1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
11 /// \brief This file implements the ELF-specific dumper for llvm-readobj.
13 //===----------------------------------------------------------------------===//
15 #include "ARMEHABIPrinter.h"
16 #include "DwarfCFIEHPrinter.h"
18 #include "ObjDumper.h"
19 #include "StackMapPrinter.h"
20 #include "llvm-readobj.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/Object/ELF.h"
33 #include "llvm/Object/ELFObjectFile.h"
34 #include "llvm/Object/ELFTypes.h"
35 #include "llvm/Object/Error.h"
36 #include "llvm/Object/ObjectFile.h"
37 #include "llvm/Object/StackMapParser.h"
38 #include "llvm/Support/AMDGPUMetadata.h"
39 #include "llvm/Support/ARMAttributeParser.h"
40 #include "llvm/Support/ARMBuildAttributes.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Endian.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/FormattedStream.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/MipsABIFlags.h"
49 #include "llvm/Support/ScopedPrinter.h"
50 #include "llvm/Support/raw_ostream.h"
59 #include <system_error>
63 using namespace llvm::object
;
66 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
67 case ns::enum: return #enum;
69 #define ENUM_ENT(enum, altName) \
70 { #enum, altName, ELF::enum }
72 #define ENUM_ENT_1(enum) \
73 { #enum, #enum, ELF::enum }
75 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
77 return std::string(#enum).substr(3);
79 #define TYPEDEF_ELF_TYPES(ELFT) \
80 using ELFO = ELFFile<ELFT>; \
81 using Elf_Addr = typename ELFT::Addr; \
82 using Elf_Shdr = typename ELFT::Shdr; \
83 using Elf_Sym = typename ELFT::Sym; \
84 using Elf_Dyn = typename ELFT::Dyn; \
85 using Elf_Dyn_Range = typename ELFT::DynRange; \
86 using Elf_Rel = typename ELFT::Rel; \
87 using Elf_Rela = typename ELFT::Rela; \
88 using Elf_Rel_Range = typename ELFT::RelRange; \
89 using Elf_Rela_Range = typename ELFT::RelaRange; \
90 using Elf_Phdr = typename ELFT::Phdr; \
91 using Elf_Half = typename ELFT::Half; \
92 using Elf_Ehdr = typename ELFT::Ehdr; \
93 using Elf_Word = typename ELFT::Word; \
94 using Elf_Hash = typename ELFT::Hash; \
95 using Elf_GnuHash = typename ELFT::GnuHash; \
96 using Elf_Note = typename ELFT::Note; \
97 using Elf_Sym_Range = typename ELFT::SymRange; \
98 using Elf_Versym = typename ELFT::Versym; \
99 using Elf_Verneed = typename ELFT::Verneed; \
100 using Elf_Vernaux = typename ELFT::Vernaux; \
101 using Elf_Verdef = typename ELFT::Verdef; \
102 using Elf_Verdaux = typename ELFT::Verdaux; \
103 using uintX_t = typename ELFT::uint;
107 template <class ELFT
> class DumpStyle
;
109 /// Represents a contiguous uniform range in the file. We cannot just create a
110 /// range directly because when creating one of these from the .dynamic table
111 /// the size, entity size and virtual address are different entries in arbitrary
112 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
113 struct DynRegionInfo
{
114 DynRegionInfo() = default;
115 DynRegionInfo(const void *A
, uint64_t S
, uint64_t ES
)
116 : Addr(A
), Size(S
), EntSize(ES
) {}
118 /// \brief Address in current address space.
119 const void *Addr
= nullptr;
120 /// \brief Size in bytes of the region.
122 /// \brief Size of each entity in the region.
123 uint64_t EntSize
= 0;
125 template <typename Type
> ArrayRef
<Type
> getAsArrayRef() const {
126 const Type
*Start
= reinterpret_cast<const Type
*>(Addr
);
128 return {Start
, Start
};
129 if (EntSize
!= sizeof(Type
) || Size
% EntSize
)
130 reportError("Invalid entity size");
131 return {Start
, Start
+ (Size
/ EntSize
)};
135 template<typename ELFT
>
136 class ELFDumper
: public ObjDumper
{
138 ELFDumper(const ELFFile
<ELFT
> *Obj
, ScopedPrinter
&Writer
);
140 void printFileHeaders() override
;
141 void printSections() override
;
142 void printRelocations() override
;
143 void printDynamicRelocations() override
;
144 void printSymbols() override
;
145 void printDynamicSymbols() override
;
146 void printUnwindInfo() override
;
148 void printDynamicTable() override
;
149 void printNeededLibraries() override
;
150 void printProgramHeaders() override
;
151 void printHashTable() override
;
152 void printGnuHashTable() override
;
153 void printLoadName() override
;
154 void printVersionInfo() override
;
155 void printGroupSections() override
;
157 void printAttributes() override
;
158 void printMipsPLTGOT() override
;
159 void printMipsABIFlags() override
;
160 void printMipsReginfo() override
;
161 void printMipsOptions() override
;
163 void printStackMap() const override
;
165 void printHashHistogram() override
;
167 void printNotes() override
;
169 void printELFLinkerOptions() override
;
172 std::unique_ptr
<DumpStyle
<ELFT
>> ELFDumperStyle
;
174 TYPEDEF_ELF_TYPES(ELFT
)
176 DynRegionInfo
checkDRI(DynRegionInfo DRI
) {
177 if (DRI
.Addr
< Obj
->base() ||
178 (const uint8_t *)DRI
.Addr
+ DRI
.Size
> Obj
->base() + Obj
->getBufSize())
179 error(llvm::object::object_error::parse_failed
);
183 DynRegionInfo
createDRIFrom(const Elf_Phdr
*P
, uintX_t EntSize
) {
184 return checkDRI({Obj
->base() + P
->p_offset
, P
->p_filesz
, EntSize
});
187 DynRegionInfo
createDRIFrom(const Elf_Shdr
*S
) {
188 return checkDRI({Obj
->base() + S
->sh_offset
, S
->sh_size
, S
->sh_entsize
});
191 void parseDynamicTable(ArrayRef
<const Elf_Phdr
*> LoadSegments
);
193 void printValue(uint64_t Type
, uint64_t Value
);
195 StringRef
getDynamicString(uint64_t Offset
) const;
196 StringRef
getSymbolVersion(StringRef StrTab
, const Elf_Sym
*symb
,
197 bool &IsDefault
) const;
198 void LoadVersionMap() const;
199 void LoadVersionNeeds(const Elf_Shdr
*ec
) const;
200 void LoadVersionDefs(const Elf_Shdr
*sec
) const;
203 DynRegionInfo DynRelRegion
;
204 DynRegionInfo DynRelaRegion
;
205 DynRegionInfo DynPLTRelRegion
;
206 DynRegionInfo DynSymRegion
;
207 DynRegionInfo DynamicTable
;
208 StringRef DynamicStringTable
;
210 const Elf_Hash
*HashTable
= nullptr;
211 const Elf_GnuHash
*GnuHashTable
= nullptr;
212 const Elf_Shdr
*DotSymtabSec
= nullptr;
213 StringRef DynSymtabName
;
214 ArrayRef
<Elf_Word
> ShndxTable
;
216 const Elf_Shdr
*dot_gnu_version_sec
= nullptr; // .gnu.version
217 const Elf_Shdr
*dot_gnu_version_r_sec
= nullptr; // .gnu.version_r
218 const Elf_Shdr
*dot_gnu_version_d_sec
= nullptr; // .gnu.version_d
220 // Records for each version index the corresponding Verdef or Vernaux entry.
221 // This is filled the first time LoadVersionMap() is called.
222 class VersionMapEntry
: public PointerIntPair
<const void *, 1> {
224 // If the integer is 0, this is an Elf_Verdef*.
225 // If the integer is 1, this is an Elf_Vernaux*.
226 VersionMapEntry() : PointerIntPair
<const void *, 1>(nullptr, 0) {}
227 VersionMapEntry(const Elf_Verdef
*verdef
)
228 : PointerIntPair
<const void *, 1>(verdef
, 0) {}
229 VersionMapEntry(const Elf_Vernaux
*vernaux
)
230 : PointerIntPair
<const void *, 1>(vernaux
, 1) {}
232 bool isNull() const { return getPointer() == nullptr; }
233 bool isVerdef() const { return !isNull() && getInt() == 0; }
234 bool isVernaux() const { return !isNull() && getInt() == 1; }
235 const Elf_Verdef
*getVerdef() const {
236 return isVerdef() ? (const Elf_Verdef
*)getPointer() : nullptr;
238 const Elf_Vernaux
*getVernaux() const {
239 return isVernaux() ? (const Elf_Vernaux
*)getPointer() : nullptr;
242 mutable SmallVector
<VersionMapEntry
, 16> VersionMap
;
245 Elf_Dyn_Range
dynamic_table() const {
246 return DynamicTable
.getAsArrayRef
<Elf_Dyn
>();
249 Elf_Sym_Range
dynamic_symbols() const {
250 return DynSymRegion
.getAsArrayRef
<Elf_Sym
>();
253 Elf_Rel_Range
dyn_rels() const;
254 Elf_Rela_Range
dyn_relas() const;
255 std::string
getFullSymbolName(const Elf_Sym
*Symbol
, StringRef StrTable
,
256 bool IsDynamic
) const;
257 void getSectionNameIndex(const Elf_Sym
*Symbol
, const Elf_Sym
*FirstSym
,
258 StringRef
&SectionName
,
259 unsigned &SectionIndex
) const;
261 void printSymbolsHelper(bool IsDynamic
) const;
262 const Elf_Shdr
*getDotSymtabSec() const { return DotSymtabSec
; }
263 ArrayRef
<Elf_Word
> getShndxTable() const { return ShndxTable
; }
264 StringRef
getDynamicStringTable() const { return DynamicStringTable
; }
265 const DynRegionInfo
&getDynRelRegion() const { return DynRelRegion
; }
266 const DynRegionInfo
&getDynRelaRegion() const { return DynRelaRegion
; }
267 const DynRegionInfo
&getDynPLTRelRegion() const { return DynPLTRelRegion
; }
268 const Elf_Hash
*getHashTable() const { return HashTable
; }
269 const Elf_GnuHash
*getGnuHashTable() const { return GnuHashTable
; }
272 template <class ELFT
>
273 void ELFDumper
<ELFT
>::printSymbolsHelper(bool IsDynamic
) const {
274 StringRef StrTable
, SymtabName
;
276 Elf_Sym_Range
Syms(nullptr, nullptr);
278 StrTable
= DynamicStringTable
;
279 Syms
= dynamic_symbols();
280 SymtabName
= DynSymtabName
;
281 if (DynSymRegion
.Addr
)
282 Entries
= DynSymRegion
.Size
/ DynSymRegion
.EntSize
;
286 StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*DotSymtabSec
));
287 Syms
= unwrapOrError(Obj
->symbols(DotSymtabSec
));
288 SymtabName
= unwrapOrError(Obj
->getSectionName(DotSymtabSec
));
289 Entries
= DotSymtabSec
->getEntityCount();
291 if (Syms
.begin() == Syms
.end())
293 ELFDumperStyle
->printSymtabMessage(Obj
, SymtabName
, Entries
);
294 for (const auto &Sym
: Syms
)
295 ELFDumperStyle
->printSymbol(Obj
, &Sym
, Syms
.begin(), StrTable
, IsDynamic
);
298 template <class ELFT
> class MipsGOTParser
;
300 template <typename ELFT
> class DumpStyle
{
302 using Elf_Shdr
= typename
ELFT::Shdr
;
303 using Elf_Sym
= typename
ELFT::Sym
;
305 DumpStyle(ELFDumper
<ELFT
> *Dumper
) : Dumper(Dumper
) {}
306 virtual ~DumpStyle() = default;
308 virtual void printFileHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
309 virtual void printGroupSections(const ELFFile
<ELFT
> *Obj
) = 0;
310 virtual void printRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
311 virtual void printSections(const ELFFile
<ELFT
> *Obj
) = 0;
312 virtual void printSymbols(const ELFFile
<ELFT
> *Obj
) = 0;
313 virtual void printDynamicSymbols(const ELFFile
<ELFT
> *Obj
) = 0;
314 virtual void printDynamicRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
315 virtual void printSymtabMessage(const ELFFile
<ELFT
> *obj
, StringRef Name
,
317 virtual void printSymbol(const ELFFile
<ELFT
> *Obj
, const Elf_Sym
*Symbol
,
318 const Elf_Sym
*FirstSym
, StringRef StrTable
,
320 virtual void printProgramHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
321 virtual void printHashHistogram(const ELFFile
<ELFT
> *Obj
) = 0;
322 virtual void printNotes(const ELFFile
<ELFT
> *Obj
) = 0;
323 virtual void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) = 0;
324 virtual void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
325 virtual void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
326 const ELFDumper
<ELFT
> *dumper() const { return Dumper
; }
329 const ELFDumper
<ELFT
> *Dumper
;
332 template <typename ELFT
> class GNUStyle
: public DumpStyle
<ELFT
> {
333 formatted_raw_ostream OS
;
336 TYPEDEF_ELF_TYPES(ELFT
)
338 GNUStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
339 : DumpStyle
<ELFT
>(Dumper
), OS(W
.getOStream()) {}
341 void printFileHeaders(const ELFO
*Obj
) override
;
342 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
343 void printRelocations(const ELFO
*Obj
) override
;
344 void printSections(const ELFO
*Obj
) override
;
345 void printSymbols(const ELFO
*Obj
) override
;
346 void printDynamicSymbols(const ELFO
*Obj
) override
;
347 void printDynamicRelocations(const ELFO
*Obj
) override
;
348 void printSymtabMessage(const ELFO
*Obj
, StringRef Name
,
349 size_t Offset
) override
;
350 void printProgramHeaders(const ELFO
*Obj
) override
;
351 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
352 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
353 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
354 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
355 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
362 Field(StringRef S
, unsigned Col
) : Str(S
), Column(Col
) {}
363 Field(unsigned Col
) : Str(""), Column(Col
) {}
366 template <typename T
, typename TEnum
>
367 std::string
printEnum(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
) {
368 for (const auto &EnumItem
: EnumValues
)
369 if (EnumItem
.Value
== Value
)
370 return EnumItem
.AltName
;
371 return to_hexString(Value
, false);
374 formatted_raw_ostream
&printField(struct Field F
) {
376 OS
.PadToColumn(F
.Column
);
381 void printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
, uint32_t Sym
,
382 StringRef StrTable
, uint32_t Bucket
);
383 void printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
384 const Elf_Rela
&R
, bool IsRela
);
385 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
386 StringRef StrTable
, bool IsDynamic
) override
;
387 std::string
getSymbolSectionNdx(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
388 const Elf_Sym
*FirstSym
);
389 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
, bool IsRela
);
390 bool checkTLSSections(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
391 bool checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
392 bool checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
393 bool checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
396 template <typename ELFT
> class LLVMStyle
: public DumpStyle
<ELFT
> {
398 TYPEDEF_ELF_TYPES(ELFT
)
400 LLVMStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
401 : DumpStyle
<ELFT
>(Dumper
), W(W
) {}
403 void printFileHeaders(const ELFO
*Obj
) override
;
404 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
405 void printRelocations(const ELFO
*Obj
) override
;
406 void printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
);
407 void printSections(const ELFO
*Obj
) override
;
408 void printSymbols(const ELFO
*Obj
) override
;
409 void printDynamicSymbols(const ELFO
*Obj
) override
;
410 void printDynamicRelocations(const ELFO
*Obj
) override
;
411 void printProgramHeaders(const ELFO
*Obj
) override
;
412 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
413 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
414 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
415 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
416 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
419 void printRelocation(const ELFO
*Obj
, Elf_Rela Rel
, const Elf_Shdr
*SymTab
);
420 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
);
421 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
422 StringRef StrTable
, bool IsDynamic
) override
;
427 } // end anonymous namespace
431 template <class ELFT
>
432 static std::error_code
createELFDumper(const ELFFile
<ELFT
> *Obj
,
433 ScopedPrinter
&Writer
,
434 std::unique_ptr
<ObjDumper
> &Result
) {
435 Result
.reset(new ELFDumper
<ELFT
>(Obj
, Writer
));
436 return readobj_error::success
;
439 std::error_code
createELFDumper(const object::ObjectFile
*Obj
,
440 ScopedPrinter
&Writer
,
441 std::unique_ptr
<ObjDumper
> &Result
) {
442 // Little-endian 32-bit
443 if (const ELF32LEObjectFile
*ELFObj
= dyn_cast
<ELF32LEObjectFile
>(Obj
))
444 return createELFDumper(ELFObj
->getELFFile(), Writer
, Result
);
447 if (const ELF32BEObjectFile
*ELFObj
= dyn_cast
<ELF32BEObjectFile
>(Obj
))
448 return createELFDumper(ELFObj
->getELFFile(), Writer
, Result
);
450 // Little-endian 64-bit
451 if (const ELF64LEObjectFile
*ELFObj
= dyn_cast
<ELF64LEObjectFile
>(Obj
))
452 return createELFDumper(ELFObj
->getELFFile(), Writer
, Result
);
455 if (const ELF64BEObjectFile
*ELFObj
= dyn_cast
<ELF64BEObjectFile
>(Obj
))
456 return createELFDumper(ELFObj
->getELFFile(), Writer
, Result
);
458 return readobj_error::unsupported_obj_file_format
;
461 } // end namespace llvm
463 // Iterate through the versions needed section, and place each Elf_Vernaux
464 // in the VersionMap according to its index.
465 template <class ELFT
>
466 void ELFDumper
<ELFT
>::LoadVersionNeeds(const Elf_Shdr
*sec
) const {
467 unsigned vn_size
= sec
->sh_size
; // Size of section in bytes
468 unsigned vn_count
= sec
->sh_info
; // Number of Verneed entries
469 const char *sec_start
= (const char *)Obj
->base() + sec
->sh_offset
;
470 const char *sec_end
= sec_start
+ vn_size
;
471 // The first Verneed entry is at the start of the section.
472 const char *p
= sec_start
;
473 for (unsigned i
= 0; i
< vn_count
; i
++) {
474 if (p
+ sizeof(Elf_Verneed
) > sec_end
)
475 report_fatal_error("Section ended unexpectedly while scanning "
476 "version needed records.");
477 const Elf_Verneed
*vn
= reinterpret_cast<const Elf_Verneed
*>(p
);
478 if (vn
->vn_version
!= ELF::VER_NEED_CURRENT
)
479 report_fatal_error("Unexpected verneed version");
480 // Iterate through the Vernaux entries
481 const char *paux
= p
+ vn
->vn_aux
;
482 for (unsigned j
= 0; j
< vn
->vn_cnt
; j
++) {
483 if (paux
+ sizeof(Elf_Vernaux
) > sec_end
)
484 report_fatal_error("Section ended unexpected while scanning auxiliary "
485 "version needed records.");
486 const Elf_Vernaux
*vna
= reinterpret_cast<const Elf_Vernaux
*>(paux
);
487 size_t index
= vna
->vna_other
& ELF::VERSYM_VERSION
;
488 if (index
>= VersionMap
.size())
489 VersionMap
.resize(index
+ 1);
490 VersionMap
[index
] = VersionMapEntry(vna
);
491 paux
+= vna
->vna_next
;
497 // Iterate through the version definitions, and place each Elf_Verdef
498 // in the VersionMap according to its index.
499 template <class ELFT
>
500 void ELFDumper
<ELFT
>::LoadVersionDefs(const Elf_Shdr
*sec
) const {
501 unsigned vd_size
= sec
->sh_size
; // Size of section in bytes
502 unsigned vd_count
= sec
->sh_info
; // Number of Verdef entries
503 const char *sec_start
= (const char *)Obj
->base() + sec
->sh_offset
;
504 const char *sec_end
= sec_start
+ vd_size
;
505 // The first Verdef entry is at the start of the section.
506 const char *p
= sec_start
;
507 for (unsigned i
= 0; i
< vd_count
; i
++) {
508 if (p
+ sizeof(Elf_Verdef
) > sec_end
)
509 report_fatal_error("Section ended unexpectedly while scanning "
510 "version definitions.");
511 const Elf_Verdef
*vd
= reinterpret_cast<const Elf_Verdef
*>(p
);
512 if (vd
->vd_version
!= ELF::VER_DEF_CURRENT
)
513 report_fatal_error("Unexpected verdef version");
514 size_t index
= vd
->vd_ndx
& ELF::VERSYM_VERSION
;
515 if (index
>= VersionMap
.size())
516 VersionMap
.resize(index
+ 1);
517 VersionMap
[index
] = VersionMapEntry(vd
);
522 template <class ELFT
> void ELFDumper
<ELFT
>::LoadVersionMap() const {
523 // If there is no dynamic symtab or version table, there is nothing to do.
524 if (!DynSymRegion
.Addr
|| !dot_gnu_version_sec
)
527 // Has the VersionMap already been loaded?
528 if (VersionMap
.size() > 0)
531 // The first two version indexes are reserved.
532 // Index 0 is LOCAL, index 1 is GLOBAL.
