[PowerPC] Make AddrSpaceCast noop
[llvm-core.git] / tools / llvm-readobj / ELFDumper.cpp
blob8d62864f05c88f00f62f1f8af64d16980ea0d461
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements the ELF-specific dumper for llvm-readobj.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "ARMEHABIPrinter.h"
16 #include "DwarfCFIEHPrinter.h"
17 #include "Error.h"
18 #include "ObjDumper.h"
19 #include "StackMapPrinter.h"
20 #include "llvm-readobj.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/Object/ELF.h"
33 #include "llvm/Object/ELFObjectFile.h"
34 #include "llvm/Object/ELFTypes.h"
35 #include "llvm/Object/Error.h"
36 #include "llvm/Object/ObjectFile.h"
37 #include "llvm/Object/StackMapParser.h"
38 #include "llvm/Support/AMDGPUMetadata.h"
39 #include "llvm/Support/ARMAttributeParser.h"
40 #include "llvm/Support/ARMBuildAttributes.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Endian.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/FormattedStream.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/MipsABIFlags.h"
49 #include "llvm/Support/ScopedPrinter.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cinttypes>
53 #include <cstddef>
54 #include <cstdint>
55 #include <cstdlib>
56 #include <iterator>
57 #include <memory>
58 #include <string>
59 #include <system_error>
60 #include <vector>
62 using namespace llvm;
63 using namespace llvm::object;
64 using namespace ELF;
66 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
67 case ns::enum: return #enum;
69 #define ENUM_ENT(enum, altName) \
70 { #enum, altName, ELF::enum }
72 #define ENUM_ENT_1(enum) \
73 { #enum, #enum, ELF::enum }
75 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
76 case ns::enum: \
77 return std::string(#enum).substr(3);
79 #define TYPEDEF_ELF_TYPES(ELFT) \
80 using ELFO = ELFFile<ELFT>; \
81 using Elf_Addr = typename ELFT::Addr; \
82 using Elf_Shdr = typename ELFT::Shdr; \
83 using Elf_Sym = typename ELFT::Sym; \
84 using Elf_Dyn = typename ELFT::Dyn; \
85 using Elf_Dyn_Range = typename ELFT::DynRange; \
86 using Elf_Rel = typename ELFT::Rel; \
87 using Elf_Rela = typename ELFT::Rela; \
88 using Elf_Rel_Range = typename ELFT::RelRange; \
89 using Elf_Rela_Range = typename ELFT::RelaRange; \
90 using Elf_Phdr = typename ELFT::Phdr; \
91 using Elf_Half = typename ELFT::Half; \
92 using Elf_Ehdr = typename ELFT::Ehdr; \
93 using Elf_Word = typename ELFT::Word; \
94 using Elf_Hash = typename ELFT::Hash; \
95 using Elf_GnuHash = typename ELFT::GnuHash; \
96 using Elf_Note = typename ELFT::Note; \
97 using Elf_Sym_Range = typename ELFT::SymRange; \
98 using Elf_Versym = typename ELFT::Versym; \
99 using Elf_Verneed = typename ELFT::Verneed; \
100 using Elf_Vernaux = typename ELFT::Vernaux; \
101 using Elf_Verdef = typename ELFT::Verdef; \
102 using Elf_Verdaux = typename ELFT::Verdaux; \
103 using uintX_t = typename ELFT::uint;
105 namespace {
107 template <class ELFT> class DumpStyle;
109 /// Represents a contiguous uniform range in the file. We cannot just create a
110 /// range directly because when creating one of these from the .dynamic table
111 /// the size, entity size and virtual address are different entries in arbitrary
112 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
113 struct DynRegionInfo {
114 DynRegionInfo() = default;
115 DynRegionInfo(const void *A, uint64_t S, uint64_t ES)
116 : Addr(A), Size(S), EntSize(ES) {}
118 /// \brief Address in current address space.
119 const void *Addr = nullptr;
120 /// \brief Size in bytes of the region.
121 uint64_t Size = 0;
122 /// \brief Size of each entity in the region.
123 uint64_t EntSize = 0;
125 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
126 const Type *Start = reinterpret_cast<const Type *>(Addr);
127 if (!Start)
128 return {Start, Start};
129 if (EntSize != sizeof(Type) || Size % EntSize)
130 reportError("Invalid entity size");
131 return {Start, Start + (Size / EntSize)};
135 template<typename ELFT>
136 class ELFDumper : public ObjDumper {
137 public:
138 ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer);
140 void printFileHeaders() override;
141 void printSections() override;
142 void printRelocations() override;
143 void printDynamicRelocations() override;
144 void printSymbols() override;
145 void printDynamicSymbols() override;
146 void printUnwindInfo() override;
148 void printDynamicTable() override;
149 void printNeededLibraries() override;
150 void printProgramHeaders() override;
151 void printHashTable() override;
152 void printGnuHashTable() override;
153 void printLoadName() override;
154 void printVersionInfo() override;
155 void printGroupSections() override;
157 void printAttributes() override;
158 void printMipsPLTGOT() override;
159 void printMipsABIFlags() override;
160 void printMipsReginfo() override;
161 void printMipsOptions() override;
163 void printStackMap() const override;
165 void printHashHistogram() override;
167 void printNotes() override;
169 void printELFLinkerOptions() override;
171 private:
172 std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
174 TYPEDEF_ELF_TYPES(ELFT)
176 DynRegionInfo checkDRI(DynRegionInfo DRI) {
177 if (DRI.Addr < Obj->base() ||
178 (const uint8_t *)DRI.Addr + DRI.Size > Obj->base() + Obj->getBufSize())
179 error(llvm::object::object_error::parse_failed);
180 return DRI;
183 DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
184 return checkDRI({Obj->base() + P->p_offset, P->p_filesz, EntSize});
187 DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
188 return checkDRI({Obj->base() + S->sh_offset, S->sh_size, S->sh_entsize});
191 void parseDynamicTable(ArrayRef<const Elf_Phdr *> LoadSegments);
193 void printValue(uint64_t Type, uint64_t Value);
195 StringRef getDynamicString(uint64_t Offset) const;
196 StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
197 bool &IsDefault) const;
198 void LoadVersionMap() const;
199 void LoadVersionNeeds(const Elf_Shdr *ec) const;
200 void LoadVersionDefs(const Elf_Shdr *sec) const;
202 const ELFO *Obj;
203 DynRegionInfo DynRelRegion;
204 DynRegionInfo DynRelaRegion;
205 DynRegionInfo DynPLTRelRegion;
206 DynRegionInfo DynSymRegion;
207 DynRegionInfo DynamicTable;
208 StringRef DynamicStringTable;
209 StringRef SOName;
210 const Elf_Hash *HashTable = nullptr;
211 const Elf_GnuHash *GnuHashTable = nullptr;
212 const Elf_Shdr *DotSymtabSec = nullptr;
213 StringRef DynSymtabName;
214 ArrayRef<Elf_Word> ShndxTable;
216 const Elf_Shdr *dot_gnu_version_sec = nullptr; // .gnu.version
217 const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r
218 const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d
220 // Records for each version index the corresponding Verdef or Vernaux entry.
221 // This is filled the first time LoadVersionMap() is called.
222 class VersionMapEntry : public PointerIntPair<const void *, 1> {
223 public:
224 // If the integer is 0, this is an Elf_Verdef*.
225 // If the integer is 1, this is an Elf_Vernaux*.
226 VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
227 VersionMapEntry(const Elf_Verdef *verdef)
228 : PointerIntPair<const void *, 1>(verdef, 0) {}
229 VersionMapEntry(const Elf_Vernaux *vernaux)
230 : PointerIntPair<const void *, 1>(vernaux, 1) {}
232 bool isNull() const { return getPointer() == nullptr; }
233 bool isVerdef() const { return !isNull() && getInt() == 0; }
234 bool isVernaux() const { return !isNull() && getInt() == 1; }
235 const Elf_Verdef *getVerdef() const {
236 return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
238 const Elf_Vernaux *getVernaux() const {
239 return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
242 mutable SmallVector<VersionMapEntry, 16> VersionMap;
244 public:
245 Elf_Dyn_Range dynamic_table() const {
246 return DynamicTable.getAsArrayRef<Elf_Dyn>();
249 Elf_Sym_Range dynamic_symbols() const {
250 return DynSymRegion.getAsArrayRef<Elf_Sym>();
253 Elf_Rel_Range dyn_rels() const;
254 Elf_Rela_Range dyn_relas() const;
255 std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
256 bool IsDynamic) const;
257 void getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym,
258 StringRef &SectionName,
259 unsigned &SectionIndex) const;
261 void printSymbolsHelper(bool IsDynamic) const;
262 const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
263 ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
264 StringRef getDynamicStringTable() const { return DynamicStringTable; }
265 const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
266 const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
267 const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
268 const Elf_Hash *getHashTable() const { return HashTable; }
269 const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
272 template <class ELFT>
273 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
274 StringRef StrTable, SymtabName;
275 size_t Entries = 0;
276 Elf_Sym_Range Syms(nullptr, nullptr);
277 if (IsDynamic) {
278 StrTable = DynamicStringTable;
279 Syms = dynamic_symbols();
280 SymtabName = DynSymtabName;
281 if (DynSymRegion.Addr)
282 Entries = DynSymRegion.Size / DynSymRegion.EntSize;
283 } else {
284 if (!DotSymtabSec)
285 return;
286 StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec));
287 Syms = unwrapOrError(Obj->symbols(DotSymtabSec));
288 SymtabName = unwrapOrError(Obj->getSectionName(DotSymtabSec));
289 Entries = DotSymtabSec->getEntityCount();
291 if (Syms.begin() == Syms.end())
292 return;
293 ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries);
294 for (const auto &Sym : Syms)
295 ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic);
298 template <class ELFT> class MipsGOTParser;
300 template <typename ELFT> class DumpStyle {
301 public:
302 using Elf_Shdr = typename ELFT::Shdr;
303 using Elf_Sym = typename ELFT::Sym;
305 DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {}
306 virtual ~DumpStyle() = default;
308 virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
309 virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
310 virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
311 virtual void printSections(const ELFFile<ELFT> *Obj) = 0;
312 virtual void printSymbols(const ELFFile<ELFT> *Obj) = 0;
313 virtual void printDynamicSymbols(const ELFFile<ELFT> *Obj) = 0;
314 virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
315 virtual void printSymtabMessage(const ELFFile<ELFT> *obj, StringRef Name,
316 size_t Offset) {}
317 virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
318 const Elf_Sym *FirstSym, StringRef StrTable,
319 bool IsDynamic) = 0;
320 virtual void printProgramHeaders(const ELFFile<ELFT> *Obj) = 0;
321 virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
322 virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
323 virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
324 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
325 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
326 const ELFDumper<ELFT> *dumper() const { return Dumper; }
328 private:
329 const ELFDumper<ELFT> *Dumper;
332 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
333 formatted_raw_ostream OS;
335 public:
336 TYPEDEF_ELF_TYPES(ELFT)
338 GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
339 : DumpStyle<ELFT>(Dumper), OS(W.getOStream()) {}
341 void printFileHeaders(const ELFO *Obj) override;
342 void printGroupSections(const ELFFile<ELFT> *Obj) override;
343 void printRelocations(const ELFO *Obj) override;
344 void printSections(const ELFO *Obj) override;
345 void printSymbols(const ELFO *Obj) override;
346 void printDynamicSymbols(const ELFO *Obj) override;
347 void printDynamicRelocations(const ELFO *Obj) override;
348 void printSymtabMessage(const ELFO *Obj, StringRef Name,
349 size_t Offset) override;
350 void printProgramHeaders(const ELFO *Obj) override;
351 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
352 void printNotes(const ELFFile<ELFT> *Obj) override;
353 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
354 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
355 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
357 private:
358 struct Field {
359 StringRef Str;
360 unsigned Column;
362 Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
363 Field(unsigned Col) : Str(""), Column(Col) {}
366 template <typename T, typename TEnum>
367 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
368 for (const auto &EnumItem : EnumValues)
369 if (EnumItem.Value == Value)
370 return EnumItem.AltName;
371 return to_hexString(Value, false);
374 formatted_raw_ostream &printField(struct Field F) {
375 if (F.Column != 0)
376 OS.PadToColumn(F.Column);
377 OS << F.Str;
378 OS.flush();
379 return OS;
381 void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
382 StringRef StrTable, uint32_t Bucket);
383 void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
384 const Elf_Rela &R, bool IsRela);
385 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
386 StringRef StrTable, bool IsDynamic) override;
387 std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
388 const Elf_Sym *FirstSym);
389 void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
390 bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
391 bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
392 bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
393 bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
396 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
397 public:
398 TYPEDEF_ELF_TYPES(ELFT)
400 LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
401 : DumpStyle<ELFT>(Dumper), W(W) {}
403 void printFileHeaders(const ELFO *Obj) override;
404 void printGroupSections(const ELFFile<ELFT> *Obj) override;
405 void printRelocations(const ELFO *Obj) override;
406 void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
407 void printSections(const ELFO *Obj) override;
408 void printSymbols(const ELFO *Obj) override;
409 void printDynamicSymbols(const ELFO *Obj) override;
410 void printDynamicRelocations(const ELFO *Obj) override;
411 void printProgramHeaders(const ELFO *Obj) override;
412 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
413 void printNotes(const ELFFile<ELFT> *Obj) override;
414 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
415 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
416 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
418 private:
419 void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
420 void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
421 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
422 StringRef StrTable, bool IsDynamic) override;
424 ScopedPrinter &W;
427 } // end anonymous namespace
429 namespace llvm {
431 template <class ELFT>
432 static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
433 ScopedPrinter &Writer,
434 std::unique_ptr<ObjDumper> &Result) {
435 Result.reset(new ELFDumper<ELFT>(Obj, Writer));
436 return readobj_error::success;
439 std::error_code createELFDumper(const object::ObjectFile *Obj,
440 ScopedPrinter &Writer,
441 std::unique_ptr<ObjDumper> &Result) {
442 // Little-endian 32-bit
443 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
444 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
446 // Big-endian 32-bit
447 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
448 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
450 // Little-endian 64-bit
451 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
452 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
454 // Big-endian 64-bit
455 if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
456 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
458 return readobj_error::unsupported_obj_file_format;
461 } // end namespace llvm
463 // Iterate through the versions needed section, and place each Elf_Vernaux
464 // in the VersionMap according to its index.
