1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
12 //===----------------------------------------------------------------------===//
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "Targets/RuntimeDyldELFMips.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/MemoryBuffer.h"
27 using namespace llvm::object
;
28 using namespace llvm::support::endian
;
30 #define DEBUG_TYPE "dyld"
32 static void or32le(void *P
, int32_t V
) { write32le(P
, read32le(P
) | V
); }
34 static void or32AArch64Imm(void *L
, uint64_t Imm
) {
35 or32le(L
, (Imm
& 0xFFF) << 10);
38 template <class T
> static void write(bool isBE
, void *P
, T V
) {
39 isBE
? write
<T
, support::big
>(P
, V
) : write
<T
, support::little
>(P
, V
);
42 static void write32AArch64Addr(void *L
, uint64_t Imm
) {
43 uint32_t ImmLo
= (Imm
& 0x3) << 29;
44 uint32_t ImmHi
= (Imm
& 0x1FFFFC) << 3;
45 uint64_t Mask
= (0x3 << 29) | (0x1FFFFC << 3);
46 write32le(L
, (read32le(L
) & ~Mask
) | ImmLo
| ImmHi
);
49 // Return the bits [Start, End] from Val shifted Start bits.
50 // For instance, getBits(0xF0, 4, 8) returns 0xF.
51 static uint64_t getBits(uint64_t Val
, int Start
, int End
) {
52 uint64_t Mask
= ((uint64_t)1 << (End
+ 1 - Start
)) - 1;
53 return (Val
>> Start
) & Mask
;
58 template <class ELFT
> class DyldELFObject
: public ELFObjectFile
<ELFT
> {
59 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
61 typedef Elf_Shdr_Impl
<ELFT
> Elf_Shdr
;
62 typedef Elf_Sym_Impl
<ELFT
> Elf_Sym
;
63 typedef Elf_Rel_Impl
<ELFT
, false> Elf_Rel
;
64 typedef Elf_Rel_Impl
<ELFT
, true> Elf_Rela
;
66 typedef Elf_Ehdr_Impl
<ELFT
> Elf_Ehdr
;
68 typedef typename
ELFT::uint addr_type
;
70 DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
);
73 static Expected
<std::unique_ptr
<DyldELFObject
>>
74 create(MemoryBufferRef Wrapper
);
76 void updateSectionAddress(const SectionRef
&Sec
, uint64_t Addr
);
78 void updateSymbolAddress(const SymbolRef
&SymRef
, uint64_t Addr
);
80 // Methods for type inquiry through isa, cast and dyn_cast
81 static bool classof(const Binary
*v
) {
82 return (isa
<ELFObjectFile
<ELFT
>>(v
) &&
83 classof(cast
<ELFObjectFile
<ELFT
>>(v
)));
85 static bool classof(const ELFObjectFile
<ELFT
> *v
) {
86 return v
->isDyldType();
92 // The MemoryBuffer passed into this constructor is just a wrapper around the
93 // actual memory. Ultimately, the Binary parent class will take ownership of
94 // this MemoryBuffer object but not the underlying memory.
96 DyldELFObject
<ELFT
>::DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
)
97 : ELFObjectFile
<ELFT
>(std::move(Obj
)) {
98 this->isDyldELFObject
= true;
101 template <class ELFT
>
102 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
103 DyldELFObject
<ELFT
>::create(MemoryBufferRef Wrapper
) {
104 auto Obj
= ELFObjectFile
<ELFT
>::create(Wrapper
);
105 if (auto E
= Obj
.takeError())
107 std::unique_ptr
<DyldELFObject
<ELFT
>> Ret(
108 new DyldELFObject
<ELFT
>(std::move(*Obj
)));
109 return std::move(Ret
);
112 template <class ELFT
>
113 void DyldELFObject
<ELFT
>::updateSectionAddress(const SectionRef
&Sec
,
115 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
117 const_cast<Elf_Shdr
*>(reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
119 // This assumes the address passed in matches the target address bitness
120 // The template-based type cast handles everything else.
121 shdr
->sh_addr
= static_cast<addr_type
>(Addr
);
124 template <class ELFT
>
125 void DyldELFObject
<ELFT
>::updateSymbolAddress(const SymbolRef
&SymRef
,
128 Elf_Sym
*sym
= const_cast<Elf_Sym
*>(
129 ELFObjectFile
<ELFT
>::getSymbol(SymRef
.getRawDataRefImpl()));
131 // This assumes the address passed in matches the target address bitness
132 // The template-based type cast handles everything else.
133 sym
->st_value
= static_cast<addr_type
>(Addr
);
136 class LoadedELFObjectInfo final
137 : public LoadedObjectInfoHelper
<LoadedELFObjectInfo
,
138 RuntimeDyld::LoadedObjectInfo
> {
140 LoadedELFObjectInfo(RuntimeDyldImpl
&RTDyld
, ObjSectionToIDMap ObjSecToIDMap
)
141 : LoadedObjectInfoHelper(RTDyld
, std::move(ObjSecToIDMap
)) {}
143 OwningBinary
<ObjectFile
>
144 getObjectForDebug(const ObjectFile
&Obj
) const override
;
147 template <typename ELFT
>
148 static Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
149 createRTDyldELFObject(MemoryBufferRef Buffer
, const ObjectFile
&SourceObject
,
150 const LoadedELFObjectInfo
&L
) {
151 typedef typename
ELFT::Shdr Elf_Shdr
;
152 typedef typename
ELFT::uint addr_type
;
154 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>> ObjOrErr
=
155 DyldELFObject
<ELFT
>::create(Buffer
);
156 if (Error E
= ObjOrErr
.takeError())
159 std::unique_ptr
<DyldELFObject
<ELFT
>> Obj
= std::move(*ObjOrErr
);
161 // Iterate over all sections in the object.
162 auto SI
= SourceObject
.section_begin();
163 for (const auto &Sec
: Obj
->sections()) {
164 StringRef SectionName
;
165 Sec
.getName(SectionName
);
166 if (SectionName
!= "") {
167 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
168 Elf_Shdr
*shdr
= const_cast<Elf_Shdr
*>(
169 reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
171 if (uint64_t SecLoadAddr
= L
.getSectionLoadAddress(*SI
)) {
172 // This assumes that the address passed in matches the target address
173 // bitness. The template-based type cast handles everything else.
174 shdr
->sh_addr
= static_cast<addr_type
>(SecLoadAddr
);
180 return std::move(Obj
);
183 static OwningBinary
<ObjectFile
>
184 createELFDebugObject(const ObjectFile
&Obj
, const LoadedELFObjectInfo
&L
) {
185 assert(Obj
.isELF() && "Not an ELF object file.");
187 std::unique_ptr
<MemoryBuffer
> Buffer
=
188 MemoryBuffer::getMemBufferCopy(Obj
.getData(), Obj
.getFileName());
190 Expected
<std::unique_ptr
<ObjectFile
>> DebugObj(nullptr);
191 handleAllErrors(DebugObj
.takeError());
192 if (Obj
.getBytesInAddress() == 4 && Obj
.isLittleEndian())
194 createRTDyldELFObject
<ELF32LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
195 else if (Obj
.getBytesInAddress() == 4 && !Obj
.isLittleEndian())
197 createRTDyldELFObject
<ELF32BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
198 else if (Obj
.getBytesInAddress() == 8 && !Obj
.isLittleEndian())
200 createRTDyldELFObject
<ELF64BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
201 else if (Obj
.getBytesInAddress() == 8 && Obj
.isLittleEndian())
203 createRTDyldELFObject
<ELF64LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
205 llvm_unreachable("Unexpected ELF format");
207 handleAllErrors(DebugObj
.takeError());
208 return OwningBinary
<ObjectFile
>(std::move(*DebugObj
), std::move(Buffer
));
211 OwningBinary
<ObjectFile
>
212 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile
&Obj
) const {
213 return createELFDebugObject(Obj
, *this);
216 } // anonymous namespace
220 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager
&MemMgr
,
221 JITSymbolResolver
&Resolver
)
222 : RuntimeDyldImpl(MemMgr
, Resolver
), GOTSectionID(0), CurrentGOTIndex(0) {}
223 RuntimeDyldELF::~RuntimeDyldELF() {}
225 void RuntimeDyldELF::registerEHFrames() {
226 for (int i
= 0, e
= UnregisteredEHFrameSections
.size(); i
!= e
; ++i
) {
227 SID EHFrameSID
= UnregisteredEHFrameSections
[i
];
228 uint8_t *EHFrameAddr
= Sections
[EHFrameSID
].getAddress();
229 uint64_t EHFrameLoadAddr
= Sections
[EHFrameSID
].getLoadAddress();
230 size_t EHFrameSize
= Sections
[EHFrameSID
].getSize();
231 MemMgr
.registerEHFrames(EHFrameAddr
, EHFrameLoadAddr
, EHFrameSize
);
233 UnregisteredEHFrameSections
.clear();
236 std::unique_ptr
<RuntimeDyldELF
>
237 llvm::RuntimeDyldELF::create(Triple::ArchType Arch
,
238 RuntimeDyld::MemoryManager
&MemMgr
,
239 JITSymbolResolver
&Resolver
) {
242 return make_unique
<RuntimeDyldELF
>(MemMgr
, Resolver
);
246 case Triple::mips64el
:
247 return make_unique
<RuntimeDyldELFMips
>(MemMgr
, Resolver
);
251 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
252 RuntimeDyldELF::loadObject(const object::ObjectFile
&O
) {
253 if (auto ObjSectionToIDOrErr
= loadObjectImpl(O
))
254 return llvm::make_unique
<LoadedELFObjectInfo
>(*this, *ObjSectionToIDOrErr
);
257 raw_string_ostream
ErrStream(ErrorStr
);
258 logAllUnhandledErrors(ObjSectionToIDOrErr
.takeError(), ErrStream
, "");
263 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry
&Section
,
264 uint64_t Offset
, uint64_t Value
,
265 uint32_t Type
, int64_t Addend
,
266 uint64_t SymOffset
) {
269 llvm_unreachable("Relocation type not implemented yet!");
271 case ELF::R_X86_64_NONE
:
273 case ELF::R_X86_64_64
: {
274 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
276 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
277 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
280 case ELF::R_X86_64_32
:
281 case ELF::R_X86_64_32S
: {
283 assert((Type
== ELF::R_X86_64_32
&& (Value
<= UINT32_MAX
)) ||
284 (Type
== ELF::R_X86_64_32S
&&
285 ((int64_t)Value
<= INT32_MAX
&& (int64_t)Value
>= INT32_MIN
)));
286 uint32_t TruncatedAddr
= (Value
& 0xFFFFFFFF);
287 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
289 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
290 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
293 case ELF::R_X86_64_PC8
: {
294 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
295 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
296 assert(isInt
<8>(RealOffset
));
297 int8_t TruncOffset
= (RealOffset
& 0xFF);
298 Section
.getAddress()[Offset
] = TruncOffset
;
301 case ELF::R_X86_64_PC32
: {
302 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
303 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
304 assert(isInt
<32>(RealOffset
));
305 int32_t TruncOffset
= (RealOffset
& 0xFFFFFFFF);
306 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
310 case ELF::R_X86_64_PC64
: {
311 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
312 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
313 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
315 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset
) << " at "
316 << format("%p\n", FinalAddress
));
319 case ELF::R_X86_64_GOTOFF64
: {
320 // Compute Value - GOTBase.