533 VersionMap
.push_back(VersionMapEntry());
534 VersionMap
.push_back(VersionMapEntry());
536 if (dot_gnu_version_d_sec
)
537 LoadVersionDefs(dot_gnu_version_d_sec
);
539 if (dot_gnu_version_r_sec
)
540 LoadVersionNeeds(dot_gnu_version_r_sec
);
543 template <typename ELFO
, class ELFT
>
544 static void printVersionSymbolSection(ELFDumper
<ELFT
> *Dumper
, const ELFO
*Obj
,
545 const typename
ELFO::Elf_Shdr
*Sec
,
547 DictScope
SS(W
, "Version symbols");
550 StringRef Name
= unwrapOrError(Obj
->getSectionName(Sec
));
551 W
.printNumber("Section Name", Name
, Sec
->sh_name
);
552 W
.printHex("Address", Sec
->sh_addr
);
553 W
.printHex("Offset", Sec
->sh_offset
);
554 W
.printNumber("Link", Sec
->sh_link
);
556 const uint8_t *P
= (const uint8_t *)Obj
->base() + Sec
->sh_offset
;
557 StringRef StrTable
= Dumper
->getDynamicStringTable();
559 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
560 ListScope
Syms(W
, "Symbols");
561 for (const typename
ELFO::Elf_Sym
&Sym
: Dumper
->dynamic_symbols()) {
562 DictScope
S(W
, "Symbol");
563 std::string FullSymbolName
=
564 Dumper
->getFullSymbolName(&Sym
, StrTable
, true /* IsDynamic */);
565 W
.printNumber("Version", *P
);
566 W
.printString("Name", FullSymbolName
);
567 P
+= sizeof(typename
ELFO::Elf_Half
);
571 static const EnumEntry
<unsigned> SymVersionFlags
[] = {
572 {"Base", "BASE", VER_FLG_BASE
},
573 {"Weak", "WEAK", VER_FLG_WEAK
},
574 {"Info", "INFO", VER_FLG_INFO
}};
576 template <typename ELFO
, class ELFT
>
577 static void printVersionDefinitionSection(ELFDumper
<ELFT
> *Dumper
,
579 const typename
ELFO::Elf_Shdr
*Sec
,
581 using VerDef
= typename
ELFO::Elf_Verdef
;
582 using VerdAux
= typename
ELFO::Elf_Verdaux
;
584 DictScope
SD(W
, "SHT_GNU_verdef");
588 // The number of entries in the section SHT_GNU_verdef
589 // is determined by DT_VERDEFNUM tag.
590 unsigned VerDefsNum
= 0;
591 for (const typename
ELFO::Elf_Dyn
&Dyn
: Dumper
->dynamic_table()) {
592 if (Dyn
.d_tag
== DT_VERDEFNUM
)
593 VerDefsNum
= Dyn
.d_un
.d_val
;
595 const uint8_t *SecStartAddress
=
596 (const uint8_t *)Obj
->base() + Sec
->sh_offset
;
597 const uint8_t *SecEndAddress
= SecStartAddress
+ Sec
->sh_size
;
598 const uint8_t *P
= SecStartAddress
;
599 const typename
ELFO::Elf_Shdr
*StrTab
=
600 unwrapOrError(Obj
->getSection(Sec
->sh_link
));
602 while (VerDefsNum
--) {
603 if (P
+ sizeof(VerDef
) > SecEndAddress
)
604 report_fatal_error("invalid offset in the section");
606 auto *VD
= reinterpret_cast<const VerDef
*>(P
);
607 DictScope
Def(W
, "Definition");
608 W
.printNumber("Version", VD
->vd_version
);
609 W
.printEnum("Flags", VD
->vd_flags
, makeArrayRef(SymVersionFlags
));
610 W
.printNumber("Index", VD
->vd_ndx
);
611 W
.printNumber("Hash", VD
->vd_hash
);
612 W
.printString("Name",
613 StringRef((const char *)(Obj
->base() + StrTab
->sh_offset
+
614 VD
->getAux()->vda_name
)));
616 report_fatal_error("at least one definition string must exist");
618 report_fatal_error("more than one predecessor is not expected");
620 if (VD
->vd_cnt
== 2) {
621 const uint8_t *PAux
= P
+ VD
->vd_aux
+ VD
->getAux()->vda_next
;
622 const VerdAux
*Aux
= reinterpret_cast<const VerdAux
*>(PAux
);
623 W
.printString("Predecessor",
624 StringRef((const char *)(Obj
->base() + StrTab
->sh_offset
+
632 template <typename ELFO
, class ELFT
>
633 static void printVersionDependencySection(ELFDumper
<ELFT
> *Dumper
,
635 const typename
ELFO::Elf_Shdr
*Sec
,
637 using VerNeed
= typename
ELFO::Elf_Verneed
;
638 using VernAux
= typename
ELFO::Elf_Vernaux
;
640 DictScope
SD(W
, "SHT_GNU_verneed");
644 unsigned VerNeedNum
= 0;
645 for (const typename
ELFO::Elf_Dyn
&Dyn
: Dumper
->dynamic_table())
646 if (Dyn
.d_tag
== DT_VERNEEDNUM
)
647 VerNeedNum
= Dyn
.d_un
.d_val
;
649 const uint8_t *SecData
= (const uint8_t *)Obj
->base() + Sec
->sh_offset
;
650 const typename
ELFO::Elf_Shdr
*StrTab
=
651 unwrapOrError(Obj
->getSection(Sec
->sh_link
));
653 const uint8_t *P
= SecData
;
654 for (unsigned I
= 0; I
< VerNeedNum
; ++I
) {
655 const VerNeed
*Need
= reinterpret_cast<const VerNeed
*>(P
);
656 DictScope
Entry(W
, "Dependency");
657 W
.printNumber("Version", Need
->vn_version
);
658 W
.printNumber("Count", Need
->vn_cnt
);
659 W
.printString("FileName",
660 StringRef((const char *)(Obj
->base() + StrTab
->sh_offset
+
663 const uint8_t *PAux
= P
+ Need
->vn_aux
;
664 for (unsigned J
= 0; J
< Need
->vn_cnt
; ++J
) {
665 const VernAux
*Aux
= reinterpret_cast<const VernAux
*>(PAux
);
666 DictScope
Entry(W
, "Entry");
667 W
.printNumber("Hash", Aux
->vna_hash
);
668 W
.printEnum("Flags", Aux
->vna_flags
, makeArrayRef(SymVersionFlags
));
669 W
.printNumber("Index", Aux
->vna_other
);
670 W
.printString("Name",
671 StringRef((const char *)(Obj
->base() + StrTab
->sh_offset
+
673 PAux
+= Aux
->vna_next
;
679 template <typename ELFT
> void ELFDumper
<ELFT
>::printVersionInfo() {
680 // Dump version symbol section.
681 printVersionSymbolSection(this, Obj
, dot_gnu_version_sec
, W
);
683 // Dump version definition section.
684 printVersionDefinitionSection(this, Obj
, dot_gnu_version_d_sec
, W
);
686 // Dump version dependency section.
687 printVersionDependencySection(this, Obj
, dot_gnu_version_r_sec
, W
);
690 template <typename ELFT
>
691 StringRef ELFDumper
<ELFT
>::getSymbolVersion(StringRef StrTab
,
693 bool &IsDefault
) const {
694 // This is a dynamic symbol. Look in the GNU symbol version table.
695 if (!dot_gnu_version_sec
) {
698 return StringRef("");
701 // Determine the position in the symbol table of this entry.
702 size_t entry_index
= (reinterpret_cast<uintptr_t>(symb
) -
703 reinterpret_cast<uintptr_t>(DynSymRegion
.Addr
)) /
706 // Get the corresponding version index entry
707 const Elf_Versym
*vs
= unwrapOrError(
708 Obj
->template getEntry
<Elf_Versym
>(dot_gnu_version_sec
, entry_index
));
709 size_t version_index
= vs
->vs_index
& ELF::VERSYM_VERSION
;
711 // Special markers for unversioned symbols.
712 if (version_index
== ELF::VER_NDX_LOCAL
||
713 version_index
== ELF::VER_NDX_GLOBAL
) {
715 return StringRef("");
718 // Lookup this symbol in the version table
720 if (version_index
>= VersionMap
.size() || VersionMap
[version_index
].isNull())
721 reportError("Invalid version entry");
722 const VersionMapEntry
&entry
= VersionMap
[version_index
];
724 // Get the version name string
726 if (entry
.isVerdef()) {
727 // The first Verdaux entry holds the name.
728 name_offset
= entry
.getVerdef()->getAux()->vda_name
;
729 IsDefault
= !(vs
->vs_index
& ELF::VERSYM_HIDDEN
);
731 name_offset
= entry
.getVernaux()->vna_name
;
734 if (name_offset
>= StrTab
.size())
735 reportError("Invalid string offset");
736 return StringRef(StrTab
.data() + name_offset
);
739 template <typename ELFT
>
740 std::string ELFDumper
<ELFT
>::getFullSymbolName(const Elf_Sym
*Symbol
,
742 bool IsDynamic
) const {
743 StringRef SymbolName
= unwrapOrError(Symbol
->getName(StrTable
));
747 std::string
FullSymbolName(SymbolName
);
750 StringRef Version
= getSymbolVersion(StrTable
, &*Symbol
, IsDefault
);
751 FullSymbolName
+= (IsDefault
? "@@" : "@");
752 FullSymbolName
+= Version
;
753 return FullSymbolName
;
756 template <typename ELFT
>
757 void ELFDumper
<ELFT
>::getSectionNameIndex(const Elf_Sym
*Symbol
,
758 const Elf_Sym
*FirstSym
,
759 StringRef
&SectionName
,
760 unsigned &SectionIndex
) const {
761 SectionIndex
= Symbol
->st_shndx
;
762 if (Symbol
->isUndefined())
763 SectionName
= "Undefined";
764 else if (Symbol
->isProcessorSpecific())
765 SectionName
= "Processor Specific";
766 else if (Symbol
->isOSSpecific())
767 SectionName
= "Operating System Specific";
768 else if (Symbol
->isAbsolute())
769 SectionName
= "Absolute";
770 else if (Symbol
->isCommon())
771 SectionName
= "Common";
772 else if (Symbol
->isReserved() && SectionIndex
!= SHN_XINDEX
)
773 SectionName
= "Reserved";
775 if (SectionIndex
== SHN_XINDEX
)
776 SectionIndex
= unwrapOrError(object::getExtendedSymbolTableIndex
<ELFT
>(
777 Symbol
, FirstSym
, ShndxTable
));
778 const typename
ELFT::Shdr
*Sec
=
779 unwrapOrError(Obj
->getSection(SectionIndex
));
780 SectionName
= unwrapOrError(Obj
->getSectionName(Sec
));
784 template <class ELFO
>
785 static const typename
ELFO::Elf_Shdr
*
786 findNotEmptySectionByAddress(const ELFO
*Obj
, uint64_t Addr
) {
787 for (const auto &Shdr
: unwrapOrError(Obj
->sections()))
788 if (Shdr
.sh_addr
== Addr
&& Shdr
.sh_size
> 0)
793 template <class ELFO
>
794 static const typename
ELFO::Elf_Shdr
*findSectionByName(const ELFO
&Obj
,
796 for (const auto &Shdr
: unwrapOrError(Obj
.sections())) {
797 if (Name
== unwrapOrError(Obj
.getSectionName(&Shdr
)))
803 static const EnumEntry
<unsigned> ElfClass
[] = {
804 {"None", "none", ELF::ELFCLASSNONE
},
805 {"32-bit", "ELF32", ELF::ELFCLASS32
},
806 {"64-bit", "ELF64", ELF::ELFCLASS64
},
809 static const EnumEntry
<unsigned> ElfDataEncoding
[] = {
810 {"None", "none", ELF::ELFDATANONE
},
811 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB
},
812 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB
},
815 static const EnumEntry
<unsigned> ElfObjectFileType
[] = {
816 {"None", "NONE (none)", ELF::ET_NONE
},
817 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL
},
818 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC
},
819 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN
},
820 {"Core", "CORE (Core file)", ELF::ET_CORE
},
823 static const EnumEntry
<unsigned> ElfOSABI
[] = {
824 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE
},
825 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX
},
826 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD
},
827 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX
},
828 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD
},
829 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS
},
830 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX
},
831 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX
},
832 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD
},
833 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64
},
834 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO
},
835 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD
},
836 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS
},
837 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK
},
838 {"AROS", "AROS", ELF::ELFOSABI_AROS
},
839 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS
},
840 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI
},
841 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE
}
844 static const EnumEntry
<unsigned> AMDGPUElfOSABI
[] = {
845 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA
},
846 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL
},
847 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D
}
850 static const EnumEntry
<unsigned> ARMElfOSABI
[] = {
851 {"ARM", "ARM", ELF::ELFOSABI_ARM
}
854 static const EnumEntry
<unsigned> C6000ElfOSABI
[] = {
855 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI
},
856 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX
}
859 static const EnumEntry
<unsigned> ElfMachineType
[] = {
860 ENUM_ENT(EM_NONE
, "None"),
861 ENUM_ENT(EM_M32
, "WE32100"),
862 ENUM_ENT(EM_SPARC
, "Sparc"),
863 ENUM_ENT(EM_386
, "Intel 80386"),
864 ENUM_ENT(EM_68K
, "MC68000"),
865 ENUM_ENT(EM_88K
, "MC88000"),
866 ENUM_ENT(EM_IAMCU
, "EM_IAMCU"),
867 ENUM_ENT(EM_860
, "Intel 80860"),
868 ENUM_ENT(EM_MIPS
, "MIPS R3000"),
869 ENUM_ENT(EM_S370
, "IBM System/370"),
870 ENUM_ENT(EM_MIPS_RS3_LE
, "MIPS R3000 little-endian"),
871 ENUM_ENT(EM_PARISC
, "HPPA"),
872 ENUM_ENT(EM_VPP500
, "Fujitsu VPP500"),
873 ENUM_ENT(EM_SPARC32PLUS
, "Sparc v8+"),
874 ENUM_ENT(EM_960
, "Intel 80960"),
875 ENUM_ENT(EM_PPC
, "PowerPC"),
876 ENUM_ENT(EM_PPC64
, "PowerPC64"),
877 ENUM_ENT(EM_S390
, "IBM S/390"),
878 ENUM_ENT(EM_SPU
, "SPU"),
879 ENUM_ENT(EM_V800
, "NEC V800 series"),
880 ENUM_ENT(EM_FR20
, "Fujistsu FR20"),
881 ENUM_ENT(EM_RH32
, "TRW RH-32"),
882 ENUM_ENT(EM_RCE
, "Motorola RCE"),
883 ENUM_ENT(EM_ARM
, "ARM"),
884 ENUM_ENT(EM_ALPHA
, "EM_ALPHA"),
885 ENUM_ENT(EM_SH
, "Hitachi SH"),
886 ENUM_ENT(EM_SPARCV9
, "Sparc v9"),
887 ENUM_ENT(EM_TRICORE
, "Siemens Tricore"),
888 ENUM_ENT(EM_ARC
, "ARC"),
889 ENUM_ENT(EM_H8_300
, "Hitachi H8/300"),
890 ENUM_ENT(EM_H8_300H
, "Hitachi H8/300H"),
891 ENUM_ENT(EM_H8S
, "Hitachi H8S"),
892 ENUM_ENT(EM_H8_500
, "Hitachi H8/500"),
893 ENUM_ENT(EM_IA_64
, "Intel IA-64"),
894 ENUM_ENT(EM_MIPS_X
, "Stanford MIPS-X"),
895 ENUM_ENT(EM_COLDFIRE
, "Motorola Coldfire"),
896 ENUM_ENT(EM_68HC12
, "Motorola MC68HC12 Microcontroller"),
897 ENUM_ENT(EM_MMA
, "Fujitsu Multimedia Accelerator"),
898 ENUM_ENT(EM_PCP
, "Siemens PCP"),
899 ENUM_ENT(EM_NCPU
, "Sony nCPU embedded RISC processor"),
900 ENUM_ENT(EM_NDR1
, "Denso NDR1 microprocesspr"),
901 ENUM_ENT(EM_STARCORE
, "Motorola Star*Core processor"),
902 ENUM_ENT(EM_ME16
, "Toyota ME16 processor"),
903 ENUM_ENT(EM_ST100
, "STMicroelectronics ST100 processor"),
904 ENUM_ENT(EM_TINYJ
, "Advanced Logic Corp. TinyJ embedded processor"),
905 ENUM_ENT(EM_X86_64
, "Advanced Micro Devices X86-64"),
906 ENUM_ENT(EM_PDSP
, "Sony DSP processor"),
907 ENUM_ENT(EM_PDP10
, "Digital Equipment Corp. PDP-10"),
908 ENUM_ENT(EM_PDP11
, "Digital Equipment Corp. PDP-11"),
909 ENUM_ENT(EM_FX66
, "Siemens FX66 microcontroller"),
910 ENUM_ENT(EM_ST9PLUS
, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
911 ENUM_ENT(EM_ST7
, "STMicroelectronics ST7 8-bit microcontroller"),
912 ENUM_ENT(EM_68HC16
, "Motorola MC68HC16 Microcontroller"),
913 ENUM_ENT(EM_68HC11
, "Motorola MC68HC11 Microcontroller"),
914 ENUM_ENT(EM_68HC08
, "Motorola MC68HC08 Microcontroller"),
915 ENUM_ENT(EM_68HC05
, "Motorola MC68HC05 Microcontroller"),
916 ENUM_ENT(EM_SVX
, "Silicon Graphics SVx"),
917 ENUM_ENT(EM_ST19
, "STMicroelectronics ST19 8-bit microcontroller"),
918 ENUM_ENT(EM_VAX
, "Digital VAX"),
919 ENUM_ENT(EM_CRIS
, "Axis Communications 32-bit embedded processor"),
920 ENUM_ENT(EM_JAVELIN
, "Infineon Technologies 32-bit embedded cpu"),
921 ENUM_ENT(EM_FIREPATH
, "Element 14 64-bit DSP processor"),
922 ENUM_ENT(EM_ZSP
, "LSI Logic's 16-bit DSP processor"),
923 ENUM_ENT(EM_MMIX
, "Donald Knuth's educational 64-bit processor"),
924 ENUM_ENT(EM_HUANY
, "Harvard Universitys's machine-independent object format"),
925 ENUM_ENT(EM_PRISM
, "Vitesse Prism"),
926 ENUM_ENT(EM_AVR
, "Atmel AVR 8-bit microcontroller"),
927 ENUM_ENT(EM_FR30
, "Fujitsu FR30"),
928 ENUM_ENT(EM_D10V
, "Mitsubishi D10V"),
929 ENUM_ENT(EM_D30V
, "Mitsubishi D30V"),
930 ENUM_ENT(EM_V850
, "NEC v850"),
931 ENUM_ENT(EM_M32R
, "Renesas M32R (formerly Mitsubishi M32r)"),
932 ENUM_ENT(EM_MN10300
, "Matsushita MN10300"),
933 ENUM_ENT(EM_MN10200
, "Matsushita MN10200"),
934 ENUM_ENT(EM_PJ
, "picoJava"),
935 ENUM_ENT(EM_OPENRISC
, "OpenRISC 32-bit embedded processor"),
936 ENUM_ENT(EM_ARC_COMPACT
, "EM_ARC_COMPACT"),
937 ENUM_ENT(EM_XTENSA
, "Tensilica Xtensa Processor"),
938 ENUM_ENT(EM_VIDEOCORE
, "Alphamosaic VideoCore processor"),
939 ENUM_ENT(EM_TMM_GPP
, "Thompson Multimedia General Purpose Processor"),
940 ENUM_ENT(EM_NS32K
, "National Semiconductor 32000 series"),
941 ENUM_ENT(EM_TPC
, "Tenor Network TPC processor"),
942 ENUM_ENT(EM_SNP1K
, "EM_SNP1K"),
943 ENUM_ENT(EM_ST200
, "STMicroelectronics ST200 microcontroller"),
944 ENUM_ENT(EM_IP2K
, "Ubicom IP2xxx 8-bit microcontrollers"),
945 ENUM_ENT(EM_MAX
, "MAX Processor"),
946 ENUM_ENT(EM_CR
, "National Semiconductor CompactRISC"),
947 ENUM_ENT(EM_F2MC16
, "Fujitsu F2MC16"),
948 ENUM_ENT(EM_MSP430
, "Texas Instruments msp430 microcontroller"),
949 ENUM_ENT(EM_BLACKFIN
, "Analog Devices Blackfin"),
950 ENUM_ENT(EM_SE_C33
, "S1C33 Family of Seiko Epson processors"),
951 ENUM_ENT(EM_SEP
, "Sharp embedded microprocessor"),
952 ENUM_ENT(EM_ARCA
, "Arca RISC microprocessor"),
953 ENUM_ENT(EM_UNICORE
, "Unicore"),
954 ENUM_ENT(EM_EXCESS
, "eXcess 16/32/64-bit configurable embedded CPU"),
955 ENUM_ENT(EM_DXP
, "Icera Semiconductor Inc. Deep Execution Processor"),
956 ENUM_ENT(EM_ALTERA_NIOS2
, "Altera Nios"),
957 ENUM_ENT(EM_CRX
, "National Semiconductor CRX microprocessor"),
958 ENUM_ENT(EM_XGATE
, "Motorola XGATE embedded processor"),
959 ENUM_ENT(EM_C166
, "Infineon Technologies xc16x"),
960 ENUM_ENT(EM_M16C
, "Renesas M16C"),
961 ENUM_ENT(EM_DSPIC30F
, "Microchip Technology dsPIC30F Digital Signal Controller"),
962 ENUM_ENT(EM_CE
, "Freescale Communication Engine RISC core"),
963 ENUM_ENT(EM_M32C
, "Renesas M32C"),
964 ENUM_ENT(EM_TSK3000
, "Altium TSK3000 core"),
965 ENUM_ENT(EM_RS08
, "Freescale RS08 embedded processor"),
966 ENUM_ENT(EM_SHARC
, "EM_SHARC"),
967 ENUM_ENT(EM_ECOG2
, "Cyan Technology eCOG2 microprocessor"),
968 ENUM_ENT(EM_SCORE7
, "SUNPLUS S+Core"),
969 ENUM_ENT(EM_DSP24
, "New Japan Radio (NJR) 24-bit DSP Processor"),
970 ENUM_ENT(EM_VIDEOCORE3
, "Broadcom VideoCore III processor"),
971 ENUM_ENT(EM_LATTICEMICO32
, "Lattice Mico32"),
972 ENUM_ENT(EM_SE_C17
, "Seiko Epson C17 family"),
973 ENUM_ENT(EM_TI_C6000
, "Texas Instruments TMS320C6000 DSP family"),
974 ENUM_ENT(EM_TI_C2000
, "Texas Instruments TMS320C2000 DSP family"),
975 ENUM_ENT(EM_TI_C5500
, "Texas Instruments TMS320C55x DSP family"),
976 ENUM_ENT(EM_MMDSP_PLUS
, "STMicroelectronics 64bit VLIW Data Signal Processor"),
977 ENUM_ENT(EM_CYPRESS_M8C
, "Cypress M8C microprocessor"),
978 ENUM_ENT(EM_R32C
, "Renesas R32C series microprocessors"),
979 ENUM_ENT(EM_TRIMEDIA
, "NXP Semiconductors TriMedia architecture family"),
980 ENUM_ENT(EM_HEXAGON
, "Qualcomm Hexagon"),
981 ENUM_ENT(EM_8051
, "Intel 8051 and variants"),
982 ENUM_ENT(EM_STXP7X
, "STMicroelectronics STxP7x family"),
983 ENUM_ENT(EM_NDS32
, "Andes Technology compact code size embedded RISC processor family"),
984 ENUM_ENT(EM_ECOG1
, "Cyan Technology eCOG1 microprocessor"),
985 ENUM_ENT(EM_ECOG1X
, "Cyan Technology eCOG1X family"),
986 ENUM_ENT(EM_MAXQ30
, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
