[PowerPC] Remove self-copies in pre-emit peephole
[llvm-core.git] / lib / Target / PowerPC / PPCInstrInfo.h
blob8a062daab55fc50cd9a7cab2a88598c14d74073c
1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
17 #include "PPC.h"
18 #include "PPCRegisterInfo.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #define GET_INSTRINFO_HEADER
22 #include "PPCGenInstrInfo.inc"
24 namespace llvm {
26 /// PPCII - This namespace holds all of the PowerPC target-specific
27 /// per-instruction flags. These must match the corresponding definitions in
28 /// PPC.td and PPCInstrFormats.td.
29 namespace PPCII {
30 enum {
31 // PPC970 Instruction Flags. These flags describe the characteristics of the
32 // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
33 // raw machine instructions.
35 /// PPC970_First - This instruction starts a new dispatch group, so it will
36 /// always be the first one in the group.
37 PPC970_First = 0x1,
39 /// PPC970_Single - This instruction starts a new dispatch group and
40 /// terminates it, so it will be the sole instruction in the group.
41 PPC970_Single = 0x2,
43 /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
44 /// two dispatch pipes to be available to issue.
45 PPC970_Cracked = 0x4,
47 /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
48 /// an instruction is issued to.
49 PPC970_Shift = 3,
50 PPC970_Mask = 0x07 << PPC970_Shift
52 enum PPC970_Unit {
53 /// These are the various PPC970 execution unit pipelines. Each instruction
54 /// is one of these.
55 PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
56 PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
57 PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
58 PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
59 PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
60 PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
61 PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
62 PPC970_BRU = 7 << PPC970_Shift // Branch Unit
65 enum {
66 /// Shift count to bypass PPC970 flags
67 NewDef_Shift = 6,
69 /// The VSX instruction that uses VSX register (vs0-vs63), instead of VMX
70 /// register (v0-v31).
71 UseVSXReg = 0x1 << NewDef_Shift,
72 /// This instruction is an X-Form memory operation.
73 XFormMemOp = 0x1 << (NewDef_Shift+1)
75 } // end namespace PPCII
77 // Instructions that have an immediate form might be convertible to that
78 // form if the correct input is a result of a load immediate. In order to
79 // know whether the transformation is special, we might need to know some
80 // of the details of the two forms.
81 struct ImmInstrInfo {
82 // Is the immediate field in the immediate form signed or unsigned?
83 uint64_t SignedImm : 1;
84 // Does the immediate need to be a multiple of some value?
85 uint64_t ImmMustBeMultipleOf : 5;
86 // Is R0/X0 treated specially by the original r+r instruction?
87 // If so, in which operand?
88 uint64_t ZeroIsSpecialOrig : 3;
89 // Is R0/X0 treated specially by the new r+i instruction?
90 // If so, in which operand?
91 uint64_t ZeroIsSpecialNew : 3;
92 // Is the operation commutative?
93 uint64_t IsCommutative : 1;
94 // The operand number to check for add-immediate def.
95 uint64_t OpNoForForwarding : 3;
96 // The operand number for the immediate.
97 uint64_t ImmOpNo : 3;
98 // The opcode of the new instruction.
99 uint64_t ImmOpcode : 16;
100 // The size of the immediate.
101 uint64_t ImmWidth : 5;
102 // The immediate should be truncated to N bits.
103 uint64_t TruncateImmTo : 5;
104 // Is the instruction summing the operand
105 uint64_t IsSummingOperands : 1;
108 // Information required to convert an instruction to just a materialized
109 // immediate.
110 struct LoadImmediateInfo {
111 unsigned Imm : 16;
112 unsigned Is64Bit : 1;
113 unsigned SetCR : 1;
116 class PPCSubtarget;
117 class PPCInstrInfo : public PPCGenInstrInfo {
118 PPCSubtarget &Subtarget;
119 const PPCRegisterInfo RI;
121 void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
122 int FrameIdx, const TargetRegisterClass *RC,
123 SmallVectorImpl<MachineInstr *> &NewMIs) const;
124 void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
125 unsigned DestReg, int FrameIdx,
126 const TargetRegisterClass *RC,
127 SmallVectorImpl<MachineInstr *> &NewMIs) const;
129 // If the inst has imm-form and one of its operand is produced by a LI,
130 // put the imm into the inst directly and remove the LI if possible.
131 bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
132 unsigned ConstantOpNo, int64_t Imm) const;
133 // If the inst has imm-form and one of its operand is produced by an
134 // add-immediate, try to transform it when possible.
135 bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
136 unsigned ConstantOpNo,
137 MachineInstr &DefMI,
138 bool KillDefMI) const;
139 // Try to find that, if the instruction 'MI' contains any operand that
140 // could be forwarded from some inst that feeds it. If yes, return the
141 // Def of that operand. And OpNoForForwarding is the operand index in
142 // the 'MI' for that 'Def'. If we see another use of this Def between
143 // the Def and the MI, SeenIntermediateUse becomes 'true'.
