node->getFlags().isDefined())
1090 Node->setFlags(IncomingFlags);
1091 else
1092 Node->intersectFlagsWith(IncomingFlags);
1096 if (!I.isTerminator() && !HasTailCall &&
1097 !isStatepoint(&I)) // statepoints handle their exports internally
1098 CopyToExportRegsIfNeeded(&I);
1100 CurInst = nullptr;
1103 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1104 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1108 // Note: this doesn't use InstVisitor, because it has to work with
1109 // ConstantExpr's in addition to instructions.
1110 switch (Opcode) {
1111 default: llvm_unreachable("Unknown instruction type encountered!");
1112 // Build the switch statement using the Instruction.def file.
1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1114 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1115 #include "llvm/IR/Instruction.def"
1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1120 const DIExpression *Expr) {
1121 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1122 const DbgValueInst *DI = DDI.getDI();
1123 DIVariable *DanglingVariable = DI->getVariable();
1124 DIExpression *DanglingExpr = DI->getExpression();
1125 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1126 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1127 return true;
1129 return false;
1132 for (auto &DDIMI : DanglingDebugInfoMap) {
1133 DanglingDebugInfoVector &DDIV = DDIMI.second;
1134 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1139 // generate the debug data structures now that we've seen its definition.
1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1141 SDValue Val) {
1142 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1143 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1144 return;
1146 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1147 for (auto &DDI : DDIV) {
1148 const DbgValueInst *DI = DDI.getDI();
1149 assert(DI && "Ill-formed DanglingDebugInfo");
1150 DebugLoc dl = DDI.getdl();
1151 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1152 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1153 DILocalVariable *Variable = DI->getVariable();
1154 DIExpression *Expr = DI->getExpression();
1155 assert(Variable->isValidLocationForIntrinsic(dl) &&
1156 "Expected inlined-at fields to agree");
1157 SDDbgValue *SDV;
1158 if (Val.getNode()) {
1159 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1160 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1161 << DbgSDNodeOrder << "] for:\n " << *DI << "\n");
1162 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1163 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1164 // inserted after the definition of Val when emitting the instructions
1165 // after ISel. An alternative could be to teach
1166 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1167 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1168 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1169 << ValSDNodeOrder << "\n");
1170 SDV = getDbgValue(Val, Variable, Expr, dl,
1171 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1172 DAG.AddDbgValue(SDV, Val.getNode(), false);
1173 } else
1174 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1175 << "in EmitFuncArgumentDbgValue\n");
1176 } else
1177 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1179 DDIV.clear();
1182 /// getCopyFromRegs - If there was virtual register allocated for the value V
1183 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1184 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1185 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1186 SDValue Result;
1188 if (It != FuncInfo.ValueMap.end()) {
1189 unsigned InReg = It->second;
1191 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1192 DAG.getDataLayout(), InReg, Ty,
1193 None); // This is not an ABI copy.
1194 SDValue Chain = DAG.getEntryNode();
1195 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1197 resolveDanglingDebugInfo(V, Result);
1200 return Result;
1203 /// getValue - Return an SDValue for the given Value.
1204 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1205 // If we already have an SDValue for this value, use it. It's important
1206 // to do this first, so that we don't create a CopyFromReg if we already
1207 // have a regular SDValue.
1208 SDValue &N = NodeMap[V];
1209 if (N.getNode()) return N;
1211 // If there's a virtual register allocated and initialized for this
1212 // value, use it.
1213 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1214 return copyFromReg;
1216 // Otherwise create a new SDValue and remember it.
1217 SDValue Val = getValueImpl(V);
1218 NodeMap[V] = Val;
1219 resolveDanglingDebugInfo(V, Val);
1220 return Val;
1223 // Return true if SDValue exists for the given Value
1224 bool SelectionDAGBuilder::findValue(const Value *V) const {
1225 return (NodeMap.find(V) != NodeMap.end()) ||
1226 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1229 /// getNonRegisterValue - Return an SDValue for the given Value, but
1230 /// don't look in FuncInfo.ValueMap for a virtual register.
1231 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1232 // If we already have an SDValue for this value, use it.
1233 SDValue &N = NodeMap[V];
1234 if (N.getNode()) {
1235 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1236 // Remove the debug location from the node as the node is about to be used
1237 // in a location which may differ from the original debug location. This
1238 // is relevant to Constant and ConstantFP nodes because they can appear
1239 // as constant expressions inside PHI nodes.
1240 N->setDebugLoc(DebugLoc());
1242 return N;
1245 // Otherwise create a new SDValue and remember it.
1246 SDValue Val = getValueImpl(V);
1247 NodeMap[V] = Val;
1248 resolveDanglingDebugInfo(V, Val);
1249 return Val;
1252 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1253 /// Create an SDValue for the given value.
1254 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1255 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1257 if (const Constant *C = dyn_cast<Constant>(V)) {
1258 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1260 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1261 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1263 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1264 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1266 if (isa<ConstantPointerNull>(C)) {
1267 unsigned AS = V->getType()->getPointerAddressSpace();
1268 return DAG.getConstant(0, getCurSDLoc(),
1269 TLI.getPointerTy(DAG.getDataLayout(), AS));
1272 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1273 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1275 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1276 return DAG.getUNDEF(VT);
1278 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1279 visit(CE->getOpcode(), *CE);
1280 SDValue N1 = NodeMap[V];
1281 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1282 return N1;
1285 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1286 SmallVector<SDValue, 4> Constants;
1287 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1288 OI != OE; ++OI) {
1289 SDNode *Val = getValue(*OI).getNode();
1290 // If the operand is an empty aggregate, there are no values.
1291 if (!Val) continue;
1292 // Add each leaf value from the operand to the Constants list
1293 // to form a flattened list of all the values.
1294 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1295 Constants.push_back(SDValue(Val, i));
1298 return DAG.getMergeValues(Constants, getCurSDLoc());
1301 if (const ConstantDataSequential *CDS =
1302 dyn_cast<ConstantDataSequential>(C)) {
1303 SmallVector<SDValue, 4> Ops;
1304 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1305 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1306 // Add each leaf value from the operand to the Constants list
1307 // to form a flattened list of all the values.
1308 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1309 Ops.push_back(SDValue(Val, i));
1312 if (isa<ArrayType>(CDS->getType()))
1313 return DAG.getMergeValues(Ops, getCurSDLoc());
1314 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1317 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1318 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1319 "Unknown struct or array constant!");
1321 SmallVector<EVT, 4> ValueVTs;
1322 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1323 unsigned NumElts = ValueVTs.size();
1324 if (NumElts == 0)
1325 return SDValue(); // empty struct
1326 SmallVector<SDValue, 4> Constants(NumElts);
1327 for (unsigned i = 0; i != NumElts; ++i) {
1328 EVT EltVT = ValueVTs[i];
1329 if (isa<UndefValue>(C))
1330 Constants[i] = DAG.getUNDEF(EltVT);
1331 else if (EltVT.isFloatingPoint())
1332 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1333 else
1334 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1337 return DAG.getMergeValues(Constants, getCurSDLoc());
1340 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1341 return DAG.getBlockAddress(BA, VT);
1343 VectorType *VecTy = cast<VectorType>(V->getType());
1344 unsigned NumElements = VecTy->getNumElements();
1346 // Now that we know the number and type of the elements, get that number of
1347 // elements into the Ops array based on what kind of constant it is.
1348 SmallVector<SDValue, 16> Ops;
1349 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1350 for (unsigned i = 0; i != NumElements; ++i)
1351 Ops.push_back(getValue(CV->getOperand(i)));
1352 } else {
1353 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1354 EVT EltVT =
1355 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1357 SDValue Op;
1358 if (EltVT.isFloatingPoint())
1359 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1360 else
1361 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1362 Ops.assign(NumElements, Op);
1365 // Create a BUILD_VECTOR node.
1366 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1369 // If this is a static alloca, generate it as the frameindex instead of
1370 // computation.
1371 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1372 DenseMap<const AllocaInst*, int>::iterator SI =
1373 FuncInfo.StaticAllocaMap.find(AI);
1374 if (SI != FuncInfo.StaticAllocaMap.end())
1375 return DAG.getFrameIndex(SI->second,
1376 TLI.getFrameIndexTy(DAG.getDataLayout()));
1379 // If this is an instruction which fast-isel has deferred, select it now.
1380 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1381 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1383 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1384 Inst->getType(), getABIRegCopyCC(V));
1385 SDValue Chain = DAG.getEntryNode();
1386 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1389 llvm_unreachable("Can't get register for value!");
1392 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1393 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1394 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1395 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1396 bool IsSEH = isAsynchronousEHPersonality(Pers);
1397 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1398 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1399 if (!IsSEH)
1400 CatchPadMBB->setIsEHScopeEntry();
1401 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1402 if (IsMSVCCXX || IsCoreCLR)
1403 CatchPadMBB->setIsEHFuncletEntry();
1404 // Wasm does not need catchpads anymore
1405 if (!IsWasmCXX)
1406 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1407 getControlRoot()));
1410 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1411 // Update machine-CFG edge.
1412 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1413 FuncInfo.MBB->addSuccessor(TargetMBB);
1415 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1416 bool IsSEH = isAsynchronousEHPersonality(Pers);
1417 if (IsSEH) {
1418 // If this is not a fall-through branch or optimizations are switched off,
1419 // emit the branch.
1420 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1421 TM.getOptLevel() == CodeGenOpt::None)
1422 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1423 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1424 return;
1427 // Figure out the funclet membership for the catchret's successor.
1428 // This will be used by the FuncletLayout pass to determine how to order the
1429 // BB's.
1430 // A 'catchret' returns to the outer scope's color.
1431 Value *ParentPad = I.getCatchSwitchParentPad();
1432 const BasicBlock *SuccessorColor;
1433 if (isa<ConstantTokenNone>(ParentPad))
1434 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1435 else
1436 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1437 assert(SuccessorColor && "No parent funclet for catchret!");
1438 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1439 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1441 // Create the terminator node.
1442 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1443 getControlRoot(), DAG.getBasicBlock(TargetMBB),
1444 DAG.getBasicBlock(SuccessorColorMBB));
1445 DAG.setRoot(Ret);
1448 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1449 // Don't emit any special code for the cleanuppad instruction. It just marks
1450 // the start of an EH scope/funclet.
1451 FuncInfo.MBB->setIsEHScopeEntry();
1452 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1453 if (Pers != EHPersonality::Wasm_CXX) {
1454 FuncInfo.MBB->setIsEHFuncletEntry();
1455 FuncInfo.MBB->setIsCleanupFuncletEntry();
1459 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1460 /// many places it could ultimately go. In the IR, we have a single unwind
1461 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1462 /// This function skips over imaginary basic blocks that hold catchswitch
1463 /// instructions, and finds all the "real" machine
1464 /// basic block destinations. As those destinations may not be successors of
1465 /// EHPadBB, here we also calculate the edge probability to those destinations.
1466 /// The passed-in Prob is the edge probability to EHPadBB.
1467 static void findUnwindDestinations(
1468 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1469 BranchProbability Prob,
1470 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1471 &UnwindDests) {
1472 EHPersonality Personality =
1473 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1474 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1475 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1476 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1477 bool IsSEH = isAsynchronousEHPersonality(Personality);
1479 while (EHPadBB) {
1480 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1481 BasicBlock *NewEHPadBB = nullptr;
1482 if (isa<LandingPadInst>(Pad)) {
1483 // Stop on landingpads. They are not funclets.
1484 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1485 break;
1486 } else if (isa<CleanupPadInst>(Pad)) {
1487 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1488 // personalities.
1489 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1490 UnwindDests.back().first->setIsEHScopeEntry();
1491 if (!IsWasmCXX)
1492 UnwindDests.back().first->setIsEHFuncletEntry();
1493 break;
1494 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1495 // Add the catchpad handlers to the possible destinations.
1496 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1497 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1498 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1499 if (IsMSVCCXX || IsCoreCLR)
1500 UnwindDests.back().first->setIsEHFuncletEntry();
1501 if (!IsSEH)
1502 UnwindDests.back().first->setIsEHScopeEntry();
1504 NewEHPadBB = CatchSwitch->getUnwindDest();
1505 } else {
1506 continue;
1509 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1510 if (BPI && NewEHPadBB)
1511 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1512 EHPadBB = NewEHPadBB;
1516 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1517 // Update successor info.
1518 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1519 auto UnwindDest = I.getUnwindDest();
1520 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1521 BranchProbability UnwindDestProb =
1522 (BPI && UnwindDest)
1523 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1524 : BranchProbability::getZero();
1525 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1526 for (auto &UnwindDest : UnwindDests) {
1527 UnwindDest.first->setIsEHPad();
1528 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1530 FuncInfo.MBB->normalizeSuccProbs();
1532 // Create the terminator node.
1533 SDValue Ret =
1534 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1535 DAG.setRoot(Ret);
1538 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1539 report_fatal_error("visitCatchSwitch not yet implemented!");
1542 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1543 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1544 auto &DL = DAG.getDataLayout();
1545 SDValue Chain = getControlRoot();
1546 SmallVector<ISD::OutputArg, 8> Outs;
1547 SmallVector<SDValue, 8> OutVals;
1549 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1550 // lower
1552 // %val = call <ty> @llvm.experimental.deoptimize()
1553 // ret <ty> %val
1555 // differently.
1556 if (I.getParent()->getTerminatingDeoptimizeCall()) {
1557 LowerDeoptimizingReturn();
1558 return;
1561 if (!FuncInfo.CanLowerReturn) {
1562 unsigned DemoteReg = FuncInfo.DemoteRegister;
1563 const Function *F = I.getParent()->getParent();
1565 // Emit a store of the return value through the virtual register.
1566 // Leave Outs empty so that LowerReturn won't try to load return
1567 // registers the usual way.
1568 SmallVector<EVT, 1> PtrValueVTs;
1569 ComputeValueVTs(TLI, DL,
1570 F->getReturnType()->getPointerTo(
1571 DAG.getDataLayout().getAllocaAddrSpace()),
1572 PtrValueVTs);
1574 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1575 DemoteReg, PtrValueVTs[0]);
1576 SDValue RetOp = getValue(I.getOperand(0));
1578 SmallVector<EVT, 4> ValueVTs;
1579 SmallVector<uint64_t, 4> Offsets;
1580 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1581 unsigned NumValues = ValueVTs.size();
1583 SmallVector<SDValue, 4> Chains(NumValues);
1584 for (unsigned i = 0; i != NumValues; ++i) {
1585 // An aggregate return value cannot wrap around the address space, so
1586 // offsets to its parts don't wrap either.
1587 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1588 Chains[i] = DAG.getStore(
1589 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1590 // FIXME: better loc info would be nice.
1591 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1594 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1595 MVT::Other, Chains);
1596 } else if (I.getNumOperands() != 0) {
1597 SmallVector<EVT, 4> ValueVTs;
1598 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1599 unsigned NumValues = ValueVTs.size();
1600 if (NumValues) {
1601 SDValue RetOp = getValue(I.getOperand(0));
1603 const Function *F = I.getParent()->getParent();
1605 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1606 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1607 Attribute::SExt))
1608 ExtendKind = ISD::SIGN_EXTEND;
1609 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1610 Attribute::ZExt))
1611 ExtendKind = ISD::ZERO_EXTEND;
1613 LLVMContext &Context = F->getContext();
1614 bool RetInReg = F->getAttributes().hasAttribute(
1615 AttributeList::ReturnIndex, Attribute::InReg);
1617 for (unsigned j = 0; j != NumValues; ++j) {
1618 EVT VT = ValueVTs[j];
1620 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1621 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1623 CallingConv::ID CC = F->getCallingConv();
1625 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1626 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1627 SmallVector<SDValue, 4> Parts(NumParts);
1628 getCopyToParts(DAG, getCurSDLoc(),
1629 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1630 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1632 // 'inreg' on function refers to return value
1633 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1634 if (RetInReg)
1635 Flags.setInReg();
1637 // Propagate extension type if any
1638 if (ExtendKind == ISD::SIGN_EXTEND)
1639 Flags.setSExt();
1640 else if (ExtendKind == ISD::ZERO_EXTEND)
1641 Flags.setZExt();
1643 for (unsigned i = 0; i < NumParts; ++i) {
1644 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1645 VT, /*isfixed=*/true, 0, 0));
1646 OutVals.push_back(Parts[i]);
1652 // Push in swifterror virtual register as the last element of Outs. This makes
1653 // sure swifterror virtual register will be returned in the swifterror
1654 // physical register.
1655 const Function *F = I.getParent()->getParent();
1656 if (TLI.supportSwiftError() &&
1657 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1658 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1659 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1660 Flags.setSwiftError();
1661 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1662 EVT(TLI.getPointerTy(DL)) /*argvt*/,
1663 true /*isfixed*/, 1 /*origidx*/,
1664 0 /*partOffs*/));
1665 // Create SDNode for the swifterror virtual register.
1666 OutVals.push_back(
1667 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1668 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1669 EVT(TLI.getPointerTy(DL))));
1672 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1673 CallingConv::ID CallConv =
1674 DAG.getMachineFunction().getFunction().getCallingConv();
1675 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1676 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1678 // Verify that the target's LowerReturn behaved as expected.
1679 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1680 "LowerReturn didn't return a valid chain!");
1682 // Update the DAG with the new chain value resulting from return lowering.
1683 DAG.setRoot(Chain);
1686 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1687 /// created for it, emit nodes to copy the value into the virtual
1688 /// registers.
1689 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1690 // Skip empty types
1691 if (V->getType()->isEmptyTy())
1692 return;
1694 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1695 if (VMI != FuncInfo.ValueMap.end()) {
1696 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1697 CopyValueToVirtualRegister(V, VMI->second);
1701 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1702 /// the current basic block, add it to ValueMap now so that we'll get a
1703 /// CopyTo/FromReg.
1704 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1705 // No need to export constants.
1706 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1708 // Already exported?
1709 if (FuncInfo.isExportedInst(V)) return;
1711 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1712 CopyValueToVirtualRegister(V, Reg);
1715 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1716 const BasicBlock *FromBB) {
1717 // The operands of the setcc have to be in this block. We don't know
1718 // how to export them from some other block.
1719 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1720 // Can export from current BB.
1721 if (VI->getParent() == FromBB)
1722 return true;
1724 // Is already exported, noop.
1725 return FuncInfo.isExportedInst(V);
1728 // If this is an argument, we can export it if the BB is the entry block or
1729 // if it is already exported.
1730 if (isa<Argument>(V)) {
1731 if (FromBB == &FromBB->getParent()->getEntryBlock())
1732 return true;
1734 // Otherwise, can only export this if it is already exported.
1735 return FuncInfo.isExportedInst(V);
1738 // Otherwise, constants can always be exported.
1739 return true;
1742 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1743 BranchProbability
1744 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1745 const MachineBasicBlock *Dst) const {
1746 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1747 const BasicBlock *SrcBB = Src->getBasicBlock();
1748 const BasicBlock *DstBB = Dst->getBasicBlock();
1749 if (!BPI) {
1750 // If BPI is not available, set the default probability as 1 / N, where N is
1751 // the number of successors.
1752 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1753 return BranchProbability(1, SuccSize);
1755 return BPI->getEdgeProbability(SrcBB, DstBB);
1758 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1759 MachineBasicBlock *Dst,
1760 BranchProbability Prob) {
1761 if (!FuncInfo.BPI)
1762 Src->addSuccessorWithoutProb(Dst);
1763 else {
1764 if (Prob.isUnknown())
1765 Prob = getEdgeProbability(Src, Dst);
1766 Src->addSuccessor(Dst, Prob);
1770 static bool InBlock(const Value *V, const BasicBlock *BB) {
1771 if (const Instruction *I = dyn_cast<Instruction>(V))
1772 return I->getParent() == BB;
1773 return true;
1776 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1777 /// This function emits a branch and is used at the leaves of an OR or an
1778 /// AND operator tree.
1779 void
1780 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1781 MachineBasicBlock *TBB,
1782 MachineBasicBlock *FBB,
1783 MachineBasicBlock *CurBB,
1784 MachineBasicBlock *SwitchBB,
1785 BranchProbability TProb,
1786 BranchProbability FProb,
1787 bool InvertCond) {
1788 const BasicBlock *BB = CurBB->getBasicBlock();
1790 // If the leaf of the tree is a comparison, merge the condition into
1791 // the caseblock.
1792 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1793 // The operands of the cmp have to be in this block. We don't know
1794 // how to export them from some other block. If this is the first block
1795 // of the sequence, no exporting is needed.
1796 if (CurBB == SwitchBB ||
1797 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1798 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1799 ISD::CondCode Condition;
1800 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1801 ICmpInst::Predicate Pred =
1802 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1803 Condition = getICmpCondCode(Pred);
1804 } else {
1805 const FCmpInst *FC = cast<FCmpInst>(Cond);
1806 FCmpInst::Predicate Pred =
1807 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1808 Condition = getFCmpCondCode(Pred);
1809 if (TM.Options.NoNaNsFPMath)
1810 Condition = getFCmpCodeWithoutNaN(Condition);
1813 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1814 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1815 SwitchCases.push_back(CB);
1816 return;
1820 // Create a CaseBlock record representing this branch.
1821 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1822 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1823 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1824 SwitchCases.push_back(CB);
1827 /// FindMergedConditions - If Cond is an expression like
1828 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1829 MachineBasicBlock *TBB,
1830 MachineBasicBlock *FBB,
1831 MachineBasicBlock *CurBB,
1832 MachineBasicBlock *SwitchBB,
1833 Instruction::BinaryOps Opc,
1834 BranchProbability TProb,
1835 BranchProbability FProb,
1836 bool InvertCond) {
1837 // Skip over not part of the tree and remember to invert op and operands at
1838 // next level.
1839 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1840 const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1841 if (InBlock(CondOp, CurBB->getBasicBlock())) {
1842 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1843 !InvertCond);
1844 return;
1848 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1849 // Compute the effective opcode for Cond, taking into account whether it needs
1850 // to be inverted, e.g.
1851 // and (not (or A, B)), C
1852 // gets lowered as
1853 // and (and (not A, not B), C)
1854 unsigned BOpc = 0;
1855 if (BOp) {
1856 BOpc = BOp->getOpcode();
1857 if (InvertCond) {
1858 if (BOpc == Instruction::And)
1859 BOpc = Instruction::Or;
1860 else if (BOpc == Instruction::Or)
1861 BOpc = Instruction::And;
1865 // If this node is not part of the or/and tree, emit it as a branch.
1866 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1867 BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1868 BOp->getParent() != CurBB->getBasicBlock() ||
1869 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1870 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1871 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1872 TProb, FProb, InvertCond);
1873 return;
1876 // Create TmpBB after CurBB.
1877 MachineFunction::iterator BBI(CurBB);
1878 MachineFunction &MF = DAG.getMachineFunction();
1879 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1880 CurBB->getParent()->insert(++BBI, TmpBB);
1882 if (Opc == Instruction::Or) {
1883 // Codegen X | Y as:
1884 // BB1:
1885 // jmp_if_X TBB
1886 // jmp TmpBB
1887 // TmpBB:
1888 // jmp_if_Y TBB
1889 // jmp FBB
1892 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1893 // The requirement is that
1894 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1895 // = TrueProb for original BB.
1896 // Assuming the original probabilities are A and B, one choice is to set
1897 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1898 // A/(1+B) and 2B/(1+B). This choice assumes that
1899 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1900 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1901 // TmpBB, but the math is more complicated.
1903 auto NewTrueProb = TProb / 2;
1904 auto NewFalseProb = TProb / 2 + FProb;
1905 // Emit the LHS condition.
1906 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1907 NewTrueProb, NewFalseProb, InvertCond);
1909 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1910 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1911 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1912 // Emit the RHS condition into TmpBB.
1913 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1914 Probs[0], Probs[1], InvertCond);
1915 } else {
1916 assert(Opc == Instruction::And && "Unknown merge op!");
1917 // Codegen X & Y as:
1918 // BB1:
1919 // jmp_if_X TmpBB
1920 // jmp FBB
1921 // TmpBB:
1922 // jmp_if_Y TBB
1923 // jmp FBB
1925 // This requires creation of TmpBB after CurBB.
1927 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1928 // The requirement is that
1929 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1930 // = FalseProb for original BB.
1931 // Assuming the original probabilities are A and B, one choice is to set
1932 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1933 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1934 // TrueProb for BB1 * FalseProb for TmpBB.
1936 auto NewTrueProb = TProb + FProb / 2;
1937 auto NewFalseProb = FProb / 2;
1938 // Emit the LHS condition.
1939 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1940 NewTrueProb, NewFalseProb, InvertCond);
1942 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1943 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1944 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1945 // Emit the RHS condition into TmpBB.
1946 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1947 Probs[0], Probs[1], InvertCond);
1951 /// If the set of cases should be emitted as a series of branches, return true.
1952 /// If we should emit this as a bunch of and/or'd together conditions, return
1953 /// false.
1954 bool
1955 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1956 if (Cases.size() != 2) return true;
1958 // If this is two comparisons of the same values or'd or and'd together, they
1959 // will get folded into a single comparison, so don't emit two blocks.
1960 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1961 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1962 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1963 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1964 return false;
1967 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1968 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1969 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1970 Cases[0].CC == Cases[1].CC &&
1971 isa<Constant>(Cases[0].CmpRHS) &&
1972 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1973 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1974 return false;
1975 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1976 return false;
1979 return true;
1982 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1983 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1985 // Update machine-CFG edges.
1986 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1988 if (I.isUnconditional()) {
1989 // Update machine-CFG edges.
1990 BrMBB->addSuccessor(Succ0MBB);
1992 // If this is not a fall-through branch or optimizations are switched off,
1993 // emit the branch.
1994 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1995 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1996 MVT::Other, getControlRoot(),
1997 DAG.getBasicBlock(Succ0MBB)));
1999 return;
2002 // If this condition is one of the special cases we handle, do special stuff
2003 // now.
2004 const Value *CondVal = I.getCondition();
2005 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2007 // If this is a series of conditions that are or'd or and'd together, emit
2008 // this as a sequence of branches instead of setcc's with and/or operations.
2009 // As long as jumps are not expensive, this should improve performance.
2010 // For example, instead of something like:
2011 // cmp A, B
2012 // C = seteq
2013 // cmp D, E
2014 // F = setle
2015 // or C, F
2016 // jnz foo
2017 // Emit:
2018 // cmp A, B
2019 // je foo
2020 // cmp D, E
2021 // jle foo
2022 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2023 Instruction::BinaryOps Opcode = BOp->getOpcode();
2024 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2025 !I.getMetadata(LLVMContext::MD_unpredictable) &&
2026 (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2027 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2028 Opcode,
2029 getEdgeProbability(BrMBB, Succ0MBB),
2030 getEdgeProbability(BrMBB, Succ1MBB),
2031 /*InvertCond=*/false);
2032 // If the compares in later blocks need to use values not currently
2033 // exported from this block, export them now. This block should always
2034 // be the first entry.
2035 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2037 // Allow some cases to be rejected.
2038 if (ShouldEmitAsBranches(SwitchCases)) {
2039 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2040 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2041 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2044 // Emit the branch for this block.
2045 visitSwitchCase(SwitchCases[0], BrMBB);
2046 SwitchCases.erase(SwitchCases.begin());
2047 return;
2050 // Okay, we decided not to do this, remove any inserted MBB's and clear
2051 // SwitchCases.
2052 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2053 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2055 SwitchCases.clear();
2059 // Create a CaseBlock record representing this branch.
2060 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2061 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2063 // Use visitSwitchCase to actually insert the fast branch sequence for this
2064 // cond branch.
2065 visitSwitchCase(CB, BrMBB);
2068 /// visitSwitchCase - Emits the necessary code to represent a single node in
2069 /// the binary search tree resulting from lowering a switch instruction.
2070 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2071 MachineBasicBlock *SwitchBB) {
2072 SDValue Cond;
2073 SDValue CondLHS = getValue(CB.CmpLHS);
2074 SDLoc dl = CB.DL;
2076 // Build the setcc now.
2077 if (!CB.CmpMHS) {
2078 // Fold "(X == true)" to X and "(X == false)" to !X to
2079 // handle common cases produced by branch lowering.
2080 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2081 CB.CC == ISD::SETEQ)
2082 Cond = CondLHS;
2083 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2084 CB.CC == ISD::SETEQ) {
2085 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2086 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2087 } else
2088 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2089 } else {
2090 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2092 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2093 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2095 SDValue CmpOp = getValue(CB.CmpMHS);
2096 EVT VT = CmpOp.getValueType();
2098 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2099 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2100 ISD::SETLE);
2101 } else {
2102 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2103 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2104 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2105 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2109 // Update successor info
2110 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2111 // TrueBB and FalseBB are always different unless the incoming IR is
2112 // degenerate. This only happens when running llc on weird IR.
2113 if (CB.TrueBB != CB.FalseBB)
2114 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2115 SwitchBB->normalizeSuccProbs();
2117 // If the lhs block is the next block, invert the condition so that we can
2118 // fall through to the lhs instead of the rhs block.
2119 if (CB.TrueBB == NextBlock(SwitchBB)) {
2120 std::swap(CB.TrueBB, CB.FalseBB);
2121 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2122 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2125 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2126 MVT::Other, getControlRoot(), Cond,
2127 DAG.getBasicBlock(CB.TrueBB));
2129 // Insert the false branch. Do this even if it's a fall through branch,
2130 // this makes it easier to do DAG optimizations which require inverting
2131 // the branch condition.
2132 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2133 DAG.getBasicBlock(CB.FalseBB));
2135 DAG.setRoot(BrCond);
2138 /// visitJumpTable - Emit JumpTable node in the current MBB
2139 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2140 // Emit the code for the jump table
2141 assert(JT.Reg != -1U && "Should lower JT Header first!");
2142 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2143 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2144 JT.Reg, PTy);
2145 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2146 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2147 MVT::Other, Index.getValue(1),
2148 Table, Index);
2149 DAG.setRoot(BrJumpTable);
2152 /// visitJumpTableHeader - This function emits necessary code to produce index
2153 /// in the JumpTable from switch case.
2154 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2155 JumpTableHeader &JTH,
2156 MachineBasicBlock *SwitchBB) {
2157 SDLoc dl = getCurSDLoc();
2159 // Subtract the lowest switch case value from the value being switched on and
2160 // conditional branch to default mbb if the result is greater than the
2161 // difference between smallest and largest cases.
2162 SDValue SwitchOp = getValue(JTH.SValue);
2163 EVT VT = SwitchOp.getValueType();
2164 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2165 DAG.getConstant(JTH.First, dl, VT));
2167 // The SDNode we just created, which holds the value being switched on minus
2168 // the smallest case value, needs to be copied to a virtual register so it
2169 // can be used as an index into the jump table in a subsequent basic block.
2170 // This value may be smaller or larger than the target's pointer type, and
2171 // therefore require extension or truncating.
2172 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2173 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2175 unsigned JumpTableReg =
2176 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2177 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2178 JumpTableReg, SwitchOp);
2179 JT.Reg = JumpTableReg;
2181 // Emit the range check for the jump table, and branch to the default block
2182 // for the switch statement if the value being switched on exceeds the largest
2183 // case in the switch.
2184 SDValue CMP = DAG.getSetCC(
2185 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2186 Sub.getValueType()),
2187 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2189 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2190 MVT::Other, CopyTo, CMP,
2191 DAG.getBasicBlock(JT.Default));
2193 // Avoid emitting unnecessary branches to the next block.
2194 if (JT.MBB != NextBlock(SwitchBB))
2195 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2196 DAG.getBasicBlock(JT.MBB));
2198 DAG.setRoot(BrCond);
2201 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2202 /// variable if there exists one.
2203 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2204 SDValue &Chain) {
2205 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2206 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2207 MachineFunction &MF = DAG.getMachineFunction();
2208 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2209 MachineSDNode *Node =
2210 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2211 if (Global) {
2212 MachinePointerInfo MPInfo(Global);
2213 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2214 MachineMemOperand::MODereferenceable;
2215 MachineMemOperand *MemRef = MF.getMachineMemOperand(
2216 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2217 DAG.setNodeMemRefs(Node, {MemRef});
2219 return SDValue(Node, 0);
2222 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2223 /// tail spliced into a stack protector check success bb.
2225 /// For a high level explanation of how this fits into the stack protector
2226 /// generation see the comment on the declaration of class
2227 /// StackProtectorDescriptor.
2228 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2229 MachineBasicBlock *ParentBB) {
2231 // First create the loads to the guard/stack slot for the comparison.
2232 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2233 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2235 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2236 int FI = MFI.getStackProtectorIndex();
2238 SDValue Guard;
2239 SDLoc dl = getCurSDLoc();
2240 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2241 const Module &M = *ParentBB->getParent()->getFunction().getParent();
2242 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2244 // Generate code to load the content of the guard slot.
2245 SDValue GuardVal = DAG.getLoad(
2246 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2247 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2248 MachineMemOperand::MOVolatile);
2250 if (TLI.useStackGuardXorFP())
2251 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2253 // Retrieve guard check function, nullptr if instrumentation is inlined.
2254 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2255 // The target provides a guard check function to validate the guard value.
2256 // Generate a call to that function with the content of the guard slot as
2257 // argument.
2258 auto *Fn = cast<Function>(GuardCheck);
2259 FunctionType *FnTy = Fn->getFunctionType();
2260 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2262 TargetLowering::ArgListTy Args;
2263 TargetLowering::ArgListEntry Entry;
2264 Entry.Node = GuardVal;
2265 Entry.Ty = FnTy->getParamType(0);
2266 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2267 Entry.IsInReg = true;
2268 Args.push_back(Entry);
2270 TargetLowering::CallLoweringInfo CLI(DAG);
2271 CLI.setDebugLoc(getCurSDLoc())
2272 .setChain(DAG.getEntryNode())
2273 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2274 getValue(GuardCheck), std::move(Args));
2276 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2277 DAG.setRoot(Result.second);
2278 return;
2281 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2282 // Otherwise, emit a volatile load to retrieve the stack guard value.
2283 SDValue Chain = DAG.getEntryNode();
2284 if (TLI.useLoadStackGuardNode()) {
2285 Guard = getLoadStackGuard(DAG, dl, Chain);
2286 } else {
2287 const Value *IRGuard = TLI.getSDagStackGuard(M);
2288 SDValue GuardPtr = getValue(IRGuard);
2290 Guard =
2291 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2292 Align, MachineMemOperand::MOVolatile);
2295 // Perform the comparison via a subtract/getsetcc.
2296 EVT VT = Guard.getValueType();
2297 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2299 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2300 *DAG.getContext(),
2301 Sub.getValueType()),
2302 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2304 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2305 // branch to failure MBB.
2306 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2307 MVT::Other, GuardVal.getOperand(0),
2308 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2309 // Otherwise branch to success MBB.
2310 SDValue Br = DAG.getNode(ISD::BR, dl,
2311 MVT::Other, BrCond,
2312 DAG.getBasicBlock(SPD.getSuccessMBB()));
2314 DAG.setRoot(Br);
2317 /// Codegen the failure basic block for a stack protector check.
2319 /// A failure stack protector machine basic block consists simply of a call to
2320 /// __stack_chk_fail().
2322 /// For a high level explanation of how this fits into the stack protector
2323 /// generation see the comment on the declaration of class
2324 /// StackProtectorDescriptor.