321 uint64_t GOTBase
= 0;
322 for (const auto &Section
: Sections
) {
323 if (Section
.getName() == ".got") {
324 GOTBase
= Section
.getLoadAddressWithOffset(0);
328 assert(GOTBase
!= 0 && "missing GOT");
329 int64_t GOTOffset
= Value
- GOTBase
+ Addend
;
330 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = GOTOffset
;
336 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry
&Section
,
337 uint64_t Offset
, uint32_t Value
,
338 uint32_t Type
, int32_t Addend
) {
340 case ELF::R_386_32
: {
341 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
345 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
346 // reach any 32 bit address.
347 case ELF::R_386_PLT32
:
348 case ELF::R_386_PC32
: {
349 uint32_t FinalAddress
=
350 Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
351 uint32_t RealOffset
= Value
+ Addend
- FinalAddress
;
352 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
357 // There are other relocation types, but it appears these are the
358 // only ones currently used by the LLVM ELF object writer
359 llvm_unreachable("Relocation type not implemented yet!");
364 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry
&Section
,
365 uint64_t Offset
, uint64_t Value
,
366 uint32_t Type
, int64_t Addend
) {
367 uint32_t *TargetPtr
=
368 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
369 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
370 // Data should use target endian. Code should always use little endian.
371 bool isBE
= Arch
== Triple::aarch64_be
;
373 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
374 << format("%llx", Section
.getAddressWithOffset(Offset
))
375 << " FinalAddress: 0x" << format("%llx", FinalAddress
)
376 << " Value: 0x" << format("%llx", Value
) << " Type: 0x"
377 << format("%x", Type
) << " Addend: 0x"
378 << format("%llx", Addend
) << "\n");
382 llvm_unreachable("Relocation type not implemented yet!");
384 case ELF::R_AARCH64_ABS16
: {
385 uint64_t Result
= Value
+ Addend
;
386 assert(static_cast<int64_t>(Result
) >= INT16_MIN
&& Result
< UINT16_MAX
);
387 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
390 case ELF::R_AARCH64_ABS32
: {
391 uint64_t Result
= Value
+ Addend
;
392 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&& Result
< UINT32_MAX
);
393 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
396 case ELF::R_AARCH64_ABS64
:
397 write(isBE
, TargetPtr
, Value
+ Addend
);
399 case ELF::R_AARCH64_PREL32
: {
400 uint64_t Result
= Value
+ Addend
- FinalAddress
;
401 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
402 static_cast<int64_t>(Result
) <= UINT32_MAX
);
403 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
406 case ELF::R_AARCH64_PREL64
:
407 write(isBE
, TargetPtr
, Value
+ Addend
- FinalAddress
);
409 case ELF::R_AARCH64_CALL26
: // fallthrough
410 case ELF::R_AARCH64_JUMP26
: {
411 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
413 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
415 // "Check that -2^27 <= result < 2^27".
416 assert(isInt
<28>(BranchImm
));
417 or32le(TargetPtr
, (BranchImm
& 0x0FFFFFFC) >> 2);
420 case ELF::R_AARCH64_MOVW_UABS_G3
:
421 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF000000000000) >> 43);
423 case ELF::R_AARCH64_MOVW_UABS_G2_NC
:
424 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF00000000) >> 27);
426 case ELF::R_AARCH64_MOVW_UABS_G1_NC
:
427 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF0000) >> 11);
429 case ELF::R_AARCH64_MOVW_UABS_G0_NC
:
430 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF) << 5);
432 case ELF::R_AARCH64_ADR_PREL_PG_HI21
: {
433 // Operation: Page(S+A) - Page(P)
435 ((Value
+ Addend
) & ~0xfffULL
) - (FinalAddress
& ~0xfffULL
);
437 // Check that -2^32 <= X < 2^32
438 assert(isInt
<33>(Result
) && "overflow check failed for relocation");
440 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
441 // from bits 32:12 of X.
442 write32AArch64Addr(TargetPtr
, Result
>> 12);
445 case ELF::R_AARCH64_ADD_ABS_LO12_NC
:
447 // Immediate goes in bits 21:10 of LD/ST instruction, taken
448 // from bits 11:0 of X
449 or32AArch64Imm(TargetPtr
, Value
+ Addend
);
451 case ELF::R_AARCH64_LDST8_ABS_LO12_NC
:
453 // Immediate goes in bits 21:10 of LD/ST instruction, taken
454 // from bits 11:0 of X
455 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 0, 11));
457 case ELF::R_AARCH64_LDST16_ABS_LO12_NC
:
459 // Immediate goes in bits 21:10 of LD/ST instruction, taken
460 // from bits 11:1 of X
461 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 1, 11));
463 case ELF::R_AARCH64_LDST32_ABS_LO12_NC
:
465 // Immediate goes in bits 21:10 of LD/ST instruction, taken
466 // from bits 11:2 of X
467 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 2, 11));
469 case ELF::R_AARCH64_LDST64_ABS_LO12_NC
:
471 // Immediate goes in bits 21:10 of LD/ST instruction, taken
472 // from bits 11:3 of X
473 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 3, 11));
475 case ELF::R_AARCH64_LDST128_ABS_LO12_NC
:
477 // Immediate goes in bits 21:10 of LD/ST instruction, taken
478 // from bits 11:4 of X
479 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 4, 11));
484 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry
&Section
,
485 uint64_t Offset
, uint32_t Value
,
486 uint32_t Type
, int32_t Addend
) {
487 // TODO: Add Thumb relocations.
488 uint32_t *TargetPtr
=
489 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
490 uint32_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
493 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
494 << Section
.getAddressWithOffset(Offset
)
495 << " FinalAddress: " << format("%p", FinalAddress
)
496 << " Value: " << format("%x", Value
)
497 << " Type: " << format("%x", Type
)
498 << " Addend: " << format("%x", Addend
) << "\n");
502 llvm_unreachable("Not implemented relocation type!");
504 case ELF::R_ARM_NONE
:
506 // Write a 31bit signed offset
507 case ELF::R_ARM_PREL31
:
508 support::ulittle32_t::ref
{TargetPtr
} =
509 (support::ulittle32_t::ref
{TargetPtr
} & 0x80000000) |
510 ((Value
- FinalAddress
) & ~0x80000000);
512 case ELF::R_ARM_TARGET1
:
513 case ELF::R_ARM_ABS32
:
514 support::ulittle32_t::ref
{TargetPtr
} = Value
;
516 // Write first 16 bit of 32 bit value to the mov instruction.
517 // Last 4 bit should be shifted.
518 case ELF::R_ARM_MOVW_ABS_NC
:
519 case ELF::R_ARM_MOVT_ABS
:
520 if (Type
== ELF::R_ARM_MOVW_ABS_NC
)
521 Value
= Value
& 0xFFFF;
522 else if (Type
== ELF::R_ARM_MOVT_ABS
)
523 Value
= (Value
>> 16) & 0xFFFF;
524 support::ulittle32_t::ref
{TargetPtr
} =
525 (support::ulittle32_t::ref
{TargetPtr
} & ~0x000F0FFF) | (Value
& 0xFFF) |
526 (((Value
>> 12) & 0xF) << 16);
528 // Write 24 bit relative value to the branch instruction.