144 MachineInstr *getForwardingDefMI(MachineInstr &MI,
145 unsigned &OpNoForForwarding,
146 bool &SeenIntermediateUse) const;
148 // Can the user MI have it's source at index \p OpNoForForwarding
149 // forwarded from an add-immediate that feeds it?
150 bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
151 unsigned OpNoForForwarding) const;
152 bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
153 const ImmInstrInfo &III,
154 MachineOperand *&ImmMO,
155 MachineOperand *&RegMO) const;
156 bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
157 const MachineInstr &DefMI,
158 const ImmInstrInfo &III,
159 int64_t &Imm) const;
160 bool isRegElgibleForForwarding(const MachineOperand &RegMO,
161 const MachineInstr &DefMI,
162 const MachineInstr &MI,
163 bool KillDefMI) const;
164 const unsigned *getStoreOpcodesForSpillArray() const;
165 const unsigned *getLoadOpcodesForSpillArray() const;
166 virtual void anchor();
168 protected:
169 /// Commutes the operands in the given instruction.
170 /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
172 /// Do not call this method for a non-commutable instruction or for
173 /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
174 /// Even though the instruction is commutable, the method may still
175 /// fail to commute the operands, null pointer is returned in such cases.
177 /// For example, we can commute rlwimi instructions, but only if the
178 /// rotate amt is zero. We also have to munge the immediates a bit.
179 MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
180 unsigned OpIdx1,
181 unsigned OpIdx2) const override;
183 public:
184 explicit PPCInstrInfo(PPCSubtarget &STI);
186 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
187 /// such, whenever a client has an instance of instruction info, it should
188 /// always be able to get register info as well (through this method).
190 const PPCRegisterInfo &getRegisterInfo() const { return RI; }
192 bool isXFormMemOp(unsigned Opcode) const {
193 return get(Opcode).TSFlags & PPCII::XFormMemOp;
195 static bool isSameClassPhysRegCopy(unsigned Opcode) {
196 unsigned CopyOpcodes[] =
197 { PPC::OR, PPC::OR8, PPC::FMR, PPC::VOR, PPC::XXLOR, PPC::XXLORf,
198 PPC::XSCPSGNDP, PPC::MCRF, PPC::QVFMR, PPC::QVFMRs, PPC::QVFMRb,
199 PPC::CROR, PPC::EVOR, -1U };
200 for (int i = 0; CopyOpcodes[i] != -1U; i++)
201 if (Opcode == CopyOpcodes[i])
202 return true;
203 return false;
206 ScheduleHazardRecognizer *
207 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
208 const ScheduleDAG *DAG) const override;
209 ScheduleHazardRecognizer *
210 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
211 const ScheduleDAG *DAG) const override;
213 unsigned getInstrLatency(const InstrItineraryData *ItinData,
214 const MachineInstr &MI,
215 unsigned *PredCost = nullptr) const override;
217 int getOperandLatency(const InstrItineraryData *ItinData,
218 const MachineInstr &DefMI, unsigned DefIdx,
219 const MachineInstr &UseMI,
220 unsigned UseIdx) const override;
221 int getOperandLatency(const InstrItineraryData *ItinData,
222 SDNode *DefNode, unsigned DefIdx,
223 SDNode *UseNode, unsigned UseIdx) const override {
224 return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
225 UseNode, UseIdx);
228 bool hasLowDefLatency(const TargetSchedModel &SchedModel,
229 const MachineInstr &DefMI,
230 unsigned DefIdx) const override {
231 // Machine LICM should hoist all instructions in low-register-pressure
232 // situations; none are sufficiently free to justify leaving in a loop
233 // body.
234 return false;
237 bool useMachineCombiner() const override {
238 return true;
241 /// Return true when there is potentially a faster code sequence
242 /// for an instruction chain ending in <Root>. All potential patterns are
243 /// output in the <Pattern> array.
244 bool getMachineCombinerPatterns(
245 MachineInstr &Root,
246 SmallVectorImpl<MachineCombinerPattern> &P) const override;
248 bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
250 bool isCoalescableExtInstr(const MachineInstr &MI,
251 unsigned &SrcReg, unsigned &DstReg,
252 unsigned &SubIdx) const override;
253 unsigned isLoadFromStackSlot(const MachineInstr &MI,
254 int &FrameIndex) const override;
255 bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
256 AliasAnalysis *AA) const override;
257 unsigned isStoreToStackSlot(const MachineInstr &MI,
258 int &FrameIndex) const override;
260 bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
261 unsigned &SrcOpIdx2) const override;
263 void insertNoop(MachineBasicBlock &MBB,
264 MachineBasicBlock::iterator MI) const override;
267 // Branch analysis.
268 bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
269 MachineBasicBlock *&FBB,
270 SmallVectorImpl<MachineOperand> &Cond,
271 bool AllowModify) const override;
272 unsigned removeBranch(MachineBasicBlock &MBB,
273 int *BytesRemoved = nullptr) const override;
274 unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
275 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
276 const DebugLoc &DL,
277 int *BytesAdded = nullptr) const override;
279 // Select analysis.