987 ENUM_ENT(EM_XIMO16
, "New Japan Radio (NJR) 16-bit DSP Processor"),
988 ENUM_ENT(EM_MANIK
, "M2000 Reconfigurable RISC Microprocessor"),
989 ENUM_ENT(EM_CRAYNV2
, "Cray Inc. NV2 vector architecture"),
990 ENUM_ENT(EM_RX
, "Renesas RX"),
991 ENUM_ENT(EM_METAG
, "Imagination Technologies Meta processor architecture"),
992 ENUM_ENT(EM_MCST_ELBRUS
, "MCST Elbrus general purpose hardware architecture"),
993 ENUM_ENT(EM_ECOG16
, "Cyan Technology eCOG16 family"),
994 ENUM_ENT(EM_CR16
, "Xilinx MicroBlaze"),
995 ENUM_ENT(EM_ETPU
, "Freescale Extended Time Processing Unit"),
996 ENUM_ENT(EM_SLE9X
, "Infineon Technologies SLE9X core"),
997 ENUM_ENT(EM_L10M
, "EM_L10M"),
998 ENUM_ENT(EM_K10M
, "EM_K10M"),
999 ENUM_ENT(EM_AARCH64
, "AArch64"),
1000 ENUM_ENT(EM_AVR32
, "Atmel Corporation 32-bit microprocessor family"),
1001 ENUM_ENT(EM_STM8
, "STMicroeletronics STM8 8-bit microcontroller"),
1002 ENUM_ENT(EM_TILE64
, "Tilera TILE64 multicore architecture family"),
1003 ENUM_ENT(EM_TILEPRO
, "Tilera TILEPro multicore architecture family"),
1004 ENUM_ENT(EM_CUDA
, "NVIDIA CUDA architecture"),
1005 ENUM_ENT(EM_TILEGX
, "Tilera TILE-Gx multicore architecture family"),
1006 ENUM_ENT(EM_CLOUDSHIELD
, "EM_CLOUDSHIELD"),
1007 ENUM_ENT(EM_COREA_1ST
, "EM_COREA_1ST"),
1008 ENUM_ENT(EM_COREA_2ND
, "EM_COREA_2ND"),
1009 ENUM_ENT(EM_ARC_COMPACT2
, "EM_ARC_COMPACT2"),
1010 ENUM_ENT(EM_OPEN8
, "EM_OPEN8"),
1011 ENUM_ENT(EM_RL78
, "Renesas RL78"),
1012 ENUM_ENT(EM_VIDEOCORE5
, "Broadcom VideoCore V processor"),
1013 ENUM_ENT(EM_78KOR
, "EM_78KOR"),
1014 ENUM_ENT(EM_56800EX
, "EM_56800EX"),
1015 ENUM_ENT(EM_AMDGPU
, "EM_AMDGPU"),
1016 ENUM_ENT(EM_RISCV
, "RISC-V"),
1017 ENUM_ENT(EM_WEBASSEMBLY
, "EM_WEBASSEMBLY"),
1018 ENUM_ENT(EM_LANAI
, "EM_LANAI"),
1019 ENUM_ENT(EM_BPF
, "EM_BPF"),
1022 static const EnumEntry
<unsigned> ElfSymbolBindings
[] = {
1023 {"Local", "LOCAL", ELF::STB_LOCAL
},
1024 {"Global", "GLOBAL", ELF::STB_GLOBAL
},
1025 {"Weak", "WEAK", ELF::STB_WEAK
},
1026 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE
}};
1028 static const EnumEntry
<unsigned> ElfSymbolVisibilities
[] = {
1029 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT
},
1030 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL
},
1031 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN
},
1032 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED
}};
1034 static const EnumEntry
<unsigned> ElfSymbolTypes
[] = {
1035 {"None", "NOTYPE", ELF::STT_NOTYPE
},
1036 {"Object", "OBJECT", ELF::STT_OBJECT
},
1037 {"Function", "FUNC", ELF::STT_FUNC
},
1038 {"Section", "SECTION", ELF::STT_SECTION
},
1039 {"File", "FILE", ELF::STT_FILE
},
1040 {"Common", "COMMON", ELF::STT_COMMON
},
1041 {"TLS", "TLS", ELF::STT_TLS
},
1042 {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC
}};
1044 static const EnumEntry
<unsigned> AMDGPUSymbolTypes
[] = {
1045 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL
}
1048 static const char *getGroupType(uint32_t Flag
) {
1049 if (Flag
& ELF::GRP_COMDAT
)
1055 static const EnumEntry
<unsigned> ElfSectionFlags
[] = {
1056 ENUM_ENT(SHF_WRITE
, "W"),
1057 ENUM_ENT(SHF_ALLOC
, "A"),
1058 ENUM_ENT(SHF_EXCLUDE
, "E"),
1059 ENUM_ENT(SHF_EXECINSTR
, "X"),
1060 ENUM_ENT(SHF_MERGE
, "M"),
1061 ENUM_ENT(SHF_STRINGS
, "S"),
1062 ENUM_ENT(SHF_INFO_LINK
, "I"),
1063 ENUM_ENT(SHF_LINK_ORDER
, "L"),
1064 ENUM_ENT(SHF_OS_NONCONFORMING
, "o"),
1065 ENUM_ENT(SHF_GROUP
, "G"),
1066 ENUM_ENT(SHF_TLS
, "T"),
1067 ENUM_ENT(SHF_MASKOS
, "o"),
1068 ENUM_ENT(SHF_MASKPROC
, "p"),
1069 ENUM_ENT_1(SHF_COMPRESSED
),
1072 static const EnumEntry
<unsigned> ElfXCoreSectionFlags
[] = {
1073 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_CP_SECTION
),
1074 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_DP_SECTION
)
1077 static const EnumEntry
<unsigned> ElfARMSectionFlags
[] = {
1078 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_ARM_PURECODE
)
1081 static const EnumEntry
<unsigned> ElfHexagonSectionFlags
[] = {
1082 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_HEX_GPREL
)
1085 static const EnumEntry
<unsigned> ElfMipsSectionFlags
[] = {
1086 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NODUPES
),
1087 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NAMES
),
1088 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_LOCAL
),
1089 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NOSTRIP
),
1090 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_GPREL
),
1091 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_MERGE
),
1092 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_ADDR
),
1093 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_STRING
)
1096 static const EnumEntry
<unsigned> ElfX86_64SectionFlags
[] = {
1097 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_X86_64_LARGE
)
1100 static std::string
getGNUFlags(uint64_t Flags
) {
1102 for (auto Entry
: ElfSectionFlags
) {
1103 uint64_t Flag
= Entry
.Value
& Flags
;
1104 Flags
&= ~Entry
.Value
;
1106 case ELF::SHF_WRITE
:
1107 case ELF::SHF_ALLOC
:
1108 case ELF::SHF_EXECINSTR
:
1109 case ELF::SHF_MERGE
:
1110 case ELF::SHF_STRINGS
:
1111 case ELF::SHF_INFO_LINK
:
1112 case ELF::SHF_LINK_ORDER
:
1113 case ELF::SHF_OS_NONCONFORMING
:
1114 case ELF::SHF_GROUP
:
1116 case ELF::SHF_EXCLUDE
:
1117 Str
+= Entry
.AltName
;
1120 if (Flag
& ELF::SHF_MASKOS
)
1122 else if (Flag
& ELF::SHF_MASKPROC
)
1131 static const char *getElfSegmentType(unsigned Arch
, unsigned Type
) {
1132 // Check potentially overlapped processor-specific
1133 // program header type.
1137 LLVM_READOBJ_ENUM_CASE(ELF
, PT_ARM_EXIDX
);
1140 case ELF::EM_MIPS_RS3_LE
:
1142 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_REGINFO
);
1143 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_RTPROC
);
1144 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_OPTIONS
);
1145 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_ABIFLAGS
);
1150 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NULL
);
1151 LLVM_READOBJ_ENUM_CASE(ELF
, PT_LOAD
);
1152 LLVM_READOBJ_ENUM_CASE(ELF
, PT_DYNAMIC
);
1153 LLVM_READOBJ_ENUM_CASE(ELF
, PT_INTERP
);
1154 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NOTE
);
1155 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SHLIB
);
1156 LLVM_READOBJ_ENUM_CASE(ELF
, PT_PHDR
);
1157 LLVM_READOBJ_ENUM_CASE(ELF
, PT_TLS
);
1159 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_EH_FRAME
);
1160 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SUNW_UNWIND
);
1162 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_STACK
);
1163 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_RELRO
);
1165 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_RANDOMIZE
);
1166 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_WXNEEDED
);
1167 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_BOOTDATA
);
1173 static std::string
getElfPtType(unsigned Arch
, unsigned Type
) {
1175 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NULL
)
1176 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_LOAD
)
1177 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_DYNAMIC
)
1178 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_INTERP
)
1179 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NOTE
)
1180 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SHLIB
)
1181 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_PHDR
)
1182 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_TLS
)
1183 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_EH_FRAME
)
1184 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SUNW_UNWIND
)
1185 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_STACK
)
1186 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_RELRO
)
1188 // All machine specific PT_* types
1191 if (Type
== ELF::PT_ARM_EXIDX
)
1195 case ELF::EM_MIPS_RS3_LE
:
1197 case PT_MIPS_REGINFO
:
1199 case PT_MIPS_RTPROC
:
1201 case PT_MIPS_OPTIONS
:
1203 case PT_MIPS_ABIFLAGS
:
1209 return std::string("<unknown>: ") + to_string(format_hex(Type
, 1));
1212 static const EnumEntry
<unsigned> ElfSegmentFlags
[] = {
1213 LLVM_READOBJ_ENUM_ENT(ELF
, PF_X
),
1214 LLVM_READOBJ_ENUM_ENT(ELF
, PF_W
),
1215 LLVM_READOBJ_ENUM_ENT(ELF
, PF_R
)
1218 static const EnumEntry
<unsigned> ElfHeaderMipsFlags
[] = {
1219 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_NOREORDER
),
1220 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_PIC
),
1221 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_CPIC
),
1222 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI2
),
1223 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_32BITMODE
),
1224 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_FP64
),
1225 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_NAN2008
),
1226 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI_O32
),
1227 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI_O64
),
1228 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI_EABI32
),
1229 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI_EABI64
),
1230 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_3900
),
1231 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4010
),
1232 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4100
),
1233 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4650
),
1234 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4120
),
1235 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4111
),
1236 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_SB1
),
1237 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_OCTEON
),
1238 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_XLR
),
1239 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_OCTEON2
),
1240 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_OCTEON3
),
1241 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_5400
),
1242 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_5900
),
1243 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_5500
),
1244 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_9000
),
1245 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_LS2E
),
1246 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_LS2F
),
1247 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_LS3A
),
1248 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MICROMIPS
),
1249 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_ASE_M16
),
1250 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_ASE_MDMX
),
1251 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_1
),
1252 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_2
),
1253 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_3
),
1254 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_4
),
1255 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_5
),
1256 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_32
),
1257 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_64
),
1258 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_32R2
),
1259 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_64R2
),
1260 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_32R6
),
1261 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_64R6
)
1264 static const EnumEntry
<unsigned> ElfHeaderAMDGPUFlags
[] = {
1265 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1266 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1267 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1268 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1269 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1270 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1271 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1272 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1273 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1274 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1275 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1276 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1277 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1278 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1279 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1280 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1281 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1282 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1283 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1284 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1285 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1286 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1287 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1288 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1289 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1290 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1291 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1292 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1293 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1294 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1295 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_XNACK
)
1298 static const EnumEntry
<unsigned> ElfHeaderRISCVFlags
[] = {
1299 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_RVC
),
1300 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_FLOAT_ABI_SINGLE
),
1301 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_FLOAT_ABI_DOUBLE
),
1302 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_FLOAT_ABI_QUAD
),
1303 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_RVE
)
1306 static const EnumEntry
<unsigned> ElfSymOtherFlags
[] = {
1307 LLVM_READOBJ_ENUM_ENT(ELF
, STV_INTERNAL
),
1308 LLVM_READOBJ_ENUM_ENT(ELF
, STV_HIDDEN
),
1309 LLVM_READOBJ_ENUM_ENT(ELF
, STV_PROTECTED
)
1312 static const EnumEntry
<unsigned> ElfMipsSymOtherFlags
[] = {
1313 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1314 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1315 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PIC
),
1316 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MICROMIPS
)
1319 static const EnumEntry
<unsigned> ElfMips16SymOtherFlags
[] = {
1320 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1321 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1322 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MIPS16
)
1325 static const char *getElfMipsOptionsOdkType(unsigned Odk
) {
1327 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_NULL
);
1328 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_REGINFO
);
1329 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_EXCEPTIONS
);
1330 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAD
);
1331 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWPATCH
);
1332 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_FILL
);
1333 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_TAGS
);
1334 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWAND
);
1335 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWOR
);
1336 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_GP_GROUP
);
1337 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_IDENT
);
1338 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAGESIZE
);
1344 template <typename ELFT
>
1345 ELFDumper
<ELFT
>::ELFDumper(const ELFFile
<ELFT
> *Obj
, ScopedPrinter
&Writer
)
1346 : ObjDumper(Writer
), Obj(Obj
) {
1347 SmallVector
<const Elf_Phdr
*, 4> LoadSegments
;
1348 for (const Elf_Phdr
&Phdr
: unwrapOrError(Obj
->program_headers())) {
1349 if (Phdr
.p_type
== ELF::PT_DYNAMIC
) {
1350 DynamicTable
= createDRIFrom(&Phdr
, sizeof(Elf_Dyn
));
1353 if (Phdr
.p_type
!= ELF::PT_LOAD
|| Phdr
.p_filesz
== 0)
1355 LoadSegments
.push_back(&Phdr
);
1358 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
1359 switch (Sec
.sh_type
) {
1360 case ELF::SHT_SYMTAB
:
1361 if (DotSymtabSec
!= nullptr)
1362 reportError("Multiple SHT_SYMTAB");
1363 DotSymtabSec
= &Sec
;
1365 case ELF::SHT_DYNSYM
:
1366 if (DynSymRegion
.Size
)
1367 reportError("Multiple SHT_DYNSYM");
1368 DynSymRegion
= createDRIFrom(&Sec
);
1369 // This is only used (if Elf_Shdr present)for naming section in GNU style
1370 DynSymtabName
= unwrapOrError(Obj
->getSectionName(&Sec
));
1371 DynamicStringTable
= unwrapOrError(Obj
->getStringTableForSymtab(Sec
));
1373 case ELF::SHT_SYMTAB_SHNDX
:
1374 ShndxTable
= unwrapOrError(Obj
->getSHNDXTable(Sec
));
1376 case ELF::SHT_GNU_versym
:
1377 if (dot_gnu_version_sec
!= nullptr)
1378 reportError("Multiple SHT_GNU_versym");
1379 dot_gnu_version_sec
= &Sec
;
1381 case ELF::SHT_GNU_verdef
:
1382 if (dot_gnu_version_d_sec
!= nullptr)
1383 reportError("Multiple SHT_GNU_verdef");
1384 dot_gnu_version_d_sec
= &Sec
;
1386 case ELF::SHT_GNU_verneed
:
1387 if (dot_gnu_version_r_sec
!= nullptr)
1388 reportError("Multiple SHT_GNU_verneed");
1389 dot_gnu_version_r_sec
= &Sec
;
1394 parseDynamicTable(LoadSegments
);
1396 if (opts::Output
== opts::GNU
)
1397 ELFDumperStyle
.reset(new GNUStyle
<ELFT
>(Writer
, this));
1399 ELFDumperStyle
.reset(new LLVMStyle
<ELFT
>(Writer
, this));
1402 template <typename ELFT
>
1403 void ELFDumper
<ELFT
>::parseDynamicTable(
1404 ArrayRef
<const Elf_Phdr
*> LoadSegments
) {
1405 auto toMappedAddr
= [&](uint64_t VAddr
) -> const uint8_t * {
1406 const Elf_Phdr
*const *I
=
1407 std::upper_bound(LoadSegments
.begin(), LoadSegments
.end(), VAddr
,
1408 [](uint64_t VAddr
, const Elf_Phdr_Impl
<ELFT
> *Phdr
) {
1409 return VAddr
< Phdr
->p_vaddr
;
1411 if (I
== LoadSegments
.begin())
1412 report_fatal_error("Virtual address is not in any segment");
1414 const Elf_Phdr
&Phdr
= **I
;
1415 uint64_t Delta
= VAddr
- Phdr
.p_vaddr
;
1416 if (Delta
>= Phdr
.p_filesz
)
1417 report_fatal_error("Virtual address is not in any segment");
1418 return Obj
->base() + Phdr
.p_offset
+ Delta
;
1421 uint64_t SONameOffset
= 0;
1422 const char *StringTableBegin
= nullptr;
1423 uint64_t StringTableSize
= 0;
1424 for (const Elf_Dyn
&Dyn
: dynamic_table()) {
1425 switch (Dyn
.d_tag
) {
1428 reinterpret_cast<const Elf_Hash