465 template <class ELFT>
466 void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
467 unsigned vn_size = sec->sh_size; // Size of section in bytes
468 unsigned vn_count = sec->sh_info; // Number of Verneed entries
469 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
470 const char *sec_end = sec_start + vn_size;
471 // The first Verneed entry is at the start of the section.
472 const char *p = sec_start;
473 for (unsigned i = 0; i < vn_count; i++) {
474 if (p + sizeof(Elf_Verneed) > sec_end)
475 report_fatal_error("Section ended unexpectedly while scanning "
476 "version needed records.");
477 const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
478 if (vn->vn_version != ELF::VER_NEED_CURRENT)
479 report_fatal_error("Unexpected verneed version");
480 // Iterate through the Vernaux entries
481 const char *paux = p + vn->vn_aux;
482 for (unsigned j = 0; j < vn->vn_cnt; j++) {
483 if (paux + sizeof(Elf_Vernaux) > sec_end)
484 report_fatal_error("Section ended unexpected while scanning auxiliary "
485 "version needed records.");
486 const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
487 size_t index = vna->vna_other & ELF::VERSYM_VERSION;
488 if (index >= VersionMap.size())
489 VersionMap.resize(index + 1);
490 VersionMap[index] = VersionMapEntry(vna);
491 paux += vna->vna_next;
493 p += vn->vn_next;
497 // Iterate through the version definitions, and place each Elf_Verdef
498 // in the VersionMap according to its index.
499 template <class ELFT>
500 void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
501 unsigned vd_size = sec->sh_size; // Size of section in bytes
502 unsigned vd_count = sec->sh_info; // Number of Verdef entries
503 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
504 const char *sec_end = sec_start + vd_size;
505 // The first Verdef entry is at the start of the section.
506 const char *p = sec_start;
507 for (unsigned i = 0; i < vd_count; i++) {
508 if (p + sizeof(Elf_Verdef) > sec_end)
509 report_fatal_error("Section ended unexpectedly while scanning "
510 "version definitions.");
511 const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
512 if (vd->vd_version != ELF::VER_DEF_CURRENT)
513 report_fatal_error("Unexpected verdef version");
514 size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
515 if (index >= VersionMap.size())
516 VersionMap.resize(index + 1);
517 VersionMap[index] = VersionMapEntry(vd);
518 p += vd->vd_next;
522 template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
523 // If there is no dynamic symtab or version table, there is nothing to do.
524 if (!DynSymRegion.Addr || !dot_gnu_version_sec)
525 return;
527 // Has the VersionMap already been loaded?
528 if (VersionMap.size() > 0)
529 return;
531 // The first two version indexes are reserved.
532 // Index 0 is LOCAL, index 1 is GLOBAL.
533 VersionMap.push_back(VersionMapEntry());
534 VersionMap.push_back(VersionMapEntry());
536 if (dot_gnu_version_d_sec)
537 LoadVersionDefs(dot_gnu_version_d_sec);
539 if (dot_gnu_version_r_sec)
540 LoadVersionNeeds(dot_gnu_version_r_sec);
543 template <typename ELFO, class ELFT>
544 static void printVersionSymbolSection(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
545 const typename ELFO::Elf_Shdr *Sec,
546 ScopedPrinter &W) {
547 DictScope SS(W, "Version symbols");
548 if (!Sec)
549 return;
550 StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
551 W.printNumber("Section Name", Name, Sec->sh_name);
552 W.printHex("Address", Sec->sh_addr);
553 W.printHex("Offset", Sec->sh_offset);
554 W.printNumber("Link", Sec->sh_link);
556 const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset;
557 StringRef StrTable = Dumper->getDynamicStringTable();
559 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
560 ListScope Syms(W, "Symbols");
561 for (const typename ELFO::Elf_Sym &Sym : Dumper->dynamic_symbols()) {
562 DictScope S(W, "Symbol");
563 std::string FullSymbolName =
564 Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
565 W.printNumber("Version", *P);
566 W.printString("Name", FullSymbolName);
567 P += sizeof(typename ELFO::Elf_Half);
571 static const EnumEntry<unsigned> SymVersionFlags[] = {
572 {"Base", "BASE", VER_FLG_BASE},
573 {"Weak", "WEAK", VER_FLG_WEAK},
574 {"Info", "INFO", VER_FLG_INFO}};
576 template <typename ELFO, class ELFT>
577 static void printVersionDefinitionSection(ELFDumper<ELFT> *Dumper,
578 const ELFO *Obj,
579 const typename ELFO::Elf_Shdr *Sec,
580 ScopedPrinter &W) {
581 using VerDef = typename ELFO::Elf_Verdef;
582 using VerdAux = typename ELFO::Elf_Verdaux;
584 DictScope SD(W, "SHT_GNU_verdef");
585 if (!Sec)
586 return;
588 // The number of entries in the section SHT_GNU_verdef
589 // is determined by DT_VERDEFNUM tag.
590 unsigned VerDefsNum = 0;
591 for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) {
592 if (Dyn.d_tag == DT_VERDEFNUM)
593 VerDefsNum = Dyn.d_un.d_val;
595 const uint8_t *SecStartAddress =
596 (const uint8_t *)Obj->base() + Sec->sh_offset;
597 const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
598 const uint8_t *P = SecStartAddress;
599 const typename ELFO::Elf_Shdr *StrTab =
600 unwrapOrError(Obj->getSection(Sec->sh_link));
602 while (VerDefsNum--) {
603 if (P + sizeof(VerDef) > SecEndAddress)
604 report_fatal_error("invalid offset in the section");
606 auto *VD = reinterpret_cast<const VerDef *>(P);
607 DictScope Def(W, "Definition");
608 W.printNumber("Version", VD->vd_version);
609 W.printEnum("Flags", VD->vd_flags, makeArrayRef(SymVersionFlags));
610 W.printNumber("Index", VD->vd_ndx);
611 W.printNumber("Hash", VD->vd_hash);
612 W.printString("Name",
613 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
614 VD->getAux()->vda_name)));
615 if (!VD->vd_cnt)
616 report_fatal_error("at least one definition string must exist");
617 if (VD->vd_cnt > 2)
618 report_fatal_error("more than one predecessor is not expected");
620 if (VD->vd_cnt == 2) {
621 const uint8_t *PAux = P + VD->vd_aux + VD->getAux()->vda_next;
622 const VerdAux *Aux = reinterpret_cast<const VerdAux *>(PAux);
623 W.printString("Predecessor",
624 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
625 Aux->vda_name)));
628 P += VD->vd_next;
632 template <typename ELFO, class ELFT>
633 static void printVersionDependencySection(ELFDumper<ELFT> *Dumper,
634 const ELFO *Obj,
635 const typename ELFO::Elf_Shdr *Sec,
636 ScopedPrinter &W) {
637 using VerNeed = typename ELFO::Elf_Verneed;
638 using VernAux = typename ELFO::Elf_Vernaux;
640 DictScope SD(W, "SHT_GNU_verneed");
641 if (!Sec)
642 return;
644 unsigned VerNeedNum = 0;
645 for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table())
646 if (Dyn.d_tag == DT_VERNEEDNUM)
647 VerNeedNum = Dyn.d_un.d_val;
649 const uint8_t *SecData = (const uint8_t *)Obj->base() + Sec->sh_offset;
650 const typename ELFO::Elf_Shdr *StrTab =
651 unwrapOrError(Obj->getSection(Sec->sh_link));
653 const uint8_t *P = SecData;
654 for (unsigned I = 0; I < VerNeedNum; ++I) {
655 const VerNeed *Need = reinterpret_cast<const VerNeed *>(P);
656 DictScope Entry(W, "Dependency");
657 W.printNumber("Version", Need->vn_version);
658 W.printNumber("Count", Need->vn_cnt);
659 W.printString("FileName",
660 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
661 Need->vn_file)));
663 const uint8_t *PAux = P + Need->vn_aux;
664 for (unsigned J = 0; J < Need->vn_cnt; ++J) {
665 const VernAux *Aux = reinterpret_cast<const VernAux *>(PAux);
666 DictScope Entry(W, "Entry");
667 W.printNumber("Hash", Aux->vna_hash);
668 W.printEnum("Flags", Aux->vna_flags, makeArrayRef(SymVersionFlags));
669 W.printNumber("Index", Aux->vna_other);
670 W.printString("Name",
671 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
672 Aux->vna_name)));
673 PAux += Aux->vna_next;
675 P += Need->vn_next;
679 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
680 // Dump version symbol section.
681 printVersionSymbolSection(this, Obj, dot_gnu_version_sec, W);
683 // Dump version definition section.
684 printVersionDefinitionSection(this, Obj, dot_gnu_version_d_sec, W);
686 // Dump version dependency section.
687 printVersionDependencySection(this, Obj, dot_gnu_version_r_sec, W);
690 template <typename ELFT>
691 StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
692 const Elf_Sym *symb,
693 bool &IsDefault) const {
694 // This is a dynamic symbol. Look in the GNU symbol version table.
695 if (!dot_gnu_version_sec) {
696 // No version table.
697 IsDefault = false;
698 return StringRef("");
701 // Determine the position in the symbol table of this entry.
702 size_t entry_index = (reinterpret_cast<uintptr_t>(symb) -
703 reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
704 sizeof(Elf_Sym);
706 // Get the corresponding version index entry
707 const Elf_Versym *vs = unwrapOrError(
708 Obj->template getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index));
709 size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
711 // Special markers for unversioned symbols.
712 if (version_index == ELF::VER_NDX_LOCAL ||
713 version_index == ELF::VER_NDX_GLOBAL) {
714 IsDefault = false;
715 return StringRef("");
718 // Lookup this symbol in the version table
719 LoadVersionMap();
720 if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
721 reportError("Invalid version entry");
722 const VersionMapEntry &entry = VersionMap[version_index];
724 // Get the version name string
725 size_t name_offset;
726 if (entry.isVerdef()) {
727 // The first Verdaux entry holds the name.