529 case ELF::R_ARM_PC24
: // Fall through.
530 case ELF::R_ARM_CALL
: // Fall through.
531 case ELF::R_ARM_JUMP24
:
532 int32_t RelValue
= static_cast<int32_t>(Value
- FinalAddress
- 8);
533 RelValue
= (RelValue
& 0x03FFFFFC) >> 2;
534 assert((support::ulittle32_t::ref
{TargetPtr
} & 0xFFFFFF) == 0xFFFFFE);
535 support::ulittle32_t::ref
{TargetPtr
} =
536 (support::ulittle32_t::ref
{TargetPtr
} & 0xFF000000) | RelValue
;
541 void RuntimeDyldELF::setMipsABI(const ObjectFile
&Obj
) {
542 if (Arch
== Triple::UnknownArch
||
543 !StringRef(Triple::getArchTypePrefix(Arch
)).equals("mips")) {
544 IsMipsO32ABI
= false;
545 IsMipsN32ABI
= false;
546 IsMipsN64ABI
= false;
549 if (auto *E
= dyn_cast
<ELFObjectFileBase
>(&Obj
)) {
550 unsigned AbiVariant
= E
->getPlatformFlags();
551 IsMipsO32ABI
= AbiVariant
& ELF::EF_MIPS_ABI_O32
;
552 IsMipsN32ABI
= AbiVariant
& ELF::EF_MIPS_ABI2
;
554 IsMipsN64ABI
= Obj
.getFileFormatName().equals("ELF64-mips");
557 // Return the .TOC. section and offset.
558 Error
RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase
&Obj
,
559 ObjSectionToIDMap
&LocalSections
,
560 RelocationValueRef
&Rel
) {
561 // Set a default SectionID in case we do not find a TOC section below.
562 // This may happen for references to TOC base base (sym@toc, .odp
563 // relocation) without a .toc directive. In this case just use the
564 // first section (which is usually the .odp) since the code won't
565 // reference the .toc base directly.
566 Rel
.SymbolName
= nullptr;
569 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
570 // order. The TOC starts where the first of these sections starts.
571 for (auto &Section
: Obj
.sections()) {
572 StringRef SectionName
;
573 if (auto EC
= Section
.getName(SectionName
))
574 return errorCodeToError(EC
);
576 if (SectionName
== ".got"
577 || SectionName
== ".toc"
578 || SectionName
== ".tocbss"
579 || SectionName
== ".plt") {
580 if (auto SectionIDOrErr
=
581 findOrEmitSection(Obj
, Section
, false, LocalSections
))
582 Rel
.SectionID
= *SectionIDOrErr
;
584 return SectionIDOrErr
.takeError();
589 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
590 // thus permitting a full 64 Kbytes segment.
593 return Error::success();
596 // Returns the sections and offset associated with the ODP entry referenced
598 Error
RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase
&Obj
,
599 ObjSectionToIDMap
&LocalSections
,
600 RelocationValueRef
&Rel
) {
601 // Get the ELF symbol value (st_value) to compare with Relocation offset in
603 for (section_iterator si
= Obj
.section_begin(), se
= Obj
.section_end();
605 section_iterator RelSecI
= si
->getRelocatedSection();
606 if (RelSecI
== Obj
.section_end())
609 StringRef RelSectionName
;
610 if (auto EC
= RelSecI
->getName(RelSectionName
))
611 return errorCodeToError(EC
);
613 if (RelSectionName
!= ".opd")
616 for (elf_relocation_iterator i
= si
->relocation_begin(),
617 e
= si
->relocation_end();
619 // The R_PPC64_ADDR64 relocation indicates the first field
621 uint64_t TypeFunc
= i
->getType();
622 if (TypeFunc
!= ELF::R_PPC64_ADDR64
) {
627 uint64_t TargetSymbolOffset
= i
->getOffset();
628 symbol_iterator TargetSymbol
= i
->getSymbol();
630 if (auto AddendOrErr
= i
->getAddend())
631 Addend
= *AddendOrErr
;
633 return AddendOrErr
.takeError();
639 // Just check if following relocation is a R_PPC64_TOC
640 uint64_t TypeTOC
= i
->getType();
641 if (TypeTOC
!= ELF::R_PPC64_TOC
)
644 // Finally compares the Symbol value and the target symbol offset
645 // to check if this .opd entry refers to the symbol the relocation
647 if (Rel
.Addend
!= (int64_t)TargetSymbolOffset
)
650 section_iterator TSI
= Obj
.section_end();
651 if (auto TSIOrErr
= TargetSymbol
->getSection())
654 return TSIOrErr
.takeError();
655 assert(TSI
!= Obj
.section_end() && "TSI should refer to a valid section");
657 bool IsCode
= TSI
->isText();
658 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *TSI
, IsCode
,
660 Rel
.SectionID
= *SectionIDOrErr
;
662 return SectionIDOrErr
.takeError();
663 Rel
.Addend
= (intptr_t)Addend
;
664 return Error::success();
667 llvm_unreachable("Attempting to get address of ODP entry!");
670 // Relocation masks following the #lo(value), #hi(value), #ha(value),
671 // #higher(value), #highera(value), #highest(value), and #highesta(value)
672 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
675 static inline uint16_t applyPPClo(uint64_t value
) { return value
& 0xffff; }
677 static inline uint16_t applyPPChi(uint64_t value
) {
678 return (value
>> 16) & 0xffff;
681 static inline uint16_t applyPPCha (uint64_t value
) {
682 return ((value
+ 0x8000) >> 16) & 0xffff;
685 static inline uint16_t applyPPChigher(uint64_t value
) {
686 return (value
>> 32) & 0xffff;
689 static inline uint16_t applyPPChighera (uint64_t value
) {
690 return ((value
+ 0x8000) >> 32) & 0xffff;
693 static inline uint16_t applyPPChighest(uint64_t value
) {
694 return (value
>> 48) & 0xffff;
697 static inline uint16_t applyPPChighesta (uint64_t value
) {
698 return ((value
+ 0x8000) >> 48) & 0xffff;
701 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry
&Section
,
702 uint64_t Offset
, uint64_t Value
,
703 uint32_t Type
, int64_t Addend
) {
704 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
707 llvm_unreachable("Relocation type not implemented yet!");
709 case ELF::R_PPC_ADDR16_LO
:
710 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
712 case ELF::R_PPC_ADDR16_HI
:
713 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
715 case ELF::R_PPC_ADDR16_HA
:
716 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
721 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry
&Section
,
722 uint64_t Offset
, uint64_t Value
,
723 uint32_t Type
, int64_t Addend
) {
724 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
727 llvm_unreachable("Relocation type not implemented yet!");
729 case ELF::R_PPC64_ADDR16
:
730 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
732 case ELF::R_PPC64_ADDR16_DS
:
733 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
735 case ELF::R_PPC64_ADDR16_LO
:
736 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
738 case ELF::R_PPC64_ADDR16_LO_DS
:
739 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
741 case ELF::R_PPC64_ADDR16_HI
:
742 case ELF::R_PPC64_ADDR16_HIGH
:
743 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
745 case ELF::R_PPC64_ADDR16_HA
:
746 case ELF::R_PPC64_ADDR16_HIGHA
:
747 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
749 case ELF::R_PPC64_ADDR16_HIGHER
:
750 writeInt16BE(LocalAddress
, applyPPChigher(Value
+ Addend
));
752 case ELF::R_PPC64_ADDR16_HIGHERA
:
753 writeInt16BE(LocalAddress
, applyPPChighera(Value
+ Addend
));
755 case ELF::R_PPC64_ADDR16_HIGHEST
:
756 writeInt16BE(LocalAddress
, applyPPChighest(Value
+ Addend
));
758 case ELF::R_PPC64_ADDR16_HIGHESTA
:
759 writeInt16BE(LocalAddress
, applyPPChighesta(Value
+ Addend
));
761 case ELF::R_PPC64_ADDR14
: {
762 assert(((Value
+ Addend
) & 3) == 0);
763 // Preserve the AA/LK bits in the branch instruction
764 uint8_t aalk
= *(LocalAddress
+ 3);
765 writeInt16BE(LocalAddress
+ 2, (aalk
& 3) | ((Value
+ Addend
) & 0xfffc));
767 case ELF::R_PPC64_REL16_LO
: {
768 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
769 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
770 writeInt16BE(LocalAddress
, applyPPClo(Delta
));
772 case ELF::R_PPC64_REL16_HI
: {
773 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
774 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
775 writeInt16BE(LocalAddress
, applyPPChi(Delta
));
777 case ELF::R_PPC64_REL16_HA
: {
778 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
779 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
780 writeInt16BE(LocalAddress
, applyPPCha(Delta
));
782 case ELF::R_PPC64_ADDR32
: {
783 int64_t Result
= static_cast<int64_t>(Value
+ Addend
);
784 if (SignExtend64
<32>(Result
) != Result
)
785 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
786 writeInt32BE(LocalAddress
, Result
);
788 case ELF::R_PPC64_REL24
: {
789 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
790 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
791 if (SignExtend64
<26>(delta
) != delta
)
792 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
793 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
794 uint32_t Inst
= readBytesUnaligned(LocalAddress
, 4);
795 writeInt32BE(LocalAddress
, (Inst
& 0xFC000003) | (delta
& 0x03FFFFFC));
797 case ELF::R_PPC64_REL32
: {
798 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