2325 void
2326 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2327 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2328 SDValue Chain =
2329 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2330 None, false, getCurSDLoc(), false, false).second;
2331 DAG.setRoot(Chain);
2334 /// visitBitTestHeader - This function emits necessary code to produce value
2335 /// suitable for "bit tests"
2336 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2337 MachineBasicBlock *SwitchBB) {
2338 SDLoc dl = getCurSDLoc();
2340 // Subtract the minimum value
2341 SDValue SwitchOp = getValue(B.SValue);
2342 EVT VT = SwitchOp.getValueType();
2343 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2344 DAG.getConstant(B.First, dl, VT));
2346 // Check range
2347 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2348 SDValue RangeCmp = DAG.getSetCC(
2349 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2350 Sub.getValueType()),
2351 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2353 // Determine the type of the test operands.
2354 bool UsePtrType = false;
2355 if (!TLI.isTypeLegal(VT))
2356 UsePtrType = true;
2357 else {
2358 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2359 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2360 // Switch table case range are encoded into series of masks.
2361 // Just use pointer type, it's guaranteed to fit.
2362 UsePtrType = true;
2363 break;
2366 if (UsePtrType) {
2367 VT = TLI.getPointerTy(DAG.getDataLayout());
2368 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2371 B.RegVT = VT.getSimpleVT();
2372 B.Reg = FuncInfo.CreateReg(B.RegVT);
2373 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2375 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2377 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2378 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2379 SwitchBB->normalizeSuccProbs();
2381 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2382 MVT::Other, CopyTo, RangeCmp,
2383 DAG.getBasicBlock(B.Default));
2385 // Avoid emitting unnecessary branches to the next block.
2386 if (MBB != NextBlock(SwitchBB))
2387 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2388 DAG.getBasicBlock(MBB));
2390 DAG.setRoot(BrRange);
2393 /// visitBitTestCase - this function produces one "bit test"
2394 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2395 MachineBasicBlock* NextMBB,
2396 BranchProbability BranchProbToNext,
2397 unsigned Reg,
2398 BitTestCase &B,
2399 MachineBasicBlock *SwitchBB) {
2400 SDLoc dl = getCurSDLoc();
2401 MVT VT = BB.RegVT;
2402 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2403 SDValue Cmp;
2404 unsigned PopCount = countPopulation(B.Mask);
2405 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2406 if (PopCount == 1) {
2407 // Testing for a single bit; just compare the shift count with what it
2408 // would need to be to shift a 1 bit in that position.
2409 Cmp = DAG.getSetCC(
2410 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2411 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2412 ISD::SETEQ);
2413 } else if (PopCount == BB.Range) {
2414 // There is only one zero bit in the range, test for it directly.
2415 Cmp = DAG.getSetCC(
2416 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2417 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2418 ISD::SETNE);
2419 } else {
2420 // Make desired shift
2421 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2422 DAG.getConstant(1, dl, VT), ShiftOp);
2424 // Emit bit tests and jumps
2425 SDValue AndOp = DAG.getNode(ISD::AND, dl,
2426 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2427 Cmp = DAG.getSetCC(
2428 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2429 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2432 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2433 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2434 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2435 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2436 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2437 // one as they are relative probabilities (and thus work more like weights),
2438 // and hence we need to normalize them to let the sum of them become one.
2439 SwitchBB->normalizeSuccProbs();
2441 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2442 MVT::Other, getControlRoot(),
2443 Cmp, DAG.getBasicBlock(B.TargetBB));
2445 // Avoid emitting unnecessary branches to the next block.
2446 if (NextMBB != NextBlock(SwitchBB))
2447 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2448 DAG.getBasicBlock(NextMBB));
2450 DAG.setRoot(BrAnd);
2453 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2454 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2456 // Retrieve successors. Look through artificial IR level blocks like
2457 // catchswitch for successors.
2458 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2459 const BasicBlock *EHPadBB = I.getSuccessor(1);
2461 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2462 // have to do anything here to lower funclet bundles.
2463 assert(!I.hasOperandBundlesOtherThan(
2464 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2465 "Cannot lower invokes with arbitrary operand bundles yet!");
2467 const Value *Callee(I.getCalledValue());
2468 const Function *Fn = dyn_cast<Function>(Callee);
2469 if (isa<InlineAsm>(Callee))
2470 visitInlineAsm(&I);
2471 else if (Fn && Fn->isIntrinsic()) {
2472 switch (Fn->getIntrinsicID()) {
2473 default:
2474 llvm_unreachable("Cannot invoke this intrinsic");
2475 case Intrinsic::donothing:
2476 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2477 break;
2478 case Intrinsic::experimental_patchpoint_void:
2479 case Intrinsic::experimental_patchpoint_i64:
2480 visitPatchpoint(&I, EHPadBB);
2481 break;
2482 case Intrinsic::experimental_gc_statepoint:
2483 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2484 break;
2486 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2487 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2488 // Eventually we will support lowering the @llvm.experimental.deoptimize
2489 // intrinsic, and right now there are no plans to support other intrinsics
2490 // with deopt state.
2491 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2492 } else {
2493 LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2496 // If the value of the invoke is used outside of its defining block, make it
2497 // available as a virtual register.
2498 // We already took care of the exported value for the statepoint instruction
2499 // during call to the LowerStatepoint.
2500 if (!isStatepoint(I)) {
2501 CopyToExportRegsIfNeeded(&I);
2504 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2505 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2506 BranchProbability EHPadBBProb =
2507 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2508 : BranchProbability::getZero();
2509 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2511 // Update successor info.
2512 addSuccessorWithProb(InvokeMBB, Return);
2513 for (auto &UnwindDest : UnwindDests) {
2514 UnwindDest.first->setIsEHPad();
2515 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2517 InvokeMBB->normalizeSuccProbs();
2519 // Drop into normal successor.
2520 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2521 MVT::Other, getControlRoot(),
2522 DAG.getBasicBlock(Return)));
2525 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2526 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2529 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2530 assert(FuncInfo.MBB->isEHPad() &&
2531 "Call to landingpad not in landing pad!");
2533 // If there aren't registers to copy the values into (e.g., during SjLj
2534 // exceptions), then don't bother to create these DAG nodes.
2535 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2536 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2537 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2538 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2539 return;
2541 // If landingpad's return type is token type, we don't create DAG nodes
2542 // for its exception pointer and selector value. The extraction of exception
2543 // pointer or selector value from token type landingpads is not currently
2544 // supported.
2545 if (LP.getType()->isTokenTy())
2546 return;
2548 SmallVector<EVT, 2> ValueVTs;
2549 SDLoc dl = getCurSDLoc();
2550 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2551 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2553 // Get the two live-in registers as SDValues. The physregs have already been
2554 // copied into virtual registers.
2555 SDValue Ops[2];
2556 if (FuncInfo.ExceptionPointerVirtReg) {
2557 Ops[0] = DAG.getZExtOrTrunc(
2558 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2559 FuncInfo.ExceptionPointerVirtReg,
2560 TLI.getPointerTy(DAG.getDataLayout())),
2561 dl, ValueVTs[0]);
2562 } else {
2563 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2565 Ops[1] = DAG.getZExtOrTrunc(
2566 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2567 FuncInfo.ExceptionSelectorVirtReg,
2568 TLI.getPointerTy(DAG.getDataLayout())),
2569 dl, ValueVTs[1]);
2571 // Merge into one.
2572 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2573 DAG.getVTList(ValueVTs), Ops);
2574 setValue(&LP, Res);
2577 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2578 #ifndef NDEBUG
2579 for (const CaseCluster &CC : Clusters)
2580 assert(CC.Low == CC.High && "Input clusters must be single-case");
2581 #endif
2583 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2584 return a.Low->getValue().slt(b.Low->getValue());
2587 // Merge adjacent clusters with the same destination.
2588 const unsigned N = Clusters.size();
2589 unsigned DstIndex = 0;
2590 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2591 CaseCluster &CC = Clusters[SrcIndex];
2592 const ConstantInt *CaseVal = CC.Low;
2593 MachineBasicBlock *Succ = CC.MBB;
2595 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2596 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2597 // If this case has the same successor and is a neighbour, merge it into
2598 // the previous cluster.
2599 Clusters[DstIndex - 1].High = CaseVal;
2600 Clusters[DstIndex - 1].Prob += CC.Prob;
2601 } else {
2602 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2603 sizeof(Clusters[SrcIndex]));
2606 Clusters.resize(DstIndex);
2609 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2610 MachineBasicBlock *Last) {
2611 // Update JTCases.
2612 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2613 if (JTCases[i].first.HeaderBB == First)
2614 JTCases[i].first.HeaderBB = Last;
2616 // Update BitTestCases.
2617 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2618 if (BitTestCases[i].Parent == First)
2619 BitTestCases[i].Parent = Last;
2622 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2623 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2625 // Update machine-CFG edges with unique successors.
2626 SmallSet<BasicBlock*, 32> Done;
2627 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2628 BasicBlock *BB = I.getSuccessor(i);
2629 bool Inserted = Done.insert(BB).second;
2630 if (!Inserted)
2631 continue;
2633 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2634 addSuccessorWithProb(IndirectBrMBB, Succ);
2636 IndirectBrMBB->normalizeSuccProbs();
2638 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2639 MVT::Other, getControlRoot(),
2640 getValue(I.getAddress())));
2643 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2644 if (!DAG.getTarget().Options.TrapUnreachable)
2645 return;
2647 // We may be able to ignore unreachable behind a noreturn call.
2648 if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2649 const BasicBlock &BB = *I.getParent();
2650 if (&I != &BB.front()) {
2651 BasicBlock::const_iterator PredI =
2652 std::prev(BasicBlock::const_iterator(&I));
2653 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2654 if (Call->doesNotReturn())
2655 return;
2660 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2663 void SelectionDAGBuilder::visitFSub(const User &I) {
2664 // -0.0 - X --> fneg
2665 Type *Ty = I.getType();
2666 if (isa<Constant>(I.getOperand(0)) &&
2667 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2668 SDValue Op2 = getValue(I.getOperand(1));
2669 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2670 Op2.getValueType(), Op2));
2671 return;
2674 visitBinary(I, ISD::FSUB);
2677 /// Checks if the given instruction performs a vector reduction, in which case
2678 /// we have the freedom to alter the elements in the result as long as the
2679 /// reduction of them stays unchanged.
2680 static bool isVectorReductionOp(const User *I) {
2681 const Instruction *Inst = dyn_cast<Instruction>(I);
2682 if (!Inst || !Inst->getType()->isVectorTy())
2683 return false;
2685 auto OpCode = Inst->getOpcode();
2686 switch (OpCode) {
2687 case Instruction::Add:
2688 case Instruction::Mul:
2689 case Instruction::And:
2690 case Instruction::Or:
2691 case Instruction::Xor:
2692 break;
2693 case Instruction::FAdd:
2694 case Instruction::FMul:
2695 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2696 if (FPOp->getFastMathFlags().isFast())
2697 break;
2698 LLVM_FALLTHROUGH;
2699 default:
2700 return false;
2703 unsigned ElemNum = Inst->getType()->getVectorNumElements();
2704 // Ensure the reduction size is a power of 2.
2705 if (!isPowerOf2_32(ElemNum))
2706 return false;
2708 unsigned ElemNumToReduce = ElemNum;
2710 // Do DFS search on the def-use chain from the given instruction. We only
2711 // allow four kinds of operations during the search until we reach the
2712 // instruction that extracts the first element from the vector:
2714 // 1. The reduction operation of the same opcode as the given instruction.
2716 // 2. PHI node.
2718 // 3. ShuffleVector instruction together with a reduction operation that
2719 // does a partial reduction.
2721 // 4. ExtractElement that extracts the first element from the vector, and we
2722 // stop searching the def-use chain here.
2724 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2725 // from 1-3 to the stack to continue the DFS. The given instruction is not
2726 // a reduction operation if we meet any other instructions other than those
2727 // listed above.
2729 SmallVector<const User *, 16> UsersToVisit{Inst};
2730 SmallPtrSet<const User *, 16> Visited;
2731 bool ReduxExtracted = false;
2733 while (!UsersToVisit.empty()) {
2734 auto User = UsersToVisit.back();
2735 UsersToVisit.pop_back();
2736 if (!Visited.insert(User).second)
2737 continue;
2739 for (const auto &U : User->users()) {
2740 auto Inst = dyn_cast<Instruction>(U);
2741 if (!Inst)
2742 return false;
2744 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2745 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2746 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2747 return false;
2748 UsersToVisit.push_back(U);
2749 } else if (const ShuffleVectorInst *ShufInst =
2750 dyn_cast<ShuffleVectorInst>(U)) {
2751 // Detect the following pattern: A ShuffleVector instruction together
2752 // with a reduction that do partial reduction on the first and second
2753 // ElemNumToReduce / 2 elements, and store the result in
2754 // ElemNumToReduce / 2 elements in another vector.
2756 unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2757 if (ResultElements < ElemNum)
2758 return false;
2760 if (ElemNumToReduce == 1)
2761 return false;
2762 if (!isa<UndefValue>(U->getOperand(1)))
2763 return false;
2764 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2765 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2766 return false;
2767 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2768 if (ShufInst->getMaskValue(i) != -1)
2769 return false;
2771 // There is only one user of this ShuffleVector instruction, which
2772 // must be a reduction operation.
2773 if (!U->hasOneUse())
2774 return false;
2776 auto U2 = dyn_cast<Instruction>(*U->user_begin());
2777 if (!U2 || U2->getOpcode() != OpCode)
2778 return false;
2780 // Check operands of the reduction operation.
2781 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2782 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2783 UsersToVisit.push_back(U2);
2784 ElemNumToReduce /= 2;
2785 } else
2786 return false;
2787 } else if (isa<ExtractElementInst>(U)) {
2788 // At this moment we should have reduced all elements in the vector.
2789 if (ElemNumToReduce != 1)
2790 return false;
2792 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2793 if (!Val || !Val->isZero())
2794 return false;
2796 ReduxExtracted = true;
2797 } else
2798 return false;
2801 return ReduxExtracted;
2804 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2805 SDNodeFlags Flags;
2806 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2807 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2808 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2810 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2811 Flags.setExact(ExactOp->isExact());
2813 if (isVectorReductionOp(&I)) {
2814 Flags.setVectorReduction(true);
2815 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2818 SDValue Op1 = getValue(I.getOperand(0));
2819 SDValue Op2 = getValue(I.getOperand(1));
2820 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2821 Op1, Op2, Flags);
2822 setValue(&I, BinNodeValue);
2825 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2826 SDValue Op1 = getValue(I.getOperand(0));
2827 SDValue Op2 = getValue(I.getOperand(1));
2829 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2830 Op1.getValueType(), DAG.getDataLayout());
2832 // Coerce the shift amount to the right type if we can.
2833 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2834 unsigned ShiftSize = ShiftTy.getSizeInBits();
2835 unsigned Op2Size = Op2.getValueSizeInBits();
2836 SDLoc DL = getCurSDLoc();
2838 // If the operand is smaller than the shift count type, promote it.
2839 if (ShiftSize > Op2Size)
2840 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2842 // If the operand is larger than the shift count type but the shift
2843 // count type has enough bits to represent any shift value, truncate
2844 // it now. This is a common case and it exposes the truncate to
2845 // optimization early.
2846 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2847 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2848 // Otherwise we'll need to temporarily settle for some other convenient
2849 // type. Type legalization will make adjustments once the shiftee is split.
2850 else
2851 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2854 bool nuw = false;
2855 bool nsw = false;
2856 bool exact = false;
2858 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2860 if (const OverflowingBinaryOperator *OFBinOp =
2861 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2862 nuw = OFBinOp->hasNoUnsignedWrap();
2863 nsw = OFBinOp->hasNoSignedWrap();
2865 if (const PossiblyExactOperator *ExactOp =
2866 dyn_cast<const PossiblyExactOperator>(&I))
2867 exact = ExactOp->isExact();
2869 SDNodeFlags Flags;
2870 Flags.setExact(exact);
2871 Flags.setNoSignedWrap(nsw);
2872 Flags.setNoUnsignedWrap(nuw);
2873 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2874 Flags);
2875 setValue(&I, Res);
2878 void SelectionDAGBuilder::visitSDiv(const User &I) {
2879 SDValue Op1 = getValue(I.getOperand(0));
2880 SDValue Op2 = getValue(I.getOperand(1));
2882 SDNodeFlags Flags;
2883 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2884 cast<PossiblyExactOperator>(&I)->isExact());
2885 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2886 Op2, Flags));
2889 void SelectionDAGBuilder::visitICmp(const User &I) {
2890 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2891 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2892 predicate = IC->getPredicate();
2893 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2894 predicate = ICmpInst::Predicate(IC->getPredicate());
2895 SDValue Op1 = getValue(I.getOperand(0));
2896 SDValue Op2 = getValue(I.getOperand(1));
2897 ISD::CondCode Opcode = getICmpCondCode(predicate);
2899 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2900 I.getType());
2901 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2904 void SelectionDAGBuilder::visitFCmp(const User &I) {
2905 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2906 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2907 predicate = FC->getPredicate();
2908 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2909 predicate = FCmpInst::Predicate(FC->getPredicate());
2910 SDValue Op1 = getValue(I.getOperand(0));
2911 SDValue Op2 = getValue(I.getOperand(1));
2913 ISD::CondCode Condition = getFCmpCondCode(predicate);
2914 auto *FPMO = dyn_cast<FPMathOperator>(&I);
2915 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2916 Condition = getFCmpCodeWithoutNaN(Condition);
2918 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2919 I.getType());
2920 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2923 // Check if the condition of the select has one use or two users that are both
2924 // selects with the same condition.
2925 static bool hasOnlySelectUsers(const Value *Cond) {
2926 return llvm::all_of(Cond->users(), [](const Value *V) {
2927 return isa<SelectInst>(V);
2931 void SelectionDAGBuilder::visitSelect(const User &I) {
2932 SmallVector<EVT, 4> ValueVTs;
2933 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2934 ValueVTs);
2935 unsigned NumValues = ValueVTs.size();
2936 if (NumValues == 0) return;
2938 SmallVector<SDValue, 4> Values(NumValues);
2939 SDValue Cond = getValue(I.getOperand(0));
2940 SDValue LHSVal = getValue(I.getOperand(1));
2941 SDValue RHSVal = getValue(I.getOperand(2));
2942 auto BaseOps = {Cond};
2943 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2944 ISD::VSELECT : ISD::SELECT;
2946 // Min/max matching is only viable if all output VTs are the same.
2947 if (is_splat(ValueVTs)) {
2948 EVT VT = ValueVTs[0];
2949 LLVMContext &Ctx = *DAG.getContext();
2950 auto &TLI = DAG.getTargetLoweringInfo();
2952 // We care about the legality of the operation after it has been type
2953 // legalized.
2954 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2955 VT != TLI.getTypeToTransformTo(Ctx, VT))
2956 VT = TLI.getTypeToTransformTo(Ctx, VT);
2958 // If the vselect is legal, assume we want to leave this as a vector setcc +
2959 // vselect. Otherwise, if this is going to be scalarized, we want to see if
2960 // min/max is legal on the scalar type.
2961 bool UseScalarMinMax = VT.isVector() &&
2962 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2964 Value *LHS, *RHS;
2965 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2966 ISD::NodeType Opc = ISD::DELETED_NODE;
2967 switch (SPR.Flavor) {
2968 case SPF_UMAX: Opc = ISD::UMAX; break;
2969 case SPF_UMIN: Opc = ISD::UMIN; break;
2970 case SPF_SMAX: Opc = ISD::SMAX; break;
2971 case SPF_SMIN: Opc = ISD::SMIN; break;
2972 case SPF_FMINNUM:
2973 switch (SPR.NaNBehavior) {
2974 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2975 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break;
2976 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2977 case SPNB_RETURNS_ANY: {
2978 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2979 Opc = ISD::FMINNUM;
2980 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2981 Opc = ISD::FMINNAN;
2982 else if (UseScalarMinMax)
2983 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2984 ISD::FMINNUM : ISD::FMINNAN;
2985 break;
2988 break;
2989 case SPF_FMAXNUM:
2990 switch (SPR.NaNBehavior) {
2991 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2992 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break;
2993 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2994 case SPNB_RETURNS_ANY:
2996 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2997 Opc = ISD::FMAXNUM;
2998 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2999 Opc = ISD::FMAXNAN;
3000 else if (UseScalarMinMax)
3001 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3002 ISD::FMAXNUM : ISD::FMAXNAN;
3003 break;
3005 break;
3006 default: break;
3009 if (Opc != ISD::DELETED_NODE &&
3010 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3011 (UseScalarMinMax &&
3012 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3013 // If the underlying comparison instruction is used by any other
3014 // instruction, the consumed instructions won't be destroyed, so it is
3015 // not profitable to convert to a min/max.
3016 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3017 OpCode = Opc;
3018 LHSVal = getValue(LHS);
3019 RHSVal = getValue(RHS);
3020 BaseOps = {};
3024 for (unsigned i = 0; i != NumValues; ++i) {
3025 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3026 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3027 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3028 Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3029 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3030 Ops);
3033 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3034 DAG.getVTList(ValueVTs), Values));
3037 void SelectionDAGBuilder::visitTrunc(const User &I) {
3038 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3039 SDValue N = getValue(I.getOperand(0));
3040 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3041 I.getType());
3042 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3045 void SelectionDAGBuilder::visitZExt(const User &I) {
3046 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3047 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3048 SDValue N = getValue(I.getOperand(0));
3049 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3050 I.getType());
3051 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3054 void SelectionDAGBuilder::visitSExt(const User &I) {
3055 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3056 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3057 SDValue N = getValue(I.getOperand(0));
3058 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3059 I.getType());
3060 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3063 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3064 // FPTrunc is never a no-op cast, no need to check
3065 SDValue N = getValue(I.getOperand(0));
3066 SDLoc dl = getCurSDLoc();
3067 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3068 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3069 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3070 DAG.getTargetConstant(
3071 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3074 void SelectionDAGBuilder::visitFPExt(const User &I) {
3075 // FPExt is never a no-op cast, no need to check
3076 SDValue N = getValue(I.getOperand(0));
3077 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3078 I.getType());
3079 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3082 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3083 // FPToUI is never a no-op cast, no need to check
3084 SDValue N = getValue(I.getOperand(0));
3085 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3086 I.getType());
3087 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3090 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3091 // FPToSI is never a no-op cast, no need to check
3092 SDValue N = getValue(I.getOperand(0));
3093 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3094 I.getType());
3095 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3098 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3099 // UIToFP is never a no-op cast, no need to check
3100 SDValue N = getValue(I.getOperand(0));
3101 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3102 I.getType());
3103 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3106 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3107 // SIToFP is never a no-op cast, no need to check
3108 SDValue N = getValue(I.getOperand(0));
3109 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3110 I.getType());
3111 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3114 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3115 // What to do depends on the size of the integer and the size of the pointer.
3116 // We can either truncate, zero extend, or no-op, accordingly.
3117 SDValue N = getValue(I.getOperand(0));
3118 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3119 I.getType());
3120 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3123 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3124 // What to do depends on the size of the integer and the size of the pointer.
3125 // We can either truncate, zero extend, or no-op, accordingly.
3126 SDValue N = getValue(I.getOperand(0));
3127 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3128 I.getType());
3129 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3132 void SelectionDAGBuilder::visitBitCast(const User &I) {
3133 SDValue N = getValue(I.getOperand(0));
3134 SDLoc dl = getCurSDLoc();
3135 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3136 I.getType());
3138 // BitCast assures us that source and destination are the same size so this is
3139 // either a BITCAST or a no-op.
3140 if (DestVT != N.getValueType())
3141 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3142 DestVT, N)); // convert types.
3143 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3144 // might fold any kind of constant expression to an integer constant and that
3145 // is not what we are looking for. Only recognize a bitcast of a genuine
3146 // constant integer as an opaque constant.
3147 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3148 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3149 /*isOpaque*/true));
3150 else
3151 setValue(&I, N); // noop cast.
3154 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3155 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3156 const Value *SV = I.getOperand(0);
3157 SDValue N = getValue(SV);
3158 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3160 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3161 unsigned DestAS = I.getType()->getPointerAddressSpace();
3163 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3164 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3166 setValue(&I, N);
3169 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3170 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3171 SDValue InVec = getValue(I.getOperand(0));
3172 SDValue InVal = getValue(I.getOperand(1));
3173 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3174 TLI.getVectorIdxTy(DAG.getDataLayout()));
3175 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3176 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3177 InVec, InVal, InIdx));
3180 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3181 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3182 SDValue InVec = getValue(I.getOperand(0));
3183 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3184 TLI.getVectorIdxTy(DAG.getDataLayout()));
3185 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3186 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3187 InVec, InIdx));
3190 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3191 SDValue Src1 = getValue(I.getOperand(0));
3192 SDValue Src2 = getValue(I.getOperand(1));
3193 SDLoc DL = getCurSDLoc();
3195 SmallVector<int, 8> Mask;
3196 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3197 unsigned MaskNumElts = Mask.size();
3199 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3200 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3201 EVT SrcVT = Src1.getValueType();
3202 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3204 if (SrcNumElts == MaskNumElts) {
3205 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3206 return;
3209 // Normalize the shuffle vector since mask and vector length don't match.
3210 if (SrcNumElts < MaskNumElts) {
3211 // Mask is longer than the source vectors. We can use concatenate vector to
3212 // make the mask and vectors lengths match.
3214 if (MaskNumElts % SrcNumElts == 0) {
3215 // Mask length is a multiple of the source vector length.
3216 // Check if the shuffle is some kind of concatenation of the input
3217 // vectors.
3218 unsigned NumConcat = MaskNumElts / SrcNumElts;
3219 bool IsConcat = true;
3220 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3221 for (unsigned i = 0; i != MaskNumElts; ++i) {
3222 int Idx = Mask[i];
3223 if (Idx < 0)
3224 continue;
3225 // Ensure the indices in each SrcVT sized piece are sequential and that
3226 // the same source is used for the whole piece.
3227 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3228 (ConcatSrcs[i / SrcNumElts] >= 0 &&
3229 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3230 IsConcat = false;
3231 break;
3233 // Remember which source this index came from.
3234 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3237 // The shuffle is concatenating multiple vectors together. Just emit
3238 // a CONCAT_VECTORS operation.
3239 if (IsConcat) {
3240 SmallVector<SDValue, 8> ConcatOps;
3241 for (auto Src : ConcatSrcs) {
3242 if (Src < 0)
3243 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3244 else if (Src == 0)
3245 ConcatOps.push_back(Src1);
3246 else
3247 ConcatOps.push_back(Src2);
3249 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3250 return;
3254 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3255 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3256 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3257 PaddedMaskNumElts);
3259 // Pad both vectors with undefs to make them the same length as the mask.
3260 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3262 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3263 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3264 MOps1[0] = Src1;
3265 MOps2[0] = Src2;
3267 Src1 = Src1.isUndef()
3268 ? DAG.getUNDEF(PaddedVT)
3269 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3270 Src2 = Src2.isUndef()
3271 ? DAG.getUNDEF(PaddedVT)
3272 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3274 // Readjust mask for new input vector length.
3275 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3276 for (unsigned i = 0; i != MaskNumElts; ++i) {
3277 int Idx = Mask[i];
3278 if (Idx >= (int)SrcNumElts)
3279 Idx -= SrcNumElts - PaddedMaskNumElts;
3280 MappedOps[i] = Idx;
3283 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3285 // If the concatenated vector was padded, extract a subvector with the
3286 // correct number of elements.
3287 if (MaskNumElts != PaddedMaskNumElts)
3288 Result = DAG.getNode(
3289 ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3290 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3292 setValue(&I, Result);
3293 return;
3296 if (SrcNumElts > MaskNumElts) {
3297 // Analyze the access pattern of the vector to see if we can extract
3298 // two subvectors and do the shuffle.
3299 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
3300 bool CanExtract = true;
3301 for (int Idx : Mask) {
3302 unsigned Input = 0;
3303 if (Idx < 0)
3304 continue;
3306 if (Idx >= (int)SrcNumElts) {
3307 Input = 1;
3308 Idx -= SrcNumElts;
3311 // If all the indices come from the same MaskNumElts sized portion of
3312 // the sources we can use extract. Also make sure the extract wouldn't
3313 // extract past the end of the source.
3314 int NewStartIdx = alignDown(Idx, MaskNumElts);
3315 if (NewStartIdx + MaskNumElts > SrcNumElts ||
3316 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3317 CanExtract = false;
3318 // Make sure we always update StartIdx as we use it to track if all
3319 // elements are undef.
3320 StartIdx[Input] = NewStartIdx;
3323 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3324 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3325 return;
3327 if (CanExtract) {
3328 // Extract appropriate subvector and generate a vector shuffle
3329 for (unsigned Input = 0; Input < 2; ++Input) {
3330 SDValue &Src = Input == 0 ? Src1 : Src2;
3331 if (StartIdx[Input] < 0)
3332 Src = DAG.getUNDEF(VT);
3333 else {
3334 Src = DAG.getNode(
3335 ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3336 DAG.getConstant(StartIdx[Input], DL,
3337 TLI.getVectorIdxTy(DAG.getDataLayout())));
3341 // Calculate new mask.
3342 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3343 for (int &Idx : MappedOps) {
3344 if (Idx >= (int)SrcNumElts)
3345 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3346 else if (Idx >= 0)
3347 Idx -= StartIdx[0];
3350 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3351 return;
3355 // We can't use either concat vectors or extract subvectors so fall back to
3356 // replacing the shuffle with extract and build vector.
3357 // to insert and build vector.
3358 EVT EltVT = VT.getVectorElementType();
3359 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3360 SmallVector<SDValue,8> Ops;
3361 for (int Idx : Mask) {
3362 SDValue Res;
3364 if (Idx < 0) {
3365 Res = DAG.getUNDEF(EltVT);
3366 } else {
3367 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3368 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3370 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3371 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3374 Ops.push_back(Res);
3377 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3380 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3381 ArrayRef<unsigned> Indices;
3382 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3383 Indices = IV->getIndices();
3384 else
3385 Indices = cast<ConstantExpr>(&I)->getIndices();
3387 const Value *Op0 = I.getOperand(0);
3388 const Value *Op1 = I.getOperand(1);
3389 Type *AggTy = I.getType();
3390 Type *ValTy = Op1->getType();
3391 bool IntoUndef = isa<UndefValue>(Op0);
3392 bool FromUndef = isa<UndefValue>(Op1);
3394 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3396 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3397 SmallVector<EVT, 4> AggValueVTs;
3398 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3399 SmallVector<EVT, 4> ValValueVTs;
3400 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3402 unsigned NumAggValues = AggValueVTs.size();
3403 unsigned NumValValues = ValValueVTs.size();
3404 SmallVector<SDValue, 4> Values(NumAggValues);
3406 // Ignore an insertvalue that produces an empty object
3407 if (!NumAggValues) {
3408 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3409 return;
3412 SDValue Agg = getValue(Op0);
3413 unsigned i = 0;
3414 // Copy the beginning value(s) from the original aggregate.
3415 for (; i != LinearIndex; ++i)
3416 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3417 SDValue(Agg.getNode(), Agg.getResNo() + i);
3418 // Copy values from the inserted value(s).
3419 if (NumValValues) {
3420 SDValue Val = getValue(Op1);
3421 for (; i != LinearIndex + NumValValues; ++i)
3422 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3423 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3425 // Copy remaining value(s) from the original aggregate.
3426 for (; i != NumAggValues; ++i)
3427 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3428 SDValue(Agg.getNode(), Agg.getResNo() + i);
3430 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3431 DAG.getVTList(AggValueVTs), Values));
3434 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3435 ArrayRef<unsigned> Indices;
3436 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3437 Indices = EV->getIndices();
3438 else
3439 Indices = cast<ConstantExpr>(&I)->getIndices();
3441 const Value *Op0 = I.getOperand(0);
3442 Type *AggTy = Op0->getType();
3443 Type *ValTy = I.getType();
3444 bool OutOfUndef = isa<UndefValue>(Op0);
3446 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3448 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3449 SmallVector<EVT, 4> ValValueVTs;
3450 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3452 unsigned NumValValues = ValValueVTs.size();
3454 // Ignore a extractvalue that produces an empty object
3455 if (!NumValValues) {
3456 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3457 return;
3460 SmallVector<SDValue, 4> Values(NumValValues);
3462 SDValue Agg = getValue(Op0);
3463 // Copy out the selected value(s).
3464 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3465 Values[i - LinearIndex] =
3466 OutOfUndef ?
3467 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3468 SDValue(Agg.getNode(), Agg.getResNo() + i);
3470 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3471 DAG.getVTList(ValValueVTs), Values));
3474 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3475 Value *Op0 = I.getOperand(0);
3476 // Note that the pointer operand may be a vector of pointers. Take the scalar
3477 // element which holds a pointer.
3478 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3479 SDValue N = getValue(Op0);
3480 SDLoc dl = getCurSDLoc();
3482 // Normalize Vector GEP - all scalar operands should be converted to the
3483 // splat vector.
3484 unsigned VectorWidth = I.getType()->isVectorTy() ?
3485 cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3487 if (VectorWidth && !N.getValueType().isVector()) {
3488 LLVMContext &Context = *DAG.getContext();
3489 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3490 N = DAG.getSplatBuildVector(VT, dl, N);
3493 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3494 GTI != E; ++GTI) {
3495 const Value *Idx = GTI.getOperand();
3496 if (StructType *StTy = GTI.getStructTypeOrNull()) {
3497 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3498 if (Field) {
3499 // N = N + Offset
3500 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3502 // In an inbounds GEP with an offset that is nonnegative even when
3503 // interpreted as signed, assume there is no unsigned overflow.
3504 SDNodeFlags Flags;
3505 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3506 Flags.setNoUnsignedWrap(true);
3508 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3509 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3511 } else {
3512 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3513 MVT IdxTy = MVT::getIntegerVT(IdxSize);
3514 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3516 // If this is a scalar constant or a splat vector of constants,
3517 // handle it quickly.
3518 const auto *CI = dyn_cast<ConstantInt>(Idx);
3519 if (!CI && isa<ConstantDataVector>(Idx) &&
3520 cast<ConstantDataVector>(Idx)->getSplatValue())
3521 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3523 if (CI) {
3524 if (CI->isZero())
3525 continue;
3526 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3527 LLVMContext &Context = *DAG.getContext();
3528 SDValue OffsVal = VectorWidth ?
3529 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3530 DAG.getConstant(Offs, dl, IdxTy);
3532 // In an inbouds GEP with an offset that is nonnegative even when
3533 // interpreted as signed, assume there is no unsigned overflow.
3534 SDNodeFlags Flags;
3535 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3536 Flags.setNoUnsignedWrap(true);
3538 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3539 continue;
3542 // N = N + Idx * ElementSize;
3543 SDValue IdxN = getValue(Idx);
3545 if (!IdxN.getValueType().isVector() && VectorWidth) {
3546 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3547 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3550 // If the index is smaller or larger than intptr_t, truncate or extend
3551 // it.
3552 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3554 // If this is a multiply by a power of two, turn it into a shl
3555 // immediately. This is a very common case.
3556 if (ElementSize != 1) {
3557 if (ElementSize.isPowerOf2()) {
3558 unsigned Amt = ElementSize.logBase2();
3559 IdxN = DAG.getNode(ISD::SHL, dl,
3560 N.getValueType(), IdxN,
3561 DAG.getConstant(Amt, dl, IdxN.getValueType()));
3562 } else {
3563 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3564 IdxN = DAG.getNode(ISD::MUL, dl,
3565 N.getValueType(), IdxN, Scale);
3569 N = DAG.getNode(ISD::ADD, dl,
3570 N.getValueType(), N, IdxN);
3574 setValue(&I, N);
3577 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3578 // If this is a fixed sized alloca in the entry block of the function,
3579 // allocate it statically on the stack.