728 name_offset = entry.getVerdef()->getAux()->vda_name;
729 IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
730 } else {
731 name_offset = entry.getVernaux()->vna_name;
732 IsDefault = false;
734 if (name_offset >= StrTab.size())
735 reportError("Invalid string offset");
736 return StringRef(StrTab.data() + name_offset);
739 template <typename ELFT>
740 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
741 StringRef StrTable,
742 bool IsDynamic) const {
743 StringRef SymbolName = unwrapOrError(Symbol->getName(StrTable));
744 if (!IsDynamic)
745 return SymbolName;
747 std::string FullSymbolName(SymbolName);
749 bool IsDefault;
750 StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
751 FullSymbolName += (IsDefault ? "@@" : "@");
752 FullSymbolName += Version;
753 return FullSymbolName;
756 template <typename ELFT>
757 void ELFDumper<ELFT>::getSectionNameIndex(const Elf_Sym *Symbol,
758 const Elf_Sym *FirstSym,
759 StringRef &SectionName,
760 unsigned &SectionIndex) const {
761 SectionIndex = Symbol->st_shndx;
762 if (Symbol->isUndefined())
763 SectionName = "Undefined";
764 else if (Symbol->isProcessorSpecific())
765 SectionName = "Processor Specific";
766 else if (Symbol->isOSSpecific())
767 SectionName = "Operating System Specific";
768 else if (Symbol->isAbsolute())
769 SectionName = "Absolute";
770 else if (Symbol->isCommon())
771 SectionName = "Common";
772 else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
773 SectionName = "Reserved";
774 else {
775 if (SectionIndex == SHN_XINDEX)
776 SectionIndex = unwrapOrError(object::getExtendedSymbolTableIndex<ELFT>(
777 Symbol, FirstSym, ShndxTable));
778 const typename ELFT::Shdr *Sec =
779 unwrapOrError(Obj->getSection(SectionIndex));
780 SectionName = unwrapOrError(Obj->getSectionName(Sec));
784 template <class ELFO>
785 static const typename ELFO::Elf_Shdr *
786 findNotEmptySectionByAddress(const ELFO *Obj, uint64_t Addr) {
787 for (const auto &Shdr : unwrapOrError(Obj->sections()))
788 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
789 return &Shdr;
790 return nullptr;
793 template <class ELFO>
794 static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
795 StringRef Name) {
796 for (const auto &Shdr : unwrapOrError(Obj.sections())) {
797 if (Name == unwrapOrError(Obj.getSectionName(&Shdr)))
798 return &Shdr;
800 return nullptr;
803 static const EnumEntry<unsigned> ElfClass[] = {
804 {"None", "none", ELF::ELFCLASSNONE},
805 {"32-bit", "ELF32", ELF::ELFCLASS32},
806 {"64-bit", "ELF64", ELF::ELFCLASS64},
809 static const EnumEntry<unsigned> ElfDataEncoding[] = {
810 {"None", "none", ELF::ELFDATANONE},
811 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
812 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
815 static const EnumEntry<unsigned> ElfObjectFileType[] = {
816 {"None", "NONE (none)", ELF::ET_NONE},
817 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
818 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
819 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
820 {"Core", "CORE (Core file)", ELF::ET_CORE},
823 static const EnumEntry<unsigned> ElfOSABI[] = {
824 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
825 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
826 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
827 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
828 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
829 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
830 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
831 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
832 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
833 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
834 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
835 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
836 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
837 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
838 {"AROS", "AROS", ELF::ELFOSABI_AROS},
839 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
840 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
841 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
844 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
845 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
846 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
847 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
850 static const EnumEntry<unsigned> ARMElfOSABI[] = {
851 {"ARM", "ARM", ELF::ELFOSABI_ARM}
854 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
855 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
856 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
859 static const EnumEntry<unsigned> ElfMachineType[] = {
860 ENUM_ENT(EM_NONE, "None"),
861 ENUM_ENT(EM_M32, "WE32100"),
862 ENUM_ENT(EM_SPARC, "Sparc"),
863 ENUM_ENT(EM_386, "Intel 80386"),
864 ENUM_ENT(EM_68K, "MC68000"),
865 ENUM_ENT(EM_88K, "MC88000"),
866 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
867 ENUM_ENT(EM_860, "Intel 80860"),
868 ENUM_ENT(EM_MIPS, "MIPS R3000"),
869 ENUM_ENT(EM_S370, "IBM System/370"),
870 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
871 ENUM_ENT(EM_PARISC, "HPPA"),
872 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
873 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
874 ENUM_ENT(EM_960, "Intel 80960"),
875 ENUM_ENT(EM_PPC, "PowerPC"),
876 ENUM_ENT(EM_PPC64, "PowerPC64"),
877 ENUM_ENT(EM_S390, "IBM S/390"),
878 ENUM_ENT(EM_SPU, "SPU"),
879 ENUM_ENT(EM_V800, "NEC V800 series"),
880 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
881 ENUM_ENT(EM_RH32, "TRW RH-32"),
882 ENUM_ENT(EM_RCE, "Motorola RCE"),
883 ENUM_ENT(EM_ARM, "ARM"),
884 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
885 ENUM_ENT(EM_SH, "Hitachi SH"),
886 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
887 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
888 ENUM_ENT(EM_ARC, "ARC"),
889 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
890 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
891 ENUM_ENT(EM_H8S, "Hitachi H8S"),
892 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
893 ENUM_ENT(EM_IA_64, "Intel IA-64"),
894 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
895 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
896 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
897 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
898 ENUM_ENT(EM_PCP, "Siemens PCP"),
899 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
900 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
901 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
902 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
903 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
904 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
905 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
906 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
907 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
908 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
909 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
910 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
911 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
912 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
913 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
914 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
915 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
916 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
917 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
918 ENUM_ENT(EM_VAX, "Digital VAX"),
919 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
920 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
921 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
922 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
923 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
924 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
925 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
926 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
927 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
928 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
929 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
930 ENUM_ENT(EM_V850, "NEC v850"),
931 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
932 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
933 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
934 ENUM_ENT(EM_PJ, "picoJava"),
935 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
936 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
937 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
938 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
939 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
940 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
941 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
942 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
943 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
944 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
945 ENUM_ENT(EM_MAX, "MAX Processor"),
946 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
947 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
948 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
949 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
950 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
951 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
952 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
953 ENUM_ENT(EM_UNICORE, "Unicore"),
954 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
955 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
956 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
957 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
958 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
959 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
960 ENUM_ENT(EM_M16C, "Renesas M16C"),
961 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
962 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
963 ENUM_ENT(EM_M32C, "Renesas M32C"),
964 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
965 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
966 ENUM_ENT(EM_SHARC, "EM_SHARC"),
967 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
968 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
969 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
970 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
971 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
972 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
973 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
974 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
975 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
976 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
977 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
978 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
979 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
980 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
981 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
982 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
983 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
984 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
985 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
986 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
987 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
988 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
989 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
990 ENUM_ENT(EM_RX, "Renesas RX"),
991 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
992 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
993 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
994 ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"),
995 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
996 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
997 ENUM_ENT(EM_L10M, "EM_L10M"),
998 ENUM_ENT(EM_K10M, "EM_K10M"),
999 ENUM_ENT(EM_AARCH64, "AArch64"),
1000 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
1001 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
1002 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
1003 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
1004 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
1005 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
1006 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
1007 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
1008 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
1009 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
1010 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
1011 ENUM_ENT(EM_RL78, "Renesas RL78"),
1012 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
1013 ENUM_ENT(EM_78KOR, "EM_78KOR"),
1014 ENUM_ENT(EM_56800EX, "EM_56800EX"),
1015 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
1016 ENUM_ENT(EM_RISCV, "RISC-V"),
1017 ENUM_ENT(EM_WEBASSEMBLY, "EM_WEBASSEMBLY"),
1018 ENUM_ENT(EM_LANAI, "EM_LANAI"),
1019 ENUM_ENT(EM_BPF, "EM_BPF"),
1022 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1023 {"Local", "LOCAL", ELF::STB_LOCAL},
1024 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1025 {"Weak", "WEAK", ELF::STB_WEAK},
1026 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1028 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1029 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1030 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1031 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1032 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1034 static const EnumEntry<unsigned> ElfSymbolTypes[] = {
1035 {"None", "NOTYPE", ELF::STT_NOTYPE},
1036 {"Object", "OBJECT", ELF::STT_OBJECT},
1037 {"Function", "FUNC", ELF::STT_FUNC},
1038 {"Section", "SECTION", ELF::STT_SECTION},
1039 {"File", "FILE", ELF::STT_FILE},
1040 {"Common", "COMMON", ELF::STT_COMMON},
1041 {"TLS", "TLS", ELF::STT_TLS},
1042 {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC}};
1044 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1045 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1048 static const char *getGroupType(uint32_t Flag) {
1049 if (Flag & ELF::GRP_COMDAT)
1050 return "COMDAT";
1051 else
1052 return "(unknown)";
1055 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1056 ENUM_ENT(SHF_WRITE, "W"),
1057 ENUM_ENT(SHF_ALLOC, "A"),
1058 ENUM_ENT(SHF_EXCLUDE, "E"),
1059 ENUM_ENT(SHF_EXECINSTR, "X"),
1060 ENUM_ENT(SHF_MERGE, "M"),
1061 ENUM_ENT(SHF_STRINGS, "S"),
1062 ENUM_ENT(SHF_INFO_LINK, "I"),
1063 ENUM_ENT(SHF_LINK_ORDER, "L"),
1064 ENUM_ENT(SHF_OS_NONCONFORMING, "o"),
1065 ENUM_ENT(SHF_GROUP, "G"),
1066 ENUM_ENT(SHF_TLS, "T"),
1067 ENUM_ENT(SHF_MASKOS, "o"),
1068 ENUM_ENT(SHF_MASKPROC, "p"),
1069 ENUM_ENT_1(SHF_COMPRESSED),
1072 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1073 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
1074 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION)
1077 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1078 LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE)
1081 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1082 LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL)
1085 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1086 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES),
1087 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ),
1088 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ),
1089 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP),
1090 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ),
1091 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ),
1092 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ),
1093 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING )
1096 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1097 LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE)
1100 static std::string getGNUFlags(uint64_t Flags) {
1101 std::string Str;
1102 for (auto Entry : ElfSectionFlags) {
1103 uint64_t Flag = Entry.Value & Flags;
1104 Flags &= ~Entry.Value;
1105 switch (Flag) {
1106 case ELF::SHF_WRITE:
1107 case ELF::SHF_ALLOC:
1108 case ELF::SHF_EXECINSTR:
1109 case ELF::SHF_MERGE:
1110 case ELF::SHF_STRINGS:
1111 case ELF::SHF_INFO_LINK:
1112 case ELF::SHF_LINK_ORDER:
1113 case ELF::SHF_OS_NONCONFORMING:
1114 case ELF::SHF_GROUP:
1115 case ELF::SHF_TLS:
1116 case ELF::SHF_EXCLUDE:
1117 Str += Entry.AltName;
1118 break;
1119 default:
1120 if (Flag & ELF::SHF_MASKOS)
1121 Str += "o";
1122 else if (Flag & ELF::SHF_MASKPROC)
1123 Str += "p";
1124 else if (Flag)
1125 Str += "x";
1128 return Str;
1131 static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1132 // Check potentially overlapped processor-specific
1133 // program header type.