799 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
800 if (SignExtend64
<32>(delta
) != delta
)
801 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
802 writeInt32BE(LocalAddress
, delta
);
804 case ELF::R_PPC64_REL64
: {
805 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
806 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
807 writeInt64BE(LocalAddress
, Delta
);
809 case ELF::R_PPC64_ADDR64
:
810 writeInt64BE(LocalAddress
, Value
+ Addend
);
815 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry
&Section
,
816 uint64_t Offset
, uint64_t Value
,
817 uint32_t Type
, int64_t Addend
) {
818 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
821 llvm_unreachable("Relocation type not implemented yet!");
823 case ELF::R_390_PC16DBL
:
824 case ELF::R_390_PLT16DBL
: {
825 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
826 assert(int16_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC16DBL overflow");
827 writeInt16BE(LocalAddress
, Delta
/ 2);
830 case ELF::R_390_PC32DBL
:
831 case ELF::R_390_PLT32DBL
: {
832 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
833 assert(int32_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC32DBL overflow");
834 writeInt32BE(LocalAddress
, Delta
/ 2);
837 case ELF::R_390_PC16
: {
838 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
839 assert(int16_t(Delta
) == Delta
&& "R_390_PC16 overflow");
840 writeInt16BE(LocalAddress
, Delta
);
843 case ELF::R_390_PC32
: {
844 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
845 assert(int32_t(Delta
) == Delta
&& "R_390_PC32 overflow");
846 writeInt32BE(LocalAddress
, Delta
);
849 case ELF::R_390_PC64
: {
850 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
851 writeInt64BE(LocalAddress
, Delta
);
855 *LocalAddress
= (uint8_t)(Value
+ Addend
);
858 writeInt16BE(LocalAddress
, Value
+ Addend
);
861 writeInt32BE(LocalAddress
, Value
+ Addend
);
864 writeInt64BE(LocalAddress
, Value
+ Addend
);
869 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry
&Section
,
870 uint64_t Offset
, uint64_t Value
,
871 uint32_t Type
, int64_t Addend
) {
872 bool isBE
= Arch
== Triple::bpfeb
;
876 llvm_unreachable("Relocation type not implemented yet!");
878 case ELF::R_BPF_NONE
:
880 case ELF::R_BPF_64_64
: {
881 write(isBE
, Section
.getAddressWithOffset(Offset
), Value
+ Addend
);
882 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
883 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
886 case ELF::R_BPF_64_32
: {
888 assert(Value
<= UINT32_MAX
);
889 write(isBE
, Section
.getAddressWithOffset(Offset
), static_cast<uint32_t>(Value
));
890 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value
) << " at "
891 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
897 // The target location for the relocation is described by RE.SectionID and
898 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
899 // SectionEntry has three members describing its location.
900 // SectionEntry::Address is the address at which the section has been loaded
901 // into memory in the current (host) process. SectionEntry::LoadAddress is the
902 // address that the section will have in the target process.
903 // SectionEntry::ObjAddress is the address of the bits for this section in the
904 // original emitted object image (also in the current address space).
906 // Relocations will be applied as if the section were loaded at
907 // SectionEntry::LoadAddress, but they will be applied at an address based
908 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
909 // Target memory contents if they are required for value calculations.
911 // The Value parameter here is the load address of the symbol for the
912 // relocation to be applied. For relocations which refer to symbols in the
913 // current object Value will be the LoadAddress of the section in which
914 // the symbol resides (RE.Addend provides additional information about the
915 // symbol location). For external symbols, Value will be the address of the
916 // symbol in the target address space.
917 void RuntimeDyldELF::resolveRelocation(const RelocationEntry
&RE
,
919 const SectionEntry
&Section
= Sections
[RE
.SectionID
];
920 return resolveRelocation(Section
, RE
.Offset
, Value
, RE
.RelType
, RE
.Addend
,
921 RE
.SymOffset
, RE
.SectionID
);
924 void RuntimeDyldELF::resolveRelocation(const SectionEntry
&Section
,
925 uint64_t Offset
, uint64_t Value
,
926 uint32_t Type
, int64_t Addend
,
927 uint64_t SymOffset
, SID SectionID
) {
930 resolveX86_64Relocation(Section
, Offset
, Value
, Type
, Addend
, SymOffset
);
933 resolveX86Relocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
934 (uint32_t)(Addend
& 0xffffffffL
));
936 case Triple::aarch64
:
937 case Triple::aarch64_be
:
938 resolveAArch64Relocation(Section
, Offset
, Value
, Type
, Addend
);
940 case Triple::arm
: // Fall through.
943 case Triple::thumbeb
:
944 resolveARMRelocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
945 (uint32_t)(Addend
& 0xffffffffL
));
948 resolvePPC32Relocation(Section
, Offset
, Value
, Type
, Addend
);
950 case Triple::ppc64
: // Fall through.
951 case Triple::ppc64le
:
952 resolvePPC64Relocation(Section
, Offset
, Value
, Type
, Addend
);
954 case Triple::systemz
:
955 resolveSystemZRelocation(Section
, Offset
, Value
, Type
, Addend
);
959 resolveBPFRelocation(Section
, Offset
, Value
, Type
, Addend
);
962 llvm_unreachable("Unsupported CPU type!");
966 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID
, uint64_t Offset
) const {
967 return (void *)(Sections
[SectionID
].getObjAddress() + Offset
);
970 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID
, uint64_t Offset
, unsigned RelType
, RelocationValueRef Value
) {
971 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
, Value
.Offset
);
972 if (Value
.SymbolName
)
973 addRelocationForSymbol(RE
, Value
.SymbolName
);
975 addRelocationForSection(RE
, Value
.SectionID
);
978 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType
,
979 bool IsLocal
) const {
981 case ELF::R_MICROMIPS_GOT16
:
983 return ELF::R_MICROMIPS_LO16
;
985 case ELF::R_MICROMIPS_HI16
:
986 return ELF::R_MICROMIPS_LO16
;
987 case ELF::R_MIPS_GOT16
:
989 return ELF::R_MIPS_LO16
;
991 case ELF::R_MIPS_HI16
:
992 return ELF::R_MIPS_LO16
;
993 case ELF::R_MIPS_PCHI16
:
994 return ELF::R_MIPS_PCLO16
;
998 return ELF::R_MIPS_NONE
;
1001 // Sometimes we don't need to create thunk for a branch.
1002 // This typically happens when branch target is located
1003 // in the same object file. In such case target is either
1004 // a weak symbol or symbol in a different executable section.
1005 // This function checks if branch target is located in the
1006 // same object file and if distance between source and target
1007 // fits R_AARCH64_CALL26 relocation. If both conditions are
1008 // met, it emits direct jump to the target and returns true.
1009 // Otherwise false is returned and thunk is created.
1010 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1011 unsigned SectionID
, relocation_iterator RelI
,
1012 const RelocationValueRef
&Value
) {
1014 if (Value
.SymbolName
) {
1015 auto Loc
= GlobalSymbolTable
.find(Value
.SymbolName
);
1017 // Don't create direct branch for external symbols.
1018 if (Loc
== GlobalSymbolTable
.end())
1021 const auto &SymInfo
= Loc
->second
;
1023 uint64_t(Sections
[SymInfo
.getSectionID()].getLoadAddressWithOffset(
1024 SymInfo
.getOffset()));
1026 Address
= uint64_t(Sections
[Value
.SectionID
].getLoadAddress());
1028 uint64_t Offset
= RelI
->getOffset();
1029 uint64_t SourceAddress
= Sections
[SectionID
].getLoadAddressWithOffset(Offset
);
1031 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1032 // If distance between source and target is out of range then we should
1034 if (!isInt
<28>(Address
+ Value
.Addend
- SourceAddress
))
1037 resolveRelocation(Sections
[SectionID
], Offset
, Address
, RelI
->getType(),
1043 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID
,
1044 const RelocationValueRef
&Value
,
1045 relocation_iterator RelI
,
1048 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1049 SectionEntry
&Section
= Sections
[SectionID
];
1051 uint64_t Offset
= RelI
->getOffset();
1052 unsigned RelType
= RelI
->getType();
1053 // Look for an existing stub.
1054 StubMap::const_iterator i
= Stubs
.find(Value
);
1055 if (i
!= Stubs
.end()) {
1056 resolveRelocation(Section
, Offset
,
1057 (uint64_t)Section
.getAddressWithOffset(i
->second
),
1059 LLVM_DEBUG(dbgs() << " Stub function found\n");
1060 } else if (!resolveAArch64ShortBranch(SectionID
, RelI
, Value
)) {
1061 // Create a new stub function.