3580 if (FuncInfo.StaticAllocaMap.count(&I))
3581 return; // getValue will auto-populate this.
3583 SDLoc dl = getCurSDLoc();
3584 Type *Ty = I.getAllocatedType();
3585 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586 auto &DL = DAG.getDataLayout();
3587 uint64_t TySize = DL.getTypeAllocSize(Ty);
3588 unsigned Align =
3589 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3591 SDValue AllocSize = getValue(I.getArraySize());
3593 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3594 if (AllocSize.getValueType() != IntPtr)
3595 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3597 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3598 AllocSize,
3599 DAG.getConstant(TySize, dl, IntPtr));
3601 // Handle alignment. If the requested alignment is less than or equal to
3602 // the stack alignment, ignore it. If the size is greater than or equal to
3603 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3604 unsigned StackAlign =
3605 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3606 if (Align <= StackAlign)
3607 Align = 0;
3609 // Round the size of the allocation up to the stack alignment size
3610 // by add SA-1 to the size. This doesn't overflow because we're computing
3611 // an address inside an alloca.
3612 SDNodeFlags Flags;
3613 Flags.setNoUnsignedWrap(true);
3614 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3615 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3617 // Mask out the low bits for alignment purposes.
3618 AllocSize =
3619 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3620 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3622 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3623 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3624 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3625 setValue(&I, DSA);
3626 DAG.setRoot(DSA.getValue(1));
3628 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3631 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3632 if (I.isAtomic())
3633 return visitAtomicLoad(I);
3635 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3636 const Value *SV = I.getOperand(0);
3637 if (TLI.supportSwiftError()) {
3638 // Swifterror values can come from either a function parameter with
3639 // swifterror attribute or an alloca with swifterror attribute.
3640 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3641 if (Arg->hasSwiftErrorAttr())
3642 return visitLoadFromSwiftError(I);
3645 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3646 if (Alloca->isSwiftError())
3647 return visitLoadFromSwiftError(I);
3651 SDValue Ptr = getValue(SV);
3653 Type *Ty = I.getType();
3655 bool isVolatile = I.isVolatile();
3656 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3657 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3658 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3659 unsigned Alignment = I.getAlignment();
3661 AAMDNodes AAInfo;
3662 I.getAAMetadata(AAInfo);
3663 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3665 SmallVector<EVT, 4> ValueVTs;
3666 SmallVector<uint64_t, 4> Offsets;
3667 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3668 unsigned NumValues = ValueVTs.size();
3669 if (NumValues == 0)
3670 return;
3672 SDValue Root;
3673 bool ConstantMemory = false;
3674 if (isVolatile || NumValues > MaxParallelChains)
3675 // Serialize volatile loads with other side effects.
3676 Root = getRoot();
3677 else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3678 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3679 // Do not serialize (non-volatile) loads of constant memory with anything.
3680 Root = DAG.getEntryNode();
3681 ConstantMemory = true;
3682 } else {
3683 // Do not serialize non-volatile loads against each other.
3684 Root = DAG.getRoot();
3687 SDLoc dl = getCurSDLoc();
3689 if (isVolatile)
3690 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3692 // An aggregate load cannot wrap around the address space, so offsets to its
3693 // parts don't wrap either.
3694 SDNodeFlags Flags;
3695 Flags.setNoUnsignedWrap(true);
3697 SmallVector<SDValue, 4> Values(NumValues);
3698 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3699 EVT PtrVT = Ptr.getValueType();
3700 unsigned ChainI = 0;
3701 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3702 // Serializing loads here may result in excessive register pressure, and
3703 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3704 // could recover a bit by hoisting nodes upward in the chain by recognizing
3705 // they are side-effect free or do not alias. The optimizer should really
3706 // avoid this case by converting large object/array copies to llvm.memcpy
3707 // (MaxParallelChains should always remain as failsafe).
3708 if (ChainI == MaxParallelChains) {
3709 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3710 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3711 makeArrayRef(Chains.data(), ChainI));
3712 Root = Chain;
3713 ChainI = 0;
3715 SDValue A = DAG.getNode(ISD::ADD, dl,
3716 PtrVT, Ptr,
3717 DAG.getConstant(Offsets[i], dl, PtrVT),
3718 Flags);
3719 auto MMOFlags = MachineMemOperand::MONone;
3720 if (isVolatile)
3721 MMOFlags |= MachineMemOperand::MOVolatile;
3722 if (isNonTemporal)
3723 MMOFlags |= MachineMemOperand::MONonTemporal;
3724 if (isInvariant)
3725 MMOFlags |= MachineMemOperand::MOInvariant;
3726 if (isDereferenceable)
3727 MMOFlags |= MachineMemOperand::MODereferenceable;
3728 MMOFlags |= TLI.getMMOFlags(I);
3730 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3731 MachinePointerInfo(SV, Offsets[i]), Alignment,
3732 MMOFlags, AAInfo, Ranges);
3734 Values[i] = L;
3735 Chains[ChainI] = L.getValue(1);
3738 if (!ConstantMemory) {
3739 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3740 makeArrayRef(Chains.data(), ChainI));
3741 if (isVolatile)
3742 DAG.setRoot(Chain);
3743 else
3744 PendingLoads.push_back(Chain);
3747 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3748 DAG.getVTList(ValueVTs), Values));
3751 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3752 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3753 "call visitStoreToSwiftError when backend supports swifterror");
3755 SmallVector<EVT, 4> ValueVTs;
3756 SmallVector<uint64_t, 4> Offsets;
3757 const Value *SrcV = I.getOperand(0);
3758 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3759 SrcV->getType(), ValueVTs, &Offsets);
3760 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3761 "expect a single EVT for swifterror");
3763 SDValue Src = getValue(SrcV);
3764 // Create a virtual register, then update the virtual register.
3765 unsigned VReg; bool CreatedVReg;
3766 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3767 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3768 // Chain can be getRoot or getControlRoot.
3769 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3770 SDValue(Src.getNode(), Src.getResNo()));
3771 DAG.setRoot(CopyNode);
3772 if (CreatedVReg)
3773 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3776 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3777 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3778 "call visitLoadFromSwiftError when backend supports swifterror");
3780 assert(!I.isVolatile() &&
3781 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3782 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3783 "Support volatile, non temporal, invariant for load_from_swift_error");
3785 const Value *SV = I.getOperand(0);
3786 Type *Ty = I.getType();
3787 AAMDNodes AAInfo;
3788 I.getAAMetadata(AAInfo);
3789 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3790 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3791 "load_from_swift_error should not be constant memory");
3793 SmallVector<EVT, 4> ValueVTs;
3794 SmallVector<uint64_t, 4> Offsets;
3795 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3796 ValueVTs, &Offsets);
3797 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3798 "expect a single EVT for swifterror");
3800 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3801 SDValue L = DAG.getCopyFromReg(
3802 getRoot(), getCurSDLoc(),
3803 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3804 ValueVTs[0]);
3806 setValue(&I, L);
3809 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3810 if (I.isAtomic())
3811 return visitAtomicStore(I);
3813 const Value *SrcV = I.getOperand(0);
3814 const Value *PtrV = I.getOperand(1);
3816 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3817 if (TLI.supportSwiftError()) {
3818 // Swifterror values can come from either a function parameter with
3819 // swifterror attribute or an alloca with swifterror attribute.
3820 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3821 if (Arg->hasSwiftErrorAttr())
3822 return visitStoreToSwiftError(I);
3825 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3826 if (Alloca->isSwiftError())
3827 return visitStoreToSwiftError(I);
3831 SmallVector<EVT, 4> ValueVTs;
3832 SmallVector<uint64_t, 4> Offsets;
3833 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3834 SrcV->getType(), ValueVTs, &Offsets);
3835 unsigned NumValues = ValueVTs.size();
3836 if (NumValues == 0)
3837 return;
3839 // Get the lowered operands. Note that we do this after
3840 // checking if NumResults is zero, because with zero results
3841 // the operands won't have values in the map.
3842 SDValue Src = getValue(SrcV);
3843 SDValue Ptr = getValue(PtrV);
3845 SDValue Root = getRoot();
3846 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3847 SDLoc dl = getCurSDLoc();
3848 EVT PtrVT = Ptr.getValueType();
3849 unsigned Alignment = I.getAlignment();
3850 AAMDNodes AAInfo;
3851 I.getAAMetadata(AAInfo);
3853 auto MMOFlags = MachineMemOperand::MONone;
3854 if (I.isVolatile())
3855 MMOFlags |= MachineMemOperand::MOVolatile;
3856 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3857 MMOFlags |= MachineMemOperand::MONonTemporal;
3858 MMOFlags |= TLI.getMMOFlags(I);
3860 // An aggregate load cannot wrap around the address space, so offsets to its
3861 // parts don't wrap either.
3862 SDNodeFlags Flags;
3863 Flags.setNoUnsignedWrap(true);
3865 unsigned ChainI = 0;
3866 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3867 // See visitLoad comments.
3868 if (ChainI == MaxParallelChains) {
3869 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3870 makeArrayRef(Chains.data(), ChainI));
3871 Root = Chain;
3872 ChainI = 0;
3874 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3875 DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3876 SDValue St = DAG.getStore(
3877 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3878 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3879 Chains[ChainI] = St;
3882 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3883 makeArrayRef(Chains.data(), ChainI));
3884 DAG.setRoot(StoreNode);
3887 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3888 bool IsCompressing) {
3889 SDLoc sdl = getCurSDLoc();
3891 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3892 unsigned& Alignment) {
3893 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3894 Src0 = I.getArgOperand(0);
3895 Ptr = I.getArgOperand(1);
3896 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3897 Mask = I.getArgOperand(3);
3899 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3900 unsigned& Alignment) {
3901 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3902 Src0 = I.getArgOperand(0);
3903 Ptr = I.getArgOperand(1);
3904 Mask = I.getArgOperand(2);
3905 Alignment = 0;
3908 Value *PtrOperand, *MaskOperand, *Src0Operand;
3909 unsigned Alignment;
3910 if (IsCompressing)
3911 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3912 else
3913 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3915 SDValue Ptr = getValue(PtrOperand);
3916 SDValue Src0 = getValue(Src0Operand);
3917 SDValue Mask = getValue(MaskOperand);
3919 EVT VT = Src0.getValueType();
3920 if (!Alignment)
3921 Alignment = DAG.getEVTAlignment(VT);
3923 AAMDNodes AAInfo;
3924 I.getAAMetadata(AAInfo);
3926 MachineMemOperand *MMO =
3927 DAG.getMachineFunction().
3928 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3929 MachineMemOperand::MOStore, VT.getStoreSize(),
3930 Alignment, AAInfo);
3931 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3932 MMO, false /* Truncating */,
3933 IsCompressing);
3934 DAG.setRoot(StoreNode);
3935 setValue(&I, StoreNode);
3938 // Get a uniform base for the Gather/Scatter intrinsic.
3939 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3940 // We try to represent it as a base pointer + vector of indices.
3941 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3942 // The first operand of the GEP may be a single pointer or a vector of pointers
3943 // Example:
3944 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3945 // or
3946 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
3947 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3949 // When the first GEP operand is a single pointer - it is the uniform base we
3950 // are looking for. If first operand of the GEP is a splat vector - we
3951 // extract the splat value and use it as a uniform base.
3952 // In all other cases the function returns 'false'.
3953 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3954 SDValue &Scale, SelectionDAGBuilder* SDB) {
3955 SelectionDAG& DAG = SDB->DAG;
3956 LLVMContext &Context = *DAG.getContext();
3958 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3959 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3960 if (!GEP)
3961 return false;
3963 const Value *GEPPtr = GEP->getPointerOperand();
3964 if (!GEPPtr->getType()->isVectorTy())
3965 Ptr = GEPPtr;
3966 else if (!(Ptr = getSplatValue(GEPPtr)))
3967 return false;
3969 unsigned FinalIndex = GEP->getNumOperands() - 1;
3970 Value *IndexVal = GEP->getOperand(FinalIndex);
3972 // Ensure all the other indices are 0.
3973 for (unsigned i = 1; i < FinalIndex; ++i) {
3974 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3975 if (!C || !C->isZero())
3976 return false;
3979 // The operands of the GEP may be defined in another basic block.
3980 // In this case we'll not find nodes for the operands.
3981 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3982 return false;
3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3985 const DataLayout &DL = DAG.getDataLayout();
3986 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3987 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3988 Base = SDB->getValue(Ptr);
3989 Index = SDB->getValue(IndexVal);
3991 if (!Index.getValueType().isVector()) {
3992 unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3993 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3994 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3996 return true;
3999 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4000 SDLoc sdl = getCurSDLoc();
4002 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4003 const Value *Ptr = I.getArgOperand(1);
4004 SDValue Src0 = getValue(I.getArgOperand(0));
4005 SDValue Mask = getValue(I.getArgOperand(3));
4006 EVT VT = Src0.getValueType();
4007 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4008 if (!Alignment)
4009 Alignment = DAG.getEVTAlignment(VT);
4010 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4012 AAMDNodes AAInfo;
4013 I.getAAMetadata(AAInfo);
4015 SDValue Base;
4016 SDValue Index;
4017 SDValue Scale;
4018 const Value *BasePtr = Ptr;
4019 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4021 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4022 MachineMemOperand *MMO = DAG.getMachineFunction().
4023 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4024 MachineMemOperand::MOStore, VT.getStoreSize(),
4025 Alignment, AAInfo);
4026 if (!UniformBase) {
4027 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4028 Index = getValue(Ptr);
4029 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4031 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4032 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4033 Ops, MMO);
4034 DAG.setRoot(Scatter);
4035 setValue(&I, Scatter);
4038 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4039 SDLoc sdl = getCurSDLoc();
4041 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4042 unsigned& Alignment) {
4043 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4044 Ptr = I.getArgOperand(0);
4045 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4046 Mask = I.getArgOperand(2);
4047 Src0 = I.getArgOperand(3);
4049 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4050 unsigned& Alignment) {
4051 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4052 Ptr = I.getArgOperand(0);
4053 Alignment = 0;
4054 Mask = I.getArgOperand(1);
4055 Src0 = I.getArgOperand(2);
4058 Value *PtrOperand, *MaskOperand, *Src0Operand;
4059 unsigned Alignment;
4060 if (IsExpanding)
4061 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4062 else
4063 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4065 SDValue Ptr = getValue(PtrOperand);
4066 SDValue Src0 = getValue(Src0Operand);
4067 SDValue Mask = getValue(MaskOperand);
4069 EVT VT = Src0.getValueType();
4070 if (!Alignment)
4071 Alignment = DAG.getEVTAlignment(VT);
4073 AAMDNodes AAInfo;
4074 I.getAAMetadata(AAInfo);
4075 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4077 // Do not serialize masked loads of constant memory with anything.
4078 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4079 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4080 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4082 MachineMemOperand *MMO =
4083 DAG.getMachineFunction().
4084 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4085 MachineMemOperand::MOLoad, VT.getStoreSize(),
4086 Alignment, AAInfo, Ranges);
4088 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4089 ISD::NON_EXTLOAD, IsExpanding);
4090 if (AddToChain)
4091 PendingLoads.push_back(Load.getValue(1));
4092 setValue(&I, Load);
4095 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4096 SDLoc sdl = getCurSDLoc();
4098 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4099 const Value *Ptr = I.getArgOperand(0);
4100 SDValue Src0 = getValue(I.getArgOperand(3));
4101 SDValue Mask = getValue(I.getArgOperand(2));
4103 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4104 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4105 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4106 if (!Alignment)
4107 Alignment = DAG.getEVTAlignment(VT);
4109 AAMDNodes AAInfo;
4110 I.getAAMetadata(AAInfo);
4111 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4113 SDValue Root = DAG.getRoot();
4114 SDValue Base;
4115 SDValue Index;
4116 SDValue Scale;
4117 const Value *BasePtr = Ptr;
4118 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4119 bool ConstantMemory = false;
4120 if (UniformBase &&
4121 AA && AA->pointsToConstantMemory(MemoryLocation(
4122 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4123 AAInfo))) {
4124 // Do not serialize (non-volatile) loads of constant memory with anything.
4125 Root = DAG.getEntryNode();
4126 ConstantMemory = true;
4129 MachineMemOperand *MMO =
4130 DAG.getMachineFunction().
4131 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4132 MachineMemOperand::MOLoad, VT.getStoreSize(),
4133 Alignment, AAInfo, Ranges);
4135 if (!UniformBase) {
4136 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4137 Index = getValue(Ptr);
4138 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4140 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4141 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4142 Ops, MMO);
4144 SDValue OutChain = Gather.getValue(1);
4145 if (!ConstantMemory)
4146 PendingLoads.push_back(OutChain);
4147 setValue(&I, Gather);
4150 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4151 SDLoc dl = getCurSDLoc();
4152 AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4153 AtomicOrdering FailureOrder = I.getFailureOrdering();
4154 SyncScope::ID SSID = I.getSyncScopeID();
4156 SDValue InChain = getRoot();
4158 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4159 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4160 SDValue L = DAG.getAtomicCmpSwap(
4161 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4162 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4163 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4164 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4166 SDValue OutChain = L.getValue(2);
4168 setValue(&I, L);
4169 DAG.setRoot(OutChain);
4172 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4173 SDLoc dl = getCurSDLoc();
4174 ISD::NodeType NT;
4175 switch (I.getOperation()) {
4176 default: llvm_unreachable("Unknown atomicrmw operation");
4177 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4178 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
4179 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
4180 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
4181 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4182 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
4183 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
4184 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
4185 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
4186 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4187 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4189 AtomicOrdering Order = I.getOrdering();
4190 SyncScope::ID SSID = I.getSyncScopeID();
4192 SDValue InChain = getRoot();
4194 SDValue L =
4195 DAG.getAtomic(NT, dl,
4196 getValue(I.getValOperand()).getSimpleValueType(),
4197 InChain,
4198 getValue(I.getPointerOperand()),
4199 getValue(I.getValOperand()),
4200 I.getPointerOperand(),
4201 /* Alignment=*/ 0, Order, SSID);
4203 SDValue OutChain = L.getValue(1);
4205 setValue(&I, L);
4206 DAG.setRoot(OutChain);
4209 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4210 SDLoc dl = getCurSDLoc();
4211 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4212 SDValue Ops[3];
4213 Ops[0] = getRoot();
4214 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4215 TLI.getFenceOperandTy(DAG.getDataLayout()));
4216 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4217 TLI.getFenceOperandTy(DAG.getDataLayout()));
4218 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4221 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4222 SDLoc dl = getCurSDLoc();
4223 AtomicOrdering Order = I.getOrdering();
4224 SyncScope::ID SSID = I.getSyncScopeID();
4226 SDValue InChain = getRoot();
4228 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4229 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4231 if (!TLI.supportsUnalignedAtomics() &&
4232 I.getAlignment() < VT.getStoreSize())
4233 report_fatal_error("Cannot generate unaligned atomic load");
4235 MachineMemOperand *MMO =
4236 DAG.getMachineFunction().
4237 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4238 MachineMemOperand::MOVolatile |
4239 MachineMemOperand::MOLoad,
4240 VT.getStoreSize(),
4241 I.getAlignment() ? I.getAlignment() :
4242 DAG.getEVTAlignment(VT),
4243 AAMDNodes(), nullptr, SSID, Order);
4245 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4246 SDValue L =
4247 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4248 getValue(I.getPointerOperand()), MMO);
4250 SDValue OutChain = L.getValue(1);
4252 setValue(&I, L);
4253 DAG.setRoot(OutChain);
4256 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4257 SDLoc dl = getCurSDLoc();
4259 AtomicOrdering Order = I.getOrdering();
4260 SyncScope::ID SSID = I.getSyncScopeID();
4262 SDValue InChain = getRoot();
4264 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4265 EVT VT =
4266 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4268 if (I.getAlignment() < VT.getStoreSize())
4269 report_fatal_error("Cannot generate unaligned atomic store");
4271 SDValue OutChain =
4272 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4273 InChain,
4274 getValue(I.getPointerOperand()),
4275 getValue(I.getValueOperand()),
4276 I.getPointerOperand(), I.getAlignment(),
4277 Order, SSID);
4279 DAG.setRoot(OutChain);
4282 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4283 /// node.
4284 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4285 unsigned Intrinsic) {
4286 // Ignore the callsite's attributes. A specific call site may be marked with
4287 // readnone, but the lowering code will expect the chain based on the
4288 // definition.
4289 const Function *F = I.getCalledFunction();
4290 bool HasChain = !F->doesNotAccessMemory();
4291 bool OnlyLoad = HasChain && F->onlyReadsMemory();
4293 // Build the operand list.
4294 SmallVector<SDValue, 8> Ops;
4295 if (HasChain) { // If this intrinsic has side-effects, chainify it.
4296 if (OnlyLoad) {
4297 // We don't need to serialize loads against other loads.
4298 Ops.push_back(DAG.getRoot());
4299 } else {
4300 Ops.push_back(getRoot());
4304 // Info is set by getTgtMemInstrinsic
4305 TargetLowering::IntrinsicInfo Info;
4306 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4307 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4308 DAG.getMachineFunction(),
4309 Intrinsic);
4311 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4312 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4313 Info.opc == ISD::INTRINSIC_W_CHAIN)
4314 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4315 TLI.getPointerTy(DAG.getDataLayout())));
4317 // Add all operands of the call to the operand list.
4318 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4319 SDValue Op = getValue(I.getArgOperand(i));
4320 Ops.push_back(Op);
4323 SmallVector<EVT, 4> ValueVTs;
4324 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4326 if (HasChain)
4327 ValueVTs.push_back(MVT::Other);
4329 SDVTList VTs = DAG.getVTList(ValueVTs);
4331 // Create the node.
4332 SDValue Result;
4333 if (IsTgtIntrinsic) {
4334 // This is target intrinsic that touches memory
4335 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4336 Ops, Info.memVT,
4337 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4338 Info.flags, Info.size);
4339 } else if (!HasChain) {
4340 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4341 } else if (!I.getType()->isVoidTy()) {
4342 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4343 } else {
4344 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4347 if (HasChain) {
4348 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4349 if (OnlyLoad)
4350 PendingLoads.push_back(Chain);
4351 else
4352 DAG.setRoot(Chain);
4355 if (!I.getType()->isVoidTy()) {
4356 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4357 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4358 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4359 } else
4360 Result = lowerRangeToAssertZExt(DAG, I, Result);
4362 setValue(&I, Result);
4366 /// GetSignificand - Get the significand and build it into a floating-point
4367 /// number with exponent of 1:
4369 /// Op = (Op & 0x007fffff) | 0x3f800000;
4371 /// where Op is the hexadecimal representation of floating point value.
4372 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4373 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4374 DAG.getConstant(0x007fffff, dl, MVT::i32));
4375 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4376 DAG.getConstant(0x3f800000, dl, MVT::i32));
4377 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4380 /// GetExponent - Get the exponent:
4382 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4384 /// where Op is the hexadecimal representation of floating point value.
4385 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4386 const TargetLowering &TLI, const SDLoc &dl) {
4387 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4388 DAG.getConstant(0x7f800000, dl, MVT::i32));
4389 SDValue t1 = DAG.getNode(
4390 ISD::SRL, dl, MVT::i32, t0,
4391 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4392 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4393 DAG.getConstant(127, dl, MVT::i32));
4394 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4397 /// getF32Constant - Get 32-bit floating point constant.
4398 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4399 const SDLoc &dl) {
4400 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4401 MVT::f32);
4404 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4405 SelectionDAG &DAG) {
4406 // TODO: What fast-math-flags should be set on the floating-point nodes?
4408 // IntegerPartOfX = ((int32_t)(t0);
4409 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4411 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4412 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4413 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4415 // IntegerPartOfX <<= 23;
4416 IntegerPartOfX = DAG.getNode(
4417 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4418 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4419 DAG.getDataLayout())));
4421 SDValue TwoToFractionalPartOfX;
4422 if (LimitFloatPrecision <= 6) {
4423 // For floating-point precision of 6:
4425 // TwoToFractionalPartOfX =
4426 // 0.997535578f +
4427 // (0.735607626f + 0.252464424f * x) * x;
4429 // error 0.0144103317, which is 6 bits
4430 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4431 getF32Constant(DAG, 0x3e814304, dl));
4432 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4433 getF32Constant(DAG, 0x3f3c50c8, dl));
4434 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4435 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4436 getF32Constant(DAG, 0x3f7f5e7e, dl));
4437 } else if (LimitFloatPrecision <= 12) {
4438 // For floating-point precision of 12:
4440 // TwoToFractionalPartOfX =
4441 // 0.999892986f +
4442 // (0.696457318f +
4443 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4445 // error 0.000107046256, which is 13 to 14 bits
4446 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4447 getF32Constant(DAG, 0x3da235e3, dl));
4448 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4449 getF32Constant(DAG, 0x3e65b8f3, dl));
4450 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4451 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4452 getF32Constant(DAG, 0x3f324b07, dl));
4453 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4454 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4455 getF32Constant(DAG, 0x3f7ff8fd, dl));
4456 } else { // LimitFloatPrecision <= 18
4457 // For floating-point precision of 18:
4459 // TwoToFractionalPartOfX =
4460 // 0.999999982f +
4461 // (0.693148872f +
4462 // (0.240227044f +
4463 // (0.554906021e-1f +
4464 // (0.961591928e-2f +
4465 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4466 // error 2.47208000*10^(-7), which is better than 18 bits
4467 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4468 getF32Constant(DAG, 0x3924b03e, dl));
4469 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4470 getF32Constant(DAG, 0x3ab24b87, dl));
4471 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4472 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4473 getF32Constant(DAG, 0x3c1d8c17, dl));
4474 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4475 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4476 getF32Constant(DAG, 0x3d634a1d, dl));
4477 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4478 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4479 getF32Constant(DAG, 0x3e75fe14, dl));
4480 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4481 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4482 getF32Constant(DAG, 0x3f317234, dl));
4483 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4484 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4485 getF32Constant(DAG, 0x3f800000, dl));
4488 // Add the exponent into the result in integer domain.
4489 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4490 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4491 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4494 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4495 /// limited-precision mode.
4496 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4497 const TargetLowering &TLI) {
4498 if (Op.getValueType() == MVT::f32 &&
4499 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4501 // Put the exponent in the right bit position for later addition to the
4502 // final result:
4504 // #define LOG2OFe 1.4426950f
4505 // t0 = Op * LOG2OFe
4507 // TODO: What fast-math-flags should be set here?
4508 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4509 getF32Constant(DAG, 0x3fb8aa3b, dl));
4510 return getLimitedPrecisionExp2(t0, dl, DAG);
4513 // No special expansion.
4514 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4517 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4518 /// limited-precision mode.
4519 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4520 const TargetLowering &TLI) {
4521 // TODO: What fast-math-flags should be set on the floating-point nodes?
4523 if (Op.getValueType() == MVT::f32 &&
4524 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4525 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4527 // Scale the exponent by log(2) [0.69314718f].
4528 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4529 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4530 getF32Constant(DAG, 0x3f317218, dl));
4532 // Get the significand and build it into a floating-point number with
4533 // exponent of 1.
4534 SDValue X = GetSignificand(DAG, Op1, dl);
4536 SDValue LogOfMantissa;
4537 if (LimitFloatPrecision <= 6) {
4538 // For floating-point precision of 6:
4540 // LogofMantissa =
4541 // -1.1609546f +
4542 // (1.4034025f - 0.23903021f * x) * x;
4544 // error 0.0034276066, which is better than 8 bits
4545 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4546 getF32Constant(DAG, 0xbe74c456, dl));
4547 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4548 getF32Constant(DAG, 0x3fb3a2b1, dl));
4549 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4550 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4551 getF32Constant(DAG, 0x3f949a29, dl));
4552 } else if (LimitFloatPrecision <= 12) {
4553 // For floating-point precision of 12:
4555 // LogOfMantissa =
4556 // -1.7417939f +
4557 // (2.8212026f +
4558 // (-1.4699568f +
4559 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4561 // error 0.000061011436, which is 14 bits
4562 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4563 getF32Constant(DAG, 0xbd67b6d6, dl));
4564 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4565 getF32Constant(DAG, 0x3ee4f4b8, dl));
4566 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4567 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4568 getF32Constant(DAG, 0x3fbc278b, dl));
4569 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4570 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4571 getF32Constant(DAG, 0x40348e95, dl));
4572 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4573 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4574 getF32Constant(DAG, 0x3fdef31a, dl));
4575 } else { // LimitFloatPrecision <= 18
4576 // For floating-point precision of 18:
4578 // LogOfMantissa =
4579 // -2.1072184f +
4580 // (4.2372794f +
4581 // (-3.7029485f +
4582 // (2.2781945f +
4583 // (-0.87823314f +
4584 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4586 // error 0.0000023660568, which is better than 18 bits
4587 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4588 getF32Constant(DAG, 0xbc91e5ac, dl));
4589 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4590 getF32Constant(DAG, 0x3e4350aa, dl));
4591 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4592 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4593 getF32Constant(DAG, 0x3f60d3e3, dl));
4594 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4595 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4596 getF32Constant(DAG, 0x4011cdf0, dl));
4597 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4598 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4599 getF32Constant(DAG, 0x406cfd1c, dl));
4600 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4601 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4602 getF32Constant(DAG, 0x408797cb, dl));
4603 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4604 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4605 getF32Constant(DAG, 0x4006dcab, dl));
4608 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4611 // No special expansion.
4612 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4615 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4616 /// limited-precision mode.
4617 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4618 const TargetLowering &TLI) {
4619 // TODO: What fast-math-flags should be set on the floating-point nodes?
4621 if (Op.getValueType() == MVT::f32 &&
4622 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4623 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4625 // Get the exponent.
4626 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4628 // Get the significand and build it into a floating-point number with
4629 // exponent of 1.
4630 SDValue X = GetSignificand(DAG, Op1, dl);
4632 // Different possible minimax approximations of significand in
4633 // floating-point for various degrees of accuracy over [1,2].
4634 SDValue Log2ofMantissa;
4635 if (LimitFloatPrecision <= 6) {
4636 // For floating-point precision of 6:
4638 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4640 // error 0.0049451742, which is more than 7 bits
4641 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4642 getF32Constant(DAG, 0xbeb08fe0, dl));
4643 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4644 getF32Constant(DAG, 0x40019463, dl));
4645 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4646 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4647 getF32Constant(DAG, 0x3fd6633d, dl));
4648 } else if (LimitFloatPrecision <= 12) {
4649 // For floating-point precision of 12:
4651 // Log2ofMantissa =
4652 // -2.51285454f +
4653 // (4.07009056f +
4654 // (-2.12067489f +
4655 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4657 // error 0.0000876136000, which is better than 13 bits
4658 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4659 getF32Constant(DAG, 0xbda7262e, dl));
4660 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4661 getF32Constant(DAG, 0x3f25280b, dl));
4662 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4663 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4664 getF32Constant(DAG, 0x4007b923, dl));
4665 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4666 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4667 getF32Constant(DAG, 0x40823e2f, dl));
4668 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4669 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4670 getF32Constant(DAG, 0x4020d29c, dl));
4671 } else { // LimitFloatPrecision <= 18
4672 // For floating-point precision of 18:
4674 // Log2ofMantissa =
4675 // -3.0400495f +
4676 // (6.1129976f +
4677 // (-5.3420409f +
4678 // (3.2865683f +
4679 // (-1.2669343f +
4680 // (0.27515199f -
4681 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4683 // error 0.0000018516, which is better than 18 bits
4684 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4685 getF32Constant(DAG, 0xbcd2769e, dl));
4686 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4687 getF32Constant(DAG, 0x3e8ce0b9, dl));
4688 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4689 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4690 getF32Constant(DAG, 0x3fa22ae7, dl));
4691 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4692 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4693 getF32Constant(DAG, 0x40525723, dl));
4694 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4695 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4696 getF32Constant(DAG, 0x40aaf200, dl));
4697 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4698 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4699 getF32Constant(DAG, 0x40c39dad, dl));
4700 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4701 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4702 getF32Constant(DAG, 0x4042902c, dl));
4705 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4708 // No special expansion.
4709 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4712 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4713 /// limited-precision mode.
4714 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4715 const TargetLowering &TLI) {
4716 // TODO: What fast-math-flags should be set on the floating-point nodes?
4718 if (Op.getValueType() == MVT::f32 &&
4719 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4720 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4722 // Scale the exponent by log10(2) [0.30102999f].
4723 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4724 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4725 getF32Constant(DAG, 0x3e9a209a, dl));
4727 // Get the significand and build it into a floating-point number with
4728 // exponent of 1.
4729 SDValue X = GetSignificand(DAG, Op1, dl);
4731 SDValue Log10ofMantissa;
4732 if (LimitFloatPrecision <= 6) {
4733 // For floating-point precision of 6:
4735 // Log10ofMantissa =
4736 // -0.50419619f +
4737 // (0.60948995f - 0.10380950f * x) * x;
4739 // error 0.0014886165, which is 6 bits
4740 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4741 getF32Constant(DAG, 0xbdd49a13, dl));
4742 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4743 getF32Constant(DAG, 0x3f1c0789, dl));
4744 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4745 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4746 getF32Constant(DAG, 0x3f011300, dl));
4747 } else if (LimitFloatPrecision <= 12) {
4748 // For floating-point precision of 12:
4750 // Log10ofMantissa =
4751 // -0.64831180f +
4752 // (0.91751397f +
4753 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4755 // error 0.00019228036, which is better than 12 bits
4756 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4757 getF32Constant(DAG, 0x3d431f31, dl));
4758 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4759 getF32Constant(DAG, 0x3ea21fb2, dl));
4760 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4761 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4762 getF32Constant(DAG, 0x3f6ae232, dl));
4763 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4764 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4765 getF32Constant(DAG, 0x3f25f7c3, dl));
4766 } else { // LimitFloatPrecision <= 18
4767 // For floating-point precision of 18:
4769 // Log10ofMantissa =
4770 // -0.84299375f +
4771 // (1.5327582f +
4772 // (-1.0688956f +
4773 // (0.49102474f +
4774 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4776 // error 0.0000037995730, which is better than 18 bits
4777 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4778 getF32Constant(DAG, 0x3c5d51ce, dl));
4779 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4780 getF32Constant(DAG, 0x3e00685a, dl));
4781 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4782 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4783 getF32Constant(DAG, 0x3efb6798, dl));
4784 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4785 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4786 getF32Constant(DAG, 0x3f88d192, dl));
4787 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4788 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4789 getF32Constant(DAG, 0x3fc4316c, dl));
4790 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4791 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4792 getF32Constant(DAG, 0x3f57ce70, dl));
4795 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4798 // No special expansion.
4799 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4802 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4803 /// limited-precision mode.
4804 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4805 const TargetLowering &TLI) {
4806 if (Op.getValueType() == MVT::f32 &&
4807 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4808 return getLimitedPrecisionExp2(Op, dl, DAG);
4810 // No special expansion.
4811 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4814 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4815 /// limited-precision mode with x == 10.0f.
4816 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4817 SelectionDAG &DAG, const TargetLowering &TLI) {
4818 bool IsExp10 = false;
4819 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4820 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4821 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4822 APFloat Ten(10.0f);
4823 IsExp10 = LHSC->isExactlyValue(Ten);
4827 // TODO: What fast-math-flags should be set on the FMUL node?