*>(toMappedAddr(Dyn
.getPtr()));
1430 case ELF::DT_GNU_HASH
:
1432 reinterpret_cast<const Elf_GnuHash
*>(toMappedAddr(Dyn
.getPtr()));
1434 case ELF::DT_STRTAB
:
1435 StringTableBegin
= (const char *)toMappedAddr(Dyn
.getPtr());
1438 StringTableSize
= Dyn
.getVal();
1440 case ELF::DT_SYMTAB
:
1441 DynSymRegion
.Addr
= toMappedAddr(Dyn
.getPtr());
1442 DynSymRegion
.EntSize
= sizeof(Elf_Sym
);
1445 DynRelaRegion
.Addr
= toMappedAddr(Dyn
.getPtr());
1447 case ELF::DT_RELASZ
:
1448 DynRelaRegion
.Size
= Dyn
.getVal();
1450 case ELF::DT_RELAENT
:
1451 DynRelaRegion
.EntSize
= Dyn
.getVal();
1453 case ELF::DT_SONAME
:
1454 SONameOffset
= Dyn
.getVal();
1457 DynRelRegion
.Addr
= toMappedAddr(Dyn
.getPtr());
1460 DynRelRegion
.Size
= Dyn
.getVal();
1462 case ELF::DT_RELENT
:
1463 DynRelRegion
.EntSize
= Dyn
.getVal();
1465 case ELF::DT_PLTREL
:
1466 if (Dyn
.getVal() == DT_REL
)
1467 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rel
);
1468 else if (Dyn
.getVal() == DT_RELA
)
1469 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rela
);
1471 reportError(Twine("unknown DT_PLTREL value of ") +
1472 Twine((uint64_t)Dyn
.getVal()));
1474 case ELF::DT_JMPREL
:
1475 DynPLTRelRegion
.Addr
= toMappedAddr(Dyn
.getPtr());
1477 case ELF::DT_PLTRELSZ
:
1478 DynPLTRelRegion
.Size
= Dyn
.getVal();
1482 if (StringTableBegin
)
1483 DynamicStringTable
= StringRef(StringTableBegin
, StringTableSize
);
1485 SOName
= getDynamicString(SONameOffset
);
1488 template <typename ELFT
>
1489 typename ELFDumper
<ELFT
>::Elf_Rel_Range ELFDumper
<ELFT
>::dyn_rels() const {
1490 return DynRelRegion
.getAsArrayRef
<Elf_Rel
>();
1493 template <typename ELFT
>
1494 typename ELFDumper
<ELFT
>::Elf_Rela_Range ELFDumper
<ELFT
>::dyn_relas() const {
1495 return DynRelaRegion
.getAsArrayRef
<Elf_Rela
>();
1498 template<class ELFT
>
1499 void ELFDumper
<ELFT
>::printFileHeaders() {
1500 ELFDumperStyle
->printFileHeaders(Obj
);
1503 template<class ELFT
>
1504 void ELFDumper
<ELFT
>::printSections() {
1505 ELFDumperStyle
->printSections(Obj
);
1508 template<class ELFT
>
1509 void ELFDumper
<ELFT
>::printRelocations() {
1510 ELFDumperStyle
->printRelocations(Obj
);
1513 template <class ELFT
> void ELFDumper
<ELFT
>::printProgramHeaders() {
1514 ELFDumperStyle
->printProgramHeaders(Obj
);
1517 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicRelocations() {
1518 ELFDumperStyle
->printDynamicRelocations(Obj
);
1521 template<class ELFT
>
1522 void ELFDumper
<ELFT
>::printSymbols() {
1523 ELFDumperStyle
->printSymbols(Obj
);
1526 template<class ELFT
>
1527 void ELFDumper
<ELFT
>::printDynamicSymbols() {
1528 ELFDumperStyle
->printDynamicSymbols(Obj
);
1531 template <class ELFT
> void ELFDumper
<ELFT
>::printHashHistogram() {
1532 ELFDumperStyle
->printHashHistogram(Obj
);
1535 template <class ELFT
> void ELFDumper
<ELFT
>::printNotes() {
1536 ELFDumperStyle
->printNotes(Obj
);
1539 template <class ELFT
> void ELFDumper
<ELFT
>::printELFLinkerOptions() {
1540 ELFDumperStyle
->printELFLinkerOptions(Obj
);
1543 #define LLVM_READOBJ_TYPE_CASE(name) \
1544 case DT_##name: return #name
1546 static const char *getTypeString(unsigned Arch
, uint64_t Type
) {
1550 LLVM_READOBJ_TYPE_CASE(HEXAGON_SYMSZ
);
1551 LLVM_READOBJ_TYPE_CASE(HEXAGON_VER
);
1552 LLVM_READOBJ_TYPE_CASE(HEXAGON_PLT
);
1556 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP_REL
);
1557 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION
);
1558 LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS
);
1559 LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS
);
1560 LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO
);
1561 LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO
);
1562 LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO
);
1563 LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM
);
1564 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP
);
1565 LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT
);
1566 LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS
);
1570 LLVM_READOBJ_TYPE_CASE(ANDROID_REL
);
1571 LLVM_READOBJ_TYPE_CASE(ANDROID_RELSZ
);
1572 LLVM_READOBJ_TYPE_CASE(ANDROID_RELA
);
1573 LLVM_READOBJ_TYPE_CASE(ANDROID_RELASZ
);
1574 LLVM_READOBJ_TYPE_CASE(BIND_NOW
);
1575 LLVM_READOBJ_TYPE_CASE(DEBUG
);
1576 LLVM_READOBJ_TYPE_CASE(FINI
);
1577 LLVM_READOBJ_TYPE_CASE(FINI_ARRAY
);
1578 LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ
);
1579 LLVM_READOBJ_TYPE_CASE(FLAGS
);
1580 LLVM_READOBJ_TYPE_CASE(FLAGS_1
);
1581 LLVM_READOBJ_TYPE_CASE(HASH
);
1582 LLVM_READOBJ_TYPE_CASE(INIT
);
1583 LLVM_READOBJ_TYPE_CASE(INIT_ARRAY
);
1584 LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ
);
1585 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY
);
1586 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ
);
1587 LLVM_READOBJ_TYPE_CASE(JMPREL
);
1588 LLVM_READOBJ_TYPE_CASE(NEEDED
);
1589 LLVM_READOBJ_TYPE_CASE(NULL
);
1590 LLVM_READOBJ_TYPE_CASE(PLTGOT
);
1591 LLVM_READOBJ_TYPE_CASE(PLTREL
);
1592 LLVM_READOBJ_TYPE_CASE(PLTRELSZ
);
1593 LLVM_READOBJ_TYPE_CASE(REL
);
1594 LLVM_READOBJ_TYPE_CASE(RELA
);
1595 LLVM_READOBJ_TYPE_CASE(RELENT
);
1596 LLVM_READOBJ_TYPE_CASE(RELSZ
);
1597 LLVM_READOBJ_TYPE_CASE(RELAENT
);
1598 LLVM_READOBJ_TYPE_CASE(RELASZ
);
1599 LLVM_READOBJ_TYPE_CASE(RPATH
);
1600 LLVM_READOBJ_TYPE_CASE(RUNPATH
);
1601 LLVM_READOBJ_TYPE_CASE(SONAME
);
1602 LLVM_READOBJ_TYPE_CASE(STRSZ
);
1603 LLVM_READOBJ_TYPE_CASE(STRTAB
);
1604 LLVM_READOBJ_TYPE_CASE(SYMBOLIC
);
1605 LLVM_READOBJ_TYPE_CASE(SYMENT
);
1606 LLVM_READOBJ_TYPE_CASE(SYMTAB
);
1607 LLVM_READOBJ_TYPE_CASE(TEXTREL
);
1608 LLVM_READOBJ_TYPE_CASE(VERDEF
);
1609 LLVM_READOBJ_TYPE_CASE(VERDEFNUM
);
1610 LLVM_READOBJ_TYPE_CASE(VERNEED
);
1611 LLVM_READOBJ_TYPE_CASE(VERNEEDNUM
);
1612 LLVM_READOBJ_TYPE_CASE(VERSYM
);
1613 LLVM_READOBJ_TYPE_CASE(RELACOUNT
);
1614 LLVM_READOBJ_TYPE_CASE(RELCOUNT
);
1615 LLVM_READOBJ_TYPE_CASE(GNU_HASH
);
1616 LLVM_READOBJ_TYPE_CASE(TLSDESC_PLT
);
1617 LLVM_READOBJ_TYPE_CASE(TLSDESC_GOT
);
1618 LLVM_READOBJ_TYPE_CASE(AUXILIARY
);
1619 LLVM_READOBJ_TYPE_CASE(FILTER
);
1620 default: return "unknown";
1624 #undef LLVM_READOBJ_TYPE_CASE
1626 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1627 { #enum, prefix##_##enum }
1629 static const EnumEntry
<unsigned> ElfDynamicDTFlags
[] = {
1630 LLVM_READOBJ_DT_FLAG_ENT(DF
, ORIGIN
),
1631 LLVM_READOBJ_DT_FLAG_ENT(DF
, SYMBOLIC
),
1632 LLVM_READOBJ_DT_FLAG_ENT(DF
, TEXTREL
),
1633 LLVM_READOBJ_DT_FLAG_ENT(DF
, BIND_NOW
),
1634 LLVM_READOBJ_DT_FLAG_ENT(DF
, STATIC_TLS
)
1637 static const EnumEntry
<unsigned> ElfDynamicDTFlags1
[] = {
1638 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOW
),
1639 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAL
),
1640 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GROUP
),
1641 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODELETE
),
1642 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, LOADFLTR
),
1643 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INITFIRST
),
1644 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOOPEN
),
1645 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ORIGIN
),
1646 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DIRECT
),
1647 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, TRANS
),
1648 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INTERPOSE
),
1649 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODEFLIB
),
1650 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODUMP
),
1651 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, CONFALT
),
1652 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ENDFILTEE
),
1653 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELDNE
),
1654 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODIRECT
),
1655 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, IGNMULDEF
),
1656 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOKSYMS
),
1657 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOHDR
),
1658 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, EDITED
),
1659 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NORELOC
),
1660 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SYMINTPOSE
),
1661 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAUDIT
),
1662 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SINGLETON
)
1665 static const EnumEntry
<unsigned> ElfDynamicDTMipsFlags
[] = {
1666 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NONE
),
1667 LLVM_READOBJ_DT_FLAG_ENT(RHF
, QUICKSTART
),
1668 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NOTPOT
),
1669 LLVM_READOBJ_DT_FLAG_ENT(RHS
, NO_LIBRARY_REPLACEMENT
),
1670 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_MOVE
),
1671 LLVM_READOBJ_DT_FLAG_ENT(RHF
, SGI_ONLY
),
1672 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_INIT
),
1673 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DELTA_C_PLUS_PLUS
),
1674 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_START_INIT
),
1675 LLVM_READOBJ_DT_FLAG_ENT(RHF
, PIXIE
),
1676 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DEFAULT_DELAY_LOAD
),
1677 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTART
),
1678 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTARTED
),
1679 LLVM_READOBJ_DT_FLAG_ENT(RHF
, CORD
),
1680 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_UNRES_UNDEF
),
1681 LLVM_READOBJ_DT_FLAG_ENT(RHF
, RLD_ORDER_SAFE
)
1684 #undef LLVM_READOBJ_DT_FLAG_ENT
1686 template <typename T
, typename TFlag
>
1687 void printFlags(T Value
, ArrayRef
<EnumEntry
<TFlag
>> Flags
, raw_ostream
&OS
) {
1688 using FlagEntry
= EnumEntry
<TFlag
>;
1689 using FlagVector
= SmallVector
<FlagEntry
, 10>;
1690 FlagVector SetFlags
;
1692 for (const auto &Flag
: Flags
) {
1693 if (Flag
.Value
== 0)
1696 if ((Value
& Flag
.Value
) == Flag
.Value
)
1697 SetFlags
.push_back(Flag
);
1700 for (const auto &Flag
: SetFlags
) {
1701 OS
<< Flag
.Name
<< " ";
1705 template <class ELFT
>
1706 StringRef ELFDumper
<ELFT
>::getDynamicString(uint64_t Value
) const {
1707 if (Value
>= DynamicStringTable
.size())
1708 reportError("Invalid dynamic string table reference");
1709 return StringRef(DynamicStringTable
.data() + Value
);
1712 static void printLibrary(raw_ostream
&OS
, const Twine
&Tag
, const Twine
&Name
) {
1713 OS
<< Tag
<< ": [" << Name
<< "]";
1716 template <class ELFT
>
1717 void ELFDumper
<ELFT
>::printValue(uint64_t Type
, uint64_t Value
) {
1718 raw_ostream
&OS
= W
.getOStream();
1719 const char* ConvChar
= (opts::Output
== opts::GNU
) ? "0x%" PRIx64
: "0x%" PRIX64
;
1722 if (Value
== DT_REL
) {
1725 } else if (Value
== DT_RELA
) {
1741 case DT_PREINIT_ARRAY
:
1748 case DT_MIPS_BASE_ADDRESS
:
1749 case DT_MIPS_GOTSYM
:
1750 case DT_MIPS_RLD_MAP
:
1751 case DT_MIPS_RLD_MAP_REL
:
1752 case DT_MIPS_PLTGOT
:
1753 case DT_MIPS_OPTIONS
:
1754 OS
<< format(ConvChar
, Value
);
1760 case DT_MIPS_RLD_VERSION
:
1761 case DT_MIPS_LOCAL_GOTNO
:
1762 case DT_MIPS_SYMTABNO
:
1763 case DT_MIPS_UNREFEXTNO
:
1773 case DT_INIT_ARRAYSZ
:
1774 case DT_FINI_ARRAYSZ
:
1775 case DT_PREINIT_ARRAYSZ
:
1776 case DT_ANDROID_RELSZ
:
1777 case DT_ANDROID_RELASZ
:
1778 OS
<< Value
<< " (bytes)";
1781 printLibrary(OS
, "Shared library", getDynamicString(Value
));
1784 printLibrary(OS
, "Library soname", getDynamicString(Value
));
1787 printLibrary(OS
, "Auxiliary library", getDynamicString(Value
));
1790 printLibrary(OS
, "Filter library", getDynamicString(Value
));
1794 OS
<< getDynamicString(Value
);
1797 printFlags(Value
, makeArrayRef(ElfDynamicDTMipsFlags
), OS
);
1800 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags
), OS
);
1803 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags1
), OS
);
1806 OS
<< format(ConvChar
, Value
);
1811 template<class ELFT
>
1812 void ELFDumper
<ELFT
>::printUnwindInfo() {
1813 const unsigned Machine
= Obj
->getHeader()->e_machine
;
1814 if (Machine
== EM_386
|| Machine
== EM_X86_64
) {
1815 DwarfCFIEH::PrinterContext
<ELFT
> Ctx(W
, Obj
);
1816 return Ctx
.printUnwindInformation();
1818 W
.startLine() << "UnwindInfo not implemented.\n";
1823 template <> void ELFDumper
<ELF32LE
>::printUnwindInfo() {
1824 const unsigned Machine
= Obj
->getHeader()->e_machine
;
1825 if (Machine
== EM_ARM
) {
1826 ARM::EHABI::PrinterContext
<ELF32LE
> Ctx(W
, Obj
, DotSymtabSec
);
1827 return Ctx
.PrintUnwindInformation();
1829 W
.startLine() << "UnwindInfo not implemented.\n";
1832 } // end anonymous namespace
1834 template<class ELFT
>
1835 void ELFDumper
<ELFT
>::printDynamicTable() {
1836 auto I
= dynamic_table().begin();
1837 auto E
= dynamic_table().end();
1843 while (I
!= E
&& E
->getTag() == ELF::DT_NULL
)
1845 if (E
->getTag() != ELF::DT_NULL
)
1849 ptrdiff_t Total
= std::distance(I
, E
);
1853 raw_ostream
&OS
= W
.getOStream();
1854 W
.startLine() << "DynamicSection [ (" << Total
<< " entries)\n";
1856 bool Is64
= ELFT::Is64Bits
;
1859 << " Tag" << (Is64
? " " : " ") << "Type"
1860 << " " << "Name/Value\n";
1862 const Elf_Dyn
&Entry
= *I
;
1863 uintX_t Tag
= Entry
.getTag();
1865 W
.startLine() << " " << format_hex(Tag
, Is64
? 18 : 10, opts::Output
!= opts::GNU
) << " "
1866 << format("%-21s", getTypeString(Obj
->getHeader()->e_machine
, Tag
));
1867 printValue(Tag
, Entry
.getVal());
1871 W
.startLine() << "]\n";
1874 template<class ELFT
>
1875 void ELFDumper
<ELFT
>::printNeededLibraries() {
1876 ListScope
D(W
, "NeededLibraries");
1878 using LibsTy
= std::vector
<StringRef
>;
1881 for (const auto &Entry
: dynamic_table())
1882 if (Entry
.d_tag
== ELF::DT_NEEDED
)
1883 Libs
.push_back(getDynamicString(Entry
.d_un
.d_val
));
1885 std::stable_sort(Libs
.begin(), Libs
.end());
1887 for (const auto &L
: Libs
)
1888 W
.startLine() << L
<< "\n";
1892 template <typename ELFT
>
1893 void ELFDumper
<ELFT
>::printHashTable() {
1894 DictScope
D(W
, "HashTable");
1897 W
.printNumber("Num Buckets", HashTable
->nbucket
);
1898 W
.printNumber("Num Chains", HashTable
->nchain
);
1899 W
.printList("Buckets", HashTable
->buckets());
1900 W
.printList("Chains", HashTable
->chains());
1903 template <typename ELFT
>
1904 void ELFDumper
<ELFT
>::printGnuHashTable() {
1905 DictScope
D(W
, "GnuHashTable");
1908 W
.printNumber("Num Buckets", GnuHashTable
->nbuckets
);
1909 W
.printNumber("First Hashed Symbol Index", GnuHashTable
->symndx
);
1910 W
.printNumber("Num Mask Words", GnuHashTable
->maskwords
);
1911 W
.printNumber("Shift Count", GnuHashTable
->shift2
);
1912 W
.printHexList("Bloom Filter", GnuHashTable
->filter());
1913 W
.printList("Buckets", GnuHashTable
->buckets());
1914 Elf_Sym_Range Syms
= dynamic_symbols();
1915 unsigned NumSyms
= std::distance(Syms
.begin(), Syms
.end());
1917 reportError("No dynamic symbol section");
1918 W
.printHexList("Values", GnuHashTable
->values(NumSyms
));
1921 template <typename ELFT
> void ELFDumper
<ELFT
>::printLoadName() {
1922 W
.printString("LoadName", SOName
);
1925 template <class ELFT
>
1926 void ELFDumper
<ELFT
>::printAttributes() {
1927 W
.startLine() << "Attributes not implemented.\n";
1932 template <> void ELFDumper
<ELF32LE
>::printAttributes() {
1933 if (Obj
->getHeader()->e_machine
!= EM_ARM
) {
1934 W
.startLine() << "Attributes not implemented.\n";
1938 DictScope
BA(W
, "BuildAttributes");
1939 for (const ELFO::Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
1940 if (Sec
.sh_type
!= ELF::SHT_ARM_ATTRIBUTES
)
1943 ArrayRef
<uint8_t> Contents
= unwrapOrError(Obj
->getSectionContents(&Sec
));
1944 if (Contents
[0] != ARMBuildAttrs::Format_Version
) {
1945 errs() << "unrecognised FormatVersion: 0x"
1946 << Twine::utohexstr(Contents
[0]) << '\n';
1950 W
.printHex("FormatVersion", Contents
[0]);
1951 if (Contents
.size() == 1)
1954 ARMAttributeParser(&W
).Parse(Contents
, true);
1958 template <class ELFT
> class MipsGOTParser
{
1960 TYPEDEF_ELF_TYPES(ELFT
)
1961 using Entry
= typename
ELFO::Elf_Addr
;
1962 using Entries
= ArrayRef
<Entry
>;
1964 const bool IsStatic
;
1965 const ELFO
* const Obj
;
1967 MipsGOTParser(const ELFO
*Obj
, Elf_Dyn_Range DynTable
, Elf_Sym_Range DynSyms
);
1969 bool hasGot() const { return !GotEntries
.empty(); }
1970 bool hasPlt() const { return !PltEntries
.empty(); }
1972 uint64_t getGp() const;
1974 const Entry
*getGotLazyResolver() const;
1975 const Entry
*getGotModulePointer() const;
1976 const Entry
*getPltLazyResolver() const;
1977 const Entry
*getPltModulePointer() const;
1979 Entries
getLocalEntries() const;
1980 Entries
getGlobalEntries() const;
1981 Entries
getOtherEntries() const;
1982 Entries
getPltEntries() const;
1984 uint64_t getGotAddress(const Entry
* E
) const;
1985 int64_t getGotOffset(const Entry
* E
) const;
1986 const Elf_Sym
*getGotSym(const Entry
*E
) const;
1988 uint64_t getPltAddress(const Entry
* E
) const;
1989 const Elf_Sym
*getPltSym(const Entry
*E
) const;
1991 StringRef
getPltStrTable() const { return PltStrTable
; }
1994 const Elf_Shdr
*GotSec
;
1998 const Elf_Shdr
*PltSec
;
1999 const Elf_Shdr
*PltRelSec
;
2000 const Elf_Shdr
*PltSymTable
;
2001 Elf_Sym_Range GotDynSyms
;
2002 StringRef PltStrTable
;
2008 } // end anonymous namespace
2010 template <class ELFT
>
2011 MipsGOTParser
<ELFT
>::MipsGOTParser(const ELFO
*Obj
, Elf_Dyn_Range DynTable
,
2012 Elf_Sym_Range DynSyms
)
2013 : IsStatic(DynTable
.empty()), Obj(Obj
), GotSec(nullptr), LocalNum(0),
2014 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr) {
2015 // See "Global Offset Table" in Chapter 5 in the following document
2016 // for detailed GOT description.
2017 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2019 // Find static GOT secton.
2021 GotSec
= findSectionByName(*Obj
, ".got");
2023 reportError("Cannot find .got section");
2025 ArrayRef
<uint8_t> Content
= unwrapOrError(Obj
->getSectionContents(GotSec
));
2026 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2027 Content
.size() / sizeof(Entry
));
2028 LocalNum
= GotEntries
.size();
2032 // Lookup dynamic table tags which define GOT/PLT layouts.