1062 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1063 Stubs
[Value
] = Section
.getStubOffset();
1064 uint8_t *StubTargetAddr
= createStubFunction(
1065 Section
.getAddressWithOffset(Section
.getStubOffset()));
1067 RelocationEntry
REmovz_g3(SectionID
, StubTargetAddr
- Section
.getAddress(),
1068 ELF::R_AARCH64_MOVW_UABS_G3
, Value
.Addend
);
1069 RelocationEntry
REmovk_g2(SectionID
,
1070 StubTargetAddr
- Section
.getAddress() + 4,
1071 ELF::R_AARCH64_MOVW_UABS_G2_NC
, Value
.Addend
);
1072 RelocationEntry
REmovk_g1(SectionID
,
1073 StubTargetAddr
- Section
.getAddress() + 8,
1074 ELF::R_AARCH64_MOVW_UABS_G1_NC
, Value
.Addend
);
1075 RelocationEntry
REmovk_g0(SectionID
,
1076 StubTargetAddr
- Section
.getAddress() + 12,
1077 ELF::R_AARCH64_MOVW_UABS_G0_NC
, Value
.Addend
);
1079 if (Value
.SymbolName
) {
1080 addRelocationForSymbol(REmovz_g3
, Value
.SymbolName
);
1081 addRelocationForSymbol(REmovk_g2
, Value
.SymbolName
);
1082 addRelocationForSymbol(REmovk_g1
, Value
.SymbolName
);
1083 addRelocationForSymbol(REmovk_g0
, Value
.SymbolName
);
1085 addRelocationForSection(REmovz_g3
, Value
.SectionID
);
1086 addRelocationForSection(REmovk_g2
, Value
.SectionID
);
1087 addRelocationForSection(REmovk_g1
, Value
.SectionID
);
1088 addRelocationForSection(REmovk_g0
, Value
.SectionID
);
1090 resolveRelocation(Section
, Offset
,
1091 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(
1092 Section
.getStubOffset())),
1094 Section
.advanceStubOffset(getMaxStubSize());
1098 Expected
<relocation_iterator
>
1099 RuntimeDyldELF::processRelocationRef(
1100 unsigned SectionID
, relocation_iterator RelI
, const ObjectFile
&O
,
1101 ObjSectionToIDMap
&ObjSectionToID
, StubMap
&Stubs
) {
1102 const auto &Obj
= cast
<ELFObjectFileBase
>(O
);
1103 uint64_t RelType
= RelI
->getType();
1105 if (Expected
<int64_t> AddendOrErr
= ELFRelocationRef(*RelI
).getAddend())
1106 Addend
= *AddendOrErr
;
1108 consumeError(AddendOrErr
.takeError());
1109 elf_symbol_iterator Symbol
= RelI
->getSymbol();
1111 // Obtain the symbol name which is referenced in the relocation
1112 StringRef TargetName
;
1113 if (Symbol
!= Obj
.symbol_end()) {
1114 if (auto TargetNameOrErr
= Symbol
->getName())
1115 TargetName
= *TargetNameOrErr
;
1117 return TargetNameOrErr
.takeError();
1119 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
1120 << " TargetName: " << TargetName
<< "\n");
1121 RelocationValueRef Value
;
1122 // First search for the symbol in the local symbol table
1123 SymbolRef::Type SymType
= SymbolRef::ST_Unknown
;
1125 // Search for the symbol in the global symbol table
1126 RTDyldSymbolTable::const_iterator gsi
= GlobalSymbolTable
.end();
1127 if (Symbol
!= Obj
.symbol_end()) {
1128 gsi
= GlobalSymbolTable
.find(TargetName
.data());
1129 Expected
<SymbolRef::Type
> SymTypeOrErr
= Symbol
->getType();
1130 if (!SymTypeOrErr
) {
1132 raw_string_ostream
OS(Buf
);
1133 logAllUnhandledErrors(SymTypeOrErr
.takeError(), OS
, "");
1135 report_fatal_error(Buf
);
1137 SymType
= *SymTypeOrErr
;
1139 if (gsi
!= GlobalSymbolTable
.end()) {
1140 const auto &SymInfo
= gsi
->second
;
1141 Value
.SectionID
= SymInfo
.getSectionID();
1142 Value
.Offset
= SymInfo
.getOffset();
1143 Value
.Addend
= SymInfo
.getOffset() + Addend
;
1146 case SymbolRef::ST_Debug
: {
1147 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1148 // and can be changed by another developers. Maybe best way is add
1149 // a new symbol type ST_Section to SymbolRef and use it.
1150 auto SectionOrErr
= Symbol
->getSection();
1151 if (!SectionOrErr
) {
1153 raw_string_ostream
OS(Buf
);
1154 logAllUnhandledErrors(SectionOrErr
.takeError(), OS
, "");
1156 report_fatal_error(Buf
);
1158 section_iterator si
= *SectionOrErr
;
1159 if (si
== Obj
.section_end())
1160 llvm_unreachable("Symbol section not found, bad object file format!");
1161 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1162 bool isCode
= si
->isText();
1163 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, (*si
), isCode
,
1165 Value
.SectionID
= *SectionIDOrErr
;
1167 return SectionIDOrErr
.takeError();
1168 Value
.Addend
= Addend
;
1171 case SymbolRef::ST_Data
:
1172 case SymbolRef::ST_Function
:
1173 case SymbolRef::ST_Unknown
: {
1174 Value
.SymbolName
= TargetName
.data();
1175 Value
.Addend
= Addend
;
1177 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1178 // will manifest here as a NULL symbol name.
1179 // We can set this as a valid (but empty) symbol name, and rely
1180 // on addRelocationForSymbol to handle this.
1181 if (!Value
.SymbolName
)
1182 Value
.SymbolName
= "";
1186 llvm_unreachable("Unresolved symbol type!");
1191 uint64_t Offset
= RelI
->getOffset();
1193 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset
1195 if ((Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)) {
1196 if (RelType
== ELF::R_AARCH64_CALL26
|| RelType
== ELF::R_AARCH64_JUMP26
) {
1197 resolveAArch64Branch(SectionID
, Value
, RelI
, Stubs
);
1198 } else if (RelType
== ELF::R_AARCH64_ADR_GOT_PAGE
) {
1199 // Craete new GOT entry or find existing one. If GOT entry is
1200 // to be created, then we also emit ABS64 relocation for it.
1201 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1202 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1203 ELF::R_AARCH64_ADR_PREL_PG_HI21
);
1205 } else if (RelType
== ELF::R_AARCH64_LD64_GOT_LO12_NC
) {
1206 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1207 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1208 ELF::R_AARCH64_LDST64_ABS_LO12_NC
);
1210 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1212 } else if (Arch
== Triple::arm
) {
1213 if (RelType
== ELF::R_ARM_PC24
|| RelType
== ELF::R_ARM_CALL
||
1214 RelType
== ELF::R_ARM_JUMP24
) {
1215 // This is an ARM branch relocation, need to use a stub function.
1216 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1217 SectionEntry
&Section
= Sections
[SectionID
];
1219 // Look for an existing stub.
1220 StubMap::const_iterator i
= Stubs
.find(Value
);
1221 if (i
!= Stubs
.end()) {
1224 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(i
->second
)),
1226 LLVM_DEBUG(dbgs() << " Stub function found\n");
1228 // Create a new stub function.
1229 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1230 Stubs
[Value
] = Section
.getStubOffset();
1231 uint8_t *StubTargetAddr
= createStubFunction(
1232 Section
.getAddressWithOffset(Section
.getStubOffset()));
1233 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1234 ELF::R_ARM_ABS32
, Value
.Addend
);
1235 if (Value
.SymbolName
)
1236 addRelocationForSymbol(RE
, Value
.SymbolName
);
1238 addRelocationForSection(RE
, Value
.SectionID
);
1240 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1241 Section
.getAddressWithOffset(
1242 Section
.getStubOffset())),
1244 Section
.advanceStubOffset(getMaxStubSize());
1247 uint32_t *Placeholder
=
1248 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID
, Offset
));
1249 if (RelType
== ELF::R_ARM_PREL31
|| RelType
== ELF::R_ARM_TARGET1
||
1250 RelType
== ELF::R_ARM_ABS32
) {
1251 Value
.Addend
+= *Placeholder
;
1252 } else if (RelType
== ELF::R_ARM_MOVW_ABS_NC
|| RelType
== ELF::R_ARM_MOVT_ABS
) {
1253 // See ELF for ARM documentation
1254 Value
.Addend
+= (int16_t)((*Placeholder
& 0xFFF) | (((*Placeholder
>> 16) & 0xF) << 12));
1256 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1258 } else if (IsMipsO32ABI
) {
1259 uint8_t *Placeholder
= reinterpret_cast<uint8_t *>(
1260 computePlaceholderAddress(SectionID
, Offset
));
1261 uint32_t Opcode
= readBytesUnaligned(Placeholder
, 4);
1262 if (RelType
== ELF::R_MIPS_26
) {
1263 // This is an Mips branch relocation, need to use a stub function.
1264 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1265 SectionEntry
&Section
= Sections
[SectionID
];
1267 // Extract the addend from the instruction.
1268 // We shift up by two since the Value will be down shifted again
1269 // when applying the relocation.
1270 uint32_t Addend
= (Opcode
& 0x03ffffff) << 2;
1272 Value
.Addend
+= Addend
;
1274 // Look up for existing stub.
1275 StubMap::const_iterator i
= Stubs
.find(Value
);
1276 if (i
!= Stubs
.end()) {
1277 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1278 addRelocationForSection(RE
, SectionID
);
1279 LLVM_DEBUG(dbgs() << " Stub function found\n");
1281 // Create a new stub function.