4828 if (IsExp10) {
4829 // Put the exponent in the right bit position for later addition to the
4830 // final result:
4832 // #define LOG2OF10 3.3219281f
4833 // t0 = Op * LOG2OF10;
4834 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4835 getF32Constant(DAG, 0x40549a78, dl));
4836 return getLimitedPrecisionExp2(t0, dl, DAG);
4839 // No special expansion.
4840 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4843 /// ExpandPowI - Expand a llvm.powi intrinsic.
4844 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4845 SelectionDAG &DAG) {
4846 // If RHS is a constant, we can expand this out to a multiplication tree,
4847 // otherwise we end up lowering to a call to __powidf2 (for example). When
4848 // optimizing for size, we only want to do this if the expansion would produce
4849 // a small number of multiplies, otherwise we do the full expansion.
4850 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4851 // Get the exponent as a positive value.
4852 unsigned Val = RHSC->getSExtValue();
4853 if ((int)Val < 0) Val = -Val;
4855 // powi(x, 0) -> 1.0
4856 if (Val == 0)
4857 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4859 const Function &F = DAG.getMachineFunction().getFunction();
4860 if (!F.optForSize() ||
4861 // If optimizing for size, don't insert too many multiplies.
4862 // This inserts up to 5 multiplies.
4863 countPopulation(Val) + Log2_32(Val) < 7) {
4864 // We use the simple binary decomposition method to generate the multiply
4865 // sequence. There are more optimal ways to do this (for example,
4866 // powi(x,15) generates one more multiply than it should), but this has
4867 // the benefit of being both really simple and much better than a libcall.
4868 SDValue Res; // Logically starts equal to 1.0
4869 SDValue CurSquare = LHS;
4870 // TODO: Intrinsics should have fast-math-flags that propagate to these
4871 // nodes.
4872 while (Val) {
4873 if (Val & 1) {
4874 if (Res.getNode())
4875 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4876 else
4877 Res = CurSquare; // 1.0*CurSquare.
4880 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4881 CurSquare, CurSquare);
4882 Val >>= 1;
4885 // If the original was negative, invert the result, producing 1/(x*x*x).
4886 if (RHSC->getSExtValue() < 0)
4887 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4888 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4889 return Res;
4893 // Otherwise, expand to a libcall.
4894 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4897 // getUnderlyingArgReg - Find underlying register used for a truncated or
4898 // bitcasted argument.
4899 static unsigned getUnderlyingArgReg(const SDValue &N) {
4900 switch (N.getOpcode()) {
4901 case ISD::CopyFromReg:
4902 return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4903 case ISD::BITCAST:
4904 case ISD::AssertZext:
4905 case ISD::AssertSext:
4906 case ISD::TRUNCATE:
4907 return getUnderlyingArgReg(N.getOperand(0));
4908 default:
4909 return 0;
4913 /// If the DbgValueInst is a dbg_value of a function argument, create the
4914 /// corresponding DBG_VALUE machine instruction for it now. At the end of
4915 /// instruction selection, they will be inserted to the entry BB.
4916 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4917 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4918 DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4919 const Argument *Arg = dyn_cast<Argument>(V);
4920 if (!Arg)
4921 return false;
4923 MachineFunction &MF = DAG.getMachineFunction();
4924 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4926 bool IsIndirect = false;
4927 Optional<MachineOperand> Op;
4928 // Some arguments' frame index is recorded during argument lowering.
4929 int FI = FuncInfo.getArgumentFrameIndex(Arg);
4930 if (FI != std::numeric_limits<int>::max())
4931 Op = MachineOperand::CreateFI(FI);
4933 if (!Op && N.getNode()) {
4934 unsigned Reg = getUnderlyingArgReg(N);
4935 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4936 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4937 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4938 if (PR)
4939 Reg = PR;
4941 if (Reg) {
4942 Op = MachineOperand::CreateReg(Reg, false);
4943 IsIndirect = IsDbgDeclare;
4947 if (!Op && N.getNode())
4948 // Check if frame index is available.
4949 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4950 if (FrameIndexSDNode *FINode =
4951 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4952 Op = MachineOperand::CreateFI(FINode->getIndex());
4954 if (!Op) {
4955 // Check if ValueMap has reg number.
4956 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4957 if (VMI != FuncInfo.ValueMap.end()) {
4958 const auto &TLI = DAG.getTargetLoweringInfo();
4959 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4960 V->getType(), getABIRegCopyCC(V));
4961 if (RFV.occupiesMultipleRegs()) {
4962 unsigned Offset = 0;
4963 for (auto RegAndSize : RFV.getRegsAndSizes()) {
4964 Op = MachineOperand::CreateReg(RegAndSize.first, false);
4965 auto FragmentExpr = DIExpression::createFragmentExpression(
4966 Expr, Offset, RegAndSize.second);
4967 if (!FragmentExpr)
4968 continue;
4969 FuncInfo.ArgDbgValues.push_back(
4970 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4971 Op->getReg(), Variable, *FragmentExpr));
4972 Offset += RegAndSize.second;
4974 return true;
4976 Op = MachineOperand::CreateReg(VMI->second, false);
4977 IsIndirect = IsDbgDeclare;
4981 if (!Op)
4982 return false;
4984 assert(Variable->isValidLocationForIntrinsic(DL) &&
4985 "Expected inlined-at fields to agree");
4986 IsIndirect = (Op->isReg()) ? IsIndirect : true;
4987 FuncInfo.ArgDbgValues.push_back(
4988 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4989 *Op, Variable, Expr));
4991 return true;
4994 /// Return the appropriate SDDbgValue based on N.
4995 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4996 DILocalVariable *Variable,
4997 DIExpression *Expr,
4998 const DebugLoc &dl,
4999 unsigned DbgSDNodeOrder) {
5000 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5001 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5002 // stack slot locations.
5004 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5005 // debug values here after optimization:
5007 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5008 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5010 // Both describe the direct values of their associated variables.
5011 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5012 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5014 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5015 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5018 // VisualStudio defines setjmp as _setjmp
5019 #if defined(_MSC_VER) && defined(setjmp) && \
5020 !defined(setjmp_undefined_for_msvc)
5021 # pragma push_macro("setjmp")
5022 # undef setjmp
5023 # define setjmp_undefined_for_msvc
5024 #endif
5026 /// Lower the call to the specified intrinsic function. If we want to emit this
5027 /// as a call to a named external function, return the name. Otherwise, lower it
5028 /// and return null.
5029 const char *
5030 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5031 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5032 SDLoc sdl = getCurSDLoc();
5033 DebugLoc dl = getCurDebugLoc();
5034 SDValue Res;
5036 switch (Intrinsic) {
5037 default:
5038 // By default, turn this into a target intrinsic node.
5039 visitTargetIntrinsic(I, Intrinsic);
5040 return nullptr;
5041 case Intrinsic::vastart: visitVAStart(I); return nullptr;
5042 case Intrinsic::vaend: visitVAEnd(I); return nullptr;
5043 case Intrinsic::vacopy: visitVACopy(I); return nullptr;
5044 case Intrinsic::returnaddress:
5045 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5046 TLI.getPointerTy(DAG.getDataLayout()),
5047 getValue(I.getArgOperand(0))));
5048 return nullptr;
5049 case Intrinsic::addressofreturnaddress:
5050 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5051 TLI.getPointerTy(DAG.getDataLayout())));
5052 return nullptr;
5053 case Intrinsic::frameaddress:
5054 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5055 TLI.getPointerTy(DAG.getDataLayout()),
5056 getValue(I.getArgOperand(0))));
5057 return nullptr;
5058 case Intrinsic::read_register: {
5059 Value *Reg = I.getArgOperand(0);
5060 SDValue Chain = getRoot();
5061 SDValue RegName =
5062 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5063 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5064 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5065 DAG.getVTList(VT, MVT::Other), Chain, RegName);
5066 setValue(&I, Res);
5067 DAG.setRoot(Res.getValue(1));
5068 return nullptr;
5070 case Intrinsic::write_register: {
5071 Value *Reg = I.getArgOperand(0);
5072 Value *RegValue = I.getArgOperand(1);
5073 SDValue Chain = getRoot();
5074 SDValue RegName =
5075 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5076 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5077 RegName, getValue(RegValue)));
5078 return nullptr;
5080 case Intrinsic::setjmp:
5081 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5082 case Intrinsic::longjmp:
5083 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5084 case Intrinsic::memcpy: {
5085 const auto &MCI = cast<MemCpyInst>(I);
5086 SDValue Op1 = getValue(I.getArgOperand(0));
5087 SDValue Op2 = getValue(I.getArgOperand(1));
5088 SDValue Op3 = getValue(I.getArgOperand(2));
5089 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5090 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5091 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5092 unsigned Align = MinAlign(DstAlign, SrcAlign);
5093 bool isVol = MCI.isVolatile();
5094 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5095 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5096 // node.
5097 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5098 false, isTC,
5099 MachinePointerInfo(I.getArgOperand(0)),
5100 MachinePointerInfo(I.getArgOperand(1)));
5101 updateDAGForMaybeTailCall(MC);
5102 return nullptr;
5104 case Intrinsic::memset: {
5105 const auto &MSI = cast<MemSetInst>(I);
5106 SDValue Op1 = getValue(I.getArgOperand(0));
5107 SDValue Op2 = getValue(I.getArgOperand(1));
5108 SDValue Op3 = getValue(I.getArgOperand(2));
5109 // @llvm.memset defines 0 and 1 to both mean no alignment.
5110 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5111 bool isVol = MSI.isVolatile();
5112 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5113 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5114 isTC, MachinePointerInfo(I.getArgOperand(0)));
5115 updateDAGForMaybeTailCall(MS);
5116 return nullptr;
5118 case Intrinsic::memmove: {
5119 const auto &MMI = cast<MemMoveInst>(I);
5120 SDValue Op1 = getValue(I.getArgOperand(0));
5121 SDValue Op2 = getValue(I.getArgOperand(1));
5122 SDValue Op3 = getValue(I.getArgOperand(2));
5123 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5124 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5125 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5126 unsigned Align = MinAlign(DstAlign, SrcAlign);
5127 bool isVol = MMI.isVolatile();
5128 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5129 // FIXME: Support passing different dest/src alignments to the memmove DAG
5130 // node.
5131 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5132 isTC, MachinePointerInfo(I.getArgOperand(0)),
5133 MachinePointerInfo(I.getArgOperand(1)));
5134 updateDAGForMaybeTailCall(MM);
5135 return nullptr;
5137 case Intrinsic::memcpy_element_unordered_atomic: {
5138 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5139 SDValue Dst = getValue(MI.getRawDest());
5140 SDValue Src = getValue(MI.getRawSource());
5141 SDValue Length = getValue(MI.getLength());
5143 unsigned DstAlign = MI.getDestAlignment();
5144 unsigned SrcAlign = MI.getSourceAlignment();
5145 Type *LengthTy = MI.getLength()->getType();
5146 unsigned ElemSz = MI.getElementSizeInBytes();
5147 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5148 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5149 SrcAlign, Length, LengthTy, ElemSz, isTC,
5150 MachinePointerInfo(MI.getRawDest()),
5151 MachinePointerInfo(MI.getRawSource()));
5152 updateDAGForMaybeTailCall(MC);
5153 return nullptr;
5155 case Intrinsic::memmove_element_unordered_atomic: {
5156 auto &MI = cast<AtomicMemMoveInst>(I);
5157 SDValue Dst = getValue(MI.getRawDest());
5158 SDValue Src = getValue(MI.getRawSource());
5159 SDValue Length = getValue(MI.getLength());
5161 unsigned DstAlign = MI.getDestAlignment();
5162 unsigned SrcAlign = MI.getSourceAlignment();
5163 Type *LengthTy = MI.getLength()->getType();
5164 unsigned ElemSz = MI.getElementSizeInBytes();
5165 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5166 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5167 SrcAlign, Length, LengthTy, ElemSz, isTC,
5168 MachinePointerInfo(MI.getRawDest()),
5169 MachinePointerInfo(MI.getRawSource()));
5170 updateDAGForMaybeTailCall(MC);
5171 return nullptr;
5173 case Intrinsic::memset_element_unordered_atomic: {
5174 auto &MI = cast<AtomicMemSetInst>(I);
5175 SDValue Dst = getValue(MI.getRawDest());
5176 SDValue Val = getValue(MI.getValue());
5177 SDValue Length = getValue(MI.getLength());
5179 unsigned DstAlign = MI.getDestAlignment();
5180 Type *LengthTy = MI.getLength()->getType();
5181 unsigned ElemSz = MI.getElementSizeInBytes();
5182 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5183 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5184 LengthTy, ElemSz, isTC,
5185 MachinePointerInfo(MI.getRawDest()));
5186 updateDAGForMaybeTailCall(MC);
5187 return nullptr;
5189 case Intrinsic::dbg_addr:
5190 case Intrinsic::dbg_declare: {
5191 const auto &DI = cast<DbgVariableIntrinsic>(I);
5192 DILocalVariable *Variable = DI.getVariable();
5193 DIExpression *Expression = DI.getExpression();
5194 dropDanglingDebugInfo(Variable, Expression);
5195 assert(Variable && "Missing variable");
5197 // Check if address has undef value.
5198 const Value *Address = DI.getVariableLocation();
5199 if (!Address || isa<UndefValue>(Address) ||
5200 (Address->use_empty() && !isa<Argument>(Address))) {
5201 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5202 return nullptr;
5205 bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5207 // Check if this variable can be described by a frame index, typically
5208 // either as a static alloca or a byval parameter.
5209 int FI = std::numeric_limits<int>::max();
5210 if (const auto *AI =
5211 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5212 if (AI->isStaticAlloca()) {
5213 auto I = FuncInfo.StaticAllocaMap.find(AI);
5214 if (I != FuncInfo.StaticAllocaMap.end())
5215 FI = I->second;
5217 } else if (const auto *Arg = dyn_cast<Argument>(
5218 Address->stripInBoundsConstantOffsets())) {
5219 FI = FuncInfo.getArgumentFrameIndex(Arg);
5222 // llvm.dbg.addr is control dependent and always generates indirect
5223 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5224 // the MachineFunction variable table.
5225 if (FI != std::numeric_limits<int>::max()) {
5226 if (Intrinsic == Intrinsic::dbg_addr) {
5227 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5228 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5229 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5231 return nullptr;
5234 SDValue &N = NodeMap[Address];
5235 if (!N.getNode() && isa<Argument>(Address))
5236 // Check unused arguments map.
5237 N = UnusedArgNodeMap[Address];
5238 SDDbgValue *SDV;
5239 if (N.getNode()) {
5240 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5241 Address = BCI->getOperand(0);
5242 // Parameters are handled specially.
5243 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5244 if (isParameter && FINode) {
5245 // Byval parameter. We have a frame index at this point.
5246 SDV =
5247 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5248 /*IsIndirect*/ true, dl, SDNodeOrder);
5249 } else if (isa<Argument>(Address)) {
5250 // Address is an argument, so try to emit its dbg value using
5251 // virtual register info from the FuncInfo.ValueMap.
5252 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5253 return nullptr;
5254 } else {
5255 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5256 true, dl, SDNodeOrder);
5258 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5259 } else {
5260 // If Address is an argument then try to emit its dbg value using
5261 // virtual register info from the FuncInfo.ValueMap.
5262 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5263 N)) {
5264 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5267 return nullptr;
5269 case Intrinsic::dbg_label: {
5270 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5271 DILabel *Label = DI.getLabel();
5272 assert(Label && "Missing label");
5274 SDDbgLabel *SDV;
5275 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5276 DAG.AddDbgLabel(SDV);
5277 return nullptr;
5279 case Intrinsic::dbg_value: {
5280 const DbgValueInst &DI = cast<DbgValueInst>(I);
5281 assert(DI.getVariable() && "Missing variable");
5283 DILocalVariable *Variable = DI.getVariable();
5284 DIExpression *Expression = DI.getExpression();
5285 dropDanglingDebugInfo(Variable, Expression);
5286 const Value *V = DI.getValue();
5287 if (!V)
5288 return nullptr;
5290 SDDbgValue *SDV;
5291 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5292 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5293 DAG.AddDbgValue(SDV, nullptr, false);
5294 return nullptr;
5297 // Do not use getValue() in here; we don't want to generate code at
5298 // this point if it hasn't been done yet.
5299 SDValue N = NodeMap[V];
5300 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5301 N = UnusedArgNodeMap[V];
5302 if (N.getNode()) {
5303 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5304 return nullptr;
5305 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5306 DAG.AddDbgValue(SDV, N.getNode(), false);
5307 return nullptr;
5310 // PHI nodes have already been selected, so we should know which VReg that
5311 // is assigns to already.
5312 if (isa<PHINode>(V)) {
5313 auto VMI = FuncInfo.ValueMap.find(V);
5314 if (VMI != FuncInfo.ValueMap.end()) {
5315 unsigned Reg = VMI->second;
5316 // The PHI node may be split up into several MI PHI nodes (in
5317 // FunctionLoweringInfo::set).
5318 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5319 V->getType(), None);
5320 if (RFV.occupiesMultipleRegs()) {
5321 unsigned Offset = 0;
5322 unsigned BitsToDescribe = 0;
5323 if (auto VarSize = Variable->getSizeInBits())
5324 BitsToDescribe = *VarSize;
5325 if (auto Fragment = Expression->getFragmentInfo())
5326 BitsToDescribe = Fragment->SizeInBits;
5327 for (auto RegAndSize : RFV.getRegsAndSizes()) {
5328 unsigned RegisterSize = RegAndSize.second;
5329 // Bail out if all bits are described already.
5330 if (Offset >= BitsToDescribe)
5331 break;
5332 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5333 ? BitsToDescribe - Offset
5334 : RegisterSize;
5335 auto FragmentExpr = DIExpression::createFragmentExpression(
5336 Expression, Offset, FragmentSize);
5337 if (!FragmentExpr)
5338 continue;
5339 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5340 false, dl, SDNodeOrder);
5341 DAG.AddDbgValue(SDV, nullptr, false);
5342 Offset += RegisterSize;
5344 } else {
5345 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5346 SDNodeOrder);
5347 DAG.AddDbgValue(SDV, nullptr, false);
5349 return nullptr;
5353 // TODO: When we get here we will either drop the dbg.value completely, or
5354 // we try to move it forward by letting it dangle for awhile. So we should
5355 // probably add an extra DbgValue to the DAG here, with a reference to
5356 // "noreg", to indicate that we have lost the debug location for the
5357 // variable.
5359 if (!V->use_empty() ) {
5360 // Do not call getValue(V) yet, as we don't want to generate code.
5361 // Remember it for later.
5362 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5363 return nullptr;
5366 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
5367 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
5368 return nullptr;
5371 case Intrinsic::eh_typeid_for: {
5372 // Find the type id for the given typeinfo.
5373 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5374 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5375 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5376 setValue(&I, Res);
5377 return nullptr;
5380 case Intrinsic::eh_return_i32:
5381 case Intrinsic::eh_return_i64:
5382 DAG.getMachineFunction().setCallsEHReturn(true);
5383 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5384 MVT::Other,
5385 getControlRoot(),
5386 getValue(I.getArgOperand(0)),
5387 getValue(I.getArgOperand(1))));
5388 return nullptr;
5389 case Intrinsic::eh_unwind_init:
5390 DAG.getMachineFunction().setCallsUnwindInit(true);
5391 return nullptr;
5392 case Intrinsic::eh_dwarf_cfa:
5393 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5394 TLI.getPointerTy(DAG.getDataLayout()),
5395 getValue(I.getArgOperand(0))));
5396 return nullptr;
5397 case Intrinsic::eh_sjlj_callsite: {
5398 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5399 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5400 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5401 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5403 MMI.setCurrentCallSite(CI->getZExtValue());
5404 return nullptr;
5406 case Intrinsic::eh_sjlj_functioncontext: {
5407 // Get and store the index of the function context.
5408 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5409 AllocaInst *FnCtx =
5410 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5411 int FI = FuncInfo.StaticAllocaMap[FnCtx];
5412 MFI.setFunctionContextIndex(FI);
5413 return nullptr;
5415 case Intrinsic::eh_sjlj_setjmp: {
5416 SDValue Ops[2];
5417 Ops[0] = getRoot();
5418 Ops[1] = getValue(I.getArgOperand(0));
5419 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5420 DAG.getVTList(MVT::i32, MVT::Other), Ops);
5421 setValue(&I, Op.getValue(0));
5422 DAG.setRoot(Op.getValue(1));
5423 return nullptr;
5425 case Intrinsic::eh_sjlj_longjmp:
5426 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5427 getRoot(), getValue(I.getArgOperand(0))));
5428 return nullptr;
5429 case Intrinsic::eh_sjlj_setup_dispatch:
5430 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5431 getRoot()));
5432 return nullptr;
5433 case Intrinsic::masked_gather:
5434 visitMaskedGather(I);
5435 return nullptr;
5436 case Intrinsic::masked_load:
5437 visitMaskedLoad(I);
5438 return nullptr;
5439 case Intrinsic::masked_scatter:
5440 visitMaskedScatter(I);
5441 return nullptr;
5442 case Intrinsic::masked_store:
5443 visitMaskedStore(I);
5444 return nullptr;
5445 case Intrinsic::masked_expandload:
5446 visitMaskedLoad(I, true /* IsExpanding */);
5447 return nullptr;
5448 case Intrinsic::masked_compressstore:
5449 visitMaskedStore(I, true /* IsCompressing */);
5450 return nullptr;
5451 case Intrinsic::x86_mmx_pslli_w:
5452 case Intrinsic::x86_mmx_pslli_d:
5453 case Intrinsic::x86_mmx_pslli_q:
5454 case Intrinsic::x86_mmx_psrli_w:
5455 case Intrinsic::x86_mmx_psrli_d:
5456 case Intrinsic::x86_mmx_psrli_q:
5457 case Intrinsic::x86_mmx_psrai_w:
5458 case Intrinsic::x86_mmx_psrai_d: {
5459 SDValue ShAmt = getValue(I.getArgOperand(1));
5460 if (isa<ConstantSDNode>(ShAmt)) {
5461 visitTargetIntrinsic(I, Intrinsic);
5462 return nullptr;
5464 unsigned NewIntrinsic = 0;
5465 EVT ShAmtVT = MVT::v2i32;
5466 switch (Intrinsic) {
5467 case Intrinsic::x86_mmx_pslli_w:
5468 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5469 break;
5470 case Intrinsic::x86_mmx_pslli_d:
5471 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5472 break;
5473 case Intrinsic::x86_mmx_pslli_q:
5474 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5475 break;
5476 case Intrinsic::x86_mmx_psrli_w:
5477 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5478 break;
5479 case Intrinsic::x86_mmx_psrli_d:
5480 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5481 break;
5482 case Intrinsic::x86_mmx_psrli_q:
5483 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5484 break;
5485 case Intrinsic::x86_mmx_psrai_w:
5486 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5487 break;
5488 case Intrinsic::x86_mmx_psrai_d:
5489 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5490 break;
5491 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5494 // The vector shift intrinsics with scalars uses 32b shift amounts but
5495 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5496 // to be zero.
5497 // We must do this early because v2i32 is not a legal type.
5498 SDValue ShOps[2];
5499 ShOps[0] = ShAmt;
5500 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5501 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5502 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5503 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5504 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5505 DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5506 getValue(I.getArgOperand(0)), ShAmt);
5507 setValue(&I, Res);
5508 return nullptr;
5510 case Intrinsic::powi:
5511 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5512 getValue(I.getArgOperand(1)), DAG));
5513 return nullptr;
5514 case Intrinsic::log:
5515 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5516 return nullptr;
5517 case Intrinsic::log2:
5518 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5519 return nullptr;
5520 case Intrinsic::log10:
5521 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5522 return nullptr;
5523 case Intrinsic::exp:
5524 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5525 return nullptr;
5526 case Intrinsic::exp2:
5527 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5528 return nullptr;
5529 case Intrinsic::pow:
5530 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5531 getValue(I.getArgOperand(1)), DAG, TLI));
5532 return nullptr;
5533 case Intrinsic::sqrt:
5534 case Intrinsic::fabs:
5535 case Intrinsic::sin:
5536 case Intrinsic::cos:
5537 case Intrinsic::floor:
5538 case Intrinsic::ceil:
5539 case Intrinsic::trunc:
5540 case Intrinsic::rint:
5541 case Intrinsic::nearbyint:
5542 case Intrinsic::round:
5543 case Intrinsic::canonicalize: {
5544 unsigned Opcode;
5545 switch (Intrinsic) {
5546 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5547 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
5548 case Intrinsic::fabs: Opcode = ISD::FABS; break;
5549 case Intrinsic::sin: Opcode = ISD::FSIN; break;
5550 case Intrinsic::cos: Opcode = ISD::FCOS; break;
5551 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
5552 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
5553 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
5554 case Intrinsic::rint: Opcode = ISD::FRINT; break;
5555 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5556 case Intrinsic::round: Opcode = ISD::FROUND; break;
5557 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5560 setValue(&I, DAG.getNode(Opcode, sdl,
5561 getValue(I.getArgOperand(0)).getValueType(),
5562 getValue(I.getArgOperand(0))));
5563 return nullptr;
5565 case Intrinsic::minnum: {
5566 auto VT = getValue(I.getArgOperand(0)).getValueType();
5567 unsigned Opc =
5568 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5569 ? ISD::FMINNAN
5570 : ISD::FMINNUM;
5571 setValue(&I, DAG.getNode(Opc, sdl, VT,
5572 getValue(I.getArgOperand(0)),
5573 getValue(I.getArgOperand(1))));
5574 return nullptr;
5576 case Intrinsic::maxnum: {
5577 auto VT = getValue(I.getArgOperand(0)).getValueType();
5578 unsigned Opc =
5579 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5580 ? ISD::FMAXNAN
5581 : ISD::FMAXNUM;
5582 setValue(&I, DAG.getNode(Opc, sdl, VT,
5583 getValue(I.getArgOperand(0)),
5584 getValue(I.getArgOperand(1))));
5585 return nullptr;
5587 case Intrinsic::copysign:
5588 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5589 getValue(I.getArgOperand(0)).getValueType(),
5590 getValue(I.getArgOperand(0)),
5591 getValue(I.getArgOperand(1))));
5592 return nullptr;
5593 case Intrinsic::fma:
5594 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5595 getValue(I.getArgOperand(0)).getValueType(),
5596 getValue(I.getArgOperand(0)),
5597 getValue(I.getArgOperand(1)),
5598 getValue(I.getArgOperand(2))));
5599 return nullptr;
5600 case Intrinsic::experimental_constrained_fadd:
5601 case Intrinsic::experimental_constrained_fsub:
5602 case Intrinsic::experimental_constrained_fmul:
5603 case Intrinsic::experimental_constrained_fdiv:
5604 case Intrinsic::experimental_constrained_frem:
5605 case Intrinsic::experimental_constrained_fma:
5606 case Intrinsic::experimental_constrained_sqrt:
5607 case Intrinsic::experimental_constrained_pow:
5608 case Intrinsic::experimental_constrained_powi:
5609 case Intrinsic::experimental_constrained_sin:
5610 case Intrinsic::experimental_constrained_cos:
5611 case Intrinsic::experimental_constrained_exp:
5612 case Intrinsic::experimental_constrained_exp2:
5613 case Intrinsic::experimental_constrained_log:
5614 case Intrinsic::experimental_constrained_log10:
5615 case Intrinsic::experimental_constrained_log2:
5616 case Intrinsic::experimental_constrained_rint:
5617 case Intrinsic::experimental_constrained_nearbyint:
5618 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5619 return nullptr;
5620 case Intrinsic::fmuladd: {
5621 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5622 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5623 TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5624 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5625 getValue(I.getArgOperand(0)).getValueType(),
5626 getValue(I.getArgOperand(0)),
5627 getValue(I.getArgOperand(1)),
5628 getValue(I.getArgOperand(2))));
5629 } else {
5630 // TODO: Intrinsic calls should have fast-math-flags.
5631 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5632 getValue(I.getArgOperand(0)).getValueType(),
5633 getValue(I.getArgOperand(0)),
5634 getValue(I.getArgOperand(1)));
5635 SDValue Add = DAG.getNode(ISD::FADD, sdl,
5636 getValue(I.getArgOperand(0)).getValueType(),
5637 Mul,
5638 getValue(I.getArgOperand(2)));
5639 setValue(&I, Add);
5641 return nullptr;
5643 case Intrinsic::convert_to_fp16:
5644 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5645 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5646 getValue(I.getArgOperand(0)),
5647 DAG.getTargetConstant(0, sdl,
5648 MVT::i32))));
5649 return nullptr;
5650 case Intrinsic::convert_from_fp16:
5651 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5652 TLI.getValueType(DAG.getDataLayout(), I.getType()),
5653 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5654 getValue(I.getArgOperand(0)))));
5655 return nullptr;
5656 case Intrinsic::pcmarker: {
5657 SDValue Tmp = getValue(I.getArgOperand(0));
5658 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5659 return nullptr;
5661 case Intrinsic::readcyclecounter: {
5662 SDValue Op = getRoot();
5663 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5664 DAG.getVTList(MVT::i64, MVT::Other), Op);
5665 setValue(&I, Res);
5666 DAG.setRoot(Res.getValue(1));
5667 return nullptr;
5669 case Intrinsic::bitreverse:
5670 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5671 getValue(I.getArgOperand(0)).getValueType(),
5672 getValue(I.getArgOperand(0))));
5673 return nullptr;
5674 case Intrinsic::bswap:
5675 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5676 getValue(I.getArgOperand(0)).getValueType(),
5677 getValue(I.getArgOperand(0))));
5678 return nullptr;
5679 case Intrinsic::cttz: {
5680 SDValue Arg = getValue(I.getArgOperand(0));
5681 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5682 EVT Ty = Arg.getValueType();
5683 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5684 sdl, Ty, Arg));
5685 return nullptr;
5687 case Intrinsic::ctlz: {
5688 SDValue Arg = getValue(I.getArgOperand(0));
5689 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5690 EVT Ty = Arg.getValueType();
5691 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5692 sdl, Ty, Arg));
5693 return nullptr;
5695 case Intrinsic::ctpop: {
5696 SDValue Arg = getValue(I.getArgOperand(0));
5697 EVT Ty = Arg.getValueType();
5698 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5699 return nullptr;
5701 case Intrinsic::fshl:
5702 case Intrinsic::fshr: {
5703 bool IsFSHL = Intrinsic == Intrinsic::fshl;
5704 SDValue X = getValue(I.getArgOperand(0));
5705 SDValue Y = getValue(I.getArgOperand(1));
5706 SDValue Z = getValue(I.getArgOperand(2));
5707 EVT VT = X.getValueType();
5708 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5709 SDValue Zero = DAG.getConstant(0, sdl, VT);
5710 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5712 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5713 // avoid the select that is necessary in the general case to filter out
5714 // the 0-shift possibility that leads to UB.
5715 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5716 // TODO: This should also be done if the operation is custom, but we have
5717 // to make sure targets are handling the modulo shift amount as expected.
5718 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5719 if (TLI.isOperationLegal(RotateOpcode, VT)) {
5720 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5721 return nullptr;
5724 // Some targets only rotate one way. Try the opposite direction.
5725 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5726 if (TLI.isOperationLegal(RotateOpcode, VT)) {
5727 // Negate the shift amount because it is safe to ignore the high bits.
5728 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5729 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5730 return nullptr;
5733 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5734 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5735 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5736 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5737 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5738 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5739 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5740 return nullptr;
5743 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5744 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5745 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5746 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5747 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5748 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5750 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5751 // and that is undefined. We must compare and select to avoid UB.
5752 EVT CCVT = MVT::i1;
5753 if (VT.isVector())
5754 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5756 // For fshl, 0-shift returns the 1st arg (X).
5757 // For fshr, 0-shift returns the 2nd arg (Y).
5758 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5759 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5760 return nullptr;
5762 case Intrinsic::stacksave: {
5763 SDValue Op = getRoot();
5764 Res = DAG.getNode(
5765 ISD::STACKSAVE, sdl,
5766 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5767 setValue(&I, Res);
5768 DAG.setRoot(Res.getValue(1));
5769 return nullptr;
5771 case Intrinsic::stackrestore:
5772 Res = getValue(I.getArgOperand(0));
5773 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5774 return nullptr;
5775 case Intrinsic::get_dynamic_area_offset: {
5776 SDValue Op = getRoot();
5777 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5778 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5779 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5780 // target.
5781 if (PtrTy != ResTy)
5782 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5783 " intrinsic!");
5784 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5785 Op);
5786 DAG.setRoot(Op);
5787 setValue(&I, Res);
5788 return nullptr;
5790 case Intrinsic::stackguard: {
5791 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5792 MachineFunction &MF = DAG.getMachineFunction();
5793 const Module &M = *MF.getFunction().getParent();
5794 SDValue Chain = getRoot();
5795 if (TLI.useLoadStackGuardNode()) {
5796 Res = getLoadStackGuard(DAG, sdl, Chain);
5797 } else {
5798 const Value *Global = TLI.getSDagStackGuard(M);
5799 unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5800 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5801 MachinePointerInfo(Global, 0), Align,
5802 MachineMemOperand::MOVolatile);
5804 if (TLI.useStackGuardXorFP())
5805 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5806 DAG.setRoot(Chain);
5807 setValue(&I, Res);
5808 return nullptr;
5810 case Intrinsic::stackprotector: {
5811 // Emit code into the DAG to store the stack guard onto the stack.
5812 MachineFunction &MF = DAG.getMachineFunction();
5813 MachineFrameInfo &MFI = MF.getFrameInfo();
5814 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5815 SDValue Src, Chain = getRoot();
5817 if (TLI.useLoadStackGuardNode())
5818 Src = getLoadStackGuard(DAG, sdl, Chain);
5819 else
5820 Src = getValue(I.getArgOperand(0)); // The guard's value.
5822 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5824 int FI = FuncInfo.StaticAllocaMap[Slot];
5825 MFI.setStackProtectorIndex(FI);
5827 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5829 // Store the stack protector onto the stack.
5830 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5831 DAG.getMachineFunction(), FI),
5832 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5833 setValue(&I, Res);
5834 DAG.setRoot(Res);
5835 return nullptr;
5837 case Intrinsic::objectsize: {
5838 // If we don't know by now, we're never going to know.
5839 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5841 assert(CI && "Non-constant type in __builtin_object_size?");
5843 SDValue Arg = getValue(I.getCalledValue());
5844 EVT Ty = Arg.getValueType();
5846 if (CI->isZero())
5847 Res = DAG.getConstant(-1ULL, sdl, Ty);
5848 else
5849 Res = DAG.getConstant(0, sdl, Ty);
5851 setValue(&I, Res);
5852 return nullptr;
5854 case Intrinsic::annotation:
5855 case Intrinsic::ptr_annotation:
5856 case Intrinsic::launder_invariant_group:
5857 case Intrinsic::strip_invariant_group:
5858 // Drop the intrinsic, but forward the value
5859 setValue(&I, getValue(I.getOperand(0)));
5860 return nullptr;
5861 case Intrinsic::assume:
5862 case Intrinsic::var_annotation:
5863 case Intrinsic::sideeffect:
5864 // Discard annotate attributes, assumptions, and artificial side-effects.
5865 return nullptr;
5867 case Intrinsic::codeview_annotation: {
5868 // Emit a label associated with this metadata.