1134 switch (Arch) {
1135 case ELF::EM_ARM:
1136 switch (Type) {
1137 LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX);
1139 case ELF::EM_MIPS:
1140 case ELF::EM_MIPS_RS3_LE:
1141 switch (Type) {
1142 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1143 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1144 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1145 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1149 switch (Type) {
1150 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL );
1151 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD );
1152 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1153 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
1154 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE );
1155 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB );
1156 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR );
1157 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS );
1159 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1160 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1162 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1163 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1165 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1166 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1167 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1169 default: return "";
1173 static std::string getElfPtType(unsigned Arch, unsigned Type) {
1174 switch (Type) {
1175 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
1176 LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
1177 LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
1178 LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
1179 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
1180 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
1181 LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
1182 LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
1183 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
1184 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
1185 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
1186 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
1187 default:
1188 // All machine specific PT_* types
1189 switch (Arch) {
1190 case ELF::EM_ARM:
1191 if (Type == ELF::PT_ARM_EXIDX)
1192 return "EXIDX";
1193 return "";
1194 case ELF::EM_MIPS:
1195 case ELF::EM_MIPS_RS3_LE:
1196 switch (Type) {
1197 case PT_MIPS_REGINFO:
1198 return "REGINFO";
1199 case PT_MIPS_RTPROC:
1200 return "RTPROC";
1201 case PT_MIPS_OPTIONS:
1202 return "OPTIONS";
1203 case PT_MIPS_ABIFLAGS:
1204 return "ABIFLAGS";
1206 return "";
1209 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1212 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1213 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1214 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1215 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1218 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1219 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER),
1220 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC),
1221 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC),
1222 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2),
1223 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE),
1224 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64),
1225 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008),
1226 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32),
1227 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64),
1228 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32),
1229 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64),
1230 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900),
1231 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010),
1232 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100),
1233 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650),
1234 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120),
1235 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111),
1236 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1),
1237 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON),
1238 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR),
1239 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2),
1240 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3),
1241 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400),
1242 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900),
1243 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500),
1244 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000),
1245 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E),
1246 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F),
1247 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A),
1248 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS),
1249 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16),
1250 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX),
1251 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1),
1252 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2),
1253 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3),
1254 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4),
1255 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5),
1256 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32),
1257 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64),
1258 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2),
1259 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2),
1260 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6),
1261 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6)
1264 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
1265 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1266 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1267 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1268 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1269 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1270 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1271 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1272 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1273 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1274 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1275 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1276 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1277 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1278 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1279 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1280 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1281 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1282 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1283 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1284 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1285 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1286 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1287 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1288 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1289 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1290 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1291 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1292 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1293 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1294 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1295 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK)
1298 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1299 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_RVC),
1300 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_FLOAT_ABI_SINGLE),
1301 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_FLOAT_ABI_DOUBLE),
1302 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_FLOAT_ABI_QUAD),
1303 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_RVE)
1306 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1307 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1308 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1309 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1312 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1313 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1314 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1315 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1316 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1319 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1320 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1321 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1322 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1325 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1326 switch (Odk) {
1327 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1328 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1329 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1330 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1331 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1332 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1333 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1334 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1335 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1336 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1337 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1338 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1339 default:
1340 return "Unknown";
1344 template <typename ELFT>
1345 ELFDumper<ELFT>::ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer)
1346 : ObjDumper(Writer), Obj(Obj) {
1347 SmallVector<const Elf_Phdr *, 4> LoadSegments;
1348 for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
1349 if (Phdr.p_type == ELF::PT_DYNAMIC) {
1350 DynamicTable = createDRIFrom(&Phdr, sizeof(Elf_Dyn));
1351 continue;
1353 if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0)
1354 continue;
1355 LoadSegments.push_back(&Phdr);
1358 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
1359 switch (Sec.sh_type) {
1360 case ELF::SHT_SYMTAB:
1361 if (DotSymtabSec != nullptr)
1362 reportError("Multiple SHT_SYMTAB");
1363 DotSymtabSec = &Sec;
1364 break;
1365 case ELF::SHT_DYNSYM:
1366 if (DynSymRegion.Size)
1367 reportError("Multiple SHT_DYNSYM");
1368 DynSymRegion = createDRIFrom(&Sec);
1369 // This is only used (if Elf_Shdr present)for naming section in GNU style
1370 DynSymtabName = unwrapOrError(Obj->getSectionName(&Sec));
1371 DynamicStringTable = unwrapOrError(Obj->getStringTableForSymtab(Sec));
1372 break;
1373 case ELF::SHT_SYMTAB_SHNDX:
1374 ShndxTable = unwrapOrError(Obj->getSHNDXTable(Sec));
1375 break;
1376 case ELF::SHT_GNU_versym:
1377 if (dot_gnu_version_sec != nullptr)
1378 reportError("Multiple SHT_GNU_versym");
1379 dot_gnu_version_sec = &Sec;
1380 break;
1381 case ELF::SHT_GNU_verdef:
1382 if (dot_gnu_version_d_sec != nullptr)
1383 reportError("Multiple SHT_GNU_verdef");
1384 dot_gnu_version_d_sec = &Sec;
1385 break;
1386 case ELF::SHT_GNU_verneed:
1387 if (dot_gnu_version_r_sec != nullptr)
1388 reportError("Multiple SHT_GNU_verneed");
1389 dot_gnu_version_r_sec = &Sec;
1390 break;
1394 parseDynamicTable(LoadSegments);
1396 if (opts::Output == opts::GNU)
1397 ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
1398 else
1399 ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
1402 template <typename ELFT>
1403 void ELFDumper<ELFT>::parseDynamicTable(
1404 ArrayRef<const Elf_Phdr *> LoadSegments) {
1405 auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * {
1406 const Elf_Phdr *const *I =
1407 std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
1408 [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
1409 return VAddr < Phdr->p_vaddr;
1411 if (I == LoadSegments.begin())
1412 report_fatal_error("Virtual address is not in any segment");
1413 --I;
1414 const Elf_Phdr &Phdr = **I;
1415 uint64_t Delta = VAddr - Phdr.p_vaddr;
1416 if (Delta >= Phdr.p_filesz)
1417 report_fatal_error("Virtual address is not in any segment");
1418 return Obj->base() + Phdr.p_offset + Delta;
1421 uint64_t SONameOffset = 0;
1422 const char *StringTableBegin = nullptr;
1423 uint64_t StringTableSize = 0;
1424 for (const Elf_Dyn &Dyn : dynamic_table()) {
1425 switch (Dyn.d_tag) {
1426 case ELF::DT_HASH:
1427 HashTable =
1428 reinterpret_cast<const Elf_Hash *>(toMappedAddr(Dyn.getPtr()));
1429 break;
1430 case ELF::DT_GNU_HASH:
1431 GnuHashTable =
1432 reinterpret_cast<const Elf_GnuHash *>(toMappedAddr(Dyn.getPtr()));
1433 break;
1434 case ELF::DT_STRTAB:
1435 StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr());
1436 break;
1437 case ELF::DT_STRSZ:
1438 StringTableSize = Dyn.getVal();
1439 break;
1440 case ELF::DT_SYMTAB:
1441 DynSymRegion.Addr = toMappedAddr(Dyn.getPtr());
1442 DynSymRegion.EntSize = sizeof(Elf_Sym);
1443 break;
1444 case ELF::DT_RELA:
1445 DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr());
1446 break;
1447 case ELF::DT_RELASZ:
1448 DynRelaRegion.Size = Dyn.getVal();
1449 break;
1450 case ELF::DT_RELAENT:
1451 DynRelaRegion.EntSize = Dyn.getVal();
1452 break;
1453 case ELF::DT_SONAME:
1454 SONameOffset = Dyn.getVal();
1455 break;
1456 case ELF::DT_REL:
1457 DynRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1458 break;
1459 case ELF::DT_RELSZ:
1460 DynRelRegion.Size = Dyn.getVal();
1461 break;
1462 case ELF::DT_RELENT:
1463 DynRelRegion.EntSize = Dyn.getVal();
1464 break;
1465 case ELF::DT_PLTREL:
1466 if (Dyn.getVal() == DT_REL)
1467 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1468 else if (Dyn.getVal() == DT_RELA)
1469 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1470 else
1471 reportError(Twine("unknown DT_PLTREL value of ") +
1472 Twine((uint64_t)Dyn.getVal()));
1473 break;
1474 case ELF::DT_JMPREL:
1475 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1476 break;
1477 case ELF::DT_PLTRELSZ:
1478 DynPLTRelRegion.Size = Dyn.getVal();
1479 break;
1482 if (StringTableBegin)
1483 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
1484 if (SONameOffset)
1485 SOName = getDynamicString(SONameOffset);
1488 template <typename ELFT>
1489 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
1490 return DynRelRegion.getAsArrayRef<Elf_Rel>();
1493 template <typename ELFT>
1494 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
1495 return DynRelaRegion.getAsArrayRef<Elf_Rela>();
1498 template<class ELFT>
1499 void ELFDumper<ELFT>::printFileHeaders() {
1500 ELFDumperStyle->printFileHeaders(Obj);
1503 template<class ELFT>
1504 void ELFDumper<ELFT>::printSections() {
1505 ELFDumperStyle->printSections(Obj);
1508 template<class ELFT>
1509 void ELFDumper<ELFT>::printRelocations() {
1510 ELFDumperStyle->printRelocations(Obj);
1513 template <class ELFT> void ELFDumper<ELFT>::printProgramHeaders() {
1514 ELFDumperStyle->printProgramHeaders(Obj);
1517 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
1518 ELFDumperStyle->printDynamicRelocations(Obj);
1521 template<class ELFT>
1522 void ELFDumper<ELFT>::printSymbols() {
1523 ELFDumperStyle->printSymbols(Obj);
1526 template<class ELFT>
1527 void ELFDumper<ELFT>::printDynamicSymbols() {
1528 ELFDumperStyle->printDynamicSymbols(Obj);
1531 template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
1532 ELFDumperStyle->printHashHistogram(Obj);
1535 template <class ELFT> void ELFDumper<ELFT>::printNotes() {
1536 ELFDumperStyle->printNotes(Obj);
1539 template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