1282 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1283 Stubs
[Value
] = Section
.getStubOffset();
1285 unsigned AbiVariant
= Obj
.getPlatformFlags();
1287 uint8_t *StubTargetAddr
= createStubFunction(
1288 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1290 // Creating Hi and Lo relocations for the filled stub instructions.
1291 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1292 ELF::R_MIPS_HI16
, Value
.Addend
);
1293 RelocationEntry
RELo(SectionID
,
1294 StubTargetAddr
- Section
.getAddress() + 4,
1295 ELF::R_MIPS_LO16
, Value
.Addend
);
1297 if (Value
.SymbolName
) {
1298 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1299 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1301 addRelocationForSection(REHi
, Value
.SectionID
);
1302 addRelocationForSection(RELo
, Value
.SectionID
);
1305 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1306 addRelocationForSection(RE
, SectionID
);
1307 Section
.advanceStubOffset(getMaxStubSize());
1309 } else if (RelType
== ELF::R_MIPS_HI16
|| RelType
== ELF::R_MIPS_PCHI16
) {
1310 int64_t Addend
= (Opcode
& 0x0000ffff) << 16;
1311 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1312 PendingRelocs
.push_back(std::make_pair(Value
, RE
));
1313 } else if (RelType
== ELF::R_MIPS_LO16
|| RelType
== ELF::R_MIPS_PCLO16
) {
1314 int64_t Addend
= Value
.Addend
+ SignExtend32
<16>(Opcode
& 0x0000ffff);
1315 for (auto I
= PendingRelocs
.begin(); I
!= PendingRelocs
.end();) {
1316 const RelocationValueRef
&MatchingValue
= I
->first
;
1317 RelocationEntry
&Reloc
= I
->second
;
1318 if (MatchingValue
== Value
&&
1319 RelType
== getMatchingLoRelocation(Reloc
.RelType
) &&
1320 SectionID
== Reloc
.SectionID
) {
1321 Reloc
.Addend
+= Addend
;
1322 if (Value
.SymbolName
)
1323 addRelocationForSymbol(Reloc
, Value
.SymbolName
);
1325 addRelocationForSection(Reloc
, Value
.SectionID
);
1326 I
= PendingRelocs
.erase(I
);
1330 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1331 if (Value
.SymbolName
)
1332 addRelocationForSymbol(RE
, Value
.SymbolName
);
1334 addRelocationForSection(RE
, Value
.SectionID
);
1336 if (RelType
== ELF::R_MIPS_32
)
1337 Value
.Addend
+= Opcode
;
1338 else if (RelType
== ELF::R_MIPS_PC16
)
1339 Value
.Addend
+= SignExtend32
<18>((Opcode
& 0x0000ffff) << 2);
1340 else if (RelType
== ELF::R_MIPS_PC19_S2
)
1341 Value
.Addend
+= SignExtend32
<21>((Opcode
& 0x0007ffff) << 2);
1342 else if (RelType
== ELF::R_MIPS_PC21_S2
)
1343 Value
.Addend
+= SignExtend32
<23>((Opcode
& 0x001fffff) << 2);
1344 else if (RelType
== ELF::R_MIPS_PC26_S2
)
1345 Value
.Addend
+= SignExtend32
<28>((Opcode
& 0x03ffffff) << 2);
1346 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1348 } else if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1349 uint32_t r_type
= RelType
& 0xff;
1350 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1351 if (r_type
== ELF::R_MIPS_CALL16
|| r_type
== ELF::R_MIPS_GOT_PAGE
1352 || r_type
== ELF::R_MIPS_GOT_DISP
) {
1353 StringMap
<uint64_t>::iterator i
= GOTSymbolOffsets
.find(TargetName
);
1354 if (i
!= GOTSymbolOffsets
.end())
1355 RE
.SymOffset
= i
->second
;
1357 RE
.SymOffset
= allocateGOTEntries(1);
1358 GOTSymbolOffsets
[TargetName
] = RE
.SymOffset
;
1360 if (Value
.SymbolName
)
1361 addRelocationForSymbol(RE
, Value
.SymbolName
);
1363 addRelocationForSection(RE
, Value
.SectionID
);
1364 } else if (RelType
== ELF::R_MIPS_26
) {
1365 // This is an Mips branch relocation, need to use a stub function.
1366 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1367 SectionEntry
&Section
= Sections
[SectionID
];
1369 // Look up for existing stub.
1370 StubMap::const_iterator i
= Stubs
.find(Value
);
1371 if (i
!= Stubs
.end()) {
1372 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1373 addRelocationForSection(RE
, SectionID
);
1374 LLVM_DEBUG(dbgs() << " Stub function found\n");
1376 // Create a new stub function.
1377 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1378 Stubs
[Value
] = Section
.getStubOffset();
1380 unsigned AbiVariant
= Obj
.getPlatformFlags();
1382 uint8_t *StubTargetAddr
= createStubFunction(
1383 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1386 // Creating Hi and Lo relocations for the filled stub instructions.
1387 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1388 ELF::R_MIPS_HI16
, Value
.Addend
);
1389 RelocationEntry
RELo(SectionID
,
1390 StubTargetAddr
- Section
.getAddress() + 4,
1391 ELF::R_MIPS_LO16
, Value
.Addend
);
1392 if (Value
.SymbolName
) {
1393 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1394 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1396 addRelocationForSection(REHi
, Value
.SectionID
);
1397 addRelocationForSection(RELo
, Value
.SectionID
);
1400 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1402 RelocationEntry
REHighest(SectionID
,
1403 StubTargetAddr
- Section
.getAddress(),
1404 ELF::R_MIPS_HIGHEST
, Value
.Addend
);
1405 RelocationEntry
REHigher(SectionID
,
1406 StubTargetAddr
- Section
.getAddress() + 4,
1407 ELF::R_MIPS_HIGHER
, Value
.Addend
);
1408 RelocationEntry
REHi(SectionID
,
1409 StubTargetAddr
- Section
.getAddress() + 12,
1410 ELF::R_MIPS_HI16
, Value
.Addend
);
1411 RelocationEntry
RELo(SectionID
,
1412 StubTargetAddr
- Section
.getAddress() + 20,
1413 ELF::R_MIPS_LO16
, Value
.Addend
);
1414 if (Value
.SymbolName
) {
1415 addRelocationForSymbol(REHighest
, Value
.SymbolName
);
1416 addRelocationForSymbol(REHigher
, Value
.SymbolName
);
1417 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1418 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1420 addRelocationForSection(REHighest
, Value
.SectionID
);
1421 addRelocationForSection(REHigher
, Value
.SectionID
);
1422 addRelocationForSection(REHi
, Value
.SectionID
);
1423 addRelocationForSection(RELo
, Value
.SectionID
);
1426 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1427 addRelocationForSection(RE
, SectionID
);
1428 Section
.advanceStubOffset(getMaxStubSize());
1431 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1434 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
1435 if (RelType
== ELF::R_PPC64_REL24
) {
1436 // Determine ABI variant in use for this object.
1437 unsigned AbiVariant
= Obj
.getPlatformFlags();
1438 AbiVariant
&= ELF::EF_PPC64_ABI
;
1439 // A PPC branch relocation will need a stub function if the target is
1440 // an external symbol (either Value.SymbolName is set, or SymType is
1441 // Symbol::ST_Unknown) or if the target address is not within the
1442 // signed 24-bits branch address.
1443 SectionEntry
&Section
= Sections
[SectionID
];
1444 uint8_t *Target
= Section
.getAddressWithOffset(Offset
);
1445 bool RangeOverflow
= false;
1446 bool IsExtern
= Value
.SymbolName
|| SymType
== SymbolRef::ST_Unknown
;
1448 if (AbiVariant
!= 2) {
1449 // In the ELFv1 ABI, a function call may point to the .opd entry,
1450 // so the final symbol value is calculated based on the relocation
1451 // values in the .opd section.
1452 if (auto Err
= findOPDEntrySection(Obj
, ObjSectionToID
, Value
))
1453 return std::move(Err
);
1455 // In the ELFv2 ABI, a function symbol may provide a local entry
1456 // point, which must be used for direct calls.
1457 if (Value
.SectionID
== SectionID
){
1458 uint8_t SymOther
= Symbol
->getOther();
1459 Value
.Addend
+= ELF::decodePPC64LocalEntryOffset(SymOther
);
1462 uint8_t *RelocTarget
=
1463 Sections
[Value
.SectionID
].getAddressWithOffset(Value
.Addend
);
1464 int64_t delta
= static_cast<int64_t>(Target
- RelocTarget
);
1465 // If it is within 26-bits branch range, just set the branch target
1466 if (SignExtend64
<26>(delta
) != delta
) {
1467 RangeOverflow
= true;
1468 } else if ((AbiVariant
!= 2) ||
1469 (AbiVariant
== 2 && Value
.SectionID
== SectionID
)) {
1470 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1471 addRelocationForSection(RE
, Value
.SectionID
);
1474 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
) ||
1476 // It is an external symbol (either Value.SymbolName is set, or
1477 // SymType is SymbolRef::ST_Unknown) or out of range.
1478 StubMap::const_iterator i
= Stubs
.find(Value
);
1479 if (i
!= Stubs
.end()) {
1480 // Symbol function stub already created, just relocate to it
1481 resolveRelocation(Section
, Offset
,
1482 reinterpret_cast<uint64_t>(
1483 Section
.getAddressWithOffset(i
->second
)),
1485 LLVM_DEBUG(dbgs() << " Stub function found\n");
1487 // Create a new stub function.