5869 MachineFunction &MF = DAG.getMachineFunction();
5870 MCSymbol *Label =
5871 MF.getMMI().getContext().createTempSymbol("annotation", true);
5872 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5873 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5874 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5875 DAG.setRoot(Res);
5876 return nullptr;
5879 case Intrinsic::init_trampoline: {
5880 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5882 SDValue Ops[6];
5883 Ops[0] = getRoot();
5884 Ops[1] = getValue(I.getArgOperand(0));
5885 Ops[2] = getValue(I.getArgOperand(1));
5886 Ops[3] = getValue(I.getArgOperand(2));
5887 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5888 Ops[5] = DAG.getSrcValue(F);
5890 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5892 DAG.setRoot(Res);
5893 return nullptr;
5895 case Intrinsic::adjust_trampoline:
5896 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5897 TLI.getPointerTy(DAG.getDataLayout()),
5898 getValue(I.getArgOperand(0))));
5899 return nullptr;
5900 case Intrinsic::gcroot: {
5901 assert(DAG.getMachineFunction().getFunction().hasGC() &&
5902 "only valid in functions with gc specified, enforced by Verifier");
5903 assert(GFI && "implied by previous");
5904 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5905 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5907 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5908 GFI->addStackRoot(FI->getIndex(), TypeMap);
5909 return nullptr;
5911 case Intrinsic::gcread:
5912 case Intrinsic::gcwrite:
5913 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5914 case Intrinsic::flt_rounds:
5915 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5916 return nullptr;
5918 case Intrinsic::expect:
5919 // Just replace __builtin_expect(exp, c) with EXP.
5920 setValue(&I, getValue(I.getArgOperand(0)));
5921 return nullptr;
5923 case Intrinsic::debugtrap:
5924 case Intrinsic::trap: {
5925 StringRef TrapFuncName =
5926 I.getAttributes()
5927 .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5928 .getValueAsString();
5929 if (TrapFuncName.empty()) {
5930 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5931 ISD::TRAP : ISD::DEBUGTRAP;
5932 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5933 return nullptr;
5935 TargetLowering::ArgListTy Args;
5937 TargetLowering::CallLoweringInfo CLI(DAG);
5938 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5939 CallingConv::C, I.getType(),
5940 DAG.getExternalSymbol(TrapFuncName.data(),
5941 TLI.getPointerTy(DAG.getDataLayout())),
5942 std::move(Args));
5944 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5945 DAG.setRoot(Result.second);
5946 return nullptr;
5949 case Intrinsic::uadd_with_overflow:
5950 case Intrinsic::sadd_with_overflow:
5951 case Intrinsic::usub_with_overflow:
5952 case Intrinsic::ssub_with_overflow:
5953 case Intrinsic::umul_with_overflow:
5954 case Intrinsic::smul_with_overflow: {
5955 ISD::NodeType Op;
5956 switch (Intrinsic) {
5957 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5958 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5959 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5960 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5961 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5962 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5963 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5965 SDValue Op1 = getValue(I.getArgOperand(0));
5966 SDValue Op2 = getValue(I.getArgOperand(1));
5968 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5969 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5970 return nullptr;
5972 case Intrinsic::prefetch: {
5973 SDValue Ops[5];
5974 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5975 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5976 Ops[0] = DAG.getRoot();
5977 Ops[1] = getValue(I.getArgOperand(0));
5978 Ops[2] = getValue(I.getArgOperand(1));
5979 Ops[3] = getValue(I.getArgOperand(2));
5980 Ops[4] = getValue(I.getArgOperand(3));
5981 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5982 DAG.getVTList(MVT::Other), Ops,
5983 EVT::getIntegerVT(*Context, 8),
5984 MachinePointerInfo(I.getArgOperand(0)),
5985 0, /* align */
5986 Flags);
5988 // Chain the prefetch in parallell with any pending loads, to stay out of
5989 // the way of later optimizations.
5990 PendingLoads.push_back(Result);
5991 Result = getRoot();
5992 DAG.setRoot(Result);
5993 return nullptr;
5995 case Intrinsic::lifetime_start:
5996 case Intrinsic::lifetime_end: {
5997 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5998 // Stack coloring is not enabled in O0, discard region information.
5999 if (TM.getOptLevel() == CodeGenOpt::None)
6000 return nullptr;
6002 SmallVector<Value *, 4> Allocas;
6003 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
6005 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6006 E = Allocas.end(); Object != E; ++Object) {
6007 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6009 // Could not find an Alloca.
6010 if (!LifetimeObject)
6011 continue;
6013 // First check that the Alloca is static, otherwise it won't have a
6014 // valid frame index.
6015 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6016 if (SI == FuncInfo.StaticAllocaMap.end())
6017 return nullptr;
6019 int FI = SI->second;
6021 SDValue Ops[2];
6022 Ops[0] = getRoot();
6023 Ops[1] =
6024 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6025 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6027 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6028 DAG.setRoot(Res);
6030 return nullptr;
6032 case Intrinsic::invariant_start:
6033 // Discard region information.
6034 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6035 return nullptr;
6036 case Intrinsic::invariant_end:
6037 // Discard region information.
6038 return nullptr;
6039 case Intrinsic::clear_cache:
6040 return TLI.getClearCacheBuiltinName();
6041 case Intrinsic::donothing:
6042 // ignore
6043 return nullptr;
6044 case Intrinsic::experimental_stackmap:
6045 visitStackmap(I);
6046 return nullptr;
6047 case Intrinsic::experimental_patchpoint_void:
6048 case Intrinsic::experimental_patchpoint_i64:
6049 visitPatchpoint(&I);
6050 return nullptr;
6051 case Intrinsic::experimental_gc_statepoint:
6052 LowerStatepoint(ImmutableStatepoint(&I));
6053 return nullptr;
6054 case Intrinsic::experimental_gc_result:
6055 visitGCResult(cast<GCResultInst>(I));
6056 return nullptr;
6057 case Intrinsic::experimental_gc_relocate:
6058 visitGCRelocate(cast<GCRelocateInst>(I));
6059 return nullptr;
6060 case Intrinsic::instrprof_increment:
6061 llvm_unreachable("instrprof failed to lower an increment");
6062 case Intrinsic::instrprof_value_profile:
6063 llvm_unreachable("instrprof failed to lower a value profiling call");
6064 case Intrinsic::localescape: {
6065 MachineFunction &MF = DAG.getMachineFunction();
6066 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6068 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6069 // is the same on all targets.
6070 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6071 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6072 if (isa<ConstantPointerNull>(Arg))
6073 continue; // Skip null pointers. They represent a hole in index space.
6074 AllocaInst *Slot = cast<AllocaInst>(Arg);
6075 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6076 "can only escape static allocas");
6077 int FI = FuncInfo.StaticAllocaMap[Slot];
6078 MCSymbol *FrameAllocSym =
6079 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6080 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6082 TII->get(TargetOpcode::LOCAL_ESCAPE))
6083 .addSym(FrameAllocSym)
6084 .addFrameIndex(FI);
6087 return nullptr;
6090 case Intrinsic::localrecover: {
6091 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6092 MachineFunction &MF = DAG.getMachineFunction();
6093 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6095 // Get the symbol that defines the frame offset.
6096 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6097 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6098 unsigned IdxVal =
6099 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6100 MCSymbol *FrameAllocSym =
6101 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6102 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6104 // Create a MCSymbol for the label to avoid any target lowering
6105 // that would make this PC relative.
6106 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6107 SDValue OffsetVal =
6108 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6110 // Add the offset to the FP.
6111 Value *FP = I.getArgOperand(1);
6112 SDValue FPVal = getValue(FP);
6113 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6114 setValue(&I, Add);
6116 return nullptr;
6119 case Intrinsic::eh_exceptionpointer:
6120 case Intrinsic::eh_exceptioncode: {
6121 // Get the exception pointer vreg, copy from it, and resize it to fit.
6122 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6123 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6124 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6125 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6126 SDValue N =
6127 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6128 if (Intrinsic == Intrinsic::eh_exceptioncode)
6129 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6130 setValue(&I, N);
6131 return nullptr;
6133 case Intrinsic::xray_customevent: {
6134 // Here we want to make sure that the intrinsic behaves as if it has a
6135 // specific calling convention, and only for x86_64.
6136 // FIXME: Support other platforms later.
6137 const auto &Triple = DAG.getTarget().getTargetTriple();
6138 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6139 return nullptr;
6141 SDLoc DL = getCurSDLoc();
6142 SmallVector<SDValue, 8> Ops;
6144 // We want to say that we always want the arguments in registers.
6145 SDValue LogEntryVal = getValue(I.getArgOperand(0));
6146 SDValue StrSizeVal = getValue(I.getArgOperand(1));
6147 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6148 SDValue Chain = getRoot();
6149 Ops.push_back(LogEntryVal);
6150 Ops.push_back(StrSizeVal);
6151 Ops.push_back(Chain);
6153 // We need to enforce the calling convention for the callsite, so that
6154 // argument ordering is enforced correctly, and that register allocation can
6155 // see that some registers may be assumed clobbered and have to preserve
6156 // them across calls to the intrinsic.
6157 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6158 DL, NodeTys, Ops);
6159 SDValue patchableNode = SDValue(MN, 0);
6160 DAG.setRoot(patchableNode);
6161 setValue(&I, patchableNode);
6162 return nullptr;
6164 case Intrinsic::xray_typedevent: {
6165 // Here we want to make sure that the intrinsic behaves as if it has a
6166 // specific calling convention, and only for x86_64.
6167 // FIXME: Support other platforms later.
6168 const auto &Triple = DAG.getTarget().getTargetTriple();
6169 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6170 return nullptr;
6172 SDLoc DL = getCurSDLoc();
6173 SmallVector<SDValue, 8> Ops;
6175 // We want to say that we always want the arguments in registers.
6176 // It's unclear to me how manipulating the selection DAG here forces callers
6177 // to provide arguments in registers instead of on the stack.
6178 SDValue LogTypeId = getValue(I.getArgOperand(0));
6179 SDValue LogEntryVal = getValue(I.getArgOperand(1));
6180 SDValue StrSizeVal = getValue(I.getArgOperand(2));
6181 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6182 SDValue Chain = getRoot();
6183 Ops.push_back(LogTypeId);
6184 Ops.push_back(LogEntryVal);
6185 Ops.push_back(StrSizeVal);
6186 Ops.push_back(Chain);
6188 // We need to enforce the calling convention for the callsite, so that
6189 // argument ordering is enforced correctly, and that register allocation can
6190 // see that some registers may be assumed clobbered and have to preserve
6191 // them across calls to the intrinsic.
6192 MachineSDNode *MN = DAG.getMachineNode(
6193 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6194 SDValue patchableNode = SDValue(MN, 0);
6195 DAG.setRoot(patchableNode);
6196 setValue(&I, patchableNode);
6197 return nullptr;
6199 case Intrinsic::experimental_deoptimize:
6200 LowerDeoptimizeCall(&I);
6201 return nullptr;
6203 case Intrinsic::experimental_vector_reduce_fadd:
6204 case Intrinsic::experimental_vector_reduce_fmul:
6205 case Intrinsic::experimental_vector_reduce_add:
6206 case Intrinsic::experimental_vector_reduce_mul:
6207 case Intrinsic::experimental_vector_reduce_and:
6208 case Intrinsic::experimental_vector_reduce_or:
6209 case Intrinsic::experimental_vector_reduce_xor:
6210 case Intrinsic::experimental_vector_reduce_smax:
6211 case Intrinsic::experimental_vector_reduce_smin:
6212 case Intrinsic::experimental_vector_reduce_umax:
6213 case Intrinsic::experimental_vector_reduce_umin:
6214 case Intrinsic::experimental_vector_reduce_fmax:
6215 case Intrinsic::experimental_vector_reduce_fmin:
6216 visitVectorReduce(I, Intrinsic);
6217 return nullptr;
6219 case Intrinsic::icall_branch_funnel: {
6220 SmallVector<SDValue, 16> Ops;
6221 Ops.push_back(DAG.getRoot());
6222 Ops.push_back(getValue(I.getArgOperand(0)));
6224 int64_t Offset;
6225 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6226 I.getArgOperand(1), Offset, DAG.getDataLayout()));
6227 if (!Base)
6228 report_fatal_error(
6229 "llvm.icall.branch.funnel operand must be a GlobalValue");
6230 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6232 struct BranchFunnelTarget {
6233 int64_t Offset;
6234 SDValue Target;
6236 SmallVector<BranchFunnelTarget, 8> Targets;
6238 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6239 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6240 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6241 if (ElemBase != Base)
6242 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6243 "to the same GlobalValue");
6245 SDValue Val = getValue(I.getArgOperand(Op + 1));
6246 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6247 if (!GA)
6248 report_fatal_error(
6249 "llvm.icall.branch.funnel operand must be a GlobalValue");
6250 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6251 GA->getGlobal(), getCurSDLoc(),
6252 Val.getValueType(), GA->getOffset())});
6254 llvm::sort(Targets,
6255 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6256 return T1.Offset < T2.Offset;
6259 for (auto &T : Targets) {
6260 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6261 Ops.push_back(T.Target);
6264 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6265 getCurSDLoc(), MVT::Other, Ops),
6267 DAG.setRoot(N);
6268 setValue(&I, N);
6269 HasTailCall = true;
6270 return nullptr;
6273 case Intrinsic::wasm_landingpad_index: {
6274 // TODO store landing pad index in a map, which will be used when generating
6275 // LSDA information
6276 return nullptr;
6281 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6282 const ConstrainedFPIntrinsic &FPI) {
6283 SDLoc sdl = getCurSDLoc();
6284 unsigned Opcode;
6285 switch (FPI.getIntrinsicID()) {
6286 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6287 case Intrinsic::experimental_constrained_fadd:
6288 Opcode = ISD::STRICT_FADD;
6289 break;
6290 case Intrinsic::experimental_constrained_fsub:
6291 Opcode = ISD::STRICT_FSUB;
6292 break;
6293 case Intrinsic::experimental_constrained_fmul:
6294 Opcode = ISD::STRICT_FMUL;
6295 break;
6296 case Intrinsic::experimental_constrained_fdiv:
6297 Opcode = ISD::STRICT_FDIV;
6298 break;
6299 case Intrinsic::experimental_constrained_frem:
6300 Opcode = ISD::STRICT_FREM;
6301 break;
6302 case Intrinsic::experimental_constrained_fma:
6303 Opcode = ISD::STRICT_FMA;
6304 break;
6305 case Intrinsic::experimental_constrained_sqrt:
6306 Opcode = ISD::STRICT_FSQRT;
6307 break;
6308 case Intrinsic::experimental_constrained_pow:
6309 Opcode = ISD::STRICT_FPOW;
6310 break;
6311 case Intrinsic::experimental_constrained_powi:
6312 Opcode = ISD::STRICT_FPOWI;
6313 break;
6314 case Intrinsic::experimental_constrained_sin:
6315 Opcode = ISD::STRICT_FSIN;
6316 break;
6317 case Intrinsic::experimental_constrained_cos:
6318 Opcode = ISD::STRICT_FCOS;
6319 break;
6320 case Intrinsic::experimental_constrained_exp:
6321 Opcode = ISD::STRICT_FEXP;
6322 break;
6323 case Intrinsic::experimental_constrained_exp2:
6324 Opcode = ISD::STRICT_FEXP2;
6325 break;
6326 case Intrinsic::experimental_constrained_log:
6327 Opcode = ISD::STRICT_FLOG;
6328 break;
6329 case Intrinsic::experimental_constrained_log10:
6330 Opcode = ISD::STRICT_FLOG10;
6331 break;
6332 case Intrinsic::experimental_constrained_log2:
6333 Opcode = ISD::STRICT_FLOG2;
6334 break;
6335 case Intrinsic::experimental_constrained_rint:
6336 Opcode = ISD::STRICT_FRINT;
6337 break;
6338 case Intrinsic::experimental_constrained_nearbyint:
6339 Opcode = ISD::STRICT_FNEARBYINT;
6340 break;
6342 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6343 SDValue Chain = getRoot();
6344 SmallVector<EVT, 4> ValueVTs;
6345 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6346 ValueVTs.push_back(MVT::Other); // Out chain
6348 SDVTList VTs = DAG.getVTList(ValueVTs);
6349 SDValue Result;
6350 if (FPI.isUnaryOp())
6351 Result = DAG.getNode(Opcode, sdl, VTs,
6352 { Chain, getValue(FPI.getArgOperand(0)) });
6353 else if (FPI.isTernaryOp())
6354 Result = DAG.getNode(Opcode, sdl, VTs,
6355 { Chain, getValue(FPI.getArgOperand(0)),
6356 getValue(FPI.getArgOperand(1)),
6357 getValue(FPI.getArgOperand(2)) });
6358 else
6359 Result = DAG.getNode(Opcode, sdl, VTs,
6360 { Chain, getValue(FPI.getArgOperand(0)),
6361 getValue(FPI.getArgOperand(1)) });
6363 assert(Result.getNode()->getNumValues() == 2);
6364 SDValue OutChain = Result.getValue(1);
6365 DAG.setRoot(OutChain);
6366 SDValue FPResult = Result.getValue(0);
6367 setValue(&FPI, FPResult);
6370 std::pair<SDValue, SDValue>
6371 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6372 const BasicBlock *EHPadBB) {
6373 MachineFunction &MF = DAG.getMachineFunction();
6374 MachineModuleInfo &MMI = MF.getMMI();
6375 MCSymbol *BeginLabel = nullptr;
6377 if (EHPadBB) {
6378 // Insert a label before the invoke call to mark the try range. This can be
6379 // used to detect deletion of the invoke via the MachineModuleInfo.
6380 BeginLabel = MMI.getContext().createTempSymbol();
6382 // For SjLj, keep track of which landing pads go with which invokes
6383 // so as to maintain the ordering of pads in the LSDA.
6384 unsigned CallSiteIndex = MMI.getCurrentCallSite();
6385 if (CallSiteIndex) {
6386 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6387 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6389 // Now that the call site is handled, stop tracking it.
6390 MMI.setCurrentCallSite(0);
6393 // Both PendingLoads and PendingExports must be flushed here;
6394 // this call might not return.
6395 (void)getRoot();
6396 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6398 CLI.setChain(getRoot());
6400 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6401 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6403 assert((CLI.IsTailCall || Result.second.getNode()) &&
6404 "Non-null chain expected with non-tail call!");
6405 assert((Result.second.getNode() || !Result.first.getNode()) &&
6406 "Null value expected with tail call!");
6408 if (!Result.second.getNode()) {
6409 // As a special case, a null chain means that a tail call has been emitted
6410 // and the DAG root is already updated.
6411 HasTailCall = true;
6413 // Since there's no actual continuation from this block, nothing can be
6414 // relying on us setting vregs for them.
6415 PendingExports.clear();
6416 } else {
6417 DAG.setRoot(Result.second);
6420 if (EHPadBB) {
6421 // Insert a label at the end of the invoke call to mark the try range. This
6422 // can be used to detect deletion of the invoke via the MachineModuleInfo.
6423 MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6424 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6426 // Inform MachineModuleInfo of range.
6427 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6428 // There is a platform (e.g. wasm) that uses funclet style IR but does not
6429 // actually use outlined funclets and their LSDA info style.
6430 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6431 assert(CLI.CS);
6432 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6433 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6434 BeginLabel, EndLabel);
6435 } else {
6436 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6440 return Result;
6443 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6444 bool isTailCall,
6445 const BasicBlock *EHPadBB) {
6446 auto &DL = DAG.getDataLayout();
6447 FunctionType *FTy = CS.getFunctionType();
6448 Type *RetTy = CS.getType();
6450 TargetLowering::ArgListTy Args;
6451 Args.reserve(CS.arg_size());
6453 const Value *SwiftErrorVal = nullptr;
6454 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6456 // We can't tail call inside a function with a swifterror argument. Lowering
6457 // does not support this yet. It would have to move into the swifterror
6458 // register before the call.
6459 auto *Caller = CS.getInstruction()->getParent()->getParent();
6460 if (TLI.supportSwiftError() &&
6461 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6462 isTailCall = false;
6464 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6465 i != e; ++i) {
6466 TargetLowering::ArgListEntry Entry;
6467 const Value *V = *i;
6469 // Skip empty types
6470 if (V->getType()->isEmptyTy())
6471 continue;
6473 SDValue ArgNode = getValue(V);
6474 Entry.Node = ArgNode; Entry.Ty = V->getType();
6476 Entry.setAttributes(&CS, i - CS.arg_begin());
6478 // Use swifterror virtual register as input to the call.
6479 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6480 SwiftErrorVal = V;
6481 // We find the virtual register for the actual swifterror argument.
6482 // Instead of using the Value, we use the virtual register instead.
6483 Entry.Node = DAG.getRegister(FuncInfo
6484 .getOrCreateSwiftErrorVRegUseAt(
6485 CS.getInstruction(), FuncInfo.MBB, V)
6486 .first,
6487 EVT(TLI.getPointerTy(DL)));
6490 Args.push_back(Entry);
6492 // If we have an explicit sret argument that is an Instruction, (i.e., it
6493 // might point to function-local memory), we can't meaningfully tail-call.
6494 if (Entry.IsSRet && isa<Instruction>(V))
6495 isTailCall = false;
6498 // Check if target-independent constraints permit a tail call here.
6499 // Target-dependent constraints are checked within TLI->LowerCallTo.
6500 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6501 isTailCall = false;
6503 // Disable tail calls if there is an swifterror argument. Targets have not
6504 // been updated to support tail calls.
6505 if (TLI.supportSwiftError() && SwiftErrorVal)
6506 isTailCall = false;
6508 TargetLowering::CallLoweringInfo CLI(DAG);
6509 CLI.setDebugLoc(getCurSDLoc())
6510 .setChain(getRoot())
6511 .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6512 .setTailCall(isTailCall)
6513 .setConvergent(CS.isConvergent());
6514 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6516 if (Result.first.getNode()) {
6517 const Instruction *Inst = CS.getInstruction();
6518 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6519 setValue(Inst, Result.first);
6522 // The last element of CLI.InVals has the SDValue for swifterror return.
6523 // Here we copy it to a virtual register and update SwiftErrorMap for
6524 // book-keeping.
6525 if (SwiftErrorVal && TLI.supportSwiftError()) {
6526 // Get the last element of InVals.
6527 SDValue Src = CLI.InVals.back();
6528 unsigned VReg; bool CreatedVReg;
6529 std::tie(VReg, CreatedVReg) =
6530 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6531 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6532 // We update the virtual register for the actual swifterror argument.
6533 if (CreatedVReg)
6534 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6535 DAG.setRoot(CopyNode);
6539 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6540 SelectionDAGBuilder &Builder) {
6541 // Check to see if this load can be trivially constant folded, e.g. if the
6542 // input is from a string literal.
6543 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6544 // Cast pointer to the type we really want to load.
6545 Type *LoadTy =
6546 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6547 if (LoadVT.isVector())
6548 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6550 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6551 PointerType::getUnqual(LoadTy));
6553 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6554 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6555 return Builder.getValue(LoadCst);
6558 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
6559 // still constant memory, the input chain can be the entry node.
6560 SDValue Root;
6561 bool ConstantMemory = false;
6563 // Do not serialize (non-volatile) loads of constant memory with anything.
6564 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6565 Root = Builder.DAG.getEntryNode();
6566 ConstantMemory = true;
6567 } else {
6568 // Do not serialize non-volatile loads against each other.
6569 Root = Builder.DAG.getRoot();
6572 SDValue Ptr = Builder.getValue(PtrVal);
6573 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6574 Ptr, MachinePointerInfo(PtrVal),
6575 /* Alignment = */ 1);
6577 if (!ConstantMemory)
6578 Builder.PendingLoads.push_back(LoadVal.getValue(1));
6579 return LoadVal;
6582 /// Record the value for an instruction that produces an integer result,
6583 /// converting the type where necessary.
6584 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6585 SDValue Value,
6586 bool IsSigned) {
6587 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6588 I.getType(), true);
6589 if (IsSigned)
6590 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6591 else
6592 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6593 setValue(&I, Value);
6596 /// See if we can lower a memcmp call into an optimized form. If so, return
6597 /// true and lower it. Otherwise return false, and it will be lowered like a
6598 /// normal call.
6599 /// The caller already checked that \p I calls the appropriate LibFunc with a
6600 /// correct prototype.
6601 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6602 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6603 const Value *Size = I.getArgOperand(2);
6604 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6605 if (CSize && CSize->getZExtValue() == 0) {
6606 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6607 I.getType(), true);
6608 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6609 return true;
6612 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6613 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6614 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6615 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6616 if (Res.first.getNode()) {
6617 processIntegerCallValue(I, Res.first, true);
6618 PendingLoads.push_back(Res.second);
6619 return true;
6622 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
6623 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
6624 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6625 return false;
6627 // If the target has a fast compare for the given size, it will return a
6628 // preferred load type for that size. Require that the load VT is legal and
6629 // that the target supports unaligned loads of that type. Otherwise, return
6630 // INVALID.
6631 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6632 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6633 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6634 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6635 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6636 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6637 // TODO: Check alignment of src and dest ptrs.
6638 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6639 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6640 if (!TLI.isTypeLegal(LVT) ||
6641 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6642 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6643 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6646 return LVT;
6649 // This turns into unaligned loads. We only do this if the target natively
6650 // supports the MVT we'll be loading or if it is small enough (<= 4) that
6651 // we'll only produce a small number of byte loads.
6652 MVT LoadVT;
6653 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6654 switch (NumBitsToCompare) {
6655 default:
6656 return false;
6657 case 16:
6658 LoadVT = MVT::i16;
6659 break;
6660 case 32:
6661 LoadVT = MVT::i32;
6662 break;
6663 case 64:
6664 case 128:
6665 case 256:
6666 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6667 break;
6670 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6671 return false;
6673 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6674 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6676 // Bitcast to a wide integer type if the loads are vectors.
6677 if (LoadVT.isVector()) {
6678 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6679 LoadL = DAG.getBitcast(CmpVT, LoadL);
6680 LoadR = DAG.getBitcast(CmpVT, LoadR);
6683 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6684 processIntegerCallValue(I, Cmp, false);
6685 return true;
6688 /// See if we can lower a memchr call into an optimized form. If so, return
6689 /// true and lower it. Otherwise return false, and it will be lowered like a
6690 /// normal call.
6691 /// The caller already checked that \p I calls the appropriate LibFunc with a
6692 /// correct prototype.
6693 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6694 const Value *Src = I.getArgOperand(0);
6695 const Value *Char = I.getArgOperand(1);
6696 const Value *Length = I.getArgOperand(2);
6698 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6699 std::pair<SDValue, SDValue> Res =
6700 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6701 getValue(Src), getValue(Char), getValue(Length),
6702 MachinePointerInfo(Src));
6703 if (Res.first.getNode()) {
6704 setValue(&I, Res.first);
6705 PendingLoads.push_back(Res.second);
6706 return true;
6709 return false;
6712 /// See if we can lower a mempcpy call into an optimized form. If so, return
6713 /// true and lower it. Otherwise return false, and it will be lowered like a
6714 /// normal call.
6715 /// The caller already checked that \p I calls the appropriate LibFunc with a
6716 /// correct prototype.
6717 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6718 SDValue Dst = getValue(I.getArgOperand(0));
6719 SDValue Src = getValue(I.getArgOperand(1));
6720 SDValue Size = getValue(I.getArgOperand(2));
6722 unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6723 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6724 unsigned Align = std::min(DstAlign, SrcAlign);
6725 if (Align == 0) // Alignment of one or both could not be inferred.
6726 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6728 bool isVol = false;
6729 SDLoc sdl = getCurSDLoc();
6731 // In the mempcpy context we need to pass in a false value for isTailCall
6732 // because the return pointer needs to be adjusted by the size of
6733 // the copied memory.
6734 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6735 false, /*isTailCall=*/false,
6736 MachinePointerInfo(I.getArgOperand(0)),
6737 MachinePointerInfo(I.getArgOperand(1)));
6738 assert(MC.getNode() != nullptr &&
6739 "** memcpy should not be lowered as TailCall in mempcpy context **");
6740 DAG.setRoot(MC);
6742 // Check if Size needs to be truncated or extended.
6743 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6745 // Adjust return pointer to point just past the last dst byte.
6746 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6747 Dst, Size);
6748 setValue(&I, DstPlusSize);
6749 return true;
6752 /// See if we can lower a strcpy call into an optimized form. If so, return
6753 /// true and lower it, otherwise return false and it will be lowered like a
6754 /// normal call.
6755 /// The caller already checked that \p I calls the appropriate LibFunc with a
6756 /// correct prototype.
6757 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6758 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6760 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6761 std::pair<SDValue, SDValue> Res =
6762 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6763 getValue(Arg0), getValue(Arg1),
6764 MachinePointerInfo(Arg0),
6765 MachinePointerInfo(Arg1), isStpcpy);
6766 if (Res.first.getNode()) {
6767 setValue(&I, Res.first);
6768 DAG.setRoot(Res.second);
6769 return true;
6772 return false;
6775 /// See if we can lower a strcmp call into an optimized form. If so, return
6776 /// true and lower it, otherwise return false and it will be lowered like a
6777 /// normal call.
6778 /// The caller already checked that \p I calls the appropriate LibFunc with a
6779 /// correct prototype.
6780 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6781 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6783 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6784 std::pair<SDValue, SDValue> Res =
6785 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6786 getValue(Arg0), getValue(Arg1),
6787 MachinePointerInfo(Arg0),
6788 MachinePointerInfo(Arg1));
6789 if (Res.first.getNode()) {
6790 processIntegerCallValue(I, Res.first, true);
6791 PendingLoads.push_back(Res.second);
6792 return true;
6795 return false;
6798 /// See if we can lower a strlen call into an optimized form. If so, return
6799 /// true and lower it, otherwise return false and it will be lowered like a
6800 /// normal call.
6801 /// The caller already checked that \p I calls the appropriate LibFunc with a
6802 /// correct prototype.
6803 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6804 const Value *Arg0 = I.getArgOperand(0);
6806 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6807 std::pair<SDValue, SDValue> Res =
6808 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6809 getValue(Arg0), MachinePointerInfo(Arg0));
6810 if (Res.first.getNode()) {
6811 processIntegerCallValue(I, Res.first, false);
6812 PendingLoads.push_back(Res.second);
6813 return true;
6816 return false;
6819 /// See if we can lower a strnlen call into an optimized form. If so, return
6820 /// true and lower it, otherwise return false and it will be lowered like a
6821 /// normal call.
6822 /// The caller already checked that \p I calls the appropriate LibFunc with a
6823 /// correct prototype.
6824 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6825 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6827 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6828 std::pair<SDValue, SDValue> Res =
6829 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6830 getValue(Arg0), getValue(Arg1),
6831 MachinePointerInfo(Arg0));
6832 if (Res.first.getNode()) {
6833 processIntegerCallValue(I, Res.first, false);
6834 PendingLoads.push_back(Res.second);
6835 return true;
6838 return false;
6841 /// See if we can lower a unary floating-point operation into an SDNode with
6842 /// the specified Opcode. If so, return true and lower it, otherwise return
6843 /// false and it will be lowered like a normal call.
6844 /// The caller already checked that \p I calls the appropriate LibFunc with a
6845 /// correct prototype.
6846 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6847 unsigned Opcode) {
6848 // We already checked this call's prototype; verify it doesn't modify errno.
6849 if (!I.onlyReadsMemory())
6850 return false;
6852 SDValue Tmp = getValue(I.getArgOperand(0));
6853 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6854 return true;
6857 /// See if we can lower a binary floating-point operation into an SDNode with
6858 /// the specified Opcode. If so, return true and lower it. Otherwise return
6859 /// false, and it will be lowered like a normal call.
6860 /// The caller already checked that \p I calls the appropriate LibFunc with a
6861 /// correct prototype.
6862 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6863 unsigned Opcode) {
6864 // We already checked this call's prototype; verify it doesn't modify errno.
6865 if (!I.onlyReadsMemory())
6866 return false;
6868 SDValue Tmp0 = getValue(I.getArgOperand(0));
6869 SDValue Tmp1 = getValue(I.getArgOperand(1));
6870 EVT VT = Tmp0.getValueType();
6871 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6872 return true;
6875 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6876 // Handle inline assembly differently.
6877 if (isa<InlineAsm>(I.getCalledValue())) {
6878 visitInlineAsm(&I);
6879 return;
6882 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6883 computeUsesVAFloatArgument(I, MMI);
6885 const char *RenameFn = nullptr;
6886 if (Function *F = I.getCalledFunction()) {
6887 if (F->isDeclaration()) {
6888 // Is this an LLVM intrinsic or a target-specific intrinsic?
6889 unsigned IID = F->getIntrinsicID();
6890 if (!IID)
6891 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6892 IID = II->getIntrinsicID(F);
6894 if (IID) {
6895 RenameFn = visitIntrinsicCall(I, IID);
6896 if (!RenameFn)
6897 return;
6901 // Check for well-known libc/libm calls. If the function is internal, it
6902 // can't be a library call. Don't do the check if marked as nobuiltin for
6903 // some reason or the call site requires strict floating point semantics.
6904 LibFunc Func;
6905 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6906 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6907 LibInfo->hasOptimizedCodeGen(Func)) {
6908 switch (Func) {
6909 default: break;
6910 case LibFunc_copysign:
6911 case LibFunc_copysignf:
6912 case LibFunc_copysignl:
6913 // We already checked this call's prototype; verify it doesn't modify
6914 // errno.
6915 if (I.onlyReadsMemory()) {
6916 SDValue LHS = getValue(I.getArgOperand(0));
6917 SDValue RHS = getValue(I.getArgOperand(1));
6918 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6919 LHS.getValueType(), LHS, RHS));
6920 return;
6922 break;
6923 case LibFunc_fabs:
6924 case LibFunc_fabsf:
6925 case LibFunc_fabsl:
6926 if (visitUnaryFloatCall(I, ISD::FABS))
6927 return;
6928 break;
6929 case LibFunc_fmin:
6930 case LibFunc_fminf:
6931 case LibFunc_fminl:
6932 if (visitBinaryFloatCall(I, ISD::FMINNUM))
6933 return;
6934 break;
6935 case LibFunc_fmax:
6936 case LibFunc_fmaxf:
6937 case LibFunc_fmaxl:
6938 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6939 return;
6940 break;
6941 case LibFunc_sin:
6942 case LibFunc_sinf:
6943 case LibFunc_sinl:
6944 if (visitUnaryFloatCall(I, ISD::FSIN))
6945 return;
6946 break;
6947 case LibFunc_cos:
6948 case LibFunc_cosf:
6949 case LibFunc_cosl:
6950 if (visitUnaryFloatCall(I, ISD::FCOS))
6951 return;
6952 break;
6953 case LibFunc_sqrt:
6954 case LibFunc_sqrtf:
6955 case LibFunc_sqrtl:
6956 case LibFunc_sqrt_finite:
6957 case LibFunc_sqrtf_finite:
6958 case LibFunc_sqrtl_finite:
6959 if (visitUnaryFloatCall(I, ISD::FSQRT))
6960 return;
6961 break;
6962 case LibFunc_floor:
6963 case LibFunc_floorf:
6964 case LibFunc_floorl:
6965 if (visitUnaryFloatCall(I, ISD::FFLOOR))
6966 return;
6967 break;
6968 case LibFunc_nearbyint:
6969 case LibFunc_nearbyintf:
6970 case LibFunc_nearbyintl:
6971 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6972 return;
6973 break;
6974 case LibFunc_ceil:
6975 case LibFunc_ceilf:
6976 case LibFunc_ceill:
6977 if (visitUnaryFloatCall(I, ISD::FCEIL))
6978 return;
6979 break;
6980 case LibFunc_rint:
6981 case LibFunc_rintf:
6982 case LibFunc_rintl:
6983 if (visitUnaryFloatCall(I, ISD::FRINT))
6984 return;
6985 break;
6986 case LibFunc_round:
6987 case LibFunc_roundf:
6988 case LibFunc_roundl:
6989 if (visitUnaryFloatCall(I, ISD::FROUND))
6990 return;
6991 break;
6992 case LibFunc_trunc:
6993 case LibFunc_truncf:
6994 case LibFunc_truncl:
6995 if (visitUnaryFloatCall(I, ISD::FTRUNC))
6996 return;
6997 break;
6998 case LibFunc_log2:
6999 case LibFunc_log2f:
7000 case LibFunc_log2l:
7001 if (visitUnaryFloatCall(I, ISD::FLOG2))
7002 return;
7003 break;
7004 case LibFunc_exp2:
7005 case LibFunc_exp2f:
7006 case LibFunc_exp2l:
7007 if (visitUnaryFloatCall(I, ISD::FEXP2))
7008 return;
7009 break;
7010 case LibFunc_memcmp:
7011 if (visitMemCmpCall(I))
7012 return;
7013 break;
7014 case LibFunc_mempcpy:
7015 if (visitMemPCpyCall(I))
7016 return;
7017 break;
7018 case LibFunc_memchr:
7019 if (visitMemChrCall(I))
7020 return;
7021 break;
7022 case LibFunc_strcpy:
7023 if (visitStrCpyCall(I, false))
7024 return;
7025 break;
7026 case LibFunc_stpcpy:
7027 if (visitStrCpyCall(I, true))
7028 return;
7029 break;
7030 case LibFunc_strcmp:
7031 if (visitStrCmpCall(I))
7032 return;
7033 break;
7034 case LibFunc_strlen:
7035 if (visitStrLenCall(I))
7036 return;
7037 break;
7038 case LibFunc_strnlen:
7039 if (visitStrNLenCall(I))
7040 return;
7041 break;
7046 SDValue Callee;
7047 if (!RenameFn)
7048 Callee = getValue(I.getCalledValue());
7049 else
7050 Callee = DAG.getExternalSymbol(
7051 RenameFn,
7052 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7054 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7055 // have to do anything here to lower funclet bundles.