1540 ELFDumperStyle->printELFLinkerOptions(Obj);
1543 #define LLVM_READOBJ_TYPE_CASE(name) \
1544 case DT_##name: return #name
1546 static const char *getTypeString(unsigned Arch, uint64_t Type) {
1547 switch (Arch) {
1548 case EM_HEXAGON:
1549 switch (Type) {
1550 LLVM_READOBJ_TYPE_CASE(HEXAGON_SYMSZ);
1551 LLVM_READOBJ_TYPE_CASE(HEXAGON_VER);
1552 LLVM_READOBJ_TYPE_CASE(HEXAGON_PLT);
1554 case EM_MIPS:
1555 switch (Type) {
1556 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP_REL);
1557 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION);
1558 LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS);
1559 LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS);
1560 LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO);
1561 LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO);
1562 LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO);
1563 LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM);
1564 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP);
1565 LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT);
1566 LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS);
1569 switch (Type) {
1570 LLVM_READOBJ_TYPE_CASE(ANDROID_REL);
1571 LLVM_READOBJ_TYPE_CASE(ANDROID_RELSZ);
1572 LLVM_READOBJ_TYPE_CASE(ANDROID_RELA);
1573 LLVM_READOBJ_TYPE_CASE(ANDROID_RELASZ);
1574 LLVM_READOBJ_TYPE_CASE(BIND_NOW);
1575 LLVM_READOBJ_TYPE_CASE(DEBUG);
1576 LLVM_READOBJ_TYPE_CASE(FINI);
1577 LLVM_READOBJ_TYPE_CASE(FINI_ARRAY);
1578 LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ);
1579 LLVM_READOBJ_TYPE_CASE(FLAGS);
1580 LLVM_READOBJ_TYPE_CASE(FLAGS_1);
1581 LLVM_READOBJ_TYPE_CASE(HASH);
1582 LLVM_READOBJ_TYPE_CASE(INIT);
1583 LLVM_READOBJ_TYPE_CASE(INIT_ARRAY);
1584 LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ);
1585 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY);
1586 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ);
1587 LLVM_READOBJ_TYPE_CASE(JMPREL);
1588 LLVM_READOBJ_TYPE_CASE(NEEDED);
1589 LLVM_READOBJ_TYPE_CASE(NULL);
1590 LLVM_READOBJ_TYPE_CASE(PLTGOT);
1591 LLVM_READOBJ_TYPE_CASE(PLTREL);
1592 LLVM_READOBJ_TYPE_CASE(PLTRELSZ);
1593 LLVM_READOBJ_TYPE_CASE(REL);
1594 LLVM_READOBJ_TYPE_CASE(RELA);
1595 LLVM_READOBJ_TYPE_CASE(RELENT);
1596 LLVM_READOBJ_TYPE_CASE(RELSZ);
1597 LLVM_READOBJ_TYPE_CASE(RELAENT);
1598 LLVM_READOBJ_TYPE_CASE(RELASZ);
1599 LLVM_READOBJ_TYPE_CASE(RPATH);
1600 LLVM_READOBJ_TYPE_CASE(RUNPATH);
1601 LLVM_READOBJ_TYPE_CASE(SONAME);
1602 LLVM_READOBJ_TYPE_CASE(STRSZ);
1603 LLVM_READOBJ_TYPE_CASE(STRTAB);
1604 LLVM_READOBJ_TYPE_CASE(SYMBOLIC);
1605 LLVM_READOBJ_TYPE_CASE(SYMENT);
1606 LLVM_READOBJ_TYPE_CASE(SYMTAB);
1607 LLVM_READOBJ_TYPE_CASE(TEXTREL);
1608 LLVM_READOBJ_TYPE_CASE(VERDEF);
1609 LLVM_READOBJ_TYPE_CASE(VERDEFNUM);
1610 LLVM_READOBJ_TYPE_CASE(VERNEED);
1611 LLVM_READOBJ_TYPE_CASE(VERNEEDNUM);
1612 LLVM_READOBJ_TYPE_CASE(VERSYM);
1613 LLVM_READOBJ_TYPE_CASE(RELACOUNT);
1614 LLVM_READOBJ_TYPE_CASE(RELCOUNT);
1615 LLVM_READOBJ_TYPE_CASE(GNU_HASH);
1616 LLVM_READOBJ_TYPE_CASE(TLSDESC_PLT);
1617 LLVM_READOBJ_TYPE_CASE(TLSDESC_GOT);
1618 LLVM_READOBJ_TYPE_CASE(AUXILIARY);
1619 LLVM_READOBJ_TYPE_CASE(FILTER);
1620 default: return "unknown";
1624 #undef LLVM_READOBJ_TYPE_CASE
1626 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1627 { #enum, prefix##_##enum }
1629 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
1630 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
1631 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
1632 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
1633 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
1634 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
1637 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
1638 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
1639 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
1640 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
1641 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
1642 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
1643 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
1644 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
1645 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
1646 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
1647 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
1648 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
1649 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
1650 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
1651 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
1652 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
1653 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
1654 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
1655 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
1656 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
1657 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
1658 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
1659 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
1660 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
1661 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
1662 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
1665 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
1666 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
1667 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
1668 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
1669 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
1670 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
1671 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
1672 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
1673 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
1674 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
1675 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
1676 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
1677 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
1678 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
1679 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
1680 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
1681 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
1684 #undef LLVM_READOBJ_DT_FLAG_ENT
1686 template <typename T, typename TFlag>
1687 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
1688 using FlagEntry = EnumEntry<TFlag>;
1689 using FlagVector = SmallVector<FlagEntry, 10>;
1690 FlagVector SetFlags;
1692 for (const auto &Flag : Flags) {
1693 if (Flag.Value == 0)
1694 continue;
1696 if ((Value & Flag.Value) == Flag.Value)
1697 SetFlags.push_back(Flag);
1700 for (const auto &Flag : SetFlags) {
1701 OS << Flag.Name << " ";
1705 template <class ELFT>
1706 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
1707 if (Value >= DynamicStringTable.size())
1708 reportError("Invalid dynamic string table reference");
1709 return StringRef(DynamicStringTable.data() + Value);
1712 static void printLibrary(raw_ostream &OS, const Twine &Tag, const Twine &Name) {
1713 OS << Tag << ": [" << Name << "]";
1716 template <class ELFT>
1717 void ELFDumper<ELFT>::printValue(uint64_t Type, uint64_t Value) {
1718 raw_ostream &OS = W.getOStream();
1719 const char* ConvChar = (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
1720 switch (Type) {
1721 case DT_PLTREL:
1722 if (Value == DT_REL) {
1723 OS << "REL";
1724 break;
1725 } else if (Value == DT_RELA) {
1726 OS << "RELA";
1727 break;
1729 LLVM_FALLTHROUGH;
1730 case DT_PLTGOT:
1731 case DT_HASH:
1732 case DT_STRTAB:
1733 case DT_SYMTAB:
1734 case DT_RELA:
1735 case DT_INIT:
1736 case DT_FINI:
1737 case DT_REL:
1738 case DT_JMPREL:
1739 case DT_INIT_ARRAY:
1740 case DT_FINI_ARRAY:
1741 case DT_PREINIT_ARRAY:
1742 case DT_DEBUG:
1743 case DT_VERDEF:
1744 case DT_VERNEED:
1745 case DT_VERSYM:
1746 case DT_GNU_HASH:
1747 case DT_NULL:
1748 case DT_MIPS_BASE_ADDRESS:
1749 case DT_MIPS_GOTSYM:
1750 case DT_MIPS_RLD_MAP:
1751 case DT_MIPS_RLD_MAP_REL:
1752 case DT_MIPS_PLTGOT:
1753 case DT_MIPS_OPTIONS:
1754 OS << format(ConvChar, Value);
1755 break;
1756 case DT_RELACOUNT:
1757 case DT_RELCOUNT:
1758 case DT_VERDEFNUM:
1759 case DT_VERNEEDNUM:
1760 case DT_MIPS_RLD_VERSION:
1761 case DT_MIPS_LOCAL_GOTNO:
1762 case DT_MIPS_SYMTABNO:
1763 case DT_MIPS_UNREFEXTNO:
1764 OS << Value;
1765 break;
1766 case DT_PLTRELSZ:
1767 case DT_RELASZ:
1768 case DT_RELAENT:
1769 case DT_STRSZ:
1770 case DT_SYMENT:
1771 case DT_RELSZ:
1772 case DT_RELENT:
1773 case DT_INIT_ARRAYSZ:
1774 case DT_FINI_ARRAYSZ:
1775 case DT_PREINIT_ARRAYSZ:
1776 case DT_ANDROID_RELSZ:
1777 case DT_ANDROID_RELASZ:
1778 OS << Value << " (bytes)";
1779 break;
1780 case DT_NEEDED:
1781 printLibrary(OS, "Shared library", getDynamicString(Value));
1782 break;
1783 case DT_SONAME:
1784 printLibrary(OS, "Library soname", getDynamicString(Value));
1785 break;
1786 case DT_AUXILIARY:
1787 printLibrary(OS, "Auxiliary library", getDynamicString(Value));
1788 break;
1789 case DT_FILTER:
1790 printLibrary(OS, "Filter library", getDynamicString(Value));
1791 break;
1792 case DT_RPATH:
1793 case DT_RUNPATH:
1794 OS << getDynamicString(Value);
1795 break;
1796 case DT_MIPS_FLAGS:
1797 printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
1798 break;
1799 case DT_FLAGS:
1800 printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
1801 break;
1802 case DT_FLAGS_1:
1803 printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
1804 break;
1805 default:
1806 OS << format(ConvChar, Value);
1807 break;
1811 template<class ELFT>
1812 void ELFDumper<ELFT>::printUnwindInfo() {
1813 const unsigned Machine = Obj->getHeader()->e_machine;
1814 if (Machine == EM_386 || Machine == EM_X86_64) {
1815 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, Obj);
1816 return Ctx.printUnwindInformation();
1818 W.startLine() << "UnwindInfo not implemented.\n";
1821 namespace {
1823 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
1824 const unsigned Machine = Obj->getHeader()->e_machine;
1825 if (Machine == EM_ARM) {
1826 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, DotSymtabSec);
1827 return Ctx.PrintUnwindInformation();
1829 W.startLine() << "UnwindInfo not implemented.\n";
1832 } // end anonymous namespace
1834 template<class ELFT>
1835 void ELFDumper<ELFT>::printDynamicTable() {
1836 auto I = dynamic_table().begin();
1837 auto E = dynamic_table().end();
1839 if (I == E)
1840 return;
1842 --E;
1843 while (I != E && E->getTag() == ELF::DT_NULL)
1844 --E;
1845 if (E->getTag() != ELF::DT_NULL)
1846 ++E;
1847 ++E;
1849 ptrdiff_t Total = std::distance(I, E);
1850 if (Total == 0)
1851 return;
1853 raw_ostream &OS = W.getOStream();
1854 W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
1856 bool Is64 = ELFT::Is64Bits;
1858 W.startLine()
1859 << " Tag" << (Is64 ? " " : " ") << "Type"
1860 << " " << "Name/Value\n";
1861 while (I != E) {
1862 const Elf_Dyn &Entry = *I;
1863 uintX_t Tag = Entry.getTag();
1864 ++I;
1865 W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, opts::Output != opts::GNU) << " "
1866 << format("%-21s", getTypeString(Obj->getHeader()->e_machine, Tag));
1867 printValue(Tag, Entry.getVal());
1868 OS << "\n";
1871 W.startLine() << "]\n";
1874 template<class ELFT>
1875 void ELFDumper<ELFT>::printNeededLibraries() {
1876 ListScope D(W, "NeededLibraries");
1878 using LibsTy = std::vector<StringRef>;
1879 LibsTy Libs;
1881 for (const auto &Entry : dynamic_table())
1882 if (Entry.d_tag == ELF::DT_NEEDED)
1883 Libs.push_back(getDynamicString(Entry.d_un.d_val));
1885 std::stable_sort(Libs.begin(), Libs.end());
1887 for (const auto &L : Libs)
1888 W.startLine() << L << "\n";
1892 template <typename ELFT>
1893 void ELFDumper<ELFT>::printHashTable() {
1894 DictScope D(W, "HashTable");
1895 if (!HashTable)
1896 return;
1897 W.printNumber("Num Buckets", HashTable->nbucket);
1898 W.printNumber("Num Chains", HashTable->nchain);
1899 W.printList("Buckets", HashTable->buckets());
1900 W.printList("Chains", HashTable->chains());
1903 template <typename ELFT>
1904 void ELFDumper<ELFT>::printGnuHashTable() {
1905 DictScope D(W, "GnuHashTable");
1906 if (!GnuHashTable)
1907 return;
1908 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
1909 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
1910 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
1911 W.printNumber("Shift Count", GnuHashTable->shift2);
1912 W.printHexList("Bloom Filter", GnuHashTable->filter());
1913 W.printList("Buckets", GnuHashTable->buckets());
1914 Elf_Sym_Range Syms = dynamic_symbols();
1915 unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
1916 if (!NumSyms)
1917 reportError("No dynamic symbol section");
1918 W.printHexList("Values", GnuHashTable->values(NumSyms));
1921 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
1922 W.printString("LoadName", SOName);
1925 template <class ELFT>
1926 void ELFDumper<ELFT>::printAttributes() {
1927 W.startLine() << "Attributes not implemented.\n";
1930 namespace {
1932 template <> void ELFDumper<ELF32LE>::printAttributes() {
1933 if (Obj->getHeader()->e_machine != EM_ARM) {
1934 W.startLine() << "Attributes not implemented.\n";
1935 return;
1938 DictScope BA(W, "BuildAttributes");
1939 for (const ELFO::Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
1940 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
1941 continue;
1943 ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Sec));
1944 if (Contents[0] != ARMBuildAttrs::Format_Version) {
1945 errs() << "unrecognised FormatVersion: 0x"
1946 << Twine::utohexstr(Contents[0]) << '\n';
1947 continue;
1950 W.printHex("FormatVersion", Contents[0]);
1951 if (Contents.size() == 1)
1952 continue;
1954 ARMAttributeParser(&W).Parse(Contents, true);
1958 template <class ELFT> class MipsGOTParser {
1959 public:
1960 TYPEDEF_ELF_TYPES(ELFT)
1961 using Entry = typename ELFO::Elf_Addr;
1962 using Entries = ArrayRef<Entry>;
1964 const bool IsStatic;
1965 const ELFO * const Obj;
1967 MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
1969 bool hasGot() const { return !GotEntries.empty(); }
1970 bool hasPlt() const { return !PltEntries.empty(); }
1972 uint64_t getGp() const;
1974 const Entry *getGotLazyResolver() const;
1975 const Entry *getGotModulePointer() const;
1976 const Entry *getPltLazyResolver() const;
1977 const Entry *getPltModulePointer() const;
1979 Entries getLocalEntries() const;
1980 Entries getGlobalEntries() const;
1981 Entries getOtherEntries() const;
1982 Entries getPltEntries() const;
1984 uint64_t getGotAddress(const Entry * E) const;
1985 int64_t getGotOffset(const Entry * E) const;
1986 const Elf_Sym *getGotSym(const Entry *E) const;
1988 uint64_t getPltAddress(const Entry * E) const;
1989 const Elf_Sym *getPltSym(const Entry *E) const;
1991 StringRef getPltStrTable() const { return PltStrTable; }
1993 private:
1994 const Elf_Shdr *GotSec;
1995 size_t LocalNum;
1996 size_t GlobalNum;
1998 const Elf_Shdr *PltSec;
1999 const Elf_Shdr *PltRelSec;
2000 const Elf_Shdr *PltSymTable;
2001 Elf_Sym_Range GotDynSyms;
2002 StringRef PltStrTable;
2004 Entries GotEntries;
2005 Entries PltEntries;
2008 } // end anonymous namespace
2010 template <class ELFT>
2011 MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable,
2012 Elf_Sym_Range DynSyms)
2013 : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
2014 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr) {
2015 // See "Global Offset Table" in Chapter 5 in the following document
2016 // for detailed GOT description.