1488 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1489 Stubs
[Value
] = Section
.getStubOffset();
1490 uint8_t *StubTargetAddr
= createStubFunction(
1491 Section
.getAddressWithOffset(Section
.getStubOffset()),
1493 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1494 ELF::R_PPC64_ADDR64
, Value
.Addend
);
1496 // Generates the 64-bits address loads as exemplified in section
1497 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1498 // apply to the low part of the instructions, so we have to update
1499 // the offset according to the target endianness.
1500 uint64_t StubRelocOffset
= StubTargetAddr
- Section
.getAddress();
1501 if (!IsTargetLittleEndian
)
1502 StubRelocOffset
+= 2;
1504 RelocationEntry
REhst(SectionID
, StubRelocOffset
+ 0,
1505 ELF::R_PPC64_ADDR16_HIGHEST
, Value
.Addend
);
1506 RelocationEntry
REhr(SectionID
, StubRelocOffset
+ 4,
1507 ELF::R_PPC64_ADDR16_HIGHER
, Value
.Addend
);
1508 RelocationEntry
REh(SectionID
, StubRelocOffset
+ 12,
1509 ELF::R_PPC64_ADDR16_HI
, Value
.Addend
);
1510 RelocationEntry
REl(SectionID
, StubRelocOffset
+ 16,
1511 ELF::R_PPC64_ADDR16_LO
, Value
.Addend
);
1513 if (Value
.SymbolName
) {
1514 addRelocationForSymbol(REhst
, Value
.SymbolName
);
1515 addRelocationForSymbol(REhr
, Value
.SymbolName
);
1516 addRelocationForSymbol(REh
, Value
.SymbolName
);
1517 addRelocationForSymbol(REl
, Value
.SymbolName
);
1519 addRelocationForSection(REhst
, Value
.SectionID
);
1520 addRelocationForSection(REhr
, Value
.SectionID
);
1521 addRelocationForSection(REh
, Value
.SectionID
);
1522 addRelocationForSection(REl
, Value
.SectionID
);
1525 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1526 Section
.getAddressWithOffset(
1527 Section
.getStubOffset())),
1529 Section
.advanceStubOffset(getMaxStubSize());
1531 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
)) {
1532 // Restore the TOC for external calls
1533 if (AbiVariant
== 2)
1534 writeInt32BE(Target
+ 4, 0xE8410018); // ld r2,24(r1)
1536 writeInt32BE(Target
+ 4, 0xE8410028); // ld r2,40(r1)
1539 } else if (RelType
== ELF::R_PPC64_TOC16
||
1540 RelType
== ELF::R_PPC64_TOC16_DS
||
1541 RelType
== ELF::R_PPC64_TOC16_LO
||
1542 RelType
== ELF::R_PPC64_TOC16_LO_DS
||
1543 RelType
== ELF::R_PPC64_TOC16_HI
||
1544 RelType
== ELF::R_PPC64_TOC16_HA
) {
1545 // These relocations are supposed to subtract the TOC address from
1546 // the final value. This does not fit cleanly into the RuntimeDyld
1547 // scheme, since there may be *two* sections involved in determining
1548 // the relocation value (the section of the symbol referred to by the
1549 // relocation, and the TOC section associated with the current module).
1551 // Fortunately, these relocations are currently only ever generated
1552 // referring to symbols that themselves reside in the TOC, which means
1553 // that the two sections are actually the same. Thus they cancel out
1554 // and we can immediately resolve the relocation right now.
1556 case ELF::R_PPC64_TOC16
: RelType
= ELF::R_PPC64_ADDR16
; break;
1557 case ELF::R_PPC64_TOC16_DS
: RelType
= ELF::R_PPC64_ADDR16_DS
; break;
1558 case ELF::R_PPC64_TOC16_LO
: RelType
= ELF::R_PPC64_ADDR16_LO
; break;
1559 case ELF::R_PPC64_TOC16_LO_DS
: RelType
= ELF::R_PPC64_ADDR16_LO_DS
; break;
1560 case ELF::R_PPC64_TOC16_HI
: RelType
= ELF::R_PPC64_ADDR16_HI
; break;
1561 case ELF::R_PPC64_TOC16_HA
: RelType
= ELF::R_PPC64_ADDR16_HA
; break;
1562 default: llvm_unreachable("Wrong relocation type.");
1565 RelocationValueRef TOCValue
;
1566 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, TOCValue
))
1567 return std::move(Err
);
1568 if (Value
.SymbolName
|| Value
.SectionID
!= TOCValue
.SectionID
)
1569 llvm_unreachable("Unsupported TOC relocation.");
1570 Value
.Addend
-= TOCValue
.Addend
;
1571 resolveRelocation(Sections
[SectionID
], Offset
, Value
.Addend
, RelType
, 0);
1573 // There are two ways to refer to the TOC address directly: either
1574 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1575 // ignored), or via any relocation that refers to the magic ".TOC."
1576 // symbols (in which case the addend is respected).
1577 if (RelType
== ELF::R_PPC64_TOC
) {
1578 RelType
= ELF::R_PPC64_ADDR64
;
1579 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1580 return std::move(Err
);
1581 } else if (TargetName
== ".TOC.") {
1582 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1583 return std::move(Err
);
1584 Value
.Addend
+= Addend
;
1587 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1589 if (Value
.SymbolName
)
1590 addRelocationForSymbol(RE
, Value
.SymbolName
);
1592 addRelocationForSection(RE
, Value
.SectionID
);
1594 } else if (Arch
== Triple::systemz
&&
1595 (RelType
== ELF::R_390_PLT32DBL
|| RelType
== ELF::R_390_GOTENT
)) {
1596 // Create function stubs for both PLT and GOT references, regardless of
1597 // whether the GOT reference is to data or code. The stub contains the
1598 // full address of the symbol, as needed by GOT references, and the
1599 // executable part only adds an overhead of 8 bytes.
1601 // We could try to conserve space by allocating the code and data
1602 // parts of the stub separately. However, as things stand, we allocate
1603 // a stub for every relocation, so using a GOT in JIT code should be
1604 // no less space efficient than using an explicit constant pool.
1605 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1606 SectionEntry
&Section
= Sections
[SectionID
];
1608 // Look for an existing stub.
1609 StubMap::const_iterator i
= Stubs
.find(Value
);
1610 uintptr_t StubAddress
;
1611 if (i
!= Stubs
.end()) {
1612 StubAddress
= uintptr_t(Section
.getAddressWithOffset(i
->second
));
1613 LLVM_DEBUG(dbgs() << " Stub function found\n");
1615 // Create a new stub function.
1616 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1618 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1619 uintptr_t StubAlignment
= getStubAlignment();
1621 (BaseAddress
+ Section
.getStubOffset() + StubAlignment
- 1) &
1623 unsigned StubOffset
= StubAddress
- BaseAddress
;
1625 Stubs
[Value
] = StubOffset
;
1626 createStubFunction((uint8_t *)StubAddress
);
1627 RelocationEntry
RE(SectionID
, StubOffset
+ 8, ELF::R_390_64
,
1629 if (Value
.SymbolName
)
1630 addRelocationForSymbol(RE
, Value
.SymbolName
);
1632 addRelocationForSection(RE
, Value
.SectionID
);
1633 Section
.advanceStubOffset(getMaxStubSize());
1636 if (RelType
== ELF::R_390_GOTENT
)
1637 resolveRelocation(Section
, Offset
, StubAddress
+ 8, ELF::R_390_PC32DBL
,
1640 resolveRelocation(Section
, Offset
, StubAddress
, RelType
, Addend
);
1641 } else if (Arch
== Triple::x86_64
) {
1642 if (RelType
== ELF::R_X86_64_PLT32
) {
1643 // The way the PLT relocations normally work is that the linker allocates
1645 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1646 // entry will then jump to an address provided by the GOT. On first call,
1648 // GOT address will point back into PLT code that resolves the symbol. After
1649 // the first call, the GOT entry points to the actual function.
1651 // For local functions we're ignoring all of that here and just replacing
1652 // the PLT32 relocation type with PC32, which will translate the relocation
1653 // into a PC-relative call directly to the function. For external symbols we
1654 // can't be sure the function will be within 2^32 bytes of the call site, so
1655 // we need to create a stub, which calls into the GOT. This case is
1656 // equivalent to the usual PLT implementation except that we use the stub
1657 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1658 // rather than allocating a PLT section.
1659 if (Value
.SymbolName
) {
1660 // This is a call to an external function.
1661 // Look for an existing stub.
1662 SectionEntry
&Section
= Sections
[SectionID
];
1663 StubMap::const_iterator i
= Stubs
.find(Value
);
1664 uintptr_t StubAddress
;
1665 if (i
!= Stubs
.end()) {
1666 StubAddress
= uintptr_t(Section
.getAddress()) + i
->second
;
1667 LLVM_DEBUG(dbgs() << " Stub function found\n");
1669 // Create a new stub function (equivalent to a PLT entry).