7056 assert(!I.hasOperandBundlesOtherThan(
7057 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7058 "Cannot lower calls with arbitrary operand bundles!");
7060 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7061 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7062 else
7063 // Check if we can potentially perform a tail call. More detailed checking
7064 // is be done within LowerCallTo, after more information about the call is
7065 // known.
7066 LowerCallTo(&I, Callee, I.isTailCall());
7069 namespace {
7071 /// AsmOperandInfo - This contains information for each constraint that we are
7072 /// lowering.
7073 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7074 public:
7075 /// CallOperand - If this is the result output operand or a clobber
7076 /// this is null, otherwise it is the incoming operand to the CallInst.
7077 /// This gets modified as the asm is processed.
7078 SDValue CallOperand;
7080 /// AssignedRegs - If this is a register or register class operand, this
7081 /// contains the set of register corresponding to the operand.
7082 RegsForValue AssignedRegs;
7084 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7085 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7088 /// Whether or not this operand accesses memory
7089 bool hasMemory(const TargetLowering &TLI) const {
7090 // Indirect operand accesses access memory.
7091 if (isIndirect)
7092 return true;
7094 for (const auto &Code : Codes)
7095 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7096 return true;
7098 return false;
7101 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7102 /// corresponds to. If there is no Value* for this operand, it returns
7103 /// MVT::Other.
7104 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7105 const DataLayout &DL) const {
7106 if (!CallOperandVal) return MVT::Other;
7108 if (isa<BasicBlock>(CallOperandVal))
7109 return TLI.getPointerTy(DL);
7111 llvm::Type *OpTy = CallOperandVal->getType();
7113 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7114 // If this is an indirect operand, the operand is a pointer to the
7115 // accessed type.
7116 if (isIndirect) {
7117 PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7118 if (!PtrTy)
7119 report_fatal_error("Indirect operand for inline asm not a pointer!");
7120 OpTy = PtrTy->getElementType();
7123 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7124 if (StructType *STy = dyn_cast<StructType>(OpTy))
7125 if (STy->getNumElements() == 1)
7126 OpTy = STy->getElementType(0);
7128 // If OpTy is not a single value, it may be a struct/union that we
7129 // can tile with integers.
7130 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7131 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7132 switch (BitSize) {
7133 default: break;
7134 case 1:
7135 case 8:
7136 case 16:
7137 case 32:
7138 case 64:
7139 case 128:
7140 OpTy = IntegerType::get(Context, BitSize);
7141 break;
7145 return TLI.getValueType(DL, OpTy, true);
7149 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7151 } // end anonymous namespace
7153 /// Make sure that the output operand \p OpInfo and its corresponding input
7154 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7155 /// out).
7156 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7157 SDISelAsmOperandInfo &MatchingOpInfo,
7158 SelectionDAG &DAG) {
7159 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7160 return;
7162 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7163 const auto &TLI = DAG.getTargetLoweringInfo();
7165 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7166 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7167 OpInfo.ConstraintVT);
7168 std::pair<unsigned, const TargetRegisterClass *> InputRC =
7169 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7170 MatchingOpInfo.ConstraintVT);
7171 if ((OpInfo.ConstraintVT.isInteger() !=
7172 MatchingOpInfo.ConstraintVT.isInteger()) ||
7173 (MatchRC.second != InputRC.second)) {
7174 // FIXME: error out in a more elegant fashion
7175 report_fatal_error("Unsupported asm: input constraint"
7176 " with a matching output constraint of"
7177 " incompatible type!");
7179 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7182 /// Get a direct memory input to behave well as an indirect operand.
7183 /// This may introduce stores, hence the need for a \p Chain.
7184 /// \return The (possibly updated) chain.
7185 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7186 SDISelAsmOperandInfo &OpInfo,
7187 SelectionDAG &DAG) {
7188 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7190 // If we don't have an indirect input, put it in the constpool if we can,
7191 // otherwise spill it to a stack slot.
7192 // TODO: This isn't quite right. We need to handle these according to
7193 // the addressing mode that the constraint wants. Also, this may take
7194 // an additional register for the computation and we don't want that
7195 // either.
7197 // If the operand is a float, integer, or vector constant, spill to a
7198 // constant pool entry to get its address.
7199 const Value *OpVal = OpInfo.CallOperandVal;
7200 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7201 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7202 OpInfo.CallOperand = DAG.getConstantPool(
7203 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7204 return Chain;
7207 // Otherwise, create a stack slot and emit a store to it before the asm.
7208 Type *Ty = OpVal->getType();
7209 auto &DL = DAG.getDataLayout();
7210 uint64_t TySize = DL.getTypeAllocSize(Ty);
7211 unsigned Align = DL.getPrefTypeAlignment(Ty);
7212 MachineFunction &MF = DAG.getMachineFunction();
7213 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7214 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7215 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7216 MachinePointerInfo::getFixedStack(MF, SSFI));
7217 OpInfo.CallOperand = StackSlot;
7219 return Chain;
7222 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7223 /// specified operand. We prefer to assign virtual registers, to allow the
7224 /// register allocator to handle the assignment process. However, if the asm
7225 /// uses features that we can't model on machineinstrs, we have SDISel do the
7226 /// allocation. This produces generally horrible, but correct, code.
7228 /// OpInfo describes the operand
7229 /// RefOpInfo describes the matching operand if any, the operand otherwise
7230 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7231 const SDLoc &DL, SDISelAsmOperandInfo &OpInfo,
7232 SDISelAsmOperandInfo &RefOpInfo) {
7233 LLVMContext &Context = *DAG.getContext();
7235 MachineFunction &MF = DAG.getMachineFunction();
7236 SmallVector<unsigned, 4> Regs;
7237 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7239 // If this is a constraint for a single physreg, or a constraint for a
7240 // register class, find it.
7241 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7242 TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode,
7243 RefOpInfo.ConstraintVT);
7245 unsigned NumRegs = 1;
7246 if (OpInfo.ConstraintVT != MVT::Other) {
7247 // If this is an FP operand in an integer register (or visa versa), or more
7248 // generally if the operand value disagrees with the register class we plan
7249 // to stick it in, fix the operand type.
7251 // If this is an input value, the bitcast to the new type is done now.
7252 // Bitcast for output value is done at the end of visitInlineAsm().
7253 if ((OpInfo.Type == InlineAsm::isOutput ||
7254 OpInfo.Type == InlineAsm::isInput) &&
7255 PhysReg.second &&
7256 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7257 // Try to convert to the first EVT that the reg class contains. If the
7258 // types are identical size, use a bitcast to convert (e.g. two differing
7259 // vector types). Note: output bitcast is done at the end of
7260 // visitInlineAsm().
7261 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7262 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7263 // Exclude indirect inputs while they are unsupported because the code
7264 // to perform the load is missing and thus OpInfo.CallOperand still
7265 // refers to the input address rather than the pointed-to value.
7266 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7267 OpInfo.CallOperand =
7268 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7269 OpInfo.ConstraintVT = RegVT;
7270 // If the operand is an FP value and we want it in integer registers,
7271 // use the corresponding integer type. This turns an f64 value into
7272 // i64, which can be passed with two i32 values on a 32-bit machine.
7273 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7274 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7275 if (OpInfo.Type == InlineAsm::isInput)
7276 OpInfo.CallOperand =
7277 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7278 OpInfo.ConstraintVT = RegVT;
7282 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7285 // No need to allocate a matching input constraint since the constraint it's
7286 // matching to has already been allocated.
7287 if (OpInfo.isMatchingInputConstraint())
7288 return;
7290 MVT RegVT;
7291 EVT ValueVT = OpInfo.ConstraintVT;
7293 // If this is a constraint for a specific physical register, like {r17},
7294 // assign it now.
7295 if (unsigned AssignedReg = PhysReg.first) {
7296 const TargetRegisterClass *RC = PhysReg.second;
7297 if (OpInfo.ConstraintVT == MVT::Other)
7298 ValueVT = *TRI.legalclasstypes_begin(*RC);
7300 // Get the actual register value type. This is important, because the user
7301 // may have asked for (e.g.) the AX register in i32 type. We need to
7302 // remember that AX is actually i16 to get the right extension.
7303 RegVT = *TRI.legalclasstypes_begin(*RC);
7305 // This is an explicit reference to a physical register.
7306 Regs.push_back(AssignedReg);
7308 // If this is an expanded reference, add the rest of the regs to Regs.
7309 if (NumRegs != 1) {
7310 TargetRegisterClass::iterator I = RC->begin();
7311 for (; *I != AssignedReg; ++I)
7312 assert(I != RC->end() && "Didn't find reg!");
7314 // Already added the first reg.
7315 --NumRegs; ++I;
7316 for (; NumRegs; --NumRegs, ++I) {
7317 assert(I != RC->end() && "Ran out of registers to allocate!");
7318 Regs.push_back(*I);
7322 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7323 return;
7326 // Otherwise, if this was a reference to an LLVM register class, create vregs
7327 // for this reference.
7328 if (const TargetRegisterClass *RC = PhysReg.second) {
7329 RegVT = *TRI.legalclasstypes_begin(*RC);
7330 if (OpInfo.ConstraintVT == MVT::Other)
7331 ValueVT = RegVT;
7333 // Create the appropriate number of virtual registers.
7334 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7335 for (; NumRegs; --NumRegs)
7336 Regs.push_back(RegInfo.createVirtualRegister(RC));
7338 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7339 return;
7342 // Otherwise, we couldn't allocate enough registers for this.
7345 static unsigned
7346 findMatchingInlineAsmOperand(unsigned OperandNo,
7347 const std::vector<SDValue> &AsmNodeOperands) {
7348 // Scan until we find the definition we already emitted of this operand.
7349 unsigned CurOp = InlineAsm::Op_FirstOperand;
7350 for (; OperandNo; --OperandNo) {
7351 // Advance to the next operand.
7352 unsigned OpFlag =
7353 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7354 assert((InlineAsm::isRegDefKind(OpFlag) ||
7355 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7356 InlineAsm::isMemKind(OpFlag)) &&
7357 "Skipped past definitions?");
7358 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7360 return CurOp;
7363 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7364 /// \return true if it has succeeded, false otherwise
7365 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7366 MVT RegVT, SelectionDAG &DAG) {
7367 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7368 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7369 for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7370 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7371 Regs.push_back(RegInfo.createVirtualRegister(RC));
7372 else
7373 return false;
7375 return true;
7378 namespace {
7380 class ExtraFlags {
7381 unsigned Flags = 0;
7383 public:
7384 explicit ExtraFlags(ImmutableCallSite CS) {
7385 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7386 if (IA->hasSideEffects())
7387 Flags |= InlineAsm::Extra_HasSideEffects;
7388 if (IA->isAlignStack())
7389 Flags |= InlineAsm::Extra_IsAlignStack;
7390 if (CS.isConvergent())
7391 Flags |= InlineAsm::Extra_IsConvergent;
7392 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7395 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7396 // Ideally, we would only check against memory constraints. However, the
7397 // meaning of an Other constraint can be target-specific and we can't easily
7398 // reason about it. Therefore, be conservative and set MayLoad/MayStore
7399 // for Other constraints as well.
7400 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7401 OpInfo.ConstraintType == TargetLowering::C_Other) {
7402 if (OpInfo.Type == InlineAsm::isInput)
7403 Flags |= InlineAsm::Extra_MayLoad;
7404 else if (OpInfo.Type == InlineAsm::isOutput)
7405 Flags |= InlineAsm::Extra_MayStore;
7406 else if (OpInfo.Type == InlineAsm::isClobber)
7407 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7411 unsigned get() const { return Flags; }
7414 } // end anonymous namespace
7416 /// visitInlineAsm - Handle a call to an InlineAsm object.
7417 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7418 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7420 /// ConstraintOperands - Information about all of the constraints.
7421 SDISelAsmOperandInfoVector ConstraintOperands;
7423 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7424 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7425 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7427 bool hasMemory = false;
7429 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7430 ExtraFlags ExtraInfo(CS);
7432 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
7433 unsigned ResNo = 0; // ResNo - The result number of the next output.
7434 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7435 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7436 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7438 MVT OpVT = MVT::Other;
7440 // Compute the value type for each operand.
7441 if (OpInfo.Type == InlineAsm::isInput ||
7442 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7443 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7445 // Process the call argument. BasicBlocks are labels, currently appearing
7446 // only in asm's.
7447 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7448 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7449 } else {
7450 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7453 OpVT =
7454 OpInfo
7455 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7456 .getSimpleVT();
7459 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7460 // The return value of the call is this value. As such, there is no
7461 // corresponding argument.
7462 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7463 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7464 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7465 STy->getElementType(ResNo));
7466 } else {
7467 assert(ResNo == 0 && "Asm only has one result!");
7468 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7470 ++ResNo;
7473 OpInfo.ConstraintVT = OpVT;
7475 if (!hasMemory)
7476 hasMemory = OpInfo.hasMemory(TLI);
7478 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7479 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7480 auto TargetConstraint = TargetConstraints[i];
7482 // Compute the constraint code and ConstraintType to use.
7483 TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7485 ExtraInfo.update(TargetConstraint);
7488 SDValue Chain, Flag;
7490 // We won't need to flush pending loads if this asm doesn't touch
7491 // memory and is nonvolatile.
7492 if (hasMemory || IA->hasSideEffects())
7493 Chain = getRoot();
7494 else
7495 Chain = DAG.getRoot();
7497 // Second pass over the constraints: compute which constraint option to use
7498 // and assign registers to constraints that want a specific physreg.
7499 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7500 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7502 // If this is an output operand with a matching input operand, look up the
7503 // matching input. If their types mismatch, e.g. one is an integer, the
7504 // other is floating point, or their sizes are different, flag it as an
7505 // error.
7506 if (OpInfo.hasMatchingInput()) {
7507 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7508 patchMatchingInput(OpInfo, Input, DAG);
7511 // Compute the constraint code and ConstraintType to use.
7512 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7514 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7515 OpInfo.Type == InlineAsm::isClobber)
7516 continue;
7518 // If this is a memory input, and if the operand is not indirect, do what we
7519 // need to provide an address for the memory input.
7520 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7521 !OpInfo.isIndirect) {
7522 assert((OpInfo.isMultipleAlternative ||
7523 (OpInfo.Type == InlineAsm::isInput)) &&
7524 "Can only indirectify direct input operands!");
7526 // Memory operands really want the address of the value.
7527 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7529 // There is no longer a Value* corresponding to this operand.
7530 OpInfo.CallOperandVal = nullptr;
7532 // It is now an indirect operand.
7533 OpInfo.isIndirect = true;
7536 // If this constraint is for a specific register, allocate it before
7537 // anything else.
7538 SDISelAsmOperandInfo &RefOpInfo =
7539 OpInfo.isMatchingInputConstraint()
7540 ? ConstraintOperands[OpInfo.getMatchedOperand()]
7541 : ConstraintOperands[i];
7542 if (RefOpInfo.ConstraintType == TargetLowering::C_Register)
7543 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7546 // Third pass - Loop over all of the operands, assigning virtual or physregs
7547 // to register class operands.
7548 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7549 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7550 SDISelAsmOperandInfo &RefOpInfo =
7551 OpInfo.isMatchingInputConstraint()
7552 ? ConstraintOperands[OpInfo.getMatchedOperand()]
7553 : ConstraintOperands[i];
7555 // C_Register operands have already been allocated, Other/Memory don't need
7556 // to be.
7557 if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7558 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7561 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7562 std::vector<SDValue> AsmNodeOperands;
7563 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
7564 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7565 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7567 // If we have a !srcloc metadata node associated with it, we want to attach
7568 // this to the ultimately generated inline asm machineinstr. To do this, we
7569 // pass in the third operand as this (potentially null) inline asm MDNode.
7570 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7571 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7573 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7574 // bits as operand 3.
7575 AsmNodeOperands.push_back(DAG.getTargetConstant(
7576 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7578 // Loop over all of the inputs, copying the operand values into the
7579 // appropriate registers and processing the output regs.
7580 RegsForValue RetValRegs;
7582 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7583 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7585 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7586 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7588 switch (OpInfo.Type) {
7589 case InlineAsm::isOutput:
7590 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7591 OpInfo.ConstraintType != TargetLowering::C_Register) {
7592 // Memory output, or 'other' output (e.g. 'X' constraint).
7593 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7595 unsigned ConstraintID =
7596 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7597 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7598 "Failed to convert memory constraint code to constraint id.");
7600 // Add information to the INLINEASM node to know about this output.
7601 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7602 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7603 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7604 MVT::i32));
7605 AsmNodeOperands.push_back(OpInfo.CallOperand);
7606 break;
7609 // Otherwise, this is a register or register class output.
7611 // Copy the output from the appropriate register. Find a register that
7612 // we can use.
7613 if (OpInfo.AssignedRegs.Regs.empty()) {
7614 emitInlineAsmError(
7615 CS, "couldn't allocate output register for constraint '" +
7616 Twine(OpInfo.ConstraintCode) + "'");
7617 return;
7620 // If this is an indirect operand, store through the pointer after the
7621 // asm.
7622 if (OpInfo.isIndirect) {
7623 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7624 OpInfo.CallOperandVal));
7625 } else {
7626 // This is the result value of the call.
7627 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7628 // Concatenate this output onto the outputs list.
7629 RetValRegs.append(OpInfo.AssignedRegs);
7632 // Add information to the INLINEASM node to know that this register is
7633 // set.
7634 OpInfo.AssignedRegs
7635 .AddInlineAsmOperands(OpInfo.isEarlyClobber
7636 ? InlineAsm::Kind_RegDefEarlyClobber
7637 : InlineAsm::Kind_RegDef,
7638 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7639 break;
7641 case InlineAsm::isInput: {
7642 SDValue InOperandVal = OpInfo.CallOperand;
7644 if (OpInfo.isMatchingInputConstraint()) {
7645 // If this is required to match an output register we have already set,
7646 // just use its register.
7647 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7648 AsmNodeOperands);
7649 unsigned OpFlag =
7650 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7651 if (InlineAsm::isRegDefKind(OpFlag) ||
7652 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7653 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7654 if (OpInfo.isIndirect) {
7655 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7656 emitInlineAsmError(CS, "inline asm not supported yet:"
7657 " don't know how to handle tied "
7658 "indirect register inputs");
7659 return;
7662 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7663 SmallVector<unsigned, 4> Regs;
7665 if (!createVirtualRegs(Regs,
7666 InlineAsm::getNumOperandRegisters(OpFlag),
7667 RegVT, DAG)) {
7668 emitInlineAsmError(CS, "inline asm error: This value type register "
7669 "class is not natively supported!");
7670 return;
7673 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7675 SDLoc dl = getCurSDLoc();
7676 // Use the produced MatchedRegs object to
7677 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7678 CS.getInstruction());
7679 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7680 true, OpInfo.getMatchedOperand(), dl,
7681 DAG, AsmNodeOperands);
7682 break;
7685 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7686 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7687 "Unexpected number of operands");
7688 // Add information to the INLINEASM node to know about this input.
7689 // See InlineAsm.h isUseOperandTiedToDef.
7690 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7691 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7692 OpInfo.getMatchedOperand());
7693 AsmNodeOperands.push_back(DAG.getTargetConstant(
7694 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7695 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7696 break;
7699 // Treat indirect 'X' constraint as memory.
7700 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7701 OpInfo.isIndirect)
7702 OpInfo.ConstraintType = TargetLowering::C_Memory;
7704 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7705 std::vector<SDValue> Ops;
7706 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7707 Ops, DAG);
7708 if (Ops.empty()) {
7709 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7710 Twine(OpInfo.ConstraintCode) + "'");
7711 return;
7714 // Add information to the INLINEASM node to know about this input.
7715 unsigned ResOpType =
7716 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7717 AsmNodeOperands.push_back(DAG.getTargetConstant(
7718 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7719 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7720 break;
7723 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7724 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7725 assert(InOperandVal.getValueType() ==
7726 TLI.getPointerTy(DAG.getDataLayout()) &&
7727 "Memory operands expect pointer values");
7729 unsigned ConstraintID =
7730 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7731 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7732 "Failed to convert memory constraint code to constraint id.");
7734 // Add information to the INLINEASM node to know about this input.
7735 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7736 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7737 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7738 getCurSDLoc(),
7739 MVT::i32));
7740 AsmNodeOperands.push_back(InOperandVal);
7741 break;
7744 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7745 OpInfo.ConstraintType == TargetLowering::C_Register) &&
7746 "Unknown constraint type!");
7748 // TODO: Support this.
7749 if (OpInfo.isIndirect) {
7750 emitInlineAsmError(
7751 CS, "Don't know how to handle indirect register inputs yet "
7752 "for constraint '" +
7753 Twine(OpInfo.ConstraintCode) + "'");
7754 return;
7757 // Copy the input into the appropriate registers.
7758 if (OpInfo.AssignedRegs.Regs.empty()) {
7759 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7760 Twine(OpInfo.ConstraintCode) + "'");
7761 return;
7764 SDLoc dl = getCurSDLoc();
7766 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7767 Chain, &Flag, CS.getInstruction());
7769 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7770 dl, DAG, AsmNodeOperands);
7771 break;
7773 case InlineAsm::isClobber:
7774 // Add the clobbered value to the operand list, so that the register
7775 // allocator is aware that the physreg got clobbered.
7776 if (!OpInfo.AssignedRegs.Regs.empty())
7777 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7778 false, 0, getCurSDLoc(), DAG,
7779 AsmNodeOperands);
7780 break;
7784 // Finish up input operands. Set the input chain and add the flag last.
7785 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7786 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7788 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7789 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7790 Flag = Chain.getValue(1);
7792 // If this asm returns a register value, copy the result from that register
7793 // and set it as the value of the call.
7794 if (!RetValRegs.Regs.empty()) {
7795 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7796 Chain, &Flag, CS.getInstruction());
7798 llvm::Type *CSResultType = CS.getType();
7799 unsigned numRet;
7800 ArrayRef<Type *> ResultTypes;
7801 SmallVector<SDValue, 1> ResultValues(1);
7802 if (CSResultType->isSingleValueType()) {
7803 numRet = 1;
7804 ResultValues[0] = Val;
7805 ResultTypes = makeArrayRef(CSResultType);
7806 } else {
7807 numRet = CSResultType->getNumContainedTypes();
7808 assert(Val->getNumOperands() == numRet &&
7809 "Mismatch in number of output operands in asm result");
7810 ResultTypes = CSResultType->subtypes();
7811 ArrayRef<SDUse> ValueUses = Val->ops();
7812 ResultValues.resize(numRet);
7813 std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(),
7814 [](const SDUse &u) -> SDValue { return u.get(); });
7816 SmallVector<EVT, 1> ResultVTs(numRet);
7817 for (unsigned i = 0; i < numRet; i++) {
7818 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]);
7819 SDValue Val = ResultValues[i];
7820 assert(ResultTypes[i]->isSized() && "Unexpected unsized type");
7821 // If the type of the inline asm call site return value is different but
7822 // has same size as the type of the asm output bitcast it. One example
7823 // of this is for vectors with different width / number of elements.
7824 // This can happen for register classes that can contain multiple
7825 // different value types. The preg or vreg allocated may not have the
7826 // same VT as was expected.
7828 // This can also happen for a return value that disagrees with the
7829 // register class it is put in, eg. a double in a general-purpose
7830 // register on a 32-bit machine.
7831 if (ResultVT != Val.getValueType() &&
7832 ResultVT.getSizeInBits() == Val.getValueSizeInBits())
7833 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val);
7834 else if (ResultVT != Val.getValueType() && ResultVT.isInteger() &&
7835 Val.getValueType().isInteger()) {
7836 // If a result value was tied to an input value, the computed result
7837 // may have a wider width than the expected result. Extract the
7838 // relevant portion.
7839 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val);
7842 assert(ResultVT == Val.getValueType() && "Asm result value mismatch!");
7843 ResultVTs[i] = ResultVT;
7844 ResultValues[i] = Val;
7847 Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7848 DAG.getVTList(ResultVTs), ResultValues);
7849 setValue(CS.getInstruction(), Val);
7850 // Don't need to use this as a chain in this case.
7851 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7852 return;
7855 std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7857 // Process indirect outputs, first output all of the flagged copies out of
7858 // physregs.
7859 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7860 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7861 const Value *Ptr = IndirectStoresToEmit[i].second;
7862 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7863 Chain, &Flag, IA);
7864 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7867 // Emit the non-flagged stores from the physregs.
7868 SmallVector<SDValue, 8> OutChains;
7869 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7870 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7871 getValue(StoresToEmit[i].second),
7872 MachinePointerInfo(StoresToEmit[i].second));
7873 OutChains.push_back(Val);
7876 if (!OutChains.empty())
7877 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7879 DAG.setRoot(Chain);
7882 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7883 const Twine &Message) {
7884 LLVMContext &Ctx = *DAG.getContext();
7885 Ctx.emitError(CS.getInstruction(), Message);
7887 // Make sure we leave the DAG in a valid state
7888 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7889 SmallVector<EVT, 1> ValueVTs;
7890 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7892 if (ValueVTs.empty())
7893 return;
7895 SmallVector<SDValue, 1> Ops;
7896 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7897 Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7899 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7902 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7903 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7904 MVT::Other, getRoot(),
7905 getValue(I.getArgOperand(0)),
7906 DAG.getSrcValue(I.getArgOperand(0))));
7909 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7910 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7911 const DataLayout &DL = DAG.getDataLayout();
7912 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7913 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7914 DAG.getSrcValue(I.getOperand(0)),
7915 DL.getABITypeAlignment(I.getType()));
7916 setValue(&I, V);
7917 DAG.setRoot(V.getValue(1));
7920 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7921 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7922 MVT::Other, getRoot(),
7923 getValue(I.getArgOperand(0)),
7924 DAG.getSrcValue(I.getArgOperand(0))));
7927 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7928 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7929 MVT::Other, getRoot(),
7930 getValue(I.getArgOperand(0)),
7931 getValue(I.getArgOperand(1)),
7932 DAG.getSrcValue(I.getArgOperand(0)),
7933 DAG.getSrcValue(I.getArgOperand(1))));
7936 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7937 const Instruction &I,
7938 SDValue Op) {
7939 const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7940 if (!Range)
7941 return Op;
7943 ConstantRange CR = getConstantRangeFromMetadata(*Range);
7944 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7945 return Op;
7947 APInt Lo = CR.getUnsignedMin();
7948 if (!Lo.isMinValue())
7949 return Op;
7951 APInt Hi = CR.getUnsignedMax();
7952 unsigned Bits = Hi.getActiveBits();
7954 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7956 SDLoc SL = getCurSDLoc();
7958 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7959 DAG.getValueType(SmallVT));
7960 unsigned NumVals = Op.getNode()->getNumValues();
7961 if (NumVals == 1)
7962 return ZExt;
7964 SmallVector<SDValue, 4> Ops;
7966 Ops.push_back(ZExt);
7967 for (unsigned I = 1; I != NumVals; ++I)
7968 Ops.push_back(Op.getValue(I));
7970 return DAG.getMergeValues(Ops, SL);
7973 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7974 /// the call being lowered.
7976 /// This is a helper for lowering intrinsics that follow a target calling
7977 /// convention or require stack pointer adjustment. Only a subset of the
7978 /// intrinsic's operands need to participate in the calling convention.
7979 void SelectionDAGBuilder::populateCallLoweringInfo(
7980 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7981 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7982 bool IsPatchPoint) {
7983 TargetLowering::ArgListTy Args;
7984 Args.reserve(NumArgs);
7986 // Populate the argument list.
7987 // Attributes for args start at offset 1, after the return attribute.
7988 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7989 ArgI != ArgE; ++ArgI) {
7990 const Value *V = CS->getOperand(ArgI);
7992 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7994 TargetLowering::ArgListEntry Entry;
7995 Entry.Node = getValue(V);
7996 Entry.Ty = V->getType();
7997 Entry.setAttributes(&CS, ArgI);
7998 Args.push_back(Entry);
8001 CLI.setDebugLoc(getCurSDLoc())
8002 .setChain(getRoot())
8003 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
8004 .setDiscardResult(CS->use_empty())
8005 .setIsPatchPoint(IsPatchPoint);
8008 /// Add a stack map intrinsic call's live variable operands to a stackmap
8009 /// or patchpoint target node's operand list.
8011 /// Constants are converted to TargetConstants purely as an optimization to
8012 /// avoid constant materialization and register allocation.
8014 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8015 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8016 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8017 /// address materialization and register allocation, but may also be required
8018 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8019 /// alloca in the entry block, then the runtime may assume that the alloca's
8020 /// StackMap location can be read immediately after compilation and that the
8021 /// location is valid at any point during execution (this is similar to the
8022 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8023 /// only available in a register, then the runtime would need to trap when
8024 /// execution reaches the StackMap in order to read the alloca's location.
8025 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8026 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8027 SelectionDAGBuilder &Builder) {
8028 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8029 SDValue OpVal = Builder.getValue(CS.getArgument(i));
8030 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8031 Ops.push_back(
8032 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8033 Ops.push_back(
8034 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8035 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8036 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8037 Ops.push_back(Builder.DAG.getTargetFrameIndex(
8038 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8039 } else
8040 Ops.push_back(OpVal);
8044 /// Lower llvm.experimental.stackmap directly to its target opcode.
8045 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8046 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8047 // [live variables...])
8049 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8051 SDValue Chain, InFlag, Callee, NullPtr;
8052 SmallVector<SDValue, 32> Ops;
8054 SDLoc DL = getCurSDLoc();
8055 Callee = getValue(CI.getCalledValue());
8056 NullPtr = DAG.getIntPtrConstant(0, DL, true);
8058 // The stackmap intrinsic only records the live variables (the arguemnts
8059 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8060 // intrinsic, this won't be lowered to a function call. This means we don't
8061 // have to worry about calling conventions and target specific lowering code.
8062 // Instead we perform the call lowering right here.
8064 // chain, flag = CALLSEQ_START(chain, 0, 0)
8065 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8066 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8068 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8069 InFlag = Chain.getValue(1);
8071 // Add the <id> and <numBytes> constants.
8072 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8073 Ops.push_back(DAG.getTargetConstant(
8074 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8075 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8076 Ops.push_back(DAG.getTargetConstant(
8077 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8078 MVT::i32));
8080 // Push live variables for the stack map.
8081 addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8083 // We are not pushing any register mask info here on the operands list,
8084 // because the stackmap doesn't clobber anything.
8086 // Push the chain and the glue flag.
8087 Ops.push_back(Chain);
8088 Ops.push_back(InFlag);
8090 // Create the STACKMAP node.
8091 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8092 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8093 Chain = SDValue(SM, 0);
8094 InFlag = Chain.getValue(1);
8096 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8098 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8100 // Set the root to the target-lowered call chain.
8101 DAG.setRoot(Chain);
8103 // Inform the Frame Information that we have a stackmap in this function.
8104 FuncInfo.MF->getFrameInfo().setHasStackMap();
8107 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8108 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8109 const BasicBlock *EHPadBB) {
8110 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8111 // i32 <numBytes>,
8112 // i8* <target>,
8113 // i32 <numArgs>,
8114 // [Args...],
8115 // [live variables...])
8117 CallingConv::ID CC = CS.getCallingConv();
8118 bool IsAnyRegCC = CC == CallingConv::AnyReg;
8119 bool HasDef = !CS->getType()->isVoidTy();
8120 SDLoc dl = getCurSDLoc();
8121 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8123 // Handle immediate and symbolic callees.
8124 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8125 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8126 /*isTarget=*/true);
8127 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8128 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8129 SDLoc(SymbolicCallee),
8130 SymbolicCallee->getValueType(0));
8132 // Get the real number of arguments participating in the call <numArgs>
8133 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8134 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8136 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8137 // Intrinsics include all meta-operands up to but not including CC.
8138 unsigned NumMetaOpers = PatchPointOpers::CCPos;
8139 assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8140 "Not enough arguments provided to the patchpoint intrinsic");
8142 // For AnyRegCC the arguments are lowered later on manually.
8143 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8144 Type *ReturnTy =
8145 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8147 TargetLowering::CallLoweringInfo CLI(DAG);
8148 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8149 true);
8150 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8152 SDNode *CallEnd = Result.second.getNode();
8153 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8154 CallEnd = CallEnd->getOperand(0).getNode();
8156 /// Get a call instruction from the call sequence chain.
8157 /// Tail calls are not allowed.
8158 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8159 "Expected a callseq node.");
8160 SDNode *Call = CallEnd->getOperand(0).getNode();
8161 bool HasGlue = Call->getGluedNode();
8163 // Replace the target specific call node with the patchable intrinsic.
8164 SmallVector<SDValue, 8> Ops;
8166 // Add the <id> and <numBytes> constants.
8167 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8168 Ops.push_back(DAG.getTargetConstant(
8169 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8170 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8171 Ops.push_back(DAG.getTargetConstant(
8172 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8173 MVT::i32));
8175 // Add the callee.
8176 Ops.push_back(Callee);
8178 // Adjust <numArgs> to account for any arguments that have been passed on the
8179 // stack instead.
8180 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8181 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8182 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8183 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8185 // Add the calling convention
8186 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8188 // Add the arguments we omitted previously. The register allocator should
8189 // place these in any free register.
8190 if (IsAnyRegCC)
8191 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8192 Ops.push_back(getValue(CS.getArgument(i)));
8194 // Push the arguments from the call instruction up to the register mask.