2017 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2019 // Find static GOT secton.
2020 if (IsStatic) {
2021 GotSec = findSectionByName(*Obj, ".got");
2022 if (!GotSec)
2023 reportError("Cannot find .got section");
2025 ArrayRef<uint8_t> Content = unwrapOrError(Obj->getSectionContents(GotSec));
2026 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2027 Content.size() / sizeof(Entry));
2028 LocalNum = GotEntries.size();
2029 return;
2032 // Lookup dynamic table tags which define GOT/PLT layouts.
2033 Optional<uint64_t> DtPltGot;
2034 Optional<uint64_t> DtLocalGotNum;
2035 Optional<uint64_t> DtGotSym;
2036 Optional<uint64_t> DtMipsPltGot;
2037 Optional<uint64_t> DtJmpRel;
2038 for (const auto &Entry : DynTable) {
2039 switch (Entry.getTag()) {
2040 case ELF::DT_PLTGOT:
2041 DtPltGot = Entry.getVal();
2042 break;
2043 case ELF::DT_MIPS_LOCAL_GOTNO:
2044 DtLocalGotNum = Entry.getVal();
2045 break;
2046 case ELF::DT_MIPS_GOTSYM:
2047 DtGotSym = Entry.getVal();
2048 break;
2049 case ELF::DT_MIPS_PLTGOT:
2050 DtMipsPltGot = Entry.getVal();
2051 break;
2052 case ELF::DT_JMPREL:
2053 DtJmpRel = Entry.getVal();
2054 break;
2058 // Find dynamic GOT section.
2059 if (DtPltGot || DtLocalGotNum || DtGotSym) {
2060 if (!DtPltGot)
2061 report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2062 if (!DtLocalGotNum)
2063 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2064 if (!DtGotSym)
2065 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2067 size_t DynSymTotal = DynSyms.size();
2068 if (*DtGotSym > DynSymTotal)
2069 reportError("MIPS_GOTSYM exceeds a number of dynamic symbols");
2071 GotSec = findNotEmptySectionByAddress(Obj, *DtPltGot);
2072 if (!GotSec)
2073 reportError("There is no not empty GOT section at 0x" +
2074 Twine::utohexstr(*DtPltGot));
2076 LocalNum = *DtLocalGotNum;
2077 GlobalNum = DynSymTotal - *DtGotSym;
2079 ArrayRef<uint8_t> Content = unwrapOrError(Obj->getSectionContents(GotSec));
2080 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2081 Content.size() / sizeof(Entry));
2082 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2085 // Find PLT section.
2086 if (DtMipsPltGot || DtJmpRel) {
2087 if (!DtMipsPltGot)
2088 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2089 if (!DtJmpRel)
2090 report_fatal_error("Cannot find JMPREL dynamic table tag.");
2092 PltSec = findNotEmptySectionByAddress(Obj, *DtMipsPltGot);
2093 if (!PltSec)
2094 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2095 Twine::utohexstr(*DtMipsPltGot));
2097 PltRelSec = findNotEmptySectionByAddress(Obj, *DtJmpRel);
2098 if (!PltRelSec)
2099 report_fatal_error("There is no not empty RELPLT section at 0x" +
2100 Twine::utohexstr(*DtJmpRel));
2102 ArrayRef<uint8_t> PltContent =
2103 unwrapOrError(Obj->getSectionContents(PltSec));
2104 PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()),
2105 PltContent.size() / sizeof(Entry));
2107 PltSymTable = unwrapOrError(Obj->getSection(PltRelSec->sh_link));
2108 PltStrTable = unwrapOrError(Obj->getStringTableForSymtab(*PltSymTable));
2112 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2113 return GotSec->sh_addr + 0x7ff0;
2116 template <class ELFT>
2117 const typename MipsGOTParser<ELFT>::Entry *
2118 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2119 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2122 template <class ELFT>
2123 const typename MipsGOTParser<ELFT>::Entry *
2124 MipsGOTParser<ELFT>::getGotModulePointer() const {
2125 if (LocalNum < 2)
2126 return nullptr;
2127 const Entry &E = GotEntries[1];
2128 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2129 return nullptr;
2130 return &E;
2133 template <class ELFT>
2134 typename MipsGOTParser<ELFT>::Entries
2135 MipsGOTParser<ELFT>::getLocalEntries() const {
2136 size_t Skip = getGotModulePointer() ? 2 : 1;
2137 if (LocalNum - Skip <= 0)
2138 return Entries();
2139 return GotEntries.slice(Skip, LocalNum - Skip);
2142 template <class ELFT>
2143 typename MipsGOTParser<ELFT>::Entries
2144 MipsGOTParser<ELFT>::getGlobalEntries() const {
2145 if (GlobalNum == 0)
2146 return Entries();
2147 return GotEntries.slice(LocalNum, GlobalNum);
2150 template <class ELFT>
2151 typename MipsGOTParser<ELFT>::Entries
2152 MipsGOTParser<ELFT>::getOtherEntries() const {
2153 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2154 if (OtherNum == 0)
2155 return Entries();
2156 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2159 template <class ELFT>
2160 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2161 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2162 return GotSec->sh_addr + Offset;
2165 template <class ELFT>
2166 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2167 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2168 return Offset - 0x7ff0;
2171 template <class ELFT>
2172 const typename MipsGOTParser<ELFT>::Elf_Sym *
2173 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2174 int64_t Offset = std::distance(GotEntries.data(), E);
2175 return &GotDynSyms[Offset - LocalNum];
2178 template <class ELFT>
2179 const typename MipsGOTParser<ELFT>::Entry *
2180 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2181 return PltEntries.empty() ? nullptr : &PltEntries[0];
2184 template <class ELFT>
2185 const typename MipsGOTParser<ELFT>::Entry *
2186 MipsGOTParser<ELFT>::getPltModulePointer() const {
2187 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2190 template <class ELFT>
2191 typename MipsGOTParser<ELFT>::Entries
2192 MipsGOTParser<ELFT>::getPltEntries() const {
2193 if (PltEntries.size() <= 2)
2194 return Entries();
2195 return PltEntries.slice(2, PltEntries.size() - 2);
2198 template <class ELFT>
2199 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2200 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2201 return PltSec->sh_addr + Offset;
2204 template <class ELFT>
2205 const typename MipsGOTParser<ELFT>::Elf_Sym *
2206 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2207 int64_t Offset = std::distance(getPltEntries().data(), E);
2208 if (PltRelSec->sh_type == ELF::SHT_REL) {
2209 Elf_Rel_Range Rels = unwrapOrError(Obj->rels(PltRelSec));
2210 return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2211 } else {
2212 Elf_Rela_Range Rels = unwrapOrError(Obj->relas(PltRelSec));
2213 return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2217 template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
2218 if (Obj->getHeader()->e_machine != EM_MIPS)
2219 reportError("MIPS PLT GOT is available for MIPS targets only");
2221 MipsGOTParser<ELFT> Parser(Obj, dynamic_table(), dynamic_symbols());
2222 if (Parser.hasGot())
2223 ELFDumperStyle->printMipsGOT(Parser);
2224 if (Parser.hasPlt())
2225 ELFDumperStyle->printMipsPLT(Parser);
2228 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2229 {"None", Mips::AFL_EXT_NONE},
2230 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
2231 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
2232 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2233 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2234 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2235 {"LSI R4010", Mips::AFL_EXT_4010},
2236 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
2237 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
2238 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
2239 {"MIPS R4650", Mips::AFL_EXT_4650},
2240 {"MIPS R5900", Mips::AFL_EXT_5900},
2241 {"MIPS R10000", Mips::AFL_EXT_10000},
2242 {"NEC VR4100", Mips::AFL_EXT_4100},
2243 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
2244 {"NEC VR4120", Mips::AFL_EXT_4120},
2245 {"NEC VR5400", Mips::AFL_EXT_5400},
2246 {"NEC VR5500", Mips::AFL_EXT_5500},
2247 {"RMI Xlr", Mips::AFL_EXT_XLR},
2248 {"Toshiba R3900", Mips::AFL_EXT_3900}
2251 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2252 {"DSP", Mips::AFL_ASE_DSP},
2253 {"DSPR2", Mips::AFL_ASE_DSPR2},
2254 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2255 {"MCU", Mips::AFL_ASE_MCU},
2256 {"MDMX", Mips::AFL_ASE_MDMX},
2257 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
2258 {"MT", Mips::AFL_ASE_MT},
2259 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
2260 {"VZ", Mips::AFL_ASE_VIRT},
2261 {"MSA", Mips::AFL_ASE_MSA},
2262 {"MIPS16", Mips::AFL_ASE_MIPS16},
2263 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
2264 {"XPA", Mips::AFL_ASE_XPA},
2265 {"CRC", Mips::AFL_ASE_CRC},
2268 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2269 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
2270 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2271 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2272 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2273 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2274 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2275 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
2276 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2277 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2278 Mips::Val_GNU_MIPS_ABI_FP_64A}
2281 static const EnumEntry<unsigned> ElfMipsFlags1[] {
2282 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2285 static int getMipsRegisterSize(uint8_t Flag) {
2286 switch (Flag) {
2287 case Mips::AFL_REG_NONE:
2288 return 0;
2289 case Mips::AFL_REG_32:
2290 return 32;
2291 case Mips::AFL_REG_64:
2292 return 64;
2293 case Mips::AFL_REG_128:
2294 return 128;
2295 default:
2296 return -1;
2300 template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
2301 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
2302 if (!Shdr) {
2303 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2304 return;
2306 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2307 if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
2308 W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2309 return;
2312 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
2314 raw_ostream &OS = W.getOStream();
2315 DictScope GS(W, "MIPS ABI Flags");
2317 W.printNumber("Version", Flags->version);
2318 W.startLine() << "ISA: ";
2319 if (Flags->isa_rev <= 1)
2320 OS << format("MIPS%u", Flags->isa_level);
2321 else
2322 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
2323 OS << "\n";
2324 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
2325 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
2326 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
2327 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
2328 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
2329 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
2330 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
2331 W.printHex("Flags 2", Flags->flags2);
2334 template <class ELFT>
2335 static void printMipsReginfoData(ScopedPrinter &W,
2336 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2337 W.printHex("GP", Reginfo.ri_gp_value);
2338 W.printHex("General Mask", Reginfo.ri_gprmask);
2339 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
2340 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
2341 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
2342 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
2345 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2346 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
2347 if (!Shdr) {
2348 W.startLine() << "There is no .reginfo section in the file.\n";
2349 return;
2351 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2352 if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2353 W.startLine() << "The .reginfo section has a wrong size.\n";
2354 return;
2357 DictScope GS(W, "MIPS RegInfo");
2358 auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
2359 printMipsReginfoData(W, *Reginfo);