1670 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1672 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1673 uintptr_t StubAlignment
= getStubAlignment();
1675 (BaseAddress
+ Section
.getStubOffset() + StubAlignment
- 1) &
1677 unsigned StubOffset
= StubAddress
- BaseAddress
;
1678 Stubs
[Value
] = StubOffset
;
1679 createStubFunction((uint8_t *)StubAddress
);
1681 // Bump our stub offset counter
1682 Section
.advanceStubOffset(getMaxStubSize());
1684 // Allocate a GOT Entry
1685 uint64_t GOTOffset
= allocateGOTEntries(1);
1687 // The load of the GOT address has an addend of -4
1688 resolveGOTOffsetRelocation(SectionID
, StubOffset
+ 2, GOTOffset
- 4,
1689 ELF::R_X86_64_PC32
);
1691 // Fill in the value of the symbol we're targeting into the GOT
1692 addRelocationForSymbol(
1693 computeGOTOffsetRE(GOTOffset
, 0, ELF::R_X86_64_64
),
1697 // Make the target call a call into the stub table.
1698 resolveRelocation(Section
, Offset
, StubAddress
, ELF::R_X86_64_PC32
,
1701 RelocationEntry
RE(SectionID
, Offset
, ELF::R_X86_64_PC32
, Value
.Addend
,
1703 addRelocationForSection(RE
, Value
.SectionID
);
1705 } else if (RelType
== ELF::R_X86_64_GOTPCREL
||
1706 RelType
== ELF::R_X86_64_GOTPCRELX
||
1707 RelType
== ELF::R_X86_64_REX_GOTPCRELX
) {
1708 uint64_t GOTOffset
= allocateGOTEntries(1);
1709 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1710 ELF::R_X86_64_PC32
);
1712 // Fill in the value of the symbol we're targeting into the GOT
1713 RelocationEntry RE
=
1714 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1715 if (Value
.SymbolName
)
1716 addRelocationForSymbol(RE
, Value
.SymbolName
);
1718 addRelocationForSection(RE
, Value
.SectionID
);
1719 } else if (RelType
== ELF::R_X86_64_GOT64
) {
1720 // Fill in a 64-bit GOT offset.
1721 uint64_t GOTOffset
= allocateGOTEntries(1);
1722 resolveRelocation(Sections
[SectionID
], Offset
, GOTOffset
,
1723 ELF::R_X86_64_64
, 0);
1725 // Fill in the value of the symbol we're targeting into the GOT
1726 RelocationEntry RE
=
1727 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1728 if (Value
.SymbolName
)
1729 addRelocationForSymbol(RE
, Value
.SymbolName
);
1731 addRelocationForSection(RE
, Value
.SectionID
);
1732 } else if (RelType
== ELF::R_X86_64_GOTPC64
) {
1733 // Materialize the address of the base of the GOT relative to the PC.
1734 // This doesn't create a GOT entry, but it does mean we need a GOT
1736 (void)allocateGOTEntries(0);
1737 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC64
);
1738 } else if (RelType
== ELF::R_X86_64_GOTOFF64
) {
1739 // GOTOFF relocations ultimately require a section difference relocation.
1740 (void)allocateGOTEntries(0);
1741 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1742 } else if (RelType
== ELF::R_X86_64_PC32
) {
1743 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1744 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1745 } else if (RelType
== ELF::R_X86_64_PC64
) {
1746 Value
.Addend
+= support::ulittle64_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1747 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1749 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1752 if (Arch
== Triple::x86
) {
1753 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1755 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1760 size_t RuntimeDyldELF::getGOTEntrySize() {
1761 // We don't use the GOT in all of these cases, but it's essentially free
1762 // to put them all here.
1765 case Triple::x86_64
:
1766 case Triple::aarch64
:
1767 case Triple::aarch64_be
:
1769 case Triple::ppc64le
:
1770 case Triple::systemz
:
1771 Result
= sizeof(uint64_t);
1776 Result
= sizeof(uint32_t);
1779 case Triple::mipsel
:
1780 case Triple::mips64
:
1781 case Triple::mips64el
:
1782 if (IsMipsO32ABI
|| IsMipsN32ABI
)
1783 Result
= sizeof(uint32_t);
1784 else if (IsMipsN64ABI
)
1785 Result
= sizeof(uint64_t);
1787 llvm_unreachable("Mips ABI not handled");
1790 llvm_unreachable("Unsupported CPU type!");
1795 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no
) {
1796 if (GOTSectionID
== 0) {
1797 GOTSectionID
= Sections
.size();
1798 // Reserve a section id. We'll allocate the section later
1799 // once we know the total size
1800 Sections
.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1802 uint64_t StartOffset
= CurrentGOTIndex
* getGOTEntrySize();
1803 CurrentGOTIndex
+= no
;
1807 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef
&Value
,
1808 unsigned GOTRelType
) {
1809 auto E
= GOTOffsetMap
.insert({Value
, 0});
1811 uint64_t GOTOffset
= allocateGOTEntries(1);
1813 // Create relocation for newly created GOT entry
1814 RelocationEntry RE
=
1815 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, GOTRelType
);
1816 if (Value
.SymbolName
)
1817 addRelocationForSymbol(RE
, Value
.SymbolName
);
1819 addRelocationForSection(RE
, Value
.SectionID
);
1821 E
.first
->second
= GOTOffset
;
1824 return E
.first
->second
;
1827 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID
,
1831 // Fill in the relative address of the GOT Entry into the stub
1832 RelocationEntry
GOTRE(SectionID
, Offset
, Type
, GOTOffset
);
1833 addRelocationForSection(GOTRE
, GOTSectionID
);
1836 RelocationEntry
RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset
,
1837 uint64_t SymbolOffset
,
1839 return RelocationEntry(GOTSectionID
, GOTOffset
, Type
, SymbolOffset
);
1842 Error
RuntimeDyldELF::finalizeLoad(const ObjectFile
&Obj
,
1843 ObjSectionToIDMap
&SectionMap
) {
1845 if (!PendingRelocs
.empty())
1846 return make_error
<RuntimeDyldError
>("Can't find matching LO16 reloc");
1848 // If necessary, allocate the global offset table
1849 if (GOTSectionID
!= 0) {
1850 // Allocate memory for the section
1851 size_t TotalSize
= CurrentGOTIndex
* getGOTEntrySize();
1852 uint8_t *Addr
= MemMgr
.allocateDataSection(TotalSize
, getGOTEntrySize(),
1853 GOTSectionID
, ".got", false);
1855 return make_error
<RuntimeDyldError
>("Unable to allocate memory for GOT!");
1857 Sections
[GOTSectionID
] =
1858 SectionEntry(".got", Addr
, TotalSize
, TotalSize
, 0);
1861 Checker
->registerSection(Obj
.getFileName(), GOTSectionID
);
1863 // For now, initialize all GOT entries to zero. We'll fill them in as
1864 // needed when GOT-based relocations are applied.
1865 memset(Addr
, 0, TotalSize
);
1866 if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1867 // To correctly resolve Mips GOT relocations, we need a mapping from
1868 // object's sections to GOTs.
1869 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
1871 if (SI
->relocation_begin() != SI
->relocation_end()) {
1872 section_iterator RelocatedSection
= SI
->getRelocatedSection();
1873 ObjSectionToIDMap::iterator i
= SectionMap
.find(*RelocatedSection
);
1874 assert (i
!= SectionMap
.end());
1875 SectionToGOTMap
[i
->second
] = GOTSectionID
;
1878 GOTSymbolOffsets
.clear();
1882 // Look for and record the EH frame section.
1883 ObjSectionToIDMap::iterator i
, e
;
1884 for (i
= SectionMap
.begin(), e
= SectionMap
.end(); i
!= e
; ++i
) {
1885 const SectionRef
&Section
= i
->first
;
1887 Section
.getName(Name
);
1888 if (Name
== ".eh_frame") {
1889 UnregisteredEHFrameSections
.push_back(i
->second
);
1895 CurrentGOTIndex
= 0;
1897 return Error::success();
1900 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile
&Obj
) const {
1904 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef
&R
) const {
1905 unsigned RelTy
= R
.getType();
1906 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)
1907 return RelTy
== ELF::R_AARCH64_ADR_GOT_PAGE
||
1908 RelTy
== ELF::R_AARCH64_LD64_GOT_LO12_NC
;
1910 if (Arch
== Triple::x86_64
)
1911 return RelTy
== ELF::R_X86_64_GOTPCREL
||
1912 RelTy
== ELF::R_X86_64_GOTPCRELX
||
1913 RelTy
== ELF::R_X86_64_GOT64
||
1914 RelTy
== ELF::R_X86_64_REX_GOTPCRELX
;
1918 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef
&R
) const {
1919 if (Arch
!= Triple::x86_64
)
1920 return true; // Conservative answer
1922 switch (R
.getType()) {
1924 return true; // Conservative answer
1927 case ELF::R_X86_64_GOTPCREL
:
1928 case ELF::R_X86_64_GOTPCRELX
:
1929 case ELF::R_X86_64_REX_GOTPCRELX
:
1930 case ELF::R_X86_64_GOTPC64
:
1931 case ELF::R_X86_64_GOT64
:
1932 case ELF::R_X86_64_GOTOFF64
:
1933 case ELF::R_X86_64_PC32
:
1934 case ELF::R_X86_64_PC64
:
1935 case ELF::R_X86_64_64
:
1936 // We know that these reloation types won't need a stub function. This list
1937 // can be extended as needed.