280 bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
281 unsigned, unsigned, int &, int &, int &) const override;
282 void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
283 const DebugLoc &DL, unsigned DstReg,
284 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
285 unsigned FalseReg) const override;
287 void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
288 const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
289 bool KillSrc) const override;
291 void storeRegToStackSlot(MachineBasicBlock &MBB,
292 MachineBasicBlock::iterator MBBI,
293 unsigned SrcReg, bool isKill, int FrameIndex,
294 const TargetRegisterClass *RC,
295 const TargetRegisterInfo *TRI) const override;
297 void loadRegFromStackSlot(MachineBasicBlock &MBB,
298 MachineBasicBlock::iterator MBBI,
299 unsigned DestReg, int FrameIndex,
300 const TargetRegisterClass *RC,
301 const TargetRegisterInfo *TRI) const override;
303 unsigned getStoreOpcodeForSpill(unsigned Reg,
304 const TargetRegisterClass *RC = nullptr) const;
306 unsigned getLoadOpcodeForSpill(unsigned Reg,
307 const TargetRegisterClass *RC = nullptr) const;
309 bool
310 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
312 bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg,
313 MachineRegisterInfo *MRI) const override;
315 // If conversion by predication (only supported by some branch instructions).
316 // All of the profitability checks always return true; it is always
317 // profitable to use the predicated branches.
318 bool isProfitableToIfCvt(MachineBasicBlock &MBB,
319 unsigned NumCycles, unsigned ExtraPredCycles,
320 BranchProbability Probability) const override {
321 return true;
324 bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
325 unsigned NumT, unsigned ExtraT,
326 MachineBasicBlock &FMBB,
327 unsigned NumF, unsigned ExtraF,
328 BranchProbability Probability) const override;
330 bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
331 BranchProbability Probability) const override {
332 return true;
335 bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
336 MachineBasicBlock &FMBB) const override {
337 return false;
340 // Predication support.
341 bool isPredicated(const MachineInstr &MI) const override;
343 bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
345 bool PredicateInstruction(MachineInstr &MI,
346 ArrayRef<MachineOperand> Pred) const override;
348 bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
349 ArrayRef<MachineOperand> Pred2) const override;
351 bool DefinesPredicate(MachineInstr &MI,
352 std::vector<MachineOperand> &Pred) const override;
354 bool isPredicable(const MachineInstr &MI) const override;
356 // Comparison optimization.
358 bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
359 unsigned &SrcReg2, int &Mask, int &Value) const override;
361 bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
362 unsigned SrcReg2, int Mask, int Value,
363 const MachineRegisterInfo *MRI) const override;
365 /// GetInstSize - Return the number of bytes of code the specified
366 /// instruction may be. This returns the maximum number of bytes.
368 unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
370 void getNoop(MCInst &NopInst) const override;
372 std::pair<unsigned, unsigned>
373 decomposeMachineOperandsTargetFlags(unsigned TF) const override;
375 ArrayRef<std::pair<unsigned, const char *>>
376 getSerializableDirectMachineOperandTargetFlags() const override;
378 ArrayRef<std::pair<unsigned, const char *>>
379 getSerializableBitmaskMachineOperandTargetFlags() const override;
381 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
382 bool expandVSXMemPseudo(MachineInstr &MI) const;
384 // Lower pseudo instructions after register allocation.
385 bool expandPostRAPseudo(MachineInstr &MI) const override;
387 static bool isVFRegister(unsigned Reg) {
388 return Reg >= PPC::VF0 && Reg <= PPC::VF31;
390 static bool isVRRegister(unsigned Reg) {
391 return Reg >= PPC::V0 && Reg <= PPC::V31;
393 const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
394 static int getRecordFormOpcode(unsigned Opcode);
396 bool isTOCSaveMI(const MachineInstr &MI) const;
398 bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
399 const unsigned PhiDepth) const;
401 /// Return true if the output of the instruction is always a sign-extended,
402 /// i.e. 0 to 31-th bits are same as 32-th bit.
403 bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
404 return isSignOrZeroExtended(MI, true, depth);
407 /// Return true if the output of the instruction is always zero-extended,
408 /// i.e. 0 to 31-th bits are all zeros
409 bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
410 return isSignOrZeroExtended(MI, false, depth);
413 bool convertToImmediateForm(MachineInstr &MI,
414 MachineInstr **KilledDef = nullptr) const;
415 void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
417 bool instrHasImmForm(const MachineInstr &MI, ImmInstrInfo &III) const;
419 /// getRegNumForOperand - some operands use different numbering schemes
420 /// for the same registers. For example, a VSX instruction may have any of
421 /// vs0-vs63 allocated whereas an Altivec instruction could only have
422 /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
423 /// register number needed for the opcode/operand number combination.
424 /// The operand number argument will be useful when we need to extend this
425 /// to instructions that use both Altivec and VSX numbering (for different
426 /// operands).
427 static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
428 unsigned OpNo) {
429 if (Desc.TSFlags & PPCII::UseVSXReg) {
430 if (isVRRegister(Reg))
431 Reg = PPC::VSX32 + (Reg - PPC::V0);
432 else if (isVFRegister(Reg))
433 Reg = PPC::VSX32 + (Reg - PPC::VF0);
435 return Reg;
441 #endif