2033 Optional
<uint64_t> DtPltGot
;
2034 Optional
<uint64_t> DtLocalGotNum
;
2035 Optional
<uint64_t> DtGotSym
;
2036 Optional
<uint64_t> DtMipsPltGot
;
2037 Optional
<uint64_t> DtJmpRel
;
2038 for (const auto &Entry
: DynTable
) {
2039 switch (Entry
.getTag()) {
2040 case ELF::DT_PLTGOT
:
2041 DtPltGot
= Entry
.getVal();
2043 case ELF::DT_MIPS_LOCAL_GOTNO
:
2044 DtLocalGotNum
= Entry
.getVal();
2046 case ELF::DT_MIPS_GOTSYM
:
2047 DtGotSym
= Entry
.getVal();
2049 case ELF::DT_MIPS_PLTGOT
:
2050 DtMipsPltGot
= Entry
.getVal();
2052 case ELF::DT_JMPREL
:
2053 DtJmpRel
= Entry
.getVal();
2058 // Find dynamic GOT section.
2059 if (DtPltGot
|| DtLocalGotNum
|| DtGotSym
) {
2061 report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2063 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2065 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2067 size_t DynSymTotal
= DynSyms
.size();
2068 if (*DtGotSym
> DynSymTotal
)
2069 reportError("MIPS_GOTSYM exceeds a number of dynamic symbols");
2071 GotSec
= findNotEmptySectionByAddress(Obj
, *DtPltGot
);
2073 reportError("There is no not empty GOT section at 0x" +
2074 Twine::utohexstr(*DtPltGot
));
2076 LocalNum
= *DtLocalGotNum
;
2077 GlobalNum
= DynSymTotal
- *DtGotSym
;
2079 ArrayRef
<uint8_t> Content
= unwrapOrError(Obj
->getSectionContents(GotSec
));
2080 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2081 Content
.size() / sizeof(Entry
));
2082 GotDynSyms
= DynSyms
.drop_front(*DtGotSym
);
2085 // Find PLT section.
2086 if (DtMipsPltGot
|| DtJmpRel
) {
2088 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2090 report_fatal_error("Cannot find JMPREL dynamic table tag.");
2092 PltSec
= findNotEmptySectionByAddress(Obj
, *DtMipsPltGot
);
2094 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2095 Twine::utohexstr(*DtMipsPltGot
));
2097 PltRelSec
= findNotEmptySectionByAddress(Obj
, *DtJmpRel
);
2099 report_fatal_error("There is no not empty RELPLT section at 0x" +
2100 Twine::utohexstr(*DtJmpRel
));
2102 ArrayRef
<uint8_t> PltContent
=
2103 unwrapOrError(Obj
->getSectionContents(PltSec
));
2104 PltEntries
= Entries(reinterpret_cast<const Entry
*>(PltContent
.data()),
2105 PltContent
.size() / sizeof(Entry
));
2107 PltSymTable
= unwrapOrError(Obj
->getSection(PltRelSec
->sh_link
));
2108 PltStrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*PltSymTable
));
2112 template <class ELFT
> uint64_t MipsGOTParser
<ELFT
>::getGp() const {
2113 return GotSec
->sh_addr
+ 0x7ff0;
2116 template <class ELFT
>
2117 const typename MipsGOTParser
<ELFT
>::Entry
*
2118 MipsGOTParser
<ELFT
>::getGotLazyResolver() const {
2119 return LocalNum
> 0 ? &GotEntries
[0] : nullptr;
2122 template <class ELFT
>
2123 const typename MipsGOTParser
<ELFT
>::Entry
*
2124 MipsGOTParser
<ELFT
>::getGotModulePointer() const {
2127 const Entry
&E
= GotEntries
[1];
2128 if ((E
>> (sizeof(Entry
) * 8 - 1)) == 0)
2133 template <class ELFT
>
2134 typename MipsGOTParser
<ELFT
>::Entries
2135 MipsGOTParser
<ELFT
>::getLocalEntries() const {
2136 size_t Skip
= getGotModulePointer() ? 2 : 1;
2137 if (LocalNum
- Skip
<= 0)
2139 return GotEntries
.slice(Skip
, LocalNum
- Skip
);
2142 template <class ELFT
>
2143 typename MipsGOTParser
<ELFT
>::Entries
2144 MipsGOTParser
<ELFT
>::getGlobalEntries() const {
2147 return GotEntries
.slice(LocalNum
, GlobalNum
);
2150 template <class ELFT
>
2151 typename MipsGOTParser
<ELFT
>::Entries
2152 MipsGOTParser
<ELFT
>::getOtherEntries() const {
2153 size_t OtherNum
= GotEntries
.size() - LocalNum
- GlobalNum
;
2156 return GotEntries
.slice(LocalNum
+ GlobalNum
, OtherNum
);
2159 template <class ELFT
>
2160 uint64_t MipsGOTParser
<ELFT
>::getGotAddress(const Entry
*E
) const {
2161 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2162 return GotSec
->sh_addr
+ Offset
;
2165 template <class ELFT
>
2166 int64_t MipsGOTParser
<ELFT
>::getGotOffset(const Entry
*E
) const {
2167 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2168 return Offset
- 0x7ff0;
2171 template <class ELFT
>
2172 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2173 MipsGOTParser
<ELFT
>::getGotSym(const Entry
*E
) const {
2174 int64_t Offset
= std::distance(GotEntries
.data(), E
);
2175 return &GotDynSyms
[Offset
- LocalNum
];
2178 template <class ELFT
>
2179 const typename MipsGOTParser
<ELFT
>::Entry
*
2180 MipsGOTParser
<ELFT
>::getPltLazyResolver() const {
2181 return PltEntries
.empty() ? nullptr : &PltEntries
[0];
2184 template <class ELFT
>
2185 const typename MipsGOTParser
<ELFT
>::Entry
*
2186 MipsGOTParser
<ELFT
>::getPltModulePointer() const {
2187 return PltEntries
.size() < 2 ? nullptr : &PltEntries
[1];
2190 template <class ELFT
>
2191 typename MipsGOTParser
<ELFT
>::Entries
2192 MipsGOTParser
<ELFT
>::getPltEntries() const {
2193 if (PltEntries
.size() <= 2)
2195 return PltEntries
.slice(2, PltEntries
.size() - 2);
2198 template <class ELFT
>
2199 uint64_t MipsGOTParser
<ELFT
>::getPltAddress(const Entry
*E
) const {
2200 int64_t Offset
= std::distance(PltEntries
.data(), E
) * sizeof(Entry
);
2201 return PltSec
->sh_addr
+ Offset
;
2204 template <class ELFT
>
2205 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2206 MipsGOTParser
<ELFT
>::getPltSym(const Entry
*E
) const {
2207 int64_t Offset
= std::distance(getPltEntries().data(), E
);
2208 if (PltRelSec
->sh_type
== ELF::SHT_REL
) {
2209 Elf_Rel_Range Rels
= unwrapOrError(Obj
->rels(PltRelSec
));
2210 return unwrapOrError(Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2212 Elf_Rela_Range Rels
= unwrapOrError(Obj
->relas(PltRelSec
));
2213 return unwrapOrError(Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2217 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsPLTGOT() {
2218 if (Obj
->getHeader()->e_machine
!= EM_MIPS
)
2219 reportError("MIPS PLT GOT is available for MIPS targets only");
2221 MipsGOTParser
<ELFT
> Parser(Obj
, dynamic_table(), dynamic_symbols());
2222 if (Parser
.hasGot())
2223 ELFDumperStyle
->printMipsGOT(Parser
);
2224 if (Parser
.hasPlt())
2225 ELFDumperStyle
->printMipsPLT(Parser
);
2228 static const EnumEntry
<unsigned> ElfMipsISAExtType
[] = {
2229 {"None", Mips::AFL_EXT_NONE
},
2230 {"Broadcom SB-1", Mips::AFL_EXT_SB1
},
2231 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON
},
2232 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2
},
2233 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP
},
2234 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3
},
2235 {"LSI R4010", Mips::AFL_EXT_4010
},
2236 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E
},
2237 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F
},
2238 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A
},
2239 {"MIPS R4650", Mips::AFL_EXT_4650
},
2240 {"MIPS R5900", Mips::AFL_EXT_5900
},
2241 {"MIPS R10000", Mips::AFL_EXT_10000
},
2242 {"NEC VR4100", Mips::AFL_EXT_4100
},
2243 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111
},
2244 {"NEC VR4120", Mips::AFL_EXT_4120
},
2245 {"NEC VR5400", Mips::AFL_EXT_5400
},
2246 {"NEC VR5500", Mips::AFL_EXT_5500
},
2247 {"RMI Xlr", Mips::AFL_EXT_XLR
},
2248 {"Toshiba R3900", Mips::AFL_EXT_3900
}
2251 static const EnumEntry
<unsigned> ElfMipsASEFlags
[] = {
2252 {"DSP", Mips::AFL_ASE_DSP
},
2253 {"DSPR2", Mips::AFL_ASE_DSPR2
},
2254 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA
},
2255 {"MCU", Mips::AFL_ASE_MCU
},
2256 {"MDMX", Mips::AFL_ASE_MDMX
},
2257 {"MIPS-3D", Mips::AFL_ASE_MIPS3D
},
2258 {"MT", Mips::AFL_ASE_MT
},
2259 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS
},
2260 {"VZ", Mips::AFL_ASE_VIRT
},
2261 {"MSA", Mips::AFL_ASE_MSA
},
2262 {"MIPS16", Mips::AFL_ASE_MIPS16
},
2263 {"microMIPS", Mips::AFL_ASE_MICROMIPS
},
2264 {"XPA", Mips::AFL_ASE_XPA
},
2265 {"CRC", Mips::AFL_ASE_CRC
},
2268 static const EnumEntry
<unsigned> ElfMipsFpABIType
[] = {
2269 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY
},
2270 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE
},
2271 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE
},
2272 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT
},
2273 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2274 Mips::Val_GNU_MIPS_ABI_FP_OLD_64
},
2275 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX
},
2276 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64
},
2277 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2278 Mips::Val_GNU_MIPS_ABI_FP_64A
}
2281 static const EnumEntry
<unsigned> ElfMipsFlags1
[] {
2282 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG
},
2285 static int getMipsRegisterSize(uint8_t Flag
) {
2287 case Mips::AFL_REG_NONE
:
2289 case Mips::AFL_REG_32
:
2291 case Mips::AFL_REG_64
:
2293 case Mips::AFL_REG_128
:
2300 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsABIFlags() {
2301 const Elf_Shdr
*Shdr
= findSectionByName(*Obj
, ".MIPS.abiflags");
2303 W
.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2306 ArrayRef
<uint8_t> Sec
= unwrapOrError(Obj
->getSectionContents(Shdr
));
2307 if (Sec
.size() != sizeof(Elf_Mips_ABIFlags
<ELFT
>)) {
2308 W
.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2312 auto *Flags
= reinterpret_cast<const Elf_Mips_ABIFlags
<ELFT
> *>(Sec
.data());
2314 raw_ostream
&OS
= W
.getOStream();
2315 DictScope
GS(W
, "MIPS ABI Flags");
2317 W
.printNumber("Version", Flags
->version
);
2318 W
.startLine() << "ISA: ";
2319 if (Flags
->isa_rev
<= 1)
2320 OS
<< format("MIPS%u", Flags
->isa_level
);
2322 OS
<< format("MIPS%ur%u", Flags
->isa_level
, Flags
->isa_rev
);
2324 W
.printEnum("ISA Extension", Flags
->isa_ext
, makeArrayRef(ElfMipsISAExtType
));
2325 W
.printFlags("ASEs", Flags
->ases
, makeArrayRef(ElfMipsASEFlags
));
2326 W
.printEnum("FP ABI", Flags
->fp_abi
, makeArrayRef(ElfMipsFpABIType
));
2327 W
.printNumber("GPR size", getMipsRegisterSize(Flags
->gpr_size
));
2328 W
.printNumber("CPR1 size", getMipsRegisterSize(Flags
->cpr1_size
));
2329 W
.printNumber("CPR2 size", getMipsRegisterSize(Flags
->cpr2_size
));
2330 W
.printFlags("Flags 1", Flags
->flags1
, makeArrayRef(ElfMipsFlags1
));
2331 W
.printHex("Flags 2", Flags
->flags2
);
2334 template <class ELFT
>
2335 static void printMipsReginfoData(ScopedPrinter
&W
,
2336 const Elf_Mips_RegInfo
<ELFT
> &Reginfo
) {
2337 W
.printHex("GP", Reginfo
.ri_gp_value
);
2338 W
.printHex("General Mask", Reginfo
.ri_gprmask
);
2339 W
.printHex("Co-Proc Mask0", Reginfo
.ri_cprmask
[0]);
2340 W
.printHex("Co-Proc Mask1", Reginfo
.ri_cprmask
[1]);
2341 W
.printHex("Co-Proc Mask2", Reginfo
.ri_cprmask
[2]);
2342 W
.printHex("Co-Proc Mask3", Reginfo
.ri_cprmask
[3]);
2345 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsReginfo() {
2346 const Elf_Shdr
*Shdr
= findSectionByName(*Obj
, ".reginfo");
2348 W
.startLine() << "There is no .reginfo section in the file.\n";
2351 ArrayRef
<uint8_t> Sec
= unwrapOrError(Obj
->getSectionContents(Shdr
));
2352 if (Sec
.size() != sizeof(Elf_Mips_RegInfo
<ELFT
>)) {
2353 W
.startLine() << "The .reginfo section has a wrong size.\n";
2357 DictScope
GS(W
, "MIPS RegInfo");
2358 auto *Reginfo
= reinterpret_cast<const Elf_Mips_RegInfo
<ELFT
> *>(Sec
.data());
2359 printMipsReginfoData(W
, *Reginfo
);
2362 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsOptions() {
2363 const Elf_Shdr
*Shdr
= findSectionByName(*Obj
, ".MIPS.options");
2365 W
.startLine() << "There is no .MIPS.options section in the file.\n";
2369 DictScope
GS(W
, "MIPS Options");
2371 ArrayRef
<uint8_t> Sec
= unwrapOrError(Obj
->getSectionContents(Shdr
));
2372 while (!Sec
.empty()) {
2373 if (Sec
.size() < sizeof(Elf_Mips_Options
<ELFT
>)) {
2374 W
.startLine() << "The .MIPS.options section has a wrong size.\n";
2377 auto *O
= reinterpret_cast<const Elf_Mips_Options
<ELFT
> *>(Sec
.data());
2378 DictScope
GS(W
, getElfMipsOptionsOdkType(O
->kind
));
2381 printMipsReginfoData(W
, O
->getRegInfo());
2384 W
.startLine() << "Unsupported MIPS options tag.\n";
2387 Sec
= Sec
.slice(O
->size
);
2391 template <class ELFT
> void ELFDumper
<ELFT
>::printStackMap() const {
2392 const Elf_Shdr
*StackMapSection
= nullptr;
2393 for (const auto &Sec
: unwrapOrError(Obj
->sections())) {
2394 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
2395 if (Name
== ".llvm_stackmaps") {
2396 StackMapSection
= &Sec
;
2401 if (!StackMapSection
)
2404 ArrayRef
<uint8_t> StackMapContentsArray
=
2405 unwrapOrError(Obj
->getSectionContents(StackMapSection
));
2407 prettyPrintStackMap(
2408 W
, StackMapV2Parser
<ELFT::TargetEndianness
>(StackMapContentsArray
));
2411 template <class ELFT
> void ELFDumper
<ELFT
>::printGroupSections() {
2412 ELFDumperStyle
->printGroupSections(Obj
);
2415 static inline void printFields(formatted_raw_ostream
&OS
, StringRef Str1
,
2419 OS
.PadToColumn(37u);
2424 template <class ELFT
> void GNUStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
2425 const Elf_Ehdr
*e
= Obj
->getHeader();
2426 OS
<< "ELF Header:\n";
2429 for (int i
= 0; i
< ELF::EI_NIDENT
; i
++)
2430 OS
<< format(" %02x", static_cast<int>(e
->e_ident
[i
]));
2432 Str
= printEnum(e
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
2433 printFields(OS
, "Class:", Str
);
2434 Str
= printEnum(e
->e_ident
[ELF::EI_DATA
], makeArrayRef(ElfDataEncoding
));
2435 printFields(OS
, "Data:", Str
);
2438 OS
.PadToColumn(37u);
2439 OS
<< to_hexString(e
->e_ident
[ELF::EI_VERSION
]);
2440 if (e
->e_version
== ELF::EV_CURRENT
)
2443 Str
= printEnum(e
->e_ident
[ELF::EI_OSABI
], makeArrayRef(ElfOSABI
));
2444 printFields(OS
, "OS/ABI:", Str
);
2445 Str
= "0x" + to_hexString(e
->e_ident
[ELF::EI_ABIVERSION
]);
2446 printFields(OS
, "ABI Version:", Str
);
2447 Str
= printEnum(e
->e_type
, makeArrayRef(ElfObjectFileType
));
2448 printFields(OS
, "Type:", Str
);
2449 Str
= printEnum(e
->e_machine
, makeArrayRef(ElfMachineType
));
2450 printFields(OS
, "Machine:", Str
);
2451 Str
= "0x" + to_hexString(e
->e_version
);
2452 printFields(OS
, "Version:", Str
);
2453 Str
= "0x" + to_hexString(e
->e_entry
);
2454 printFields(OS
, "Entry point address:", Str
);
2455 Str
= to_string(e
->e_phoff
) + " (bytes into file)";
2456 printFields(OS
, "Start of program headers:", Str
);
2457 Str
= to_string(e
->e_shoff
) + " (bytes into file)";
2458 printFields(OS
, "Start of section headers:", Str
);
2459 Str
= "0x" + to_hexString(e
->e_flags
);
2460 printFields(OS
, "Flags:", Str
);
2461 Str
= to_string(e
->e_ehsize
) + " (bytes)";
2462 printFields(OS
, "Size of this header:", Str
);
2463 Str
= to_string(e
->e_phentsize
) + " (bytes)";
2464 printFields(OS
, "Size of program headers:", Str
);
2465 Str
= to_string(e
->e_phnum
);
2466 printFields(OS
, "Number of program headers:", Str
);
2467 Str
= to_string(e
->e_shentsize
) + " (bytes)";
2468 printFields(OS
, "Size of section headers:", Str
);
2469 Str
= to_string(e
->e_shnum
);
2470 printFields(OS
, "Number of section headers:", Str
);
2471 Str
= to_string(e
->e_shstrndx
);
2472 printFields(OS
, "Section header string table index:", Str
);
2476 struct GroupMember
{
2481 struct GroupSection
{
2483 StringRef Signature
;
2489 std::vector
<GroupMember
> Members
;
2492 template <class ELFT
>
2493 std::vector
<GroupSection
> getGroups(const ELFFile
<ELFT
> *Obj
) {
2494 using Elf_Shdr
= typename
ELFT::Shdr
;
2495 using Elf_Sym
= typename
ELFT::Sym
;
2496 using Elf_Word
= typename
ELFT::Word
;
2498 std::vector
<GroupSection
> Ret
;
2500 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
2502 if (Sec
.sh_type
!= ELF::SHT_GROUP
)
2505 const Elf_Shdr
*Symtab
= unwrapOrError(Obj
->getSection(Sec
.sh_link
));
2506 StringRef StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*Symtab
));
2507 const Elf_Sym
*Sym
=
2508 unwrapOrError(Obj
->template getEntry
<Elf_Sym
>(Symtab
, Sec
.sh_info
));
2510 unwrapOrError(Obj
->template getSectionContentsAsArray
<Elf_Word
>(&Sec
));
2512 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
2513 StringRef Signature
= StrTable
.data() + Sym
->st_name
;
2514 Ret
.push_back({Name
,
2523 std::vector
<GroupMember
> &GM
= Ret
.back().Members
;
2524 for (uint32_t Ndx
: Data
.slice(1)) {
2525 auto Sec
= unwrapOrError(Obj
->getSection(Ndx
));
2526 const StringRef Name
= unwrapOrError(Obj
->getSectionName(Sec
));
2527 GM
.push_back({Name
, Ndx
});
2533 DenseMap
<uint64_t, const GroupSection
*>
2534 mapSectionsToGroups(ArrayRef
<GroupSection
> Groups
) {
2535 DenseMap
<uint64_t, const GroupSection
*> Ret
;
2536 for (const GroupSection
&G
: Groups
)
2537 for (const GroupMember
&GM
: G
.Members
)
2538 Ret
.insert({GM
.Index
, &G
});
2544 template <class ELFT
> void GNUStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
2545 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
);
2546 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
2547 for (const GroupSection
&G
: V
) {
2549 << getGroupType(G
.Type
) << " group section ["
2550 << format_decimal(G
.Index
, 5) << "] `" << G
.Name