2362 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
2363 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.options");
2364 if (!Shdr) {
2365 W.startLine() << "There is no .MIPS.options section in the file.\n";
2366 return;
2369 DictScope GS(W, "MIPS Options");
2371 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2372 while (!Sec.empty()) {
2373 if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
2374 W.startLine() << "The .MIPS.options section has a wrong size.\n";
2375 return;
2377 auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
2378 DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
2379 switch (O->kind) {
2380 case ODK_REGINFO:
2381 printMipsReginfoData(W, O->getRegInfo());
2382 break;
2383 default:
2384 W.startLine() << "Unsupported MIPS options tag.\n";
2385 break;
2387 Sec = Sec.slice(O->size);
2391 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2392 const Elf_Shdr *StackMapSection = nullptr;
2393 for (const auto &Sec : unwrapOrError(Obj->sections())) {
2394 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2395 if (Name == ".llvm_stackmaps") {
2396 StackMapSection = &Sec;
2397 break;
2401 if (!StackMapSection)
2402 return;
2404 ArrayRef<uint8_t> StackMapContentsArray =
2405 unwrapOrError(Obj->getSectionContents(StackMapSection));
2407 prettyPrintStackMap(
2408 W, StackMapV2Parser<ELFT::TargetEndianness>(StackMapContentsArray));
2411 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
2412 ELFDumperStyle->printGroupSections(Obj);
2415 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
2416 StringRef Str2) {
2417 OS.PadToColumn(2u);
2418 OS << Str1;
2419 OS.PadToColumn(37u);
2420 OS << Str2 << "\n";
2421 OS.flush();
2424 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
2425 const Elf_Ehdr *e = Obj->getHeader();
2426 OS << "ELF Header:\n";
2427 OS << " Magic: ";
2428 std::string Str;
2429 for (int i = 0; i < ELF::EI_NIDENT; i++)
2430 OS << format(" %02x", static_cast<int>(e->e_ident[i]));
2431 OS << "\n";
2432 Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
2433 printFields(OS, "Class:", Str);
2434 Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
2435 printFields(OS, "Data:", Str);
2436 OS.PadToColumn(2u);
2437 OS << "Version:";
2438 OS.PadToColumn(37u);
2439 OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
2440 if (e->e_version == ELF::EV_CURRENT)
2441 OS << " (current)";
2442 OS << "\n";
2443 Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
2444 printFields(OS, "OS/ABI:", Str);
2445 Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
2446 printFields(OS, "ABI Version:", Str);
2447 Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
2448 printFields(OS, "Type:", Str);
2449 Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
2450 printFields(OS, "Machine:", Str);
2451 Str = "0x" + to_hexString(e->e_version);
2452 printFields(OS, "Version:", Str);
2453 Str = "0x" + to_hexString(e->e_entry);
2454 printFields(OS, "Entry point address:", Str);
2455 Str = to_string(e->e_phoff) + " (bytes into file)";
2456 printFields(OS, "Start of program headers:", Str);
2457 Str = to_string(e->e_shoff) + " (bytes into file)";
2458 printFields(OS, "Start of section headers:", Str);
2459 Str = "0x" + to_hexString(e->e_flags);
2460 printFields(OS, "Flags:", Str);
2461 Str = to_string(e->e_ehsize) + " (bytes)";
2462 printFields(OS, "Size of this header:", Str);
2463 Str = to_string(e->e_phentsize) + " (bytes)";
2464 printFields(OS, "Size of program headers:", Str);
2465 Str = to_string(e->e_phnum);
2466 printFields(OS, "Number of program headers:", Str);
2467 Str = to_string(e->e_shentsize) + " (bytes)";
2468 printFields(OS, "Size of section headers:", Str);
2469 Str = to_string(e->e_shnum);
2470 printFields(OS, "Number of section headers:", Str);
2471 Str = to_string(e->e_shstrndx);
2472 printFields(OS, "Section header string table index:", Str);
2475 namespace {
2476 struct GroupMember {
2477 StringRef Name;
2478 uint64_t Index;
2481 struct GroupSection {
2482 StringRef Name;
2483 StringRef Signature;
2484 uint64_t ShName;
2485 uint64_t Index;
2486 uint32_t Link;
2487 uint32_t Info;
2488 uint32_t Type;
2489 std::vector<GroupMember> Members;
2492 template <class ELFT>
2493 std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj) {
2494 using Elf_Shdr = typename ELFT::Shdr;
2495 using Elf_Sym = typename ELFT::Sym;
2496 using Elf_Word = typename ELFT::Word;
2498 std::vector<GroupSection> Ret;
2499 uint64_t I = 0;
2500 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2501 ++I;
2502 if (Sec.sh_type != ELF::SHT_GROUP)
2503 continue;
2505 const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
2506 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
2507 const Elf_Sym *Sym =
2508 unwrapOrError(Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
2509 auto Data =
2510 unwrapOrError(Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
2512 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2513 StringRef Signature = StrTable.data() + Sym->st_name;
2514 Ret.push_back({Name,
2515 Signature,
2516 Sec.sh_name,
2517 I - 1,
2518 Sec.sh_link,
2519 Sec.sh_info,
2520 Data[0],
2521 {}});
2523 std::vector<GroupMember> &GM = Ret.back().Members;
2524 for (uint32_t Ndx : Data.slice(1)) {
2525 auto Sec = unwrapOrError(Obj->getSection(Ndx));
2526 const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
2527 GM.push_back({Name, Ndx});
2530 return Ret;
2533 DenseMap<uint64_t, const GroupSection *>
2534 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
2535 DenseMap<uint64_t, const GroupSection *> Ret;
2536 for (const GroupSection &G : Groups)
2537 for (const GroupMember &GM : G.Members)
2538 Ret.insert({GM.Index, &G});
2539 return Ret;
2542 } // namespace
2544 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
2545 std::vector<GroupSection> V = getGroups<ELFT>(Obj);
2546 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
2547 for (const GroupSection &G : V) {
2548 OS << "\n"
2549 << getGroupType(G.Type) << " group section ["
2550 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
2551 << "] contains " << G.Members.size() << " sections:\n"
2552 << " [Index] Name\n";
2553 for (const GroupMember &GM : G.Members) {
2554 const GroupSection *MainGroup = Map[GM.Index];
2555 if (MainGroup != &G) {
2556 OS.flush();
2557 errs() << "Error: section [" << format_decimal(GM.Index, 5)
2558 << "] in group section [" << format_decimal(G.Index, 5)
2559 << "] already in group section ["
2560 << format_decimal(MainGroup->Index, 5) << "]";
2561 errs().flush();
2562 continue;
2564 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
2568 if (V.empty())
2569 OS << "There are no section groups in this file.\n";
2572 template <class ELFT>
2573 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
2574 const Elf_Rela &R, bool IsRela) {
2575 std::string Offset, Info, Addend, Value;
2576 SmallString<32> RelocName;
2577 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
2578 StringRef TargetName;
2579 const Elf_Sym *Sym = nullptr;
2580 unsigned Width = ELFT::Is64Bits ? 16 : 8;
2581 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2583 // First two fields are bit width dependent. The rest of them are after are
2584 // fixed width.
2585 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
2586 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
2587 Sym = unwrapOrError(Obj->getRelocationSymbol(&R, SymTab));
2588 if (Sym && Sym->getType() == ELF::STT_SECTION) {
2589 const Elf_Shdr *Sec = unwrapOrError(
2590 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
2591 TargetName = unwrapOrError(Obj->getSectionName(Sec));
2592 } else if (Sym) {
2593 TargetName = unwrapOrError(Sym->getName(StrTable));
2596 if (Sym && IsRela) {
2597 if (R.r_addend < 0)
2598 Addend = " - ";
2599 else
2600 Addend = " + ";
2603 Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
2604 Info = to_string(format_hex_no_prefix(R.r_info, Width));
2606 int64_t RelAddend = R.r_addend;
2607 if (IsRela)
2608 Addend += to_hexString(std::abs(RelAddend), false);
2610 if (Sym)
2611 Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
2613 Fields[0].Str = Offset;
2614 Fields[1].Str = Info;
2615 Fields[2].Str = RelocName;
2616 Fields[3].Str = Value;
2617 Fields[4].Str = TargetName;
2618 for (auto &field : Fields)
2619 printField(field);
2620 OS << Addend;
2621 OS << "\n";
2624 static inline void printRelocHeader(raw_ostream &OS, bool Is64, bool IsRela) {
2625 if (Is64)
2626 OS << " Offset Info Type"
2627 << " Symbol's Value Symbol's Name";
2628 else
2629 OS << " Offset Info Type Sym. Value "
2630 << "Symbol's Name";
2631 if (IsRela)
2632 OS << (IsRela ? " + Addend" : "");
2633 OS << "\n";
2636 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
2637 bool HasRelocSections = false;
2638 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2639 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
2640 Sec.sh_type != ELF::SHT_ANDROID_REL &&
2641 Sec.sh_type != ELF::SHT_ANDROID_RELA)
2642 continue;
2643 HasRelocSections = true;
2644 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2645 unsigned Entries = Sec.getEntityCount();
2646 uintX_t Offset = Sec.sh_offset;
2647 OS << "\nRelocation section '" << Name << "' at offset 0x"
2648 << to_hexString(Offset, false) << " contains " << Entries
2649 << " entries:\n";
2650 printRelocHeader(OS, ELFT::Is64Bits,
2651 Sec.sh_type == ELF::SHT_RELA ||
2652 Sec.sh_type == ELF::SHT_ANDROID_RELA);
2653 const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec.sh_link));
2654 switch (Sec.sh_type) {
2655 case ELF::SHT_REL:
2656 for (const auto &R : unwrapOrError(Obj->rels(&Sec))) {
2657 Elf_Rela Rela;
2658 Rela.r_offset = R.r_offset;
2659 Rela.r_info = R.r_info;
2660 Rela.r_addend = 0;
2661 printRelocation(Obj, SymTab, Rela, false);
2663 break;
2664 case ELF::SHT_RELA:
2665 for (const auto &R : unwrapOrError(Obj->relas(&Sec)))
2666 printRelocation(Obj, SymTab, R, true);
2667 break;
2668 case ELF::SHT_ANDROID_REL:
2669 case ELF::SHT_ANDROID_RELA:
2670 for (const auto &R : unwrapOrError(Obj->android_relas(&Sec)))
2671 printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA);
2672 break;
2675 if (!HasRelocSections)
2676 OS << "\nThere are no relocations in this file.\n";
2679 std::string getSectionTypeString(unsigned Arch, unsigned Type) {
2680 using namespace ELF;
2682 switch (Arch) {
2683 case EM_ARM:
2684 switch (Type) {
2685 case SHT_ARM_EXIDX:
2686 return "ARM_EXIDX";
2687 case SHT_ARM_PREEMPTMAP:
2688 return "ARM_PREEMPTMAP";
2689 case SHT_ARM_ATTRIBUTES:
2690 return "ARM_ATTRIBUTES";
2691 case SHT_ARM_DEBUGOVERLAY:
2692 return "ARM_DEBUGOVERLAY";
2693 case SHT_ARM_OVERLAYSECTION:
2694 return "ARM_OVERLAYSECTION";
2696 case EM_X86_64:
2697 switch (Type) {
2698 case SHT_X86_64_UNWIND:
2699 return "X86_64_UNWIND";
2701 case EM_MIPS:
2702 case EM_MIPS_RS3_LE:
2703 switch (Type) {
2704 case SHT_MIPS_REGINFO:
2705 return "MIPS_REGINFO";
2706 case SHT_MIPS_OPTIONS:
2707 return "MIPS_OPTIONS";
2708 case SHT_MIPS_ABIFLAGS:
2709 return "MIPS_ABIFLAGS";
2710 case SHT_MIPS_DWARF:
2711 return "SHT_MIPS_DWARF";
2714 switch (Type) {
2715 case SHT_NULL:
2716 return "NULL";
2717 case SHT_PROGBITS:
2718 return "PROGBITS";
2719 case SHT_SYMTAB:
2720 return "SYMTAB";
2721 case SHT_STRTAB:
2722 return "STRTAB";
2723 case SHT_RELA:
2724 return "RELA";
2725 case SHT_HASH:
2726 return "HASH";
2727 case SHT_DYNAMIC:
2728 return "DYNAMIC";
2729 case SHT_NOTE:
2730 return "NOTE";
2731 case SHT_NOBITS:
2732 return "NOBITS";
2733 case SHT_REL:
2734 return "REL";
2735 case SHT_SHLIB:
2736 return "SHLIB";
2737 case SHT_DYNSYM:
2738 return "DYNSYM";
2739 case SHT_INIT_ARRAY:
2740 return "INIT_ARRAY";