8195 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8196 Ops.append(Call->op_begin() + 2, e);
8198 // Push live variables for the stack map.
8199 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8201 // Push the register mask info.
8202 if (HasGlue)
8203 Ops.push_back(*(Call->op_end()-2));
8204 else
8205 Ops.push_back(*(Call->op_end()-1));
8207 // Push the chain (this is originally the first operand of the call, but
8208 // becomes now the last or second to last operand).
8209 Ops.push_back(*(Call->op_begin()));
8211 // Push the glue flag (last operand).
8212 if (HasGlue)
8213 Ops.push_back(*(Call->op_end()-1));
8215 SDVTList NodeTys;
8216 if (IsAnyRegCC && HasDef) {
8217 // Create the return types based on the intrinsic definition
8218 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8219 SmallVector<EVT, 3> ValueVTs;
8220 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8221 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8223 // There is always a chain and a glue type at the end
8224 ValueVTs.push_back(MVT::Other);
8225 ValueVTs.push_back(MVT::Glue);
8226 NodeTys = DAG.getVTList(ValueVTs);
8227 } else
8228 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8230 // Replace the target specific call node with a PATCHPOINT node.
8231 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8232 dl, NodeTys, Ops);
8234 // Update the NodeMap.
8235 if (HasDef) {
8236 if (IsAnyRegCC)
8237 setValue(CS.getInstruction(), SDValue(MN, 0));
8238 else
8239 setValue(CS.getInstruction(), Result.first);
8242 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8243 // call sequence. Furthermore the location of the chain and glue can change
8244 // when the AnyReg calling convention is used and the intrinsic returns a
8245 // value.
8246 if (IsAnyRegCC && HasDef) {
8247 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8248 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8249 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8250 } else
8251 DAG.ReplaceAllUsesWith(Call, MN);
8252 DAG.DeleteNode(Call);
8254 // Inform the Frame Information that we have a patchpoint in this function.
8255 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8258 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8259 unsigned Intrinsic) {
8260 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8261 SDValue Op1 = getValue(I.getArgOperand(0));
8262 SDValue Op2;
8263 if (I.getNumArgOperands() > 1)
8264 Op2 = getValue(I.getArgOperand(1));
8265 SDLoc dl = getCurSDLoc();
8266 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8267 SDValue Res;
8268 FastMathFlags FMF;
8269 if (isa<FPMathOperator>(I))
8270 FMF = I.getFastMathFlags();
8272 switch (Intrinsic) {
8273 case Intrinsic::experimental_vector_reduce_fadd:
8274 if (FMF.isFast())
8275 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8276 else
8277 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8278 break;
8279 case Intrinsic::experimental_vector_reduce_fmul:
8280 if (FMF.isFast())
8281 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8282 else
8283 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8284 break;
8285 case Intrinsic::experimental_vector_reduce_add:
8286 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8287 break;
8288 case Intrinsic::experimental_vector_reduce_mul:
8289 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8290 break;
8291 case Intrinsic::experimental_vector_reduce_and:
8292 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8293 break;
8294 case Intrinsic::experimental_vector_reduce_or:
8295 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8296 break;
8297 case Intrinsic::experimental_vector_reduce_xor:
8298 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8299 break;
8300 case Intrinsic::experimental_vector_reduce_smax:
8301 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8302 break;
8303 case Intrinsic::experimental_vector_reduce_smin:
8304 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8305 break;
8306 case Intrinsic::experimental_vector_reduce_umax:
8307 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8308 break;
8309 case Intrinsic::experimental_vector_reduce_umin:
8310 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8311 break;
8312 case Intrinsic::experimental_vector_reduce_fmax:
8313 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8314 break;
8315 case Intrinsic::experimental_vector_reduce_fmin:
8316 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8317 break;
8318 default:
8319 llvm_unreachable("Unhandled vector reduce intrinsic");
8321 setValue(&I, Res);
8324 /// Returns an AttributeList representing the attributes applied to the return
8325 /// value of the given call.
8326 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8327 SmallVector<Attribute::AttrKind, 2> Attrs;
8328 if (CLI.RetSExt)
8329 Attrs.push_back(Attribute::SExt);
8330 if (CLI.RetZExt)
8331 Attrs.push_back(Attribute::ZExt);
8332 if (CLI.IsInReg)
8333 Attrs.push_back(Attribute::InReg);
8335 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8336 Attrs);
8339 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8340 /// implementation, which just calls LowerCall.
8341 /// FIXME: When all targets are
8342 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8343 std::pair<SDValue, SDValue>
8344 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8345 // Handle the incoming return values from the call.
8346 CLI.Ins.clear();
8347 Type *OrigRetTy = CLI.RetTy;
8348 SmallVector<EVT, 4> RetTys;
8349 SmallVector<uint64_t, 4> Offsets;
8350 auto &DL = CLI.DAG.getDataLayout();
8351 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8353 if (CLI.IsPostTypeLegalization) {
8354 // If we are lowering a libcall after legalization, split the return type.
8355 SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8356 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8357 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8358 EVT RetVT = OldRetTys[i];
8359 uint64_t Offset = OldOffsets[i];
8360 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8361 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8362 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8363 RetTys.append(NumRegs, RegisterVT);
8364 for (unsigned j = 0; j != NumRegs; ++j)
8365 Offsets.push_back(Offset + j * RegisterVTByteSZ);
8369 SmallVector<ISD::OutputArg, 4> Outs;
8370 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8372 bool CanLowerReturn =
8373 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8374 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8376 SDValue DemoteStackSlot;
8377 int DemoteStackIdx = -100;
8378 if (!CanLowerReturn) {
8379 // FIXME: equivalent assert?
8380 // assert(!CS.hasInAllocaArgument() &&
8381 // "sret demotion is incompatible with inalloca");
8382 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8383 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8384 MachineFunction &MF = CLI.DAG.getMachineFunction();
8385 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8386 Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8387 DL.getAllocaAddrSpace());
8389 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8390 ArgListEntry Entry;
8391 Entry.Node = DemoteStackSlot;
8392 Entry.Ty = StackSlotPtrType;
8393 Entry.IsSExt = false;
8394 Entry.IsZExt = false;
8395 Entry.IsInReg = false;
8396 Entry.IsSRet = true;
8397 Entry.IsNest = false;
8398 Entry.IsByVal = false;
8399 Entry.IsReturned = false;
8400 Entry.IsSwiftSelf = false;
8401 Entry.IsSwiftError = false;
8402 Entry.Alignment = Align;
8403 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8404 CLI.NumFixedArgs += 1;
8405 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8407 // sret demotion isn't compatible with tail-calls, since the sret argument
8408 // points into the callers stack frame.
8409 CLI.IsTailCall = false;
8410 } else {
8411 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8412 EVT VT = RetTys[I];
8413 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8414 CLI.CallConv, VT);
8415 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8416 CLI.CallConv, VT);
8417 for (unsigned i = 0; i != NumRegs; ++i) {
8418 ISD::InputArg MyFlags;
8419 MyFlags.VT = RegisterVT;
8420 MyFlags.ArgVT = VT;
8421 MyFlags.Used = CLI.IsReturnValueUsed;
8422 if (CLI.RetSExt)
8423 MyFlags.Flags.setSExt();
8424 if (CLI.RetZExt)
8425 MyFlags.Flags.setZExt();
8426 if (CLI.IsInReg)
8427 MyFlags.Flags.setInReg();
8428 CLI.Ins.push_back(MyFlags);
8433 // We push in swifterror return as the last element of CLI.Ins.
8434 ArgListTy &Args = CLI.getArgs();
8435 if (supportSwiftError()) {
8436 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8437 if (Args[i].IsSwiftError) {
8438 ISD::InputArg MyFlags;
8439 MyFlags.VT = getPointerTy(DL);
8440 MyFlags.ArgVT = EVT(getPointerTy(DL));
8441 MyFlags.Flags.setSwiftError();
8442 CLI.Ins.push_back(MyFlags);
8447 // Handle all of the outgoing arguments.
8448 CLI.Outs.clear();
8449 CLI.OutVals.clear();
8450 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8451 SmallVector<EVT, 4> ValueVTs;
8452 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8453 // FIXME: Split arguments if CLI.IsPostTypeLegalization
8454 Type *FinalType = Args[i].Ty;
8455 if (Args[i].IsByVal)
8456 FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8457 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8458 FinalType, CLI.CallConv, CLI.IsVarArg);
8459 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8460 ++Value) {
8461 EVT VT = ValueVTs[Value];
8462 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8463 SDValue Op = SDValue(Args[i].Node.getNode(),
8464 Args[i].Node.getResNo() + Value);
8465 ISD::ArgFlagsTy Flags;
8467 // Certain targets (such as MIPS), may have a different ABI alignment
8468 // for a type depending on the context. Give the target a chance to
8469 // specify the alignment it wants.
8470 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8472 if (Args[i].IsZExt)
8473 Flags.setZExt();
8474 if (Args[i].IsSExt)
8475 Flags.setSExt();
8476 if (Args[i].IsInReg) {
8477 // If we are using vectorcall calling convention, a structure that is
8478 // passed InReg - is surely an HVA
8479 if (CLI.CallConv == CallingConv::X86_VectorCall &&
8480 isa<StructType>(FinalType)) {
8481 // The first value of a structure is marked
8482 if (0 == Value)
8483 Flags.setHvaStart();
8484 Flags.setHva();
8486 // Set InReg Flag
8487 Flags.setInReg();
8489 if (Args[i].IsSRet)
8490 Flags.setSRet();
8491 if (Args[i].IsSwiftSelf)
8492 Flags.setSwiftSelf();
8493 if (Args[i].IsSwiftError)
8494 Flags.setSwiftError();
8495 if (Args[i].IsByVal)
8496 Flags.setByVal();
8497 if (Args[i].IsInAlloca) {
8498 Flags.setInAlloca();
8499 // Set the byval flag for CCAssignFn callbacks that don't know about
8500 // inalloca. This way we can know how many bytes we should've allocated
8501 // and how many bytes a callee cleanup function will pop. If we port
8502 // inalloca to more targets, we'll have to add custom inalloca handling
8503 // in the various CC lowering callbacks.
8504 Flags.setByVal();
8506 if (Args[i].IsByVal || Args[i].IsInAlloca) {
8507 PointerType *Ty = cast<PointerType>(Args[i].Ty);
8508 Type *ElementTy = Ty->getElementType();
8509 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8510 // For ByVal, alignment should come from FE. BE will guess if this
8511 // info is not there but there are cases it cannot get right.
8512 unsigned FrameAlign;
8513 if (Args[i].Alignment)
8514 FrameAlign = Args[i].Alignment;
8515 else
8516 FrameAlign = getByValTypeAlignment(ElementTy, DL);
8517 Flags.setByValAlign(FrameAlign);
8519 if (Args[i].IsNest)
8520 Flags.setNest();
8521 if (NeedsRegBlock)
8522 Flags.setInConsecutiveRegs();
8523 Flags.setOrigAlign(OriginalAlignment);
8525 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8526 CLI.CallConv, VT);
8527 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8528 CLI.CallConv, VT);
8529 SmallVector<SDValue, 4> Parts(NumParts);
8530 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8532 if (Args[i].IsSExt)
8533 ExtendKind = ISD::SIGN_EXTEND;
8534 else if (Args[i].IsZExt)
8535 ExtendKind = ISD::ZERO_EXTEND;
8537 // Conservatively only handle 'returned' on non-vectors that can be lowered,
8538 // for now.
8539 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8540 CanLowerReturn) {
8541 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8542 "unexpected use of 'returned'");
8543 // Before passing 'returned' to the target lowering code, ensure that
8544 // either the register MVT and the actual EVT are the same size or that
8545 // the return value and argument are extended in the same way; in these
8546 // cases it's safe to pass the argument register value unchanged as the
8547 // return register value (although it's at the target's option whether
8548 // to do so)
8549 // TODO: allow code generation to take advantage of partially preserved
8550 // registers rather than clobbering the entire register when the
8551 // parameter extension method is not compatible with the return
8552 // extension method
8553 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8554 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8555 CLI.RetZExt == Args[i].IsZExt))
8556 Flags.setReturned();
8559 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8560 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8562 for (unsigned j = 0; j != NumParts; ++j) {
8563 // if it isn't first piece, alignment must be 1
8564 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8565 i < CLI.NumFixedArgs,
8566 i, j*Parts[j].getValueType().getStoreSize());
8567 if (NumParts > 1 && j == 0)
8568 MyFlags.Flags.setSplit();
8569 else if (j != 0) {
8570 MyFlags.Flags.setOrigAlign(1);
8571 if (j == NumParts - 1)
8572 MyFlags.Flags.setSplitEnd();
8575 CLI.Outs.push_back(MyFlags);
8576 CLI.OutVals.push_back(Parts[j]);
8579 if (NeedsRegBlock && Value == NumValues - 1)
8580 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8584 SmallVector<SDValue, 4> InVals;
8585 CLI.Chain = LowerCall(CLI, InVals);
8587 // Update CLI.InVals to use outside of this function.
8588 CLI.InVals = InVals;
8590 // Verify that the target's LowerCall behaved as expected.
8591 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8592 "LowerCall didn't return a valid chain!");
8593 assert((!CLI.IsTailCall || InVals.empty()) &&
8594 "LowerCall emitted a return value for a tail call!");
8595 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8596 "LowerCall didn't emit the correct number of values!");
8598 // For a tail call, the return value is merely live-out and there aren't
8599 // any nodes in the DAG representing it. Return a special value to
8600 // indicate that a tail call has been emitted and no more Instructions
8601 // should be processed in the current block.
8602 if (CLI.IsTailCall) {
8603 CLI.DAG.setRoot(CLI.Chain);
8604 return std::make_pair(SDValue(), SDValue());
8607 #ifndef NDEBUG
8608 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8609 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8610 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8611 "LowerCall emitted a value with the wrong type!");
8613 #endif
8615 SmallVector<SDValue, 4> ReturnValues;
8616 if (!CanLowerReturn) {
8617 // The instruction result is the result of loading from the
8618 // hidden sret parameter.
8619 SmallVector<EVT, 1> PVTs;
8620 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8622 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8623 assert(PVTs.size() == 1 && "Pointers should fit in one register");
8624 EVT PtrVT = PVTs[0];
8626 unsigned NumValues = RetTys.size();
8627 ReturnValues.resize(NumValues);
8628 SmallVector<SDValue, 4> Chains(NumValues);
8630 // An aggregate return value cannot wrap around the address space, so
8631 // offsets to its parts don't wrap either.
8632 SDNodeFlags Flags;
8633 Flags.setNoUnsignedWrap(true);
8635 for (unsigned i = 0; i < NumValues; ++i) {
8636 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8637 CLI.DAG.getConstant(Offsets[i], CLI.DL,
8638 PtrVT), Flags);
8639 SDValue L = CLI.DAG.getLoad(
8640 RetTys[i], CLI.DL, CLI.Chain, Add,
8641 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8642 DemoteStackIdx, Offsets[i]),
8643 /* Alignment = */ 1);
8644 ReturnValues[i] = L;
8645 Chains[i] = L.getValue(1);
8648 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8649 } else {
8650 // Collect the legal value parts into potentially illegal values
8651 // that correspond to the original function's return values.
8652 Optional<ISD::NodeType> AssertOp;
8653 if (CLI.RetSExt)
8654 AssertOp = ISD::AssertSext;
8655 else if (CLI.RetZExt)
8656 AssertOp = ISD::AssertZext;
8657 unsigned CurReg = 0;
8658 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8659 EVT VT = RetTys[I];
8660 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8661 CLI.CallConv, VT);
8662 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8663 CLI.CallConv, VT);
8665 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8666 NumRegs, RegisterVT, VT, nullptr,
8667 CLI.CallConv, AssertOp));
8668 CurReg += NumRegs;
8671 // For a function returning void, there is no return value. We can't create
8672 // such a node, so we just return a null return value in that case. In
8673 // that case, nothing will actually look at the value.
8674 if (ReturnValues.empty())
8675 return std::make_pair(SDValue(), CLI.Chain);
8678 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8679 CLI.DAG.getVTList(RetTys), ReturnValues);
8680 return std::make_pair(Res, CLI.Chain);
8683 void TargetLowering::LowerOperationWrapper(SDNode *N,
8684 SmallVectorImpl<SDValue> &Results,
8685 SelectionDAG &DAG) const {
8686 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8687 Results.push_back(Res);
8690 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8691 llvm_unreachable("LowerOperation not implemented for this target!");
8694 void
8695 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8696 SDValue Op = getNonRegisterValue(V);
8697 assert((Op.getOpcode() != ISD::CopyFromReg ||
8698 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8699 "Copy from a reg to the same reg!");
8700 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8702 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8703 // If this is an InlineAsm we have to match the registers required, not the
8704 // notional registers required by the type.
8706 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8707 None); // This is not an ABI copy.
8708 SDValue Chain = DAG.getEntryNode();
8710 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8711 FuncInfo.PreferredExtendType.end())
8712 ? ISD::ANY_EXTEND
8713 : FuncInfo.PreferredExtendType[V];
8714 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8715 PendingExports.push_back(Chain);
8718 #include "llvm/CodeGen/SelectionDAGISel.h"
8720 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8721 /// entry block, return true. This includes arguments used by switches, since
8722 /// the switch may expand into multiple basic blocks.
8723 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8724 // With FastISel active, we may be splitting blocks, so force creation
8725 // of virtual registers for all non-dead arguments.
8726 if (FastISel)
8727 return A->use_empty();
8729 const BasicBlock &Entry = A->getParent()->front();
8730 for (const User *U : A->users())
8731 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8732 return false; // Use not in entry block.
8734 return true;
8737 using ArgCopyElisionMapTy =
8738 DenseMap<const Argument *,
8739 std::pair<const AllocaInst *, const StoreInst *>>;
8741 /// Scan the entry block of the function in FuncInfo for arguments that look
8742 /// like copies into a local alloca. Record any copied arguments in
8743 /// ArgCopyElisionCandidates.
8744 static void
8745 findArgumentCopyElisionCandidates(const DataLayout &DL,
8746 FunctionLoweringInfo *FuncInfo,
8747 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8748 // Record the state of every static alloca used in the entry block. Argument
8749 // allocas are all used in the entry block, so we need approximately as many
8750 // entries as we have arguments.
8751 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8752 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8753 unsigned NumArgs = FuncInfo->Fn->arg_size();
8754 StaticAllocas.reserve(NumArgs * 2);
8756 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8757 if (!V)
8758 return nullptr;
8759 V = V->stripPointerCasts();
8760 const auto *AI = dyn_cast<AllocaInst>(V);
8761 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8762 return nullptr;
8763 auto Iter = StaticAllocas.insert({AI, Unknown});
8764 return &Iter.first->second;
8767 // Look for stores of arguments to static allocas. Look through bitcasts and
8768 // GEPs to handle type coercions, as long as the alloca is fully initialized
8769 // by the store. Any non-store use of an alloca escapes it and any subsequent
8770 // unanalyzed store might write it.
8771 // FIXME: Handle structs initialized with multiple stores.
8772 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8773 // Look for stores, and handle non-store uses conservatively.
8774 const auto *SI = dyn_cast<StoreInst>(&I);
8775 if (!SI) {
8776 // We will look through cast uses, so ignore them completely.
8777 if (I.isCast())
8778 continue;
8779 // Ignore debug info intrinsics, they don't escape or store to allocas.
8780 if (isa<DbgInfoIntrinsic>(I))
8781 continue;
8782 // This is an unknown instruction. Assume it escapes or writes to all
8783 // static alloca operands.
8784 for (const Use &U : I.operands()) {
8785 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8786 *Info = StaticAllocaInfo::Clobbered;
8788 continue;
8791 // If the stored value is a static alloca, mark it as escaped.
8792 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8793 *Info = StaticAllocaInfo::Clobbered;
8795 // Check if the destination is a static alloca.
8796 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8797 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8798 if (!Info)
8799 continue;
8800 const AllocaInst *AI = cast<AllocaInst>(Dst);
8802 // Skip allocas that have been initialized or clobbered.
8803 if (*Info != StaticAllocaInfo::Unknown)
8804 continue;
8806 // Check if the stored value is an argument, and that this store fully
8807 // initializes the alloca. Don't elide copies from the same argument twice.
8808 const Value *Val = SI->getValueOperand()->stripPointerCasts();
8809 const auto *Arg = dyn_cast<Argument>(Val);
8810 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8811 Arg->getType()->isEmptyTy() ||
8812 DL.getTypeStoreSize(Arg->getType()) !=
8813 DL.getTypeAllocSize(AI->getAllocatedType()) ||
8814 ArgCopyElisionCandidates.count(Arg)) {
8815 *Info = StaticAllocaInfo::Clobbered;
8816 continue;
8819 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8820 << '\n');
8822 // Mark this alloca and store for argument copy elision.
8823 *Info = StaticAllocaInfo::Elidable;
8824 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8826 // Stop scanning if we've seen all arguments. This will happen early in -O0
8827 // builds, which is useful, because -O0 builds have large entry blocks and
8828 // many allocas.
8829 if (ArgCopyElisionCandidates.size() == NumArgs)
8830 break;
8834 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8835 /// ArgVal is a load from a suitable fixed stack object.
8836 static void tryToElideArgumentCopy(
8837 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8838 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8839 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8840 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8841 SDValue ArgVal, bool &ArgHasUses) {
8842 // Check if this is a load from a fixed stack object.
8843 auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8844 if (!LNode)
8845 return;
8846 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8847 if (!FINode)
8848 return;
8850 // Check that the fixed stack object is the right size and alignment.
8851 // Look at the alignment that the user wrote on the alloca instead of looking
8852 // at the stack object.
8853 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8854 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8855 const AllocaInst *AI = ArgCopyIter->second.first;
8856 int FixedIndex = FINode->getIndex();
8857 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8858 int OldIndex = AllocaIndex;
8859 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8860 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8861 LLVM_DEBUG(
8862 dbgs() << " argument copy elision failed due to bad fixed stack "
8863 "object size\n");
8864 return;
8866 unsigned RequiredAlignment = AI->getAlignment();
8867 if (!RequiredAlignment) {
8868 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8869 AI->getAllocatedType());
8871 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8872 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
8873 "greater than stack argument alignment ("
8874 << RequiredAlignment << " vs "
8875 << MFI.getObjectAlignment(FixedIndex) << ")\n");
8876 return;
8879 // Perform the elision. Delete the old stack object and replace its only use
8880 // in the variable info map. Mark the stack object as mutable.
8881 LLVM_DEBUG({
8882 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8883 << " Replacing frame index " << OldIndex << " with " << FixedIndex
8884 << '\n';
8886 MFI.RemoveStackObject(OldIndex);
8887 MFI.setIsImmutableObjectIndex(FixedIndex, false);
8888 AllocaIndex = FixedIndex;
8889 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8890 Chains.push_back(ArgVal.getValue(1));
8892 // Avoid emitting code for the store implementing the copy.
8893 const StoreInst *SI = ArgCopyIter->second.second;
8894 ElidedArgCopyInstrs.insert(SI);
8896 // Check for uses of the argument again so that we can avoid exporting ArgVal
8897 // if it is't used by anything other than the store.
8898 for (const Value *U : Arg.users()) {
8899 if (U != SI) {
8900 ArgHasUses = true;
8901 break;
8906 void SelectionDAGISel::LowerArguments(const Function &F) {
8907 SelectionDAG &DAG = SDB->DAG;
8908 SDLoc dl = SDB->getCurSDLoc();
8909 const DataLayout &DL = DAG.getDataLayout();
8910 SmallVector<ISD::InputArg, 16> Ins;
8912 if (!FuncInfo->CanLowerReturn) {
8913 // Put in an sret pointer parameter before all the other parameters.
8914 SmallVector<EVT, 1> ValueVTs;
8915 ComputeValueVTs(*TLI, DAG.getDataLayout(),
8916 F.getReturnType()->getPointerTo(
8917 DAG.getDataLayout().getAllocaAddrSpace()),
8918 ValueVTs);
8920 // NOTE: Assuming that a pointer will never break down to more than one VT
8921 // or one register.
8922 ISD::ArgFlagsTy Flags;
8923 Flags.setSRet();
8924 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8925 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8926 ISD::InputArg::NoArgIndex, 0);
8927 Ins.push_back(RetArg);
8930 // Look for stores of arguments to static allocas. Mark such arguments with a
8931 // flag to ask the target to give us the memory location of that argument if
8932 // available.
8933 ArgCopyElisionMapTy ArgCopyElisionCandidates;
8934 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8936 // Set up the incoming argument description vector.
8937 for (const Argument &Arg : F.args()) {
8938 unsigned ArgNo = Arg.getArgNo();
8939 SmallVector<EVT, 4> ValueVTs;
8940 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8941 bool isArgValueUsed = !Arg.use_empty();
8942 unsigned PartBase = 0;
8943 Type *FinalType = Arg.getType();
8944 if (Arg.hasAttribute(Attribute::ByVal))
8945 FinalType = cast<PointerType>(FinalType)->getElementType();
8946 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8947 FinalType, F.getCallingConv(), F.isVarArg());
8948 for (unsigned Value = 0, NumValues = ValueVTs.size();
8949 Value != NumValues; ++Value) {
8950 EVT VT = ValueVTs[Value];
8951 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8952 ISD::ArgFlagsTy Flags;
8954 // Certain targets (such as MIPS), may have a different ABI alignment
8955 // for a type depending on the context. Give the target a chance to
8956 // specify the alignment it wants.
8957 unsigned OriginalAlignment =
8958 TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8960 if (Arg.hasAttribute(Attribute::ZExt))
8961 Flags.setZExt();
8962 if (Arg.hasAttribute(Attribute::SExt))
8963 Flags.setSExt();
8964 if (Arg.hasAttribute(Attribute::InReg)) {
8965 // If we are using vectorcall calling convention, a structure that is
8966 // passed InReg - is surely an HVA
8967 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8968 isa<StructType>(Arg.getType())) {
8969 // The first value of a structure is marked
8970 if (0 == Value)
8971 Flags.setHvaStart();
8972 Flags.setHva();
8974 // Set InReg Flag
8975 Flags.setInReg();
8977 if (Arg.hasAttribute(Attribute::StructRet))
8978 Flags.setSRet();
8979 if (Arg.hasAttribute(Attribute::SwiftSelf))
8980 Flags.setSwiftSelf();
8981 if (Arg.hasAttribute(Attribute::SwiftError))
8982 Flags.setSwiftError();
8983 if (Arg.hasAttribute(Attribute::ByVal))
8984 Flags.setByVal();
8985 if (Arg.hasAttribute(Attribute::InAlloca)) {
8986 Flags.setInAlloca();
8987 // Set the byval flag for CCAssignFn callbacks that don't know about
8988 // inalloca. This way we can know how many bytes we should've allocated
8989 // and how many bytes a callee cleanup function will pop. If we port
8990 // inalloca to more targets, we'll have to add custom inalloca handling
8991 // in the various CC lowering callbacks.
8992 Flags.setByVal();
8994 if (F.getCallingConv() == CallingConv::X86_INTR) {
8995 // IA Interrupt passes frame (1st parameter) by value in the stack.
8996 if (ArgNo == 0)
8997 Flags.setByVal();
8999 if (Flags.isByVal() || Flags.isInAlloca()) {
9000 PointerType *Ty = cast<PointerType>(Arg.getType());
9001 Type *ElementTy = Ty->getElementType();
9002 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9003 // For ByVal, alignment should be passed from FE. BE will guess if
9004 // this info is not there but there are cases it cannot get right.
9005 unsigned FrameAlign;
9006 if (Arg.getParamAlignment())
9007 FrameAlign = Arg.getParamAlignment();
9008 else
9009 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9010 Flags.setByValAlign(FrameAlign);
9012 if (Arg.hasAttribute(Attribute::Nest))
9013 Flags.setNest();
9014 if (NeedsRegBlock)
9015 Flags.setInConsecutiveRegs();
9016 Flags.setOrigAlign(OriginalAlignment);
9017 if (ArgCopyElisionCandidates.count(&Arg))
9018 Flags.setCopyElisionCandidate();
9020 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9021 *CurDAG->getContext(), F.getCallingConv(), VT);
9022 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9023 *CurDAG->getContext(), F.getCallingConv(), VT);
9024 for (unsigned i = 0; i != NumRegs; ++i) {
9025 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9026 ArgNo, PartBase+i*RegisterVT.getStoreSize());
9027 if (NumRegs > 1 && i == 0)
9028 MyFlags.Flags.setSplit();
9029 // if it isn't first piece, alignment must be 1
9030 else if (i > 0) {
9031 MyFlags.Flags.setOrigAlign(1);
9032 if (i == NumRegs - 1)
9033 MyFlags.Flags.setSplitEnd();
9035 Ins.push_back(MyFlags);
9037 if (NeedsRegBlock && Value == NumValues - 1)
9038 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9039 PartBase += VT.getStoreSize();
9043 // Call the target to set up the argument values.
9044 SmallVector<SDValue, 8> InVals;
9045 SDValue NewRoot = TLI->LowerFormalArguments(
9046 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9048 // Verify that the target's LowerFormalArguments behaved as expected.
9049 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9050 "LowerFormalArguments didn't return a valid chain!");
9051 assert(InVals.size() == Ins.size() &&
9052 "LowerFormalArguments didn't emit the correct number of values!");
9053 LLVM_DEBUG({
9054 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9055 assert(InVals[i].getNode() &&
9056 "LowerFormalArguments emitted a null value!");
9057 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9058 "LowerFormalArguments emitted a value with the wrong type!");
9062 // Update the DAG with the new chain value resulting from argument lowering.
9063 DAG.setRoot(NewRoot);
9065 // Set up the argument values.
9066 unsigned i = 0;
9067 if (!FuncInfo->CanLowerReturn) {
9068 // Create a virtual register for the sret pointer, and put in a copy
9069 // from the sret argument into it.
9070 SmallVector<EVT, 1> ValueVTs;
9071 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9072 F.getReturnType()->getPointerTo(
9073 DAG.getDataLayout().getAllocaAddrSpace()),
9074 ValueVTs);
9075 MVT VT = ValueVTs[0].getSimpleVT();
9076 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9077 Optional<ISD::NodeType> AssertOp = None;
9078 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9079 nullptr, F.getCallingConv(), AssertOp);
9081 MachineFunction& MF = SDB->DAG.getMachineFunction();
9082 MachineRegisterInfo& RegInfo = MF.getRegInfo();
9083 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9084 FuncInfo->DemoteRegister = SRetReg;
9085 NewRoot =
9086 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9087 DAG.setRoot(NewRoot);
9089 // i indexes lowered arguments. Bump it past the hidden sret argument.
9090 ++i;
9093 SmallVector<SDValue, 4> Chains;
9094 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9095 for (const Argument &Arg : F.args()) {
9096 SmallVector<SDValue, 4> ArgValues;
9097 SmallVector<EVT, 4> ValueVTs;
9098 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9099 unsigned NumValues = ValueVTs.size();
9100 if (NumValues == 0)
9101 continue;
9103 bool ArgHasUses = !Arg.use_empty();
9105 // Elide the copying store if the target loaded this argument from a
9106 // suitable fixed stack object.
9107 if (Ins[i].Flags.isCopyElisionCandidate()) {
9108 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9109 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9110 InVals[i], ArgHasUses);
9113 // If this argument is unused then remember its value. It is used to generate
9114 // debugging information.
9115 bool isSwiftErrorArg =
9116 TLI->supportSwiftError() &&
9117 Arg.hasAttribute(Attribute::SwiftError);
9118 if (!ArgHasUses && !isSwiftErrorArg) {
9119 SDB->setUnusedArgValue(&Arg, InVals[i]);
9121 // Also remember any frame index for use in FastISel.
9122 if (FrameIndexSDNode *FI =
9123 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9124 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9127 for (unsigned Val = 0; Val != NumValues; ++Val) {
9128 EVT VT = ValueVTs[Val];
9129 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9130 F.getCallingConv(), VT);
9131 unsigned NumParts = TLI->getNumRegistersForCallingConv(
9132 *CurDAG->getContext(), F.getCallingConv(), VT);
9134 // Even an apparant 'unused' swifterror argument needs to be returned. So
9135 // we do generate a copy for it that can be used on return from the
9136 // function.
9137 if (ArgHasUses || isSwiftErrorArg) {
9138 Optional<ISD::NodeType> AssertOp;
9139 if (Arg.hasAttribute(Attribute::SExt))
9140 AssertOp = ISD::AssertSext;
9141 else if (Arg.hasAttribute(Attribute::ZExt))
9142 AssertOp = ISD::AssertZext;
9144 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9145 PartVT, VT, nullptr,
9146 F.getCallingConv(), AssertOp));
9149 i += NumParts;
9152 // We don't need to do anything else for unused arguments.
9153 if (ArgValues.empty())
9154 continue;
9156 // Note down frame index.
9157 if (FrameIndexSDNode *FI =
9158 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9159 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9161 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9162 SDB->getCurSDLoc());
9164 SDB->setValue(&Arg, Res);
9165 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9166 // We want to associate the argument with the frame index, among
9167 // involved operands, that correspond to the lowest address. The
9168 // getCopyFromParts function, called earlier, is swapping the order of
9169 // the operands to BUILD_PAIR depending on endianness. The result of
9170 // that swapping is that the least significant bits of the argument will
9171 // be in the first operand of the BUILD_PAIR node, and the most
9172 // significant bits will be in the second operand.
9173 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9174 if (LoadSDNode *LNode =
9175 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9176 if (FrameIndexSDNode *FI =
9177 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9178 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9181 // Update the SwiftErrorVRegDefMap.
9182 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9183 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9184 if (TargetRegisterInfo::isVirtualRegister(Reg))
9185 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9186 FuncInfo->SwiftErrorArg, Reg);
9189 // If this argument is live outside of the entry block, insert a copy from
9190 // wherever we got it to the vreg that other BB's will reference it as.
9191 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9192 // If we can, though, try to skip creating an unnecessary vreg.
9193 // FIXME: This isn't very clean... it would be nice to make this more
9194 // general. It's also subtly incompatible with the hacks FastISel
9195 // uses with vregs.
9196 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9197 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9198 FuncInfo->ValueMap[&Arg] = Reg;
9199 continue;
9202 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9203 FuncInfo->InitializeRegForValue(&Arg);
9204 SDB->CopyToExportRegsIfNeeded(&Arg);
9208 if (!Chains.empty()) {
9209 Chains.push_back(NewRoot);
9210 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9213 DAG.setRoot(NewRoot);
9215 assert(i == InVals.size() && "Argument register count mismatch!");
9217 // If any argument copy elisions occurred and we have debug info, update the
9218 // stale frame indices used in the dbg.declare variable info table.
9219 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9220 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9221 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9222 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9223 if (I != ArgCopyElisionFrameIndexMap.end())
9224 VI.Slot = I->second;
9228 // Finally, if the target has anything special to do, allow it to do so.
9229 EmitFunctionEntryCode();
9232 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
9233 /// ensure constants are generated when needed. Remember the virtual registers
9234 /// that need to be added to the Machine PHI nodes as input. We cannot just
9235 /// directly add them, because expansion might result in multiple MBB's for one
9236 /// BB. As such, the start of the BB might correspond to a different MBB than
9237 /// the end.
9238 void
9239 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9240 const TerminatorInst *TI = LLVMBB->getTerminator();
9242 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9244 // Check PHI nodes in successors that expect a value to be available from this
9245 // block.