<< "' [" << G
.Signature
2551 << "] contains " << G
.Members
.size() << " sections:\n"
2552 << " [Index] Name\n";
2553 for (const GroupMember
&GM
: G
.Members
) {
2554 const GroupSection
*MainGroup
= Map
[GM
.Index
];
2555 if (MainGroup
!= &G
) {
2557 errs() << "Error: section [" << format_decimal(GM
.Index
, 5)
2558 << "] in group section [" << format_decimal(G
.Index
, 5)
2559 << "] already in group section ["
2560 << format_decimal(MainGroup
->Index
, 5) << "]";
2564 OS
<< " [" << format_decimal(GM
.Index
, 5) << "] " << GM
.Name
<< "\n";
2569 OS
<< "There are no section groups in this file.\n";
2572 template <class ELFT
>
2573 void GNUStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
2574 const Elf_Rela
&R
, bool IsRela
) {
2575 std::string Offset
, Info
, Addend
, Value
;
2576 SmallString
<32> RelocName
;
2577 StringRef StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*SymTab
));
2578 StringRef TargetName
;
2579 const Elf_Sym
*Sym
= nullptr;
2580 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
2581 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
2583 // First two fields are bit width dependent. The rest of them are after are
2585 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
2586 Obj
->getRelocationTypeName(R
.getType(Obj
->isMips64EL()), RelocName
);
2587 Sym
= unwrapOrError(Obj
->getRelocationSymbol(&R
, SymTab
));
2588 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
2589 const Elf_Shdr
*Sec
= unwrapOrError(
2590 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
2591 TargetName
= unwrapOrError(Obj
->getSectionName(Sec
));
2593 TargetName
= unwrapOrError(Sym
->getName(StrTable
));
2596 if (Sym
&& IsRela
) {
2603 Offset
= to_string(format_hex_no_prefix(R
.r_offset
, Width
));
2604 Info
= to_string(format_hex_no_prefix(R
.r_info
, Width
));
2606 int64_t RelAddend
= R
.r_addend
;
2608 Addend
+= to_hexString(std::abs(RelAddend
), false);
2611 Value
= to_string(format_hex_no_prefix(Sym
->getValue(), Width
));
2613 Fields
[0].Str
= Offset
;
2614 Fields
[1].Str
= Info
;
2615 Fields
[2].Str
= RelocName
;
2616 Fields
[3].Str
= Value
;
2617 Fields
[4].Str
= TargetName
;
2618 for (auto &field
: Fields
)
2624 static inline void printRelocHeader(raw_ostream
&OS
, bool Is64
, bool IsRela
) {
2626 OS
<< " Offset Info Type"
2627 << " Symbol's Value Symbol's Name";
2629 OS
<< " Offset Info Type Sym. Value "
2632 OS
<< (IsRela
? " + Addend" : "");
2636 template <class ELFT
> void GNUStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
2637 bool HasRelocSections
= false;
2638 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
2639 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
2640 Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
2641 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
)
2643 HasRelocSections
= true;
2644 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
2645 unsigned Entries
= Sec
.getEntityCount();
2646 uintX_t Offset
= Sec
.sh_offset
;
2647 OS
<< "\nRelocation section '" << Name
<< "' at offset 0x"
2648 << to_hexString(Offset
, false) << " contains " << Entries
2650 printRelocHeader(OS
, ELFT::Is64Bits
,
2651 Sec
.sh_type
== ELF::SHT_RELA
||
2652 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
);
2653 const Elf_Shdr
*SymTab
= unwrapOrError(Obj
->getSection(Sec
.sh_link
));
2654 switch (Sec
.sh_type
) {
2656 for (const auto &R
: unwrapOrError(Obj
->rels(&Sec
))) {
2658 Rela
.r_offset
= R
.r_offset
;
2659 Rela
.r_info
= R
.r_info
;
2661 printRelocation(Obj
, SymTab
, Rela
, false);
2665 for (const auto &R
: unwrapOrError(Obj
->relas(&Sec
)))
2666 printRelocation(Obj
, SymTab
, R
, true);
2668 case ELF::SHT_ANDROID_REL
:
2669 case ELF::SHT_ANDROID_RELA
:
2670 for (const auto &R
: unwrapOrError(Obj
->android_relas(&Sec
)))
2671 printRelocation(Obj
, SymTab
, R
, Sec
.sh_type
== ELF::SHT_ANDROID_RELA
);
2675 if (!HasRelocSections
)
2676 OS
<< "\nThere are no relocations in this file.\n";
2679 std::string
getSectionTypeString(unsigned Arch
, unsigned Type
) {
2680 using namespace ELF
;
2687 case SHT_ARM_PREEMPTMAP
:
2688 return "ARM_PREEMPTMAP";
2689 case SHT_ARM_ATTRIBUTES
:
2690 return "ARM_ATTRIBUTES";
2691 case SHT_ARM_DEBUGOVERLAY
:
2692 return "ARM_DEBUGOVERLAY";
2693 case SHT_ARM_OVERLAYSECTION
:
2694 return "ARM_OVERLAYSECTION";
2698 case SHT_X86_64_UNWIND
:
2699 return "X86_64_UNWIND";
2702 case EM_MIPS_RS3_LE
:
2704 case SHT_MIPS_REGINFO
:
2705 return "MIPS_REGINFO";
2706 case SHT_MIPS_OPTIONS
:
2707 return "MIPS_OPTIONS";
2708 case SHT_MIPS_ABIFLAGS
:
2709 return "MIPS_ABIFLAGS";
2710 case SHT_MIPS_DWARF
:
2711 return "SHT_MIPS_DWARF";
2739 case SHT_INIT_ARRAY
:
2740 return "INIT_ARRAY";
2741 case SHT_FINI_ARRAY
:
2742 return "FINI_ARRAY";
2743 case SHT_PREINIT_ARRAY
:
2744 return "PREINIT_ARRAY";
2747 case SHT_SYMTAB_SHNDX
:
2748 return "SYMTAB SECTION INDICES";
2749 case SHT_LLVM_ODRTAB
:
2750 return "LLVM_ODRTAB";
2751 case SHT_LLVM_LINKER_OPTIONS
:
2752 return "LLVM_LINKER_OPTIONS";
2753 // FIXME: Parse processor specific GNU attributes
2754 case SHT_GNU_ATTRIBUTES
:
2755 return "ATTRIBUTES";
2758 case SHT_GNU_verdef
:
2760 case SHT_GNU_verneed
:
2762 case SHT_GNU_versym
:
2770 template <class ELFT
> void GNUStyle
<ELFT
>::printSections(const ELFO
*Obj
) {
2771 size_t SectionIndex
= 0;
2772 std::string Number
, Type
, Size
, Address
, Offset
, Flags
, Link
, Info
, EntrySize
,
2777 if (ELFT::Is64Bits
) {
2784 OS
<< "There are " << to_string(Obj
->getHeader()->e_shnum
)
2785 << " section headers, starting at offset "
2786 << "0x" << to_hexString(Obj
->getHeader()->e_shoff
, false) << ":\n\n";
2787 OS
<< "Section Headers:\n";
2788 Field Fields
[11] = {{"[Nr]", 2},
2793 {"Size", 65 - Bias
},
2799 for (auto &f
: Fields
)
2803 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
2804 Number
= to_string(SectionIndex
);
2805 Fields
[0].Str
= Number
;
2806 Fields
[1].Str
= unwrapOrError(Obj
->getSectionName(&Sec
));
2807 Type
= getSectionTypeString(Obj
->getHeader()->e_machine
, Sec
.sh_type
);
2808 Fields
[2].Str
= Type
;
2809 Address
= to_string(format_hex_no_prefix(Sec
.sh_addr
, Width
));
2810 Fields
[3].Str
= Address
;
2811 Offset
= to_string(format_hex_no_prefix(Sec
.sh_offset
, 6));
2812 Fields
[4].Str
= Offset
;
2813 Size
= to_string(format_hex_no_prefix(Sec
.sh_size
, 6));
2814 Fields
[5].Str
= Size
;
2815 EntrySize
= to_string(format_hex_no_prefix(Sec
.sh_entsize
, 2));
2816 Fields
[6].Str
= EntrySize
;
2817 Flags
= getGNUFlags(Sec
.sh_flags
);
2818 Fields
[7].Str
= Flags
;
2819 Link
= to_string(Sec
.sh_link
);
2820 Fields
[8].Str
= Link
;
2821 Info
= to_string(Sec
.sh_info
);
2822 Fields
[9].Str
= Info
;
2823 Alignment
= to_string(Sec
.sh_addralign
);
2824 Fields
[10].Str
= Alignment
;
2825 OS
.PadToColumn(Fields
[0].Column
);
2826 OS
<< "[" << right_justify(Fields
[0].Str
, 2) << "]";
2827 for (int i
= 1; i
< 7; i
++)
2828 printField(Fields
[i
]);
2829 OS
.PadToColumn(Fields
[7].Column
);
2830 OS
<< right_justify(Fields
[7].Str
, 3);
2831 OS
.PadToColumn(Fields
[8].Column
);
2832 OS
<< right_justify(Fields
[8].Str
, 2);
2833 OS
.PadToColumn(Fields
[9].Column
);
2834 OS
<< right_justify(Fields
[9].Str
, 3);
2835 OS
.PadToColumn(Fields
[10].Column
);
2836 OS
<< right_justify(Fields
[10].Str
, 2);
2840 OS
<< "Key to Flags:\n"
2841 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
2843 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
2845 << " O (extra OS processing required) o (OS specific),\
2846 p (processor specific)\n";
2849 template <class ELFT
>
2850 void GNUStyle
<ELFT
>::printSymtabMessage(const ELFO
*Obj
, StringRef Name
,
2853 OS
<< "\nSymbol table '" << Name
<< "' contains " << Entries
2856 OS
<< "\n Symbol table for image:\n";
2859 OS
<< " Num: Value Size Type Bind Vis Ndx Name\n";
2861 OS
<< " Num: Value Size Type Bind Vis Ndx Name\n";
2864 template <class ELFT
>
2865 std::string GNUStyle
<ELFT
>::getSymbolSectionNdx(const ELFO
*Obj
,
2866 const Elf_Sym
*Symbol
,
2867 const Elf_Sym
*FirstSym
) {
2868 unsigned SectionIndex
= Symbol
->st_shndx
;
2869 switch (SectionIndex
) {
2870 case ELF::SHN_UNDEF
:
2874 case ELF::SHN_COMMON
:
2876 case ELF::SHN_XINDEX
:
2877 SectionIndex
= unwrapOrError(object::getExtendedSymbolTableIndex
<ELFT
>(
2878 Symbol
, FirstSym
, this->dumper()->getShndxTable()));
2882 // Processor specific
2883 if (SectionIndex
>= ELF::SHN_LOPROC
&& SectionIndex
<= ELF::SHN_HIPROC
)
2884 return std::string("PRC[0x") +
2885 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
2887 if (SectionIndex
>= ELF::SHN_LOOS
&& SectionIndex
<= ELF::SHN_HIOS
)
2888 return std::string("OS[0x") +
2889 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
2890 // Architecture reserved:
2891 if (SectionIndex
>= ELF::SHN_LORESERVE
&&
2892 SectionIndex
<= ELF::SHN_HIRESERVE
)
2893 return std::string("RSV[0x") +
2894 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
2895 // A normal section with an index
2896 return to_string(format_decimal(SectionIndex
, 3));
2900 template <class ELFT
>
2901 void GNUStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
2902 const Elf_Sym
*FirstSym
, StringRef StrTable
,
2905 static bool Dynamic
= true;
2908 // If this function was called with a different value from IsDynamic
2909 // from last call, happens when we move from dynamic to static symbol
2910 // table, "Num" field should be reset.
2911 if (!Dynamic
!= !IsDynamic
) {
2915 std::string Num
, Name
, Value
, Size
, Binding
, Type
, Visibility
, Section
;
2917 if (ELFT::Is64Bits
) {
2924 Field Fields
[8] = {0, 8, 17 + Bias
, 23 + Bias
,
2925 31 + Bias
, 38 + Bias
, 47 + Bias
, 51 + Bias
};
2926 Num
= to_string(format_decimal(Idx
++, 6)) + ":";
2927 Value
= to_string(format_hex_no_prefix(Symbol
->st_value
, Width
));
2928 Size
= to_string(format_decimal(Symbol
->st_size
, 5));
2929 unsigned char SymbolType
= Symbol
->getType();
2930 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
2931 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
2932 Type
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
2934 Type
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
2935 unsigned Vis
= Symbol
->getVisibility();
2936 Binding
= printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
2937 Visibility
= printEnum(Vis
, makeArrayRef(ElfSymbolVisibilities
));
2938 Section
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
2939 Name
= this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
2940 Fields
[0].Str
= Num
;
2941 Fields
[1].Str
= Value
;
2942 Fields
[2].Str
= Size
;
2943 Fields
[3].Str
= Type
;
2944 Fields
[4].Str
= Binding
;
2945 Fields
[5].Str
= Visibility
;
2946 Fields
[6].Str
= Section
;
2947 Fields
[7].Str
= Name
;
2948 for (auto &Entry
: Fields
)
2952 template <class ELFT
>
2953 void GNUStyle
<ELFT
>::printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
,
2954 uint32_t Sym
, StringRef StrTable
,
2956 std::string Num
, Buc
, Name
, Value
, Size
, Binding
, Type
, Visibility
, Section
;
2957 unsigned Width
, Bias
= 0;
2958 if (ELFT::Is64Bits
) {
2965 Field Fields
[9] = {0, 6, 11, 20 + Bias
, 25 + Bias
,
2966 34 + Bias
, 41 + Bias
, 49 + Bias
, 53 + Bias
};
2967 Num
= to_string(format_decimal(Sym
, 5));
2968 Buc
= to_string(format_decimal(Bucket
, 3)) + ":";
2970 const auto Symbol
= FirstSym
+ Sym
;
2971 Value
= to_string(format_hex_no_prefix(Symbol
->st_value
, Width
));
2972 Size
= to_string(format_decimal(Symbol
->st_size
, 5));
2973 unsigned char SymbolType
= Symbol
->getType();
2974 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
2975 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
2976 Type
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
2978 Type
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
2979 unsigned Vis
= Symbol
->getVisibility();
2980 Binding
= printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
2981 Visibility
= printEnum(Vis
, makeArrayRef(ElfSymbolVisibilities
));
2982 Section
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
2983 Name
= this->dumper()->getFullSymbolName(Symbol
, StrTable
, true);
2984 Fields
[0].Str
= Num
;
2985 Fields
[1].Str
= Buc
;
2986 Fields
[2].Str
= Value
;
2987 Fields
[3].Str
= Size
;
2988 Fields
[4].Str
= Type
;
2989 Fields
[5].Str
= Binding
;
2990 Fields
[6].Str
= Visibility
;
2991 Fields
[7].Str
= Section
;
2992 Fields
[8].Str
= Name
;
2993 for (auto &Entry
: Fields
)
2998 template <class ELFT
> void GNUStyle
<ELFT
>::printSymbols(const ELFO
*Obj
) {
2999 if (opts::DynamicSymbols
)
3001 this->dumper()->printSymbolsHelper(true);
3002 this->dumper()->printSymbolsHelper(false);
3005 template <class ELFT
>
3006 void GNUStyle
<ELFT
>::printDynamicSymbols(const ELFO
*Obj
) {
3007 if (this->dumper()->getDynamicStringTable().empty())
3009 auto StringTable
= this->dumper()->getDynamicStringTable();
3010 auto DynSyms
= this->dumper()->dynamic_symbols();
3011 auto GnuHash
= this->dumper()->getGnuHashTable();
3012 auto SysVHash
= this->dumper()->getHashTable();
3014 // If no hash or .gnu.hash found, try using symbol table
3015 if (GnuHash
== nullptr && SysVHash
== nullptr)
3016 this->dumper()->printSymbolsHelper(true);
3018 // Try printing .hash
3019 if (this->dumper()->getHashTable()) {
3020 OS
<< "\n Symbol table of .hash for image:\n";
3022 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3024 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3027 uint32_t NBuckets
= SysVHash
->nbucket
;
3028 uint32_t NChains
= SysVHash
->nchain
;
3029 auto Buckets
= SysVHash
->buckets();
3030 auto Chains
= SysVHash
->chains();
3031 for (uint32_t Buc
= 0; Buc
< NBuckets
; Buc
++) {
3032 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3034 for (uint32_t Ch
= Buckets
[Buc
]; Ch
< NChains
; Ch
= Chains
[Ch
]) {
3035 if (Ch
== ELF::STN_UNDEF
)
3037 printHashedSymbol(Obj
, &DynSyms
[0], Ch
, StringTable
, Buc
);
3042 // Try printing .gnu.hash
3044 OS
<< "\n Symbol table of .gnu.hash for image:\n";
3046 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3048 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3050 uint32_t NBuckets
= GnuHash
->nbuckets
;
3051 auto Buckets
= GnuHash
->buckets();
3052 for (uint32_t Buc
= 0; Buc
< NBuckets
; Buc
++) {
3053 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3055 uint32_t Index
= Buckets
[Buc
];
3056 uint32_t GnuHashable
= Index
- GnuHash
->symndx
;
3057 // Print whole chain
3059 printHashedSymbol(Obj
, &DynSyms
[0], Index
++, StringTable
, Buc
);
3060 // Chain ends at symbol with stopper bit
3061 if ((GnuHash
->values(DynSyms
.size())[GnuHashable
++] & 1) == 1)
3068 static inline std::string
printPhdrFlags(unsigned Flag
) {
3070 Str
= (Flag
& PF_R
) ? "R" : " ";
3071 Str
+= (Flag
& PF_W
) ? "W" : " ";
3072 Str
+= (Flag
& PF_X
) ? "E" : " ";
3076 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3077 // PT_TLS must only have SHF_TLS sections
3078 template <class ELFT
>
3079 bool GNUStyle
<ELFT
>::checkTLSSections(const Elf_Phdr
&Phdr
,
3080 const Elf_Shdr
&Sec
) {
3081 return (((Sec
.sh_flags
& ELF::SHF_TLS
) &&
3082 ((Phdr
.p_type
== ELF::PT_TLS
) || (Phdr
.p_type
== ELF::PT_LOAD
) ||
3083 (Phdr
.p_type
== ELF::PT_GNU_RELRO
))) ||
3084 (!(Sec
.sh_flags
& ELF::SHF_TLS
) && Phdr
.p_type
!= ELF::PT_TLS
));
3087 // Non-SHT_NOBITS must have its offset inside the segment
3088 // Only non-zero section can be at end of segment
3089 template <class ELFT
>
3090 bool GNUStyle
<ELFT
>::checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3091 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
3094 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3095 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3097 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3098 if (Sec
.sh_offset
>= Phdr
.p_offset
)
3099 return ((Sec
.sh_offset
+ SectionSize
<= Phdr
.p_filesz
+ Phdr
.p_offset
)
3100 /*only non-zero sized sections at end*/ &&
3101 (Sec
.sh_offset
+ 1 <= Phdr
.p_offset
+ Phdr
.p_filesz
));
3105 // SHF_ALLOC must have VMA inside segment
3106 // Only non-zero section can be at end of segment
3107 template <class ELFT
>
3108 bool GNUStyle
<ELFT
>::checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3109 if (!(Sec
.sh_flags
& ELF::SHF_ALLOC
))
3112 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3113 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3115 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3116 if (Sec
.sh_addr
>= Phdr
.p_vaddr
)
3117 return ((Sec
.sh_addr
+ SectionSize
<= Phdr
.p_vaddr
+ Phdr
.p_memsz
) &&
3118 (Sec
.sh_addr
+ 1 <= Phdr
.p_vaddr
+ Phdr
.p_memsz
));
3122 // No section with zero size must be at start or end of PT_DYNAMIC
3123 template <class ELFT
>
3124 bool GNUStyle
<ELFT
>::checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3125 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
|| Sec
.sh_size
!= 0 || Phdr
.p_memsz
== 0)
3127 // Is section within the phdr both based on offset and VMA ?