9246 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9247 const BasicBlock *SuccBB = TI->getSuccessor(succ);
9248 if (!isa<PHINode>(SuccBB->begin())) continue;
9249 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9251 // If this terminator has multiple identical successors (common for
9252 // switches), only handle each succ once.
9253 if (!SuccsHandled.insert(SuccMBB).second)
9254 continue;
9256 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9258 // At this point we know that there is a 1-1 correspondence between LLVM PHI
9259 // nodes and Machine PHI nodes, but the incoming operands have not been
9260 // emitted yet.
9261 for (const PHINode &PN : SuccBB->phis()) {
9262 // Ignore dead phi's.
9263 if (PN.use_empty())
9264 continue;
9266 // Skip empty types
9267 if (PN.getType()->isEmptyTy())
9268 continue;
9270 unsigned Reg;
9271 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9273 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9274 unsigned &RegOut = ConstantsOut[C];
9275 if (RegOut == 0) {
9276 RegOut = FuncInfo.CreateRegs(C->getType());
9277 CopyValueToVirtualRegister(C, RegOut);
9279 Reg = RegOut;
9280 } else {
9281 DenseMap<const Value *, unsigned>::iterator I =
9282 FuncInfo.ValueMap.find(PHIOp);
9283 if (I != FuncInfo.ValueMap.end())
9284 Reg = I->second;
9285 else {
9286 assert(isa<AllocaInst>(PHIOp) &&
9287 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9288 "Didn't codegen value into a register!??");
9289 Reg = FuncInfo.CreateRegs(PHIOp->getType());
9290 CopyValueToVirtualRegister(PHIOp, Reg);
9294 // Remember that this register needs to added to the machine PHI node as
9295 // the input for this MBB.
9296 SmallVector<EVT, 4> ValueVTs;
9297 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9298 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9299 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9300 EVT VT = ValueVTs[vti];
9301 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9302 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9303 FuncInfo.PHINodesToUpdate.push_back(
9304 std::make_pair(&*MBBI++, Reg + i));
9305 Reg += NumRegisters;
9310 ConstantsOut.clear();
9313 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9314 /// is 0.
9315 MachineBasicBlock *
9316 SelectionDAGBuilder::StackProtectorDescriptor::
9317 AddSuccessorMBB(const BasicBlock *BB,
9318 MachineBasicBlock *ParentMBB,
9319 bool IsLikely,
9320 MachineBasicBlock *SuccMBB) {
9321 // If SuccBB has not been created yet, create it.
9322 if (!SuccMBB) {
9323 MachineFunction *MF = ParentMBB->getParent();
9324 MachineFunction::iterator BBI(ParentMBB);
9325 SuccMBB = MF->CreateMachineBasicBlock(BB);
9326 MF->insert(++BBI, SuccMBB);
9328 // Add it as a successor of ParentMBB.
9329 ParentMBB->addSuccessor(
9330 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9331 return SuccMBB;
9334 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9335 MachineFunction::iterator I(MBB);
9336 if (++I == FuncInfo.MF->end())
9337 return nullptr;
9338 return &*I;
9341 /// During lowering new call nodes can be created (such as memset, etc.).
9342 /// Those will become new roots of the current DAG, but complications arise
9343 /// when they are tail calls. In such cases, the call lowering will update
9344 /// the root, but the builder still needs to know that a tail call has been
9345 /// lowered in order to avoid generating an additional return.
9346 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9347 // If the node is null, we do have a tail call.
9348 if (MaybeTC.getNode() != nullptr)
9349 DAG.setRoot(MaybeTC);
9350 else
9351 HasTailCall = true;
9354 uint64_t
9355 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9356 unsigned First, unsigned Last) const {
9357 assert(Last >= First);
9358 const APInt &LowCase = Clusters[First].Low->getValue();
9359 const APInt &HighCase = Clusters[Last].High->getValue();
9360 assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9362 // FIXME: A range of consecutive cases has 100% density, but only requires one
9363 // comparison to lower. We should discriminate against such consecutive ranges
9364 // in jump tables.
9366 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9369 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9370 const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9371 unsigned Last) const {
9372 assert(Last >= First);
9373 assert(TotalCases[Last] >= TotalCases[First]);
9374 uint64_t NumCases =
9375 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9376 return NumCases;
9379 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9380 unsigned First, unsigned Last,
9381 const SwitchInst *SI,
9382 MachineBasicBlock *DefaultMBB,
9383 CaseCluster &JTCluster) {
9384 assert(First <= Last);
9386 auto Prob = BranchProbability::getZero();
9387 unsigned NumCmps = 0;
9388 std::vector<MachineBasicBlock*> Table;
9389 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9391 // Initialize probabilities in JTProbs.
9392 for (unsigned I = First; I <= Last; ++I)
9393 JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9395 for (unsigned I = First; I <= Last; ++I) {
9396 assert(Clusters[I].Kind == CC_Range);
9397 Prob += Clusters[I].Prob;
9398 const APInt &Low = Clusters[I].Low->getValue();
9399 const APInt &High = Clusters[I].High->getValue();
9400 NumCmps += (Low == High) ? 1 : 2;
9401 if (I != First) {
9402 // Fill the gap between this and the previous cluster.
9403 const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9404 assert(PreviousHigh.slt(Low));
9405 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9406 for (uint64_t J = 0; J < Gap; J++)
9407 Table.push_back(DefaultMBB);
9409 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9410 for (uint64_t J = 0; J < ClusterSize; ++J)
9411 Table.push_back(Clusters[I].MBB);
9412 JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9415 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9416 unsigned NumDests = JTProbs.size();
9417 if (TLI.isSuitableForBitTests(
9418 NumDests, NumCmps, Clusters[First].Low->getValue(),
9419 Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9420 // Clusters[First..Last] should be lowered as bit tests instead.
9421 return false;
9424 // Create the MBB that will load from and jump through the table.
9425 // Note: We create it here, but it's not inserted into the function yet.
9426 MachineFunction *CurMF = FuncInfo.MF;
9427 MachineBasicBlock *JumpTableMBB =
9428 CurMF->CreateMachineBasicBlock(SI->getParent());
9430 // Add successors. Note: use table order for determinism.
9431 SmallPtrSet<MachineBasicBlock *, 8> Done;
9432 for (MachineBasicBlock *Succ : Table) {
9433 if (Done.count(Succ))
9434 continue;
9435 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9436 Done.insert(Succ);
9438 JumpTableMBB->normalizeSuccProbs();
9440 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9441 ->createJumpTableIndex(Table);
9443 // Set up the jump table info.
9444 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9445 JumpTableHeader JTH(Clusters[First].Low->getValue(),
9446 Clusters[Last].High->getValue(), SI->getCondition(),
9447 nullptr, false);
9448 JTCases.emplace_back(std::move(JTH), std::move(JT));
9450 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9451 JTCases.size() - 1, Prob);
9452 return true;
9455 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9456 const SwitchInst *SI,
9457 MachineBasicBlock *DefaultMBB) {
9458 #ifndef NDEBUG
9459 // Clusters must be non-empty, sorted, and only contain Range clusters.
9460 assert(!Clusters.empty());
9461 for (CaseCluster &C : Clusters)
9462 assert(C.Kind == CC_Range);
9463 for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9464 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9465 #endif
9467 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9468 if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9469 return;
9471 const int64_t N = Clusters.size();
9472 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9473 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9475 if (N < 2 || N < MinJumpTableEntries)
9476 return;
9478 // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9479 SmallVector<unsigned, 8> TotalCases(N);
9480 for (unsigned i = 0; i < N; ++i) {
9481 const APInt &Hi = Clusters[i].High->getValue();
9482 const APInt &Lo = Clusters[i].Low->getValue();
9483 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9484 if (i != 0)
9485 TotalCases[i] += TotalCases[i - 1];
9488 // Cheap case: the whole range may be suitable for jump table.
9489 uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9490 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9491 assert(NumCases < UINT64_MAX / 100);
9492 assert(Range >= NumCases);
9493 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9494 CaseCluster JTCluster;
9495 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9496 Clusters[0] = JTCluster;
9497 Clusters.resize(1);
9498 return;
9502 // The algorithm below is not suitable for -O0.
9503 if (TM.getOptLevel() == CodeGenOpt::None)
9504 return;
9506 // Split Clusters into minimum number of dense partitions. The algorithm uses
9507 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9508 // for the Case Statement'" (1994), but builds the MinPartitions array in
9509 // reverse order to make it easier to reconstruct the partitions in ascending
9510 // order. In the choice between two optimal partitionings, it picks the one
9511 // which yields more jump tables.
9513 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9514 SmallVector<unsigned, 8> MinPartitions(N);
9515 // LastElement[i] is the last element of the partition starting at i.
9516 SmallVector<unsigned, 8> LastElement(N);
9517 // PartitionsScore[i] is used to break ties when choosing between two
9518 // partitionings resulting in the same number of partitions.
9519 SmallVector<unsigned, 8> PartitionsScore(N);
9520 // For PartitionsScore, a small number of comparisons is considered as good as
9521 // a jump table and a single comparison is considered better than a jump
9522 // table.
9523 enum PartitionScores : unsigned {
9524 NoTable = 0,
9525 Table = 1,
9526 FewCases = 1,
9527 SingleCase = 2
9530 // Base case: There is only one way to partition Clusters[N-1].
9531 MinPartitions[N - 1] = 1;
9532 LastElement[N - 1] = N - 1;
9533 PartitionsScore[N - 1] = PartitionScores::SingleCase;
9535 // Note: loop indexes are signed to avoid underflow.
9536 for (int64_t i = N - 2; i >= 0; i--) {
9537 // Find optimal partitioning of Clusters[i..N-1].
9538 // Baseline: Put Clusters[i] into a partition on its own.
9539 MinPartitions[i] = MinPartitions[i + 1] + 1;
9540 LastElement[i] = i;
9541 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9543 // Search for a solution that results in fewer partitions.
9544 for (int64_t j = N - 1; j > i; j--) {
9545 // Try building a partition from Clusters[i..j].
9546 uint64_t Range = getJumpTableRange(Clusters, i, j);
9547 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9548 assert(NumCases < UINT64_MAX / 100);
9549 assert(Range >= NumCases);
9550 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9551 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9552 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9553 int64_t NumEntries = j - i + 1;
9555 if (NumEntries == 1)
9556 Score += PartitionScores::SingleCase;
9557 else if (NumEntries <= SmallNumberOfEntries)
9558 Score += PartitionScores::FewCases;
9559 else if (NumEntries >= MinJumpTableEntries)
9560 Score += PartitionScores::Table;
9562 // If this leads to fewer partitions, or to the same number of
9563 // partitions with better score, it is a better partitioning.
9564 if (NumPartitions < MinPartitions[i] ||
9565 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9566 MinPartitions[i] = NumPartitions;
9567 LastElement[i] = j;
9568 PartitionsScore[i] = Score;
9574 // Iterate over the partitions, replacing some with jump tables in-place.
9575 unsigned DstIndex = 0;
9576 for (unsigned First = 0, Last; First < N; First = Last + 1) {
9577 Last = LastElement[First];
9578 assert(Last >= First);
9579 assert(DstIndex <= First);
9580 unsigned NumClusters = Last - First + 1;
9582 CaseCluster JTCluster;
9583 if (NumClusters >= MinJumpTableEntries &&
9584 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9585 Clusters[DstIndex++] = JTCluster;
9586 } else {
9587 for (unsigned I = First; I <= Last; ++I)
9588 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9591 Clusters.resize(DstIndex);
9594 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9595 unsigned First, unsigned Last,
9596 const SwitchInst *SI,
9597 CaseCluster &BTCluster) {
9598 assert(First <= Last);
9599 if (First == Last)
9600 return false;
9602 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9603 unsigned NumCmps = 0;
9604 for (int64_t I = First; I <= Last; ++I) {
9605 assert(Clusters[I].Kind == CC_Range);
9606 Dests.set(Clusters[I].MBB->getNumber());
9607 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9609 unsigned NumDests = Dests.count();
9611 APInt Low = Clusters[First].Low->getValue();
9612 APInt High = Clusters[Last].High->getValue();
9613 assert(Low.slt(High));
9615 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9616 const DataLayout &DL = DAG.getDataLayout();
9617 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9618 return false;
9620 APInt LowBound;
9621 APInt CmpRange;
9623 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9624 assert(TLI.rangeFitsInWord(Low, High, DL) &&
9625 "Case range must fit in bit mask!");
9627 // Check if the clusters cover a contiguous range such that no value in the
9628 // range will jump to the default statement.
9629 bool ContiguousRange = true;
9630 for (int64_t I = First + 1; I <= Last; ++I) {
9631 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9632 ContiguousRange = false;
9633 break;
9637 if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9638 // Optimize the case where all the case values fit in a word without having
9639 // to subtract minValue. In this case, we can optimize away the subtraction.
9640 LowBound = APInt::getNullValue(Low.getBitWidth());
9641 CmpRange = High;
9642 ContiguousRange = false;
9643 } else {
9644 LowBound = Low;
9645 CmpRange = High - Low;
9648 CaseBitsVector CBV;
9649 auto TotalProb = BranchProbability::getZero();
9650 for (unsigned i = First; i <= Last; ++i) {
9651 // Find the CaseBits for this destination.
9652 unsigned j;
9653 for (j = 0; j < CBV.size(); ++j)
9654 if (CBV[j].BB == Clusters[i].MBB)
9655 break;
9656 if (j == CBV.size())
9657 CBV.push_back(
9658 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9659 CaseBits *CB = &CBV[j];
9661 // Update Mask, Bits and ExtraProb.
9662 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9663 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9664 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9665 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9666 CB->Bits += Hi - Lo + 1;
9667 CB->ExtraProb += Clusters[i].Prob;
9668 TotalProb += Clusters[i].Prob;
9671 BitTestInfo BTI;
9672 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
9673 // Sort by probability first, number of bits second, bit mask third.
9674 if (a.ExtraProb != b.ExtraProb)
9675 return a.ExtraProb > b.ExtraProb;
9676 if (a.Bits != b.Bits)
9677 return a.Bits > b.Bits;
9678 return a.Mask < b.Mask;
9681 for (auto &CB : CBV) {
9682 MachineBasicBlock *BitTestBB =
9683 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9684 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9686 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9687 SI->getCondition(), -1U, MVT::Other, false,
9688 ContiguousRange, nullptr, nullptr, std::move(BTI),
9689 TotalProb);
9691 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9692 BitTestCases.size() - 1, TotalProb);
9693 return true;
9696 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9697 const SwitchInst *SI) {
9698 // Partition Clusters into as few subsets as possible, where each subset has a
9699 // range that fits in a machine word and has <= 3 unique destinations.
9701 #ifndef NDEBUG
9702 // Clusters must be sorted and contain Range or JumpTable clusters.
9703 assert(!Clusters.empty());
9704 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9705 for (const CaseCluster &C : Clusters)
9706 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9707 for (unsigned i = 1; i < Clusters.size(); ++i)
9708 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9709 #endif
9711 // The algorithm below is not suitable for -O0.
9712 if (TM.getOptLevel() == CodeGenOpt::None)
9713 return;
9715 // If target does not have legal shift left, do not emit bit tests at all.
9716 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9717 const DataLayout &DL = DAG.getDataLayout();
9719 EVT PTy = TLI.getPointerTy(DL);
9720 if (!TLI.isOperationLegal(ISD::SHL, PTy))
9721 return;
9723 int BitWidth = PTy.getSizeInBits();
9724 const int64_t N = Clusters.size();
9726 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9727 SmallVector<unsigned, 8> MinPartitions(N);
9728 // LastElement[i] is the last element of the partition starting at i.
9729 SmallVector<unsigned, 8> LastElement(N);
9731 // FIXME: This might not be the best algorithm for finding bit test clusters.
9733 // Base case: There is only one way to partition Clusters[N-1].
9734 MinPartitions[N - 1] = 1;
9735 LastElement[N - 1] = N - 1;
9737 // Note: loop indexes are signed to avoid underflow.
9738 for (int64_t i = N - 2; i >= 0; --i) {
9739 // Find optimal partitioning of Clusters[i..N-1].
9740 // Baseline: Put Clusters[i] into a partition on its own.
9741 MinPartitions[i] = MinPartitions[i + 1] + 1;
9742 LastElement[i] = i;
9744 // Search for a solution that results in fewer partitions.
9745 // Note: the search is limited by BitWidth, reducing time complexity.
9746 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9747 // Try building a partition from Clusters[i..j].
9749 // Check the range.
9750 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9751 Clusters[j].High->getValue(), DL))
9752 continue;
9754 // Check nbr of destinations and cluster types.
9755 // FIXME: This works, but doesn't seem very efficient.
9756 bool RangesOnly = true;
9757 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9758 for (int64_t k = i; k <= j; k++) {
9759 if (Clusters[k].Kind != CC_Range) {
9760 RangesOnly = false;
9761 break;
9763 Dests.set(Clusters[k].MBB->getNumber());
9765 if (!RangesOnly || Dests.count() > 3)
9766 break;
9768 // Check if it's a better partition.
9769 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9770 if (NumPartitions < MinPartitions[i]) {
9771 // Found a better partition.
9772 MinPartitions[i] = NumPartitions;
9773 LastElement[i] = j;
9778 // Iterate over the partitions, replacing with bit-test clusters in-place.
9779 unsigned DstIndex = 0;
9780 for (unsigned First = 0, Last; First < N; First = Last + 1) {
9781 Last = LastElement[First];
9782 assert(First <= Last);
9783 assert(DstIndex <= First);
9785 CaseCluster BitTestCluster;
9786 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9787 Clusters[DstIndex++] = BitTestCluster;
9788 } else {
9789 size_t NumClusters = Last - First + 1;
9790 std::memmove(&Clusters[DstIndex], &Clusters[First],
9791 sizeof(Clusters[0]) * NumClusters);
9792 DstIndex += NumClusters;
9795 Clusters.resize(DstIndex);
9798 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9799 MachineBasicBlock *SwitchMBB,
9800 MachineBasicBlock *DefaultMBB) {
9801 MachineFunction *CurMF = FuncInfo.MF;
9802 MachineBasicBlock *NextMBB = nullptr;
9803 MachineFunction::iterator BBI(W.MBB);
9804 if (++BBI != FuncInfo.MF->end())
9805 NextMBB = &*BBI;
9807 unsigned Size = W.LastCluster - W.FirstCluster + 1;
9809 BranchProbabilityInfo *BPI = FuncInfo.BPI;
9811 if (Size == 2 && W.MBB == SwitchMBB) {
9812 // If any two of the cases has the same destination, and if one value
9813 // is the same as the other, but has one bit unset that the other has set,
9814 // use bit manipulation to do two compares at once. For example:
9815 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9816 // TODO: This could be extended to merge any 2 cases in switches with 3
9817 // cases.
9818 // TODO: Handle cases where W.CaseBB != SwitchBB.
9819 CaseCluster &Small = *W.FirstCluster;
9820 CaseCluster &Big = *W.LastCluster;
9822 if (Small.Low == Small.High && Big.Low == Big.High &&
9823 Small.MBB == Big.MBB) {
9824 const APInt &SmallValue = Small.Low->getValue();
9825 const APInt &BigValue = Big.Low->getValue();
9827 // Check that there is only one bit different.
9828 APInt CommonBit = BigValue ^ SmallValue;
9829 if (CommonBit.isPowerOf2()) {
9830 SDValue CondLHS = getValue(Cond);
9831 EVT VT = CondLHS.getValueType();
9832 SDLoc DL = getCurSDLoc();
9834 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9835 DAG.getConstant(CommonBit, DL, VT));
9836 SDValue Cond = DAG.getSetCC(
9837 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9838 ISD::SETEQ);
9840 // Update successor info.
9841 // Both Small and Big will jump to Small.BB, so we sum up the
9842 // probabilities.
9843 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9844 if (BPI)
9845 addSuccessorWithProb(
9846 SwitchMBB, DefaultMBB,
9847 // The default destination is the first successor in IR.
9848 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9849 else
9850 addSuccessorWithProb(SwitchMBB, DefaultMBB);
9852 // Insert the true branch.
9853 SDValue BrCond =
9854 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9855 DAG.getBasicBlock(Small.MBB));
9856 // Insert the false branch.
9857 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9858 DAG.getBasicBlock(DefaultMBB));
9860 DAG.setRoot(BrCond);
9861 return;
9866 if (TM.getOptLevel() != CodeGenOpt::None) {
9867 // Here, we order cases by probability so the most likely case will be
9868 // checked first. However, two clusters can have the same probability in
9869 // which case their relative ordering is non-deterministic. So we use Low
9870 // as a tie-breaker as clusters are guaranteed to never overlap.
9871 llvm::sort(W.FirstCluster, W.LastCluster + 1,
9872 [](const CaseCluster &a, const CaseCluster &b) {
9873 return a.Prob != b.Prob ?
9874 a.Prob > b.Prob :
9875 a.Low->getValue().slt(b.Low->getValue());
9878 // Rearrange the case blocks so that the last one falls through if possible
9879 // without changing the order of probabilities.
9880 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9881 --I;
9882 if (I->Prob > W.LastCluster->Prob)
9883 break;
9884 if (I->Kind == CC_Range && I->MBB == NextMBB) {
9885 std::swap(*I, *W.LastCluster);
9886 break;
9891 // Compute total probability.
9892 BranchProbability DefaultProb = W.DefaultProb;
9893 BranchProbability UnhandledProbs = DefaultProb;
9894 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9895 UnhandledProbs += I->Prob;
9897 MachineBasicBlock *CurMBB = W.MBB;
9898 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9899 MachineBasicBlock *Fallthrough;
9900 if (I == W.LastCluster) {
9901 // For the last cluster, fall through to the default destination.
9902 Fallthrough = DefaultMBB;
9903 } else {
9904 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9905 CurMF->insert(BBI, Fallthrough);
9906 // Put Cond in a virtual register to make it available from the new blocks.
9907 ExportFromCurrentBlock(Cond);
9909 UnhandledProbs -= I->Prob;
9911 switch (I->Kind) {
9912 case CC_JumpTable: {
9913 // FIXME: Optimize away range check based on pivot comparisons.
9914 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9915 JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9917 // The jump block hasn't been inserted yet; insert it here.
9918 MachineBasicBlock *JumpMBB = JT->MBB;
9919 CurMF->insert(BBI, JumpMBB);
9921 auto JumpProb = I->Prob;
9922 auto FallthroughProb = UnhandledProbs;
9924 // If the default statement is a target of the jump table, we evenly
9925 // distribute the default probability to successors of CurMBB. Also
9926 // update the probability on the edge from JumpMBB to Fallthrough.
9927 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9928 SE = JumpMBB->succ_end();
9929 SI != SE; ++SI) {
9930 if (*SI == DefaultMBB) {
9931 JumpProb += DefaultProb / 2;
9932 FallthroughProb -= DefaultProb / 2;
9933 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9934 JumpMBB->normalizeSuccProbs();
9935 break;
9939 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9940 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9941 CurMBB->normalizeSuccProbs();
9943 // The jump table header will be inserted in our current block, do the
9944 // range check, and fall through to our fallthrough block.
9945 JTH->HeaderBB = CurMBB;
9946 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9948 // If we're in the right place, emit the jump table header right now.
9949 if (CurMBB == SwitchMBB) {
9950 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9951 JTH->Emitted = true;
9953 break;
9955 case CC_BitTests: {
9956 // FIXME: Optimize away range check based on pivot comparisons.
9957 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9959 // The bit test blocks haven't been inserted yet; insert them here.
9960 for (BitTestCase &BTC : BTB->Cases)
9961 CurMF->insert(BBI, BTC.ThisBB);
9963 // Fill in fields of the BitTestBlock.
9964 BTB->Parent = CurMBB;
9965 BTB->Default = Fallthrough;
9967 BTB->DefaultProb = UnhandledProbs;
9968 // If the cases in bit test don't form a contiguous range, we evenly
9969 // distribute the probability on the edge to Fallthrough to two
9970 // successors of CurMBB.
9971 if (!BTB->ContiguousRange) {
9972 BTB->Prob += DefaultProb / 2;
9973 BTB->DefaultProb -= DefaultProb / 2;
9976 // If we're in the right place, emit the bit test header right now.
9977 if (CurMBB == SwitchMBB) {
9978 visitBitTestHeader(*BTB, SwitchMBB);
9979 BTB->Emitted = true;
9981 break;
9983 case CC_Range: {
9984 const Value *RHS, *LHS, *MHS;
9985 ISD::CondCode CC;
9986 if (I->Low == I->High) {
9987 // Check Cond == I->Low.
9988 CC = ISD::SETEQ;
9989 LHS = Cond;
9990 RHS=I->Low;
9991 MHS = nullptr;
9992 } else {
9993 // Check I->Low <= Cond <= I->High.
9994 CC = ISD::SETLE;
9995 LHS = I->Low;
9996 MHS = Cond;
9997 RHS = I->High;
10000 // The false probability is the sum of all unhandled cases.
10001 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10002 getCurSDLoc(), I->Prob, UnhandledProbs);
10004 if (CurMBB == SwitchMBB)
10005 visitSwitchCase(CB, SwitchMBB);
10006 else
10007 SwitchCases.push_back(CB);
10009 break;
10012 CurMBB = Fallthrough;
10016 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10017 CaseClusterIt First,
10018 CaseClusterIt Last) {
10019 return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10020 if (X.Prob != CC.Prob)
10021 return X.Prob > CC.Prob;
10023 // Ties are broken by comparing the case value.
10024 return X.Low->getValue().slt(CC.Low->getValue());
10028 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10029 const SwitchWorkListItem &W,
10030 Value *Cond,
10031 MachineBasicBlock *SwitchMBB) {
10032 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10033 "Clusters not sorted?");
10035 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10037 // Balance the tree based on branch probabilities to create a near-optimal (in
10038 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10039 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10040 CaseClusterIt LastLeft = W.FirstCluster;
10041 CaseClusterIt FirstRight = W.LastCluster;
10042 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10043 auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10045 // Move LastLeft and FirstRight towards each other from opposite directions to
10046 // find a partitioning of the clusters which balances the probability on both
10047 // sides. If LeftProb and RightProb are equal, alternate which side is
10048 // taken to ensure 0-probability nodes are distributed evenly.
10049 unsigned I = 0;
10050 while (LastLeft + 1 < FirstRight) {
10051 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10052 LeftProb += (++LastLeft)->Prob;
10053 else
10054 RightProb += (--FirstRight)->Prob;
10055 I++;
10058 while (true) {
10059 // Our binary search tree differs from a typical BST in that ours can have up
10060 // to three values in each leaf. The pivot selection above doesn't take that
10061 // into account, which means the tree might require more nodes and be less
10062 // efficient. We compensate for this here.
10064 unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10065 unsigned NumRight = W.LastCluster - FirstRight + 1;
10067 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10068 // If one side has less than 3 clusters, and the other has more than 3,
10069 // consider taking a cluster from the other side.
10071 if (NumLeft < NumRight) {
10072 // Consider moving the first cluster on the right to the left side.
10073 CaseCluster &CC = *FirstRight;
10074 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10075 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10076 if (LeftSideRank <= RightSideRank) {
10077 // Moving the cluster to the left does not demote it.
10078 ++LastLeft;
10079 ++FirstRight;
10080 continue;
10082 } else {
10083 assert(NumRight < NumLeft);
10084 // Consider moving the last element on the left to the right side.
10085 CaseCluster &CC = *LastLeft;
10086 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10087 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10088 if (RightSideRank <= LeftSideRank) {
10089 // Moving the cluster to the right does not demot it.
10090 --LastLeft;
10091 --FirstRight;
10092 continue;
10096 break;
10099 assert(LastLeft + 1 == FirstRight);
10100 assert(LastLeft >= W.FirstCluster);
10101 assert(FirstRight <= W.LastCluster);
10103 // Use the first element on the right as pivot since we will make less-than
10104 // comparisons against it.
10105 CaseClusterIt PivotCluster = FirstRight;
10106 assert(PivotCluster > W.FirstCluster);
10107 assert(PivotCluster <= W.LastCluster);
10109 CaseClusterIt FirstLeft = W.FirstCluster;
10110 CaseClusterIt LastRight = W.LastCluster;
10112 const ConstantInt *Pivot = PivotCluster->Low;
10114 // New blocks will be inserted immediately after the current one.
10115 MachineFunction::iterator BBI(W.MBB);
10116 ++BBI;
10118 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10119 // we can branch to its destination directly if it's squeezed exactly in
10120 // between the known lower bound and Pivot - 1.
10121 MachineBasicBlock *LeftMBB;
10122 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10123 FirstLeft->Low == W.GE &&
10124 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10125 LeftMBB = FirstLeft->MBB;
10126 } else {
10127 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10128 FuncInfo.MF->insert(BBI, LeftMBB);
10129 WorkList.push_back(
10130 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10131 // Put Cond in a virtual register to make it available from the new blocks.
10132 ExportFromCurrentBlock(Cond);
10135 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10136 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10137 // directly if RHS.High equals the current upper bound.
10138 MachineBasicBlock *RightMBB;
10139 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10140 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10141 RightMBB = FirstRight->MBB;
10142 } else {
10143 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10144 FuncInfo.MF->insert(BBI, RightMBB);
10145 WorkList.push_back(
10146 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10147 // Put Cond in a virtual register to make it available from the new blocks.
10148 ExportFromCurrentBlock(Cond);
10151 // Create the CaseBlock record that will be used to lower the branch.
10152 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10153 getCurSDLoc(), LeftProb, RightProb);
10155 if (W.MBB == SwitchMBB)
10156 visitSwitchCase(CB, SwitchMBB);
10157 else
10158 SwitchCases.push_back(CB);
10161 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10162 // from the swith statement.
10163 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10164 BranchProbability PeeledCaseProb) {
10165 if (PeeledCaseProb == BranchProbability::getOne())
10166 return BranchProbability::getZero();
10167 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10169 uint32_t Numerator = CaseProb.getNumerator();
10170 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10171 return BranchProbability(Numerator, std::max(Numerator, Denominator));
10174 // Try to peel the top probability case if it exceeds the threshold.
10175 // Return current MachineBasicBlock for the switch statement if the peeling
10176 // does not occur.
10177 // If the peeling is performed, return the newly created MachineBasicBlock
10178 // for the peeled switch statement. Also update Clusters to remove the peeled
10179 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10180 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10181 const SwitchInst &SI, CaseClusterVector &Clusters,
10182 BranchProbability &PeeledCaseProb) {
10183 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10184 // Don't perform if there is only one cluster or optimizing for size.
10185 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10186 TM.getOptLevel() == CodeGenOpt::None ||
10187 SwitchMBB->getParent()->getFunction().optForMinSize())
10188 return SwitchMBB;
10190 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10191 unsigned PeeledCaseIndex = 0;
10192 bool SwitchPeeled = false;
10193 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10194 CaseCluster &CC = Clusters[Index];
10195 if (CC.Prob < TopCaseProb)
10196 continue;
10197 TopCaseProb = CC.Prob;
10198 PeeledCaseIndex = Index;
10199 SwitchPeeled = true;
10201 if (!SwitchPeeled)
10202 return SwitchMBB;
10204 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10205 << TopCaseProb << "\n");
10207 // Record the MBB for the peeled switch statement.
10208 MachineFunction::iterator BBI(SwitchMBB);
10209 ++BBI;
10210 MachineBasicBlock *PeeledSwitchMBB =
10211 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10212 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10214 ExportFromCurrentBlock(SI.getCondition());
10215 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10216 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10217 nullptr, nullptr, TopCaseProb.getCompl()};
10218 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10220 Clusters.erase(PeeledCaseIt);
10221 for (CaseCluster &CC : Clusters) {
10222 LLVM_DEBUG(
10223 dbgs() << "Scale the probablity for one cluster, before scaling: "
10224 << CC.Prob << "\n");
10225 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10226 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10228 PeeledCaseProb = TopCaseProb;
10229 return PeeledSwitchMBB;
10232 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10233 // Extract cases from the switch.
10234 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10235 CaseClusterVector Clusters;
10236 Clusters.reserve(SI.getNumCases());
10237 for (auto I : SI.cases()) {
10238 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10239 const ConstantInt *CaseVal = I.getCaseValue();
10240 BranchProbability Prob =
10241 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10242 : BranchProbability(1, SI.getNumCases() + 1);
10243 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10246 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10248 // Cluster adjacent cases with the same destination. We do this at all
10249 // optimization levels because it's cheap to do and will make codegen faster
10250 // if there are many clusters.
10251 sortAndRangeify(Clusters);
10253 if (TM.getOptLevel() != CodeGenOpt::None) {
10254 // Replace an unreachable default with the most popular destination.
10255 // FIXME: Exploit unreachable default more aggressively.
10256 bool UnreachableDefault =
10257 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10258 if (UnreachableDefault && !Clusters.empty()) {
10259 DenseMap<const BasicBlock *, unsigned> Popularity;
10260 unsigned MaxPop = 0;
10261 const BasicBlock *MaxBB = nullptr;
10262 for (auto I : SI.cases()) {
10263 const BasicBlock *BB = I.getCaseSuccessor();
10264 if (++Popularity[BB] > MaxPop) {
10265 MaxPop = Popularity[BB];
10266 MaxBB = BB;
10269 // Set new default.
10270 assert(MaxPop > 0 && MaxBB);
10271 DefaultMBB = FuncInfo.MBBMap[MaxBB];
10273 // Remove cases that were pointing to the destination that is now the
10274 // default.
10275 CaseClusterVector New;
10276 New.reserve(Clusters.size());
10277 for (CaseCluster &CC : Clusters) {
10278 if (CC.MBB != DefaultMBB)
10279 New.push_back(CC);
10281 Clusters = std::move(New);
10285 // The branch probablity of the peeled case.
10286 BranchProbability PeeledCaseProb = BranchProbability::getZero();
10287 MachineBasicBlock *PeeledSwitchMBB =
10288 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10290 // If there is only the default destination, jump there directly.
10291 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10292 if (Clusters.empty()) {
10293 assert(PeeledSwitchMBB == SwitchMBB);
10294 SwitchMBB->addSuccessor(DefaultMBB);
10295 if (DefaultMBB != NextBlock(SwitchMBB)) {
10296 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10297 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10299 return;
10302 findJumpTables(Clusters, &SI, DefaultMBB);
10303 findBitTestClusters(Clusters, &SI);
10305 LLVM_DEBUG({
10306 dbgs() << "Case clusters: ";
10307 for (const CaseCluster &C : Clusters) {
10308 if (C.Kind == CC_JumpTable)
10309 dbgs() << "JT:";
10310 if (C.Kind == CC_BitTests)
10311 dbgs() << "BT:";
10313 C.Low->getValue().print(dbgs(), true);
10314 if (C.Low != C.High) {
10315 dbgs() << '-';
10316 C.High->getValue().print(dbgs(), true);
10318 dbgs() << ' ';
10320 dbgs() << '\n';
10323 assert(!Clusters.empty());
10324 SwitchWorkList WorkList;
10325 CaseClusterIt First = Clusters.begin();
10326 CaseClusterIt Last = Clusters.end() - 1;
10327 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10328 // Scale the branchprobability for DefaultMBB if the peel occurs and
10329 // DefaultMBB is not replaced.
10330 if (PeeledCaseProb != BranchProbability::getZero() &&
10331 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10332 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10333 WorkList.push_back(
10334 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10336 while (!WorkList.empty()) {
10337 SwitchWorkListItem W = WorkList.back();
10338 WorkList.pop_back();
10339 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10341 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10342 !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10343 // For optimized builds, lower large range as a balanced binary tree.
10344 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10345 continue;
10348 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);