3128 return ((Sec
.sh_type
== ELF::SHT_NOBITS
) ||
3129 (Sec
.sh_offset
> Phdr
.p_offset
&&
3130 Sec
.sh_offset
< Phdr
.p_offset
+ Phdr
.p_filesz
)) &&
3131 (!(Sec
.sh_flags
& ELF::SHF_ALLOC
) ||
3132 (Sec
.sh_addr
> Phdr
.p_vaddr
&& Sec
.sh_addr
< Phdr
.p_memsz
));
3135 template <class ELFT
>
3136 void GNUStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
3137 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3138 unsigned Width
= ELFT::Is64Bits
? 18 : 10;
3139 unsigned SizeWidth
= ELFT::Is64Bits
? 8 : 7;
3140 std::string Type
, Offset
, VMA
, LMA
, FileSz
, MemSz
, Flag
, Align
;
3142 const Elf_Ehdr
*Header
= Obj
->getHeader();
3143 Field Fields
[8] = {2, 17, 26, 37 + Bias
,
3144 48 + Bias
, 56 + Bias
, 64 + Bias
, 68 + Bias
};
3145 OS
<< "\nElf file type is "
3146 << printEnum(Header
->e_type
, makeArrayRef(ElfObjectFileType
)) << "\n"
3147 << "Entry point " << format_hex(Header
->e_entry
, 3) << "\n"
3148 << "There are " << Header
->e_phnum
<< " program headers,"
3149 << " starting at offset " << Header
->e_phoff
<< "\n\n"
3150 << "Program Headers:\n";
3152 OS
<< " Type Offset VirtAddr PhysAddr "
3153 << " FileSiz MemSiz Flg Align\n";
3155 OS
<< " Type Offset VirtAddr PhysAddr FileSiz "
3156 << "MemSiz Flg Align\n";
3157 for (const auto &Phdr
: unwrapOrError(Obj
->program_headers())) {
3158 Type
= getElfPtType(Header
->e_machine
, Phdr
.p_type
);
3159 Offset
= to_string(format_hex(Phdr
.p_offset
, 8));
3160 VMA
= to_string(format_hex(Phdr
.p_vaddr
, Width
));
3161 LMA
= to_string(format_hex(Phdr
.p_paddr
, Width
));
3162 FileSz
= to_string(format_hex(Phdr
.p_filesz
, SizeWidth
));
3163 MemSz
= to_string(format_hex(Phdr
.p_memsz
, SizeWidth
));
3164 Flag
= printPhdrFlags(Phdr
.p_flags
);
3165 Align
= to_string(format_hex(Phdr
.p_align
, 1));
3166 Fields
[0].Str
= Type
;
3167 Fields
[1].Str
= Offset
;
3168 Fields
[2].Str
= VMA
;
3169 Fields
[3].Str
= LMA
;
3170 Fields
[4].Str
= FileSz
;
3171 Fields
[5].Str
= MemSz
;
3172 Fields
[6].Str
= Flag
;
3173 Fields
[7].Str
= Align
;
3174 for (auto Field
: Fields
)
3176 if (Phdr
.p_type
== ELF::PT_INTERP
) {
3177 OS
<< "\n [Requesting program interpreter: ";
3178 OS
<< reinterpret_cast<const char *>(Obj
->base()) + Phdr
.p_offset
<< "]";
3182 OS
<< "\n Section to Segment mapping:\n Segment Sections...\n";
3184 for (const Elf_Phdr
&Phdr
: unwrapOrError(Obj
->program_headers())) {
3185 std::string Sections
;
3186 OS
<< format(" %2.2d ", Phnum
++);
3187 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
3188 // Check if each section is in a segment and then print mapping.
3189 // readelf additionally makes sure it does not print zero sized sections
3190 // at end of segments and for PT_DYNAMIC both start and end of section
3191 // .tbss must only be shown in PT_TLS section.
3192 bool TbssInNonTLS
= (Sec
.sh_type
== ELF::SHT_NOBITS
) &&
3193 ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0) &&
3194 Phdr
.p_type
!= ELF::PT_TLS
;
3195 if (!TbssInNonTLS
&& checkTLSSections(Phdr
, Sec
) &&
3196 checkoffsets(Phdr
, Sec
) && checkVMA(Phdr
, Sec
) &&
3197 checkPTDynamic(Phdr
, Sec
) && (Sec
.sh_type
!= ELF::SHT_NULL
))
3198 Sections
+= unwrapOrError(Obj
->getSectionName(&Sec
)).str() + " ";
3200 OS
<< Sections
<< "\n";
3205 template <class ELFT
>
3206 void GNUStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
,
3208 SmallString
<32> RelocName
;
3209 StringRef SymbolName
;
3210 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
3211 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3212 // First two fields are bit width dependent. The rest of them are after are
3214 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
3216 uint32_t SymIndex
= R
.getSymbol(Obj
->isMips64EL());
3217 const Elf_Sym
*Sym
= this->dumper()->dynamic_symbols().begin() + SymIndex
;
3218 Obj
->getRelocationTypeName(R
.getType(Obj
->isMips64EL()), RelocName
);
3220 unwrapOrError(Sym
->getName(this->dumper()->getDynamicStringTable()));
3221 std::string Addend
, Info
, Offset
, Value
;
3222 Offset
= to_string(format_hex_no_prefix(R
.r_offset
, Width
));
3223 Info
= to_string(format_hex_no_prefix(R
.r_info
, Width
));
3224 Value
= to_string(format_hex_no_prefix(Sym
->getValue(), Width
));
3225 int64_t RelAddend
= R
.r_addend
;
3226 if (!SymbolName
.empty() && IsRela
) {
3233 if (SymbolName
.empty() && Sym
->getValue() == 0)
3237 Addend
+= to_string(format_hex_no_prefix(std::abs(RelAddend
), 1));
3240 Fields
[0].Str
= Offset
;
3241 Fields
[1].Str
= Info
;
3242 Fields
[2].Str
= RelocName
.c_str();
3243 Fields
[3].Str
= Value
;
3244 Fields
[4].Str
= SymbolName
;
3245 for (auto &Field
: Fields
)
3251 template <class ELFT
>
3252 void GNUStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
3253 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
3254 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
3255 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
3256 if (DynRelaRegion
.Size
> 0) {
3257 OS
<< "\n'RELA' relocation section at offset "
3258 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion
.Addr
) -
3260 1) << " contains " << DynRelaRegion
.Size
<< " bytes:\n";
3261 printRelocHeader(OS
, ELFT::Is64Bits
, true);
3262 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
3263 printDynamicRelocation(Obj
, Rela
, true);
3265 if (DynRelRegion
.Size
> 0) {
3266 OS
<< "\n'REL' relocation section at offset "
3267 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion
.Addr
) -
3269 1) << " contains " << DynRelRegion
.Size
<< " bytes:\n";
3270 printRelocHeader(OS
, ELFT::Is64Bits
, false);
3271 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
3273 Rela
.r_offset
= Rel
.r_offset
;
3274 Rela
.r_info
= Rel
.r_info
;
3276 printDynamicRelocation(Obj
, Rela
, false);
3279 if (DynPLTRelRegion
.Size
) {
3280 OS
<< "\n'PLT' relocation section at offset "
3281 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion
.Addr
) -
3283 1) << " contains " << DynPLTRelRegion
.Size
<< " bytes:\n";
3285 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
)) {
3286 printRelocHeader(OS
, ELFT::Is64Bits
, true);
3287 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
3288 printDynamicRelocation(Obj
, Rela
, true);
3290 printRelocHeader(OS
, ELFT::Is64Bits
, false);
3291 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
3293 Rela
.r_offset
= Rel
.r_offset
;
3294 Rela
.r_info
= Rel
.r_info
;
3296 printDynamicRelocation(Obj
, Rela
, false);
3301 // Hash histogram shows statistics of how efficient the hash was for the
3302 // dynamic symbol table. The table shows number of hash buckets for different
3303 // lengths of chains as absolute number and percentage of the total buckets.
3304 // Additionally cumulative coverage of symbols for each set of buckets.
3305 template <class ELFT
>
3306 void GNUStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
3308 const Elf_Hash
*HashTable
= this->dumper()->getHashTable();
3309 const Elf_GnuHash
*GnuHashTable
= this->dumper()->getGnuHashTable();
3311 // Print histogram for .hash section
3313 size_t NBucket
= HashTable
->nbucket
;
3314 size_t NChain
= HashTable
->nchain
;
3315 ArrayRef
<Elf_Word
> Buckets
= HashTable
->buckets();
3316 ArrayRef
<Elf_Word
> Chains
= HashTable
->chains();
3317 size_t TotalSyms
= 0;
3318 // If hash table is correct, we have at least chains with 0 length
3319 size_t MaxChain
= 1;
3320 size_t CumulativeNonZero
= 0;
3322 if (NChain
== 0 || NBucket
== 0)
3325 std::vector
<size_t> ChainLen(NBucket
, 0);
3326 // Go over all buckets and and note chain lengths of each bucket (total
3327 // unique chain lengths).
3328 for (size_t B
= 0; B
< NBucket
; B
++) {
3329 for (size_t C
= Buckets
[B
]; C
> 0 && C
< NChain
; C
= Chains
[C
])
3330 if (MaxChain
<= ++ChainLen
[B
])
3332 TotalSyms
+= ChainLen
[B
];
3338 std::vector
<size_t> Count(MaxChain
, 0) ;
3339 // Count how long is the chain for each bucket
3340 for (size_t B
= 0; B
< NBucket
; B
++)
3341 ++Count
[ChainLen
[B
]];
3342 // Print Number of buckets with each chain lengths and their cumulative
3343 // coverage of the symbols
3344 OS
<< "Histogram for bucket list length (total of " << NBucket
3346 << " Length Number % of total Coverage\n";
3347 for (size_t I
= 0; I
< MaxChain
; I
++) {
3348 CumulativeNonZero
+= Count
[I
] * I
;
3349 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
3350 (Count
[I
] * 100.0) / NBucket
,
3351 (CumulativeNonZero
* 100.0) / TotalSyms
);
3355 // Print histogram for .gnu.hash section
3357 size_t NBucket
= GnuHashTable
->nbuckets
;
3358 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
->buckets();
3359 unsigned NumSyms
= this->dumper()->dynamic_symbols().size();
3362 ArrayRef
<Elf_Word
> Chains
= GnuHashTable
->values(NumSyms
);
3363 size_t Symndx
= GnuHashTable
->symndx
;
3364 size_t TotalSyms
= 0;
3365 size_t MaxChain
= 1;
3366 size_t CumulativeNonZero
= 0;
3368 if (Chains
.empty() || NBucket
== 0)
3371 std::vector
<size_t> ChainLen(NBucket
, 0);
3373 for (size_t B
= 0; B
< NBucket
; B
++) {
3377 for (size_t C
= Buckets
[B
] - Symndx
;
3378 C
< Chains
.size() && (Chains
[C
] & 1) == 0; C
++)
3379 if (MaxChain
< ++Len
)
3389 std::vector
<size_t> Count(MaxChain
, 0) ;
3390 for (size_t B
= 0; B
< NBucket
; B
++)
3391 ++Count
[ChainLen
[B
]];
3392 // Print Number of buckets with each chain lengths and their cumulative
3393 // coverage of the symbols
3394 OS
<< "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3396 << " Length Number % of total Coverage\n";
3397 for (size_t I
= 0; I
<MaxChain
; I
++) {
3398 CumulativeNonZero
+= Count
[I
] * I
;
3399 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
3400 (Count
[I
] * 100.0) / NBucket
,
3401 (CumulativeNonZero
* 100.0) / TotalSyms
);
3406 static std::string
getGNUNoteTypeName(const uint32_t NT
) {
3407 static const struct {
3411 {ELF::NT_GNU_ABI_TAG
, "NT_GNU_ABI_TAG (ABI version tag)"},
3412 {ELF::NT_GNU_HWCAP
, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
3413 {ELF::NT_GNU_BUILD_ID
, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
3414 {ELF::NT_GNU_GOLD_VERSION
, "NT_GNU_GOLD_VERSION (gold version)"},
3417 for (const auto &Note
: Notes
)
3419 return std::string(Note
.Name
);
3422 raw_string_ostream
OS(string
);
3423 OS
<< format("Unknown note type (0x%08x)", NT
);
3427 static std::string
getFreeBSDNoteTypeName(const uint32_t NT
) {
3428 static const struct {
3432 {ELF::NT_FREEBSD_THRMISC
, "NT_THRMISC (thrmisc structure)"},
3433 {ELF::NT_FREEBSD_PROCSTAT_PROC
, "NT_PROCSTAT_PROC (proc data)"},
3434 {ELF::NT_FREEBSD_PROCSTAT_FILES
, "NT_PROCSTAT_FILES (files data)"},
3435 {ELF::NT_FREEBSD_PROCSTAT_VMMAP
, "NT_PROCSTAT_VMMAP (vmmap data)"},
3436 {ELF::NT_FREEBSD_PROCSTAT_GROUPS
, "NT_PROCSTAT_GROUPS (groups data)"},
3437 {ELF::NT_FREEBSD_PROCSTAT_UMASK
, "NT_PROCSTAT_UMASK (umask data)"},
3438 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT
, "NT_PROCSTAT_RLIMIT (rlimit data)"},
3439 {ELF::NT_FREEBSD_PROCSTAT_OSREL
, "NT_PROCSTAT_OSREL (osreldate data)"},
3440 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS
,
3441 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
3442 {ELF::NT_FREEBSD_PROCSTAT_AUXV
, "NT_PROCSTAT_AUXV (auxv data)"},
3445 for (const auto &Note
: Notes
)
3447 return std::string(Note
.Name
);
3450 raw_string_ostream
OS(string
);
3451 OS
<< format("Unknown note type (0x%08x)", NT
);
3455 static std::string
getAMDGPUNoteTypeName(const uint32_t NT
) {
3456 static const struct {
3460 {ELF::NT_AMD_AMDGPU_HSA_METADATA
,
3461 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
3462 {ELF::NT_AMD_AMDGPU_ISA
,
3463 "NT_AMD_AMDGPU_ISA (ISA Version)"},
3464 {ELF::NT_AMD_AMDGPU_PAL_METADATA
,
3465 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}
3468 for (const auto &Note
: Notes
)
3470 return std::string(Note
.Name
);
3473 raw_string_ostream
OS(string
);
3474 OS
<< format("Unknown note type (0x%08x)", NT
);
3478 template <typename ELFT
>
3479 static void printGNUNote(raw_ostream
&OS
, uint32_t NoteType
,
3480 ArrayRef
<typename
ELFT::Word
> Words
, size_t Size
) {
3484 case ELF::NT_GNU_ABI_TAG
: {
3485 static const char *OSNames
[] = {
3486 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
3489 StringRef OSName
= "Unknown";
3490 if (Words
[0] < array_lengthof(OSNames
))
3491 OSName
= OSNames
[Words
[0]];
3492 uint32_t Major
= Words
[1], Minor
= Words
[2], Patch
= Words
[3];
3494 if (Words
.size() < 4)
3495 OS
<< " <corrupt GNU_ABI_TAG>";
3497 OS
<< " OS: " << OSName
<< ", ABI: " << Major
<< "." << Minor
<< "."
3501 case ELF::NT_GNU_BUILD_ID
: {
3502 OS
<< " Build ID: ";
3503 ArrayRef
<uint8_t> ID(reinterpret_cast<const uint8_t *>(Words
.data()), Size
);
3504 for (const auto &B
: ID
)
3505 OS
<< format_hex_no_prefix(B
, 2);
3508 case ELF::NT_GNU_GOLD_VERSION
:
3510 << StringRef(reinterpret_cast<const char *>(Words
.data()), Size
);
3517 template <typename ELFT
>
3518 static void printAMDGPUNote(raw_ostream
&OS
, uint32_t NoteType
,
3519 ArrayRef
<typename
ELFT::Word
> Words
, size_t Size
) {
3523 case ELF::NT_AMD_AMDGPU_HSA_METADATA
:
3524 OS
<< " HSA Metadata:\n"
3525 << StringRef(reinterpret_cast<const char *>(Words
.data()), Size
);
3527 case ELF::NT_AMD_AMDGPU_ISA
:
3528 OS
<< " ISA Version:\n"
3530 << StringRef(reinterpret_cast<const char *>(Words
.data()), Size
);
3532 case ELF::NT_AMD_AMDGPU_PAL_METADATA
:
3533 const uint32_t *PALMetadataBegin
= reinterpret_cast<const uint32_t *>(Words
.data());
3534 const uint32_t *PALMetadataEnd
= PALMetadataBegin
+ Size
;
3535 std::vector
<uint32_t> PALMetadata(PALMetadataBegin
, PALMetadataEnd
);
3536 std::string PALMetadataString
;
3537 auto Error
= AMDGPU::PALMD::toString(PALMetadata
, PALMetadataString
);
3538 OS
<< " PAL Metadata:\n";
3543 OS
<< PALMetadataString
;
3549 template <class ELFT
>
3550 void GNUStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
3551 const Elf_Ehdr
*e
= Obj
->getHeader();
3552 bool IsCore
= e
->e_type
== ELF::ET_CORE
;
3554 auto PrintHeader
= [&](const typename
ELFT::Off Offset
,
3555 const typename
ELFT::Addr Size
) {
3556 OS
<< "Displaying notes found at file offset " << format_hex(Offset
, 10)
3557 << " with length " << format_hex(Size
, 10) << ":\n"
3558 << " Owner Data size\tDescription\n";
3561 auto ProcessNote
= [&](const Elf_Note
&Note
) {
3562 StringRef Name
= Note
.getName();
3563 ArrayRef
<Elf_Word
> Descriptor
= Note
.getDesc();
3564 Elf_Word Type
= Note
.getType();
3566 OS
<< " " << Name
<< std::string(22 - Name
.size(), ' ')
3567 << format_hex(Descriptor
.size(), 10) << '\t';
3569 if (Name
== "GNU") {
3570 OS
<< getGNUNoteTypeName(Type
) << '\n';
3571 printGNUNote
<ELFT
>(OS
, Type
, Descriptor
, Descriptor
.size());
3572 } else if (Name
== "FreeBSD") {
3573 OS
<< getFreeBSDNoteTypeName(Type
) << '\n';
3574 } else if (Name
== "AMD") {
3575 OS
<< getAMDGPUNoteTypeName(Type
) << '\n';
3576 printAMDGPUNote
<ELFT
>(OS
, Type
, Descriptor
, Descriptor
.size());
3578 OS
<< "Unknown note type: (" << format_hex(Type
, 10) << ')';
3584 for (const auto &P
: unwrapOrError(Obj
->program_headers())) {
3585 if (P
.p_type
!= PT_NOTE
)
3587 PrintHeader(P
.p_offset
, P
.p_filesz
);
3588 Error Err
= Error::success();
3589 for (const auto &Note
: Obj
->notes(P
, Err
))
3592 error(std::move(Err
));
3595 for (const auto &S
: unwrapOrError(Obj
->sections())) {
3596 if (S
.sh_type
!= SHT_NOTE
)
3598 PrintHeader(S
.sh_offset
, S
.sh_size
);
3599 Error Err
= Error::success();
3600 for (const auto &Note
: Obj
->notes(S
, Err
))
3603 error(std::move(Err
));
3608 template <class ELFT
>
3609 void GNUStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
3610 OS
<< "printELFLinkerOptions not implemented!\n";
3613 template <class ELFT
>
3614 void GNUStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
3615 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
3616 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
3618 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
3619 OS
.PadToColumn(11 + Bias
);
3620 OS
<< format_decimal(Parser
.getGotOffset(E
), 6) << "(gp)";
3621 OS
.PadToColumn(22 + Bias
);
3622 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
3623 OS
.PadToColumn(31 + 2 * Bias
);
3624 OS
<< Purpose
<< "\n";
3627 OS
<< (Parser
.IsStatic
? "Static GOT:\n" : "Primary GOT:\n");
3628 OS
<< " Canonical gp value: "
3629 << format_hex_no_prefix(Parser
.getGp(), 8 + Bias
) << "\n\n";
3631 OS
<< " Reserved entries:\n";
3632 OS
<< " Address Access Initial Purpose\n";
3633 PrintEntry(Parser
.getGotLazyResolver(), "Lazy resolver");
3634 if (Parser
.getGotModulePointer())
3635 PrintEntry(Parser
.getGotModulePointer(), "Module pointer (GNU extension)");
3637 if (!Parser
.getLocalEntries().empty()) {
3639 OS
<< " Local entries:\n";
3640 OS
<< " Address Access Initial\n";
3641 for (auto &E
: Parser
.getLocalEntries())
3645 if (Parser
.IsStatic
)
3648 if (!Parser
.getGlobalEntries().empty()) {
3650 OS
<< " Global entries:\n";
3651 OS
<< " Address Access Initial Sym.Val. Type Ndx Name\n";
3652 for (auto &E
: Parser
.getGlobalEntries()) {
3653 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
3654 std::string SymName
= this->dumper()->getFullSymbolName(
3655 Sym
, this->dumper()->getDynamicStringTable(), false);
3658 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
3659 OS
.PadToColumn(11 + Bias
);
3660 OS
<< to_string(format_decimal(Parser
.getGotOffset(&E
), 6)) + "(gp)";
3661 OS
.PadToColumn(22 + Bias
);
3662 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
3663 OS
.PadToColumn(31 + 2 * Bias
);
3664 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
3665 OS
.PadToColumn(40 + 3 * Bias
);
3666 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
3667 OS
.PadToColumn(48 + 3 * Bias
);
3668 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
3669 this->dumper()->dynamic_symbols().begin());
3670 OS
.PadToColumn(52 + 3 * Bias
);
3671 OS
<< SymName
<< "\n";
3675 if (!Parser
.getOtherEntries().empty())
3676 OS
<< "\n Number of TLS and multi-GOT entries "
3677 << Parser
.getOtherEntries().size() << "\n";
3680 template <class ELFT
>
3681 void GNUStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
3682 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
3683 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
3685 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
3686 OS
.PadToColumn(11 + Bias
);
3687 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
3688 OS
.PadToColumn(20 + 2 * Bias
);
3689 OS
<< Purpose
<< "\n";
3692 OS
<< "PLT GOT:\n\n";
3694 OS
<< " Reserved entries:\n";
3695 OS
<< " Address Initial Purpose\n";
3696 PrintEntry(Parser
.getPltLazyResolver(), "PLT lazy resolver");
3697 if (Parser
.getPltModulePointer())
3698 PrintEntry(Parser
.getGotModulePointer(), "Module pointer");
3700 if (!Parser
.getPltEntries().empty()) {
3702 OS
<< " Entries:\n";
3703 OS
<< " Address Initial Sym.Val. Type Ndx Name\n";
3704 for (auto &E
: Parser
.getPltEntries()) {
3705 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
3706 std::string SymName
= this->dumper()->getFullSymbolName(
3707 Sym
, this->dumper()->getDynamicStringTable(), false);
3710 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
3711 OS
.PadToColumn(11 + Bias
);
3712 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
3713 OS
.PadToColumn(20 + 2 * Bias
);
3714 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
3715 OS
.PadToColumn(29 + 3 * Bias
);
3716 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
3717 OS
.PadToColumn(37 + 3 * Bias
);
3718 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
3719 this->dumper()->dynamic_symbols().begin());
3720 OS
.PadToColumn(41 + 3 * Bias
);
3721 OS
<< SymName
<< "\n";
3726 template <class ELFT
> void LLVMStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
3727 const Elf_Ehdr
*e
= Obj
->getHeader();
3729 DictScope
D(W
, "ElfHeader");
3731 DictScope
D(W
, "Ident");
3732 W
.printBinary("Magic", makeArrayRef(e
->e_ident
).slice(ELF::EI_MAG0
, 4));
3733 W
.printEnum("Class", e
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
3734 W
.printEnum("DataEncoding", e
->e_ident
[ELF::EI_DATA
],
3735 makeArrayRef(ElfDataEncoding
));
3736 W
.printNumber("FileVersion", e
->e_ident
[ELF::EI_VERSION
]);
3738 auto OSABI
= makeArrayRef(ElfOSABI
);
3739 if (e
->e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
3740 e
->e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
3741 switch (e
->e_machine
) {
3742 case ELF::EM_AMDGPU
:
3743 OSABI
= makeArrayRef(AMDGPUElfOSABI
);
3746 OSABI
= makeArrayRef(ARMElfOSABI
);
3748 case ELF::EM_TI_C6000
:
3749 OSABI
= makeArrayRef(C6000ElfOSABI
);
3753 W
.printEnum("OS/ABI", e
->e_ident
[ELF::EI_OSABI
], OSABI
);
3754 W
.printNumber("ABIVersion", e
->e_ident
[ELF::EI_ABIVERSION
]);
3755 W
.printBinary("Unused", makeArrayRef(e
->e_ident
).slice(ELF::EI_PAD
));
3758 W
.printEnum("Type", e
->e_type
, makeArrayRef(ElfObjectFileType
));
3759 W
.printEnum("Machine", e
->e_machine
, makeArrayRef(ElfMachineType
));
3760 W
.printNumber("Version", e
->e_version
);
3761 W
.printHex("Entry", e
->e_entry
);
3762 W
.printHex("ProgramHeaderOffset", e
->e_phoff
);
3763 W
.printHex("SectionHeaderOffset", e
->e_shoff
);
3764 if (e
->e_machine
== EM_MIPS
)
3765 W
.printFlags("Flags", e
->e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
3766 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
3767 unsigned(ELF::EF_MIPS_MACH
));
3768 else if (e
->e_machine
== EM_AMDGPU
)
3769 W
.printFlags("Flags", e
->e_flags
, makeArrayRef(ElfHeaderAMDGPUFlags
),
3770 unsigned(ELF::EF_AMDGPU_MACH
));
3771 else if (e
->e_machine
== EM_RISCV
)
3772 W
.printFlags("Flags", e
->e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
3774 W
.printFlags("Flags", e
->e_flags
);
3775 W
.printNumber("HeaderSize", e
->e_ehsize
);
3776 W
.printNumber("ProgramHeaderEntrySize", e
->e_phentsize
);
3777 W
.printNumber("ProgramHeaderCount", e
->e_phnum
);
3778 W
.printNumber("SectionHeaderEntrySize", e
->e_shentsize
);
3779 W
.printNumber("SectionHeaderCount", e
->e_shnum
);
3780 W
.printNumber("StringTableSectionIndex", e
->e_shstrndx
);
3784 template <class ELFT
>
3785 void LLVMStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
3786 DictScope
Lists(W
, "Groups");
3787 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
);
3788 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
3789 for (const GroupSection
&G
: V
) {
3790 DictScope
D(W
, "Group");
3791 W
.printNumber("Name", G
.Name
, G
.ShName
);
3792 W
.printNumber("Index", G
.Index
);
3793 W
.printNumber("Link", G
.Link
);
3794 W
.printNumber("Info", G
.Info
);
3795 W
.printHex("Type", getGroupType(G
.Type
), G
.Type
);
3796 W
.startLine() << "Signature: " << G
.Signature
<< "\n";
3798 ListScope
L(W
, "Section(s) in group");
3799 for (const GroupMember
&GM
: G
.Members
) {
3800 const GroupSection
*MainGroup
= Map
[GM
.Index
];
3801 if (MainGroup
!= &G
) {
3803 errs() << "Error: " << GM
.Name
<< " (" << GM
.Index
3804 << ") in a group " + G
.Name
+ " (" << G
.Index
3805 << ") is already in a group " + MainGroup
->Name
+ " ("
3806 << MainGroup
->Index
<< ")\n";
3810 W
.startLine() << GM
.Name
<< " (" << GM
.Index
<< ")\n";
3815 W
.startLine() << "There are no group sections in the file.\n";
3818 template <class ELFT
> void LLVMStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
3819 ListScope
D(W
, "Relocations");
3821 int SectionNumber
= -1;
3822 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
3825 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
3826 Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
3827 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
)
3830 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
3832 W
.startLine() << "Section (" << SectionNumber
<< ") " << Name
<< " {\n";
3835 printRelocations(&Sec
, Obj
);
3838 W
.startLine() << "}\n";
3842 template <class ELFT
>
3843 void LLVMStyle
<ELFT
>::printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
) {
3844 const Elf_Shdr
*SymTab
= unwrapOrError(Obj
->getSection(Sec
->sh_link
));
3846 switch (Sec
->sh_type
) {
3848 for (const Elf_Rel
&R
: unwrapOrError(Obj
->rels(Sec
))) {
3850 Rela
.r_offset
= R
.r_offset
;
3851 Rela
.r_info
= R
.r_info
;
3853 printRelocation(Obj
, Rela
, SymTab
);
3857 for (const Elf_Rela
&R
: unwrapOrError(Obj
->relas(Sec
)))
3858 printRelocation(Obj
, R
, SymTab
);
3860 case ELF::SHT_ANDROID_REL
:
3861 case ELF::SHT_ANDROID_RELA
:
3862 for (const Elf_Rela
&R
: unwrapOrError(Obj
->android_relas(Sec
)))
3863 printRelocation(Obj
, R
, SymTab
);
3868 template <class ELFT
>
3869 void LLVMStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, Elf_Rela Rel
,
3870 const Elf_Shdr
*SymTab
) {
3871 SmallString
<32> RelocName
;
3872 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
3873 StringRef TargetName
;
3874 const Elf_Sym
*Sym
= unwrapOrError(Obj
->getRelocationSymbol(&Rel
, SymTab
));
3875 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
3876 const Elf_Shdr
*Sec
= unwrapOrError(
3877 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
3878 TargetName
= unwrapOrError(Obj
->getSectionName(Sec
));
3880 StringRef StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*SymTab
));
3881 TargetName
= unwrapOrError(Sym
->getName(StrTable
));
3884 if (opts::ExpandRelocs
) {
3885 DictScope
Group(W
, "Relocation");
3886 W
.printHex("Offset", Rel
.r_offset
);
3887 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
3888 W
.printNumber("Symbol", !TargetName
.empty() ? TargetName
: "-",
3889 Rel
.getSymbol(Obj
->isMips64EL()));
3890 W
.printHex("Addend", Rel
.r_addend
);
3892 raw_ostream
&OS
= W
.startLine();
3893 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
3894 << (!TargetName
.empty() ? TargetName
: "-") << " "
3895 << W
.hex(Rel
.r_addend
) << "\n";
3899 template <class ELFT
> void LLVMStyle
<ELFT
>::printSections(const ELFO
*Obj
) {
3900 ListScope
SectionsD(W
, "Sections");
3902 int SectionIndex
= -1;
3903 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
3906 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
3908 DictScope
SectionD(W
, "Section");
3909 W
.printNumber("Index", SectionIndex
);
3910 W
.printNumber("Name", Name
, Sec
.sh_name
);
3913 object::getELFSectionTypeName(Obj
->getHeader()->e_machine
, Sec
.sh_type
),
3915 std::vector
<EnumEntry
<unsigned>> SectionFlags(std::begin(ElfSectionFlags
),
3916 std::end(ElfSectionFlags
));
3917 switch (Obj
->getHeader()->e_machine
) {
3919 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfARMSectionFlags
),
3920 std::end(ElfARMSectionFlags
));
3923 SectionFlags
.insert(SectionFlags
.end(),
3924 std::begin(ElfHexagonSectionFlags
),
3925 std::end(ElfHexagonSectionFlags
));
3928 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfMipsSectionFlags
),
3929 std::end(ElfMipsSectionFlags
));
3932 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfX86_64SectionFlags
),
3933 std::end(ElfX86_64SectionFlags
));
3936 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfXCoreSectionFlags
),
3937 std::end(ElfXCoreSectionFlags
));
3943 W
.printFlags("Flags", Sec
.sh_flags
, makeArrayRef(SectionFlags
));
3944 W
.printHex("Address", Sec
.sh_addr
);
3945 W
.printHex("Offset", Sec
.sh_offset
);
3946 W
.printNumber("Size", Sec
.sh_size
);
3947 W
.printNumber("Link", Sec
.sh_link
);
3948 W
.printNumber("Info", Sec
.sh_info
);
3949 W
.printNumber("AddressAlignment", Sec
.sh_addralign
);
3950 W
.printNumber("EntrySize", Sec
.sh_entsize
);
3952 if (opts::SectionRelocations
) {
3953 ListScope
D(W
, "Relocations");
3954 printRelocations(&Sec
, Obj
);
3957 if (opts::SectionSymbols
) {
3958 ListScope
D(W
, "Symbols");
3959 const Elf_Shdr
*Symtab
= this->dumper()->getDotSymtabSec();
3960 StringRef StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*Symtab
));
3962 for (const Elf_Sym
&Sym
: unwrapOrError(Obj
->symbols(Symtab
))) {
3963 const Elf_Shdr
*SymSec
= unwrapOrError(
3964 Obj
->getSection(&Sym
, Symtab
, this->dumper()->getShndxTable()));
3966 printSymbol(Obj
, &Sym
, unwrapOrError(Obj
->symbols(Symtab
)).begin(),
3971 if (opts::SectionData
&& Sec
.sh_type
!= ELF::SHT_NOBITS
) {
3972 ArrayRef
<uint8_t> Data
= unwrapOrError(Obj
->getSectionContents(&Sec
));
3973 W
.printBinaryBlock("SectionData",
3974 StringRef((const char *)Data
.data(), Data
.size()));
3979 template <class ELFT
>
3980 void LLVMStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
3981 const Elf_Sym
*First
, StringRef StrTable
,
3983 unsigned SectionIndex
= 0;
3984 StringRef SectionName
;
3985 this->dumper()->getSectionNameIndex(Symbol
, First
, SectionName
, SectionIndex
);
3986 std::string FullSymbolName
=
3987 this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
3988 unsigned char SymbolType
= Symbol
->getType();
3990 DictScope
D(W
, "Symbol");
3991 W
.printNumber("Name", FullSymbolName
, Symbol
->st_name
);
3992 W
.printHex("Value", Symbol
->st_value
);
3993 W
.printNumber("Size", Symbol
->st_size
);
3994 W
.printEnum("Binding", Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
3995 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
3996 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
3997 W
.printEnum("Type", SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
3999 W
.printEnum("Type", SymbolType
, makeArrayRef(ElfSymbolTypes
));
4000 if (Symbol
->st_other
== 0)
4001 // Usually st_other flag is zero. Do not pollute the output
4002 // by flags enumeration in that case.
4003 W
.printNumber("Other", 0);
4005 std::vector
<EnumEntry
<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags
),
4006 std::end(ElfSymOtherFlags
));
4007 if (Obj
->getHeader()->e_machine
== EM_MIPS
) {
4008 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
4009 // flag overlapped with other ST_MIPS_xxx flags. So consider both
4010 // cases separately.
4011 if ((Symbol
->st_other
& STO_MIPS_MIPS16
) == STO_MIPS_MIPS16
)
4012 SymOtherFlags
.insert(SymOtherFlags
.end(),
4013 std::begin(ElfMips16SymOtherFlags
),
4014 std::end(ElfMips16SymOtherFlags
));
4016 SymOtherFlags
.insert(SymOtherFlags
.end(),
4017 std::begin(ElfMipsSymOtherFlags
),
4018 std::end(ElfMipsSymOtherFlags
));
4020 W
.printFlags("Other", Symbol
->st_other
, makeArrayRef(SymOtherFlags
), 0x3u
);
4022 W
.printHex("Section", SectionName
, SectionIndex
);
4025 template <class ELFT
> void LLVMStyle
<ELFT
>::printSymbols(const ELFO
*Obj
) {
4026 ListScope
Group(W
, "Symbols");
4027 this->dumper()->printSymbolsHelper(false);
4030 template <class ELFT
>
4031 void LLVMStyle
<ELFT
>::printDynamicSymbols(const ELFO
*Obj
) {
4032 ListScope
Group(W
, "DynamicSymbols");
4033 this->dumper()->printSymbolsHelper(true);
4036 template <class ELFT
>
4037 void LLVMStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
4038 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
4039 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
4040 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
4041 if (DynRelRegion
.Size
&& DynRelaRegion
.Size
)
4042 report_fatal_error("There are both REL and RELA dynamic relocations");
4043 W
.startLine() << "Dynamic Relocations {\n";
4045 if (DynRelaRegion
.Size
> 0)
4046 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
4047 printDynamicRelocation(Obj
, Rela
);
4049 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
4051 Rela
.r_offset
= Rel
.r_offset
;
4052 Rela
.r_info
= Rel
.r_info
;
4054 printDynamicRelocation(Obj
, Rela
);
4056 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
))
4057 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
4058 printDynamicRelocation(Obj
, Rela
);
4060 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
4062 Rela
.r_offset
= Rel
.r_offset
;
4063 Rela
.r_info
= Rel
.r_info
;
4065 printDynamicRelocation(Obj
, Rela
);
4068 W
.startLine() << "}\n";
4071 template <class ELFT
>
4072 void LLVMStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
) {
4073 SmallString
<32> RelocName
;
4074 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
4075 StringRef SymbolName
;
4076 uint32_t SymIndex
= Rel
.getSymbol(Obj
->isMips64EL());
4077 const Elf_Sym
*Sym
= this->dumper()->dynamic_symbols().begin() + SymIndex
;
4079 unwrapOrError(Sym
->getName(this->dumper()->getDynamicStringTable()));
4080 if (opts::ExpandRelocs
) {
4081 DictScope
Group(W
, "Relocation");
4082 W
.printHex("Offset", Rel
.r_offset
);
4083 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
4084 W
.printString("Symbol", !SymbolName
.empty() ? SymbolName
: "-");
4085 W
.printHex("Addend", Rel
.r_addend
);
4087 raw_ostream
&OS
= W
.startLine();
4088 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
4089 << (!SymbolName
.empty() ? SymbolName
: "-") << " "
4090 << W
.hex(Rel
.r_addend
) << "\n";
4094 template <class ELFT
>
4095 void LLVMStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
4096 ListScope
L(W
, "ProgramHeaders");
4098 for (const Elf_Phdr
&Phdr
: unwrapOrError(Obj
->program_headers())) {
4099 DictScope
P(W
, "ProgramHeader");
4101 getElfSegmentType(Obj
->getHeader()->e_machine
, Phdr
.p_type
),
4103 W
.printHex("Offset", Phdr
.p_offset
);
4104 W
.printHex("VirtualAddress", Phdr
.p_vaddr
);
4105 W
.printHex("PhysicalAddress", Phdr
.p_paddr
);
4106 W
.printNumber("FileSize", Phdr
.p_filesz
);
4107 W
.printNumber("MemSize", Phdr
.p_memsz
);
4108 W
.printFlags("Flags", Phdr
.p_flags
, makeArrayRef(ElfSegmentFlags
));
4109 W
.printNumber("Alignment", Phdr
.p_align
);
4113 template <class ELFT
>
4114 void LLVMStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
4115 W
.startLine() << "Hash Histogram not implemented!\n";
4118 template <class ELFT
>
4119 void LLVMStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
4120 W
.startLine() << "printNotes not implemented!\n";
4123 template <class ELFT
>
4124 void LLVMStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
4125 ListScope
L(W
, "LinkerOptions");
4127 for (const Elf_Shdr
&Shdr
: unwrapOrError(Obj
->sections())) {
4128 if (Shdr
.sh_type
!= ELF::SHT_LLVM_LINKER_OPTIONS
)
4131 ArrayRef
<uint8_t> Contents
= unwrapOrError(Obj
->getSectionContents(&Shdr
));
4132 for (const uint8_t *P
= Contents
.begin(), *E
= Contents
.end(); P
< E
; ) {
4133 StringRef Key
= StringRef(reinterpret_cast<const char *>(P
));
4135 StringRef(reinterpret_cast<const char *>(P
) + Key
.size() + 1);
4137 W
.printString(Key
, Value
);
4139 P
= P
+ Key
.size() + Value
.size() + 2;
4144 template <class ELFT
>
4145 void LLVMStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
4146 auto PrintEntry
= [&](const Elf_Addr
*E
) {
4147 W
.printHex("Address", Parser
.getGotAddress(E
));
4148 W
.printNumber("Access", Parser
.getGotOffset(E
));
4149 W
.printHex("Initial", *E
);
4152 DictScope
GS(W
, Parser
.IsStatic
? "Static GOT" : "Primary GOT");
4154 W
.printHex("Canonical gp value", Parser
.getGp());
4156 ListScope
RS(W
, "Reserved entries");
4158 DictScope
D(W
, "Entry");
4159 PrintEntry(Parser
.getGotLazyResolver());
4160 W
.printString("Purpose", StringRef("Lazy resolver"));
4163 if (Parser
.getGotModulePointer()) {
4164 DictScope
D(W
, "Entry");
4165 PrintEntry(Parser
.getGotModulePointer());
4166 W
.printString("Purpose", StringRef("Module pointer (GNU extension)"));
4170 ListScope
LS(W
, "Local entries");
4171 for (auto &E
: Parser
.getLocalEntries()) {
4172 DictScope
D(W
, "Entry");
4177 if (Parser
.IsStatic
)
4181 ListScope
GS(W
, "Global entries");
4182 for (auto &E
: Parser
.getGlobalEntries()) {
4183 DictScope
D(W
, "Entry");
4187 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
4188 W
.printHex("Value", Sym
->st_value
);
4189 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
4191 unsigned SectionIndex
= 0;
4192 StringRef SectionName
;
4193 this->dumper()->getSectionNameIndex(
4194 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
4196 W
.printHex("Section", SectionName
, SectionIndex
);
4198 std::string SymName
= this->dumper()->getFullSymbolName(
4199 Sym
, this->dumper()->getDynamicStringTable(), true);
4200 W
.printNumber("Name", SymName
, Sym
->st_name
);
4204 W
.printNumber("Number of TLS and multi-GOT entries",
4205 uint64_t(Parser
.getOtherEntries().size()));
4208 template <class ELFT
>
4209 void LLVMStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
4210 auto PrintEntry
= [&](const Elf_Addr
*E
) {
4211 W
.printHex("Address", Parser
.getPltAddress(E
));
4212 W
.printHex("Initial", *E
);
4215 DictScope
GS(W
, "PLT GOT");
4218 ListScope
RS(W
, "Reserved entries");
4220 DictScope
D(W
, "Entry");
4221 PrintEntry(Parser
.getPltLazyResolver());
4222 W
.printString("Purpose", StringRef("PLT lazy resolver"));
4225 if (auto E
= Parser
.getPltModulePointer()) {
4226 DictScope
D(W
, "Entry");
4228 W
.printString("Purpose", StringRef("Module pointer"));
4232 ListScope
LS(W
, "Entries");
4233 for (auto &E
: Parser
.getPltEntries()) {
4234 DictScope
D(W
, "Entry");
4237 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
4238 W
.printHex("Value", Sym
->st_value
);
4239 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
4241 unsigned SectionIndex
= 0;
4242 StringRef SectionName
;
4243 this->dumper()->getSectionNameIndex(
4244 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
4246 W
.printHex("Section", SectionName
, SectionIndex
);
4248 std::string SymName
=
4249 this->dumper()->getFullSymbolName(Sym
, Parser
.getPltStrTable(), true);
4250 W
.printNumber("Name", SymName
, Sym
->st_name
);