2741 case SHT_FINI_ARRAY:
2742 return "FINI_ARRAY";
2743 case SHT_PREINIT_ARRAY:
2744 return "PREINIT_ARRAY";
2745 case SHT_GROUP:
2746 return "GROUP";
2747 case SHT_SYMTAB_SHNDX:
2748 return "SYMTAB SECTION INDICES";
2749 case SHT_LLVM_ODRTAB:
2750 return "LLVM_ODRTAB";
2751 case SHT_LLVM_LINKER_OPTIONS:
2752 return "LLVM_LINKER_OPTIONS";
2753 // FIXME: Parse processor specific GNU attributes
2754 case SHT_GNU_ATTRIBUTES:
2755 return "ATTRIBUTES";
2756 case SHT_GNU_HASH:
2757 return "GNU_HASH";
2758 case SHT_GNU_verdef:
2759 return "VERDEF";
2760 case SHT_GNU_verneed:
2761 return "VERNEED";
2762 case SHT_GNU_versym:
2763 return "VERSYM";
2764 default:
2765 return "";
2767 return "";
2770 template <class ELFT> void GNUStyle<ELFT>::printSections(const ELFO *Obj) {
2771 size_t SectionIndex = 0;
2772 std::string Number, Type, Size, Address, Offset, Flags, Link, Info, EntrySize,
2773 Alignment;
2774 unsigned Bias;
2775 unsigned Width;
2777 if (ELFT::Is64Bits) {
2778 Bias = 0;
2779 Width = 16;
2780 } else {
2781 Bias = 8;
2782 Width = 8;
2784 OS << "There are " << to_string(Obj->getHeader()->e_shnum)
2785 << " section headers, starting at offset "
2786 << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
2787 OS << "Section Headers:\n";
2788 Field Fields[11] = {{"[Nr]", 2},
2789 {"Name", 7},
2790 {"Type", 25},
2791 {"Address", 41},
2792 {"Off", 58 - Bias},
2793 {"Size", 65 - Bias},
2794 {"ES", 72 - Bias},
2795 {"Flg", 75 - Bias},
2796 {"Lk", 79 - Bias},
2797 {"Inf", 82 - Bias},
2798 {"Al", 86 - Bias}};
2799 for (auto &f : Fields)
2800 printField(f);
2801 OS << "\n";
2803 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2804 Number = to_string(SectionIndex);
2805 Fields[0].Str = Number;
2806 Fields[1].Str = unwrapOrError(Obj->getSectionName(&Sec));
2807 Type = getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
2808 Fields[2].Str = Type;
2809 Address = to_string(format_hex_no_prefix(Sec.sh_addr, Width));
2810 Fields[3].Str = Address;
2811 Offset = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
2812 Fields[4].Str = Offset;
2813 Size = to_string(format_hex_no_prefix(Sec.sh_size, 6));
2814 Fields[5].Str = Size;
2815 EntrySize = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
2816 Fields[6].Str = EntrySize;
2817 Flags = getGNUFlags(Sec.sh_flags);
2818 Fields[7].Str = Flags;
2819 Link = to_string(Sec.sh_link);
2820 Fields[8].Str = Link;
2821 Info = to_string(Sec.sh_info);
2822 Fields[9].Str = Info;
2823 Alignment = to_string(Sec.sh_addralign);
2824 Fields[10].Str = Alignment;
2825 OS.PadToColumn(Fields[0].Column);
2826 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
2827 for (int i = 1; i < 7; i++)
2828 printField(Fields[i]);
2829 OS.PadToColumn(Fields[7].Column);
2830 OS << right_justify(Fields[7].Str, 3);
2831 OS.PadToColumn(Fields[8].Column);
2832 OS << right_justify(Fields[8].Str, 2);
2833 OS.PadToColumn(Fields[9].Column);
2834 OS << right_justify(Fields[9].Str, 3);
2835 OS.PadToColumn(Fields[10].Column);
2836 OS << right_justify(Fields[10].Str, 2);
2837 OS << "\n";
2838 ++SectionIndex;
2840 OS << "Key to Flags:\n"
2841 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
2842 "(large)\n"
2843 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
2844 x (unknown)\n"
2845 << " O (extra OS processing required) o (OS specific),\
2846 p (processor specific)\n";
2849 template <class ELFT>
2850 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
2851 size_t Entries) {
2852 if (!Name.empty())
2853 OS << "\nSymbol table '" << Name << "' contains " << Entries
2854 << " entries:\n";
2855 else
2856 OS << "\n Symbol table for image:\n";
2858 if (ELFT::Is64Bits)
2859 OS << " Num: Value Size Type Bind Vis Ndx Name\n";
2860 else
2861 OS << " Num: Value Size Type Bind Vis Ndx Name\n";
2864 template <class ELFT>
2865 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
2866 const Elf_Sym *Symbol,
2867 const Elf_Sym *FirstSym) {
2868 unsigned SectionIndex = Symbol->st_shndx;
2869 switch (SectionIndex) {
2870 case ELF::SHN_UNDEF:
2871 return "UND";
2872 case ELF::SHN_ABS:
2873 return "ABS";
2874 case ELF::SHN_COMMON:
2875 return "COM";
2876 case ELF::SHN_XINDEX:
2877 SectionIndex = unwrapOrError(object::getExtendedSymbolTableIndex<ELFT>(
2878 Symbol, FirstSym, this->dumper()->getShndxTable()));
2879 LLVM_FALLTHROUGH;
2880 default:
2881 // Find if:
2882 // Processor specific
2883 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
2884 return std::string("PRC[0x") +
2885 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2886 // OS specific
2887 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
2888 return std::string("OS[0x") +
2889 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2890 // Architecture reserved:
2891 if (SectionIndex >= ELF::SHN_LORESERVE &&
2892 SectionIndex <= ELF::SHN_HIRESERVE)
2893 return std::string("RSV[0x") +
2894 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2895 // A normal section with an index
2896 return to_string(format_decimal(SectionIndex, 3));
2900 template <class ELFT>
2901 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
2902 const Elf_Sym *FirstSym, StringRef StrTable,
2903 bool IsDynamic) {
2904 static int Idx = 0;
2905 static bool Dynamic = true;
2906 size_t Width;
2908 // If this function was called with a different value from IsDynamic
2909 // from last call, happens when we move from dynamic to static symbol
2910 // table, "Num" field should be reset.
2911 if (!Dynamic != !IsDynamic) {
2912 Idx = 0;
2913 Dynamic = false;
2915 std::string Num, Name, Value, Size, Binding, Type, Visibility, Section;
2916 unsigned Bias = 0;
2917 if (ELFT::Is64Bits) {
2918 Bias = 8;
2919 Width = 16;
2920 } else {
2921 Bias = 0;
2922 Width = 8;
2924 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
2925 31 + Bias, 38 + Bias, 47 + Bias, 51 + Bias};
2926 Num = to_string(format_decimal(Idx++, 6)) + ":";
2927 Value = to_string(format_hex_no_prefix(Symbol->st_value, Width));
2928 Size = to_string(format_decimal(Symbol->st_size, 5));
2929 unsigned char SymbolType = Symbol->getType();
2930 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
2931 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
2932 Type = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
2933 else
2934 Type = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
2935 unsigned Vis = Symbol->getVisibility();
2936 Binding = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
2937 Visibility = printEnum(Vis, makeArrayRef(ElfSymbolVisibilities));
2938 Section = getSymbolSectionNdx(Obj, Symbol, FirstSym);
2939 Name = this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
2940 Fields[0].Str = Num;
2941 Fields[1].Str = Value;
2942 Fields[2].Str = Size;
2943 Fields[3].Str = Type;
2944 Fields[4].Str = Binding;
2945 Fields[5].Str = Visibility;
2946 Fields[6].Str = Section;
2947 Fields[7].Str = Name;
2948 for (auto &Entry : Fields)
2949 printField(Entry);
2950 OS << "\n";
2952 template <class ELFT>
2953 void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
2954 uint32_t Sym, StringRef StrTable,
2955 uint32_t Bucket) {
2956 std::string Num, Buc, Name, Value, Size, Binding, Type, Visibility, Section;
2957 unsigned Width, Bias = 0;
2958 if (ELFT::Is64Bits) {
2959 Bias = 8;
2960 Width = 16;
2961 } else {
2962 Bias = 0;
2963 Width = 8;
2965 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
2966 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
2967 Num = to_string(format_decimal(Sym, 5));
2968 Buc = to_string(format_decimal(Bucket, 3)) + ":";
2970 const auto Symbol = FirstSym + Sym;
2971 Value = to_string(format_hex_no_prefix(Symbol->st_value, Width));
2972 Size = to_string(format_decimal(Symbol->st_size, 5));
2973 unsigned char SymbolType = Symbol->getType();
2974 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
2975 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
2976 Type = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
2977 else
2978 Type = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
2979 unsigned Vis = Symbol->getVisibility();
2980 Binding = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
2981 Visibility = printEnum(Vis, makeArrayRef(ElfSymbolVisibilities));
2982 Section = getSymbolSectionNdx(Obj, Symbol, FirstSym);
2983 Name = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
2984 Fields[0].Str = Num;
2985 Fields[1].Str = Buc;
2986 Fields[2].Str = Value;
2987 Fields[3].Str = Size;
2988 Fields[4].Str = Type;
2989 Fields[5].Str = Binding;
2990 Fields[6].Str = Visibility;
2991 Fields[7].Str = Section;
2992 Fields[8].Str = Name;
2993 for (auto &Entry : Fields)
2994 printField(Entry);
2995 OS << "\n";
2998 template <class ELFT> void GNUStyle<ELFT>::printSymbols(const ELFO *Obj) {
2999 if (opts::DynamicSymbols)
3000 return;
3001 this->dumper()->printSymbolsHelper(true);
3002 this->dumper()->printSymbolsHelper(false);
3005 template <class ELFT>
3006 void GNUStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
3007 if (this->dumper()->getDynamicStringTable().empty())
3008 return;
3009 auto StringTable = this->dumper()->getDynamicStringTable();
3010 auto DynSyms = this->dumper()->dynamic_symbols();
3011 auto GnuHash = this->dumper()->getGnuHashTable();
3012 auto SysVHash = this->dumper()->getHashTable();
3014 // If no hash or .gnu.hash found, try using symbol table
3015 if (GnuHash == nullptr && SysVHash == nullptr)
3016 this->dumper()->printSymbolsHelper(true);
3018 // Try printing .hash
3019 if (this->dumper()->getHashTable()) {
3020 OS << "\n Symbol table of .hash for image:\n";
3021 if (ELFT::Is64Bits)
3022 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3023 else
3024 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3025 OS << "\n";
3027 uint32_t NBuckets = SysVHash->nbucket;
3028 uint32_t NChains = SysVHash->nchain;
3029 auto Buckets = SysVHash->buckets();
3030 auto Chains = SysVHash->chains();
3031 for (uint32_t Buc = 0; Buc < NBuckets; Buc++) {
3032 if (Buckets[Buc] == ELF::STN_UNDEF)
3033 continue;
3034 for (uint32_t Ch = Buckets[Buc]; Ch < NChains; Ch = Chains[Ch]) {
3035 if (Ch == ELF::STN_UNDEF)
3036 break;
3037 printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc);
3042 // Try printing .gnu.hash
3043 if (GnuHash) {
3044 OS << "\n Symbol table of .gnu.hash for image:\n";
3045 if (ELFT::Is64Bits)
3046 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3047 else
3048 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3049 OS << "\n";
3050 uint32_t NBuckets = GnuHash->nbuckets;
3051 auto Buckets = GnuHash->buckets();
3052 for (uint32_t Buc = 0; Buc < NBuckets; Buc++) {
3053 if (Buckets[Buc] == ELF::STN_UNDEF)
3054 continue;
3055 uint32_t Index = Buckets[Buc];
3056 uint32_t GnuHashable = Index - GnuHash->symndx;
3057 // Print whole chain
3058 while (true) {
3059 printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc);
3060 // Chain ends at symbol with stopper bit
3061 if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1)
3062 break;
3068 static inline std::string printPhdrFlags(unsigned Flag) {
3069 std::string Str;
3070 Str = (Flag & PF_R) ? "R" : " ";
3071 Str += (Flag & PF_W) ? "W" : " ";
3072 Str += (Flag & PF_X) ? "E" : " ";
3073 return Str;
3076 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3077 // PT_TLS must only have SHF_TLS sections
3078 template <class ELFT>
3079 bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
3080 const Elf_Shdr &Sec) {
3081 return (((Sec.sh_flags & ELF::SHF_TLS) &&
3082 ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
3083 (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
3084 (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
3087 // Non-SHT_NOBITS must have its offset inside the segment
3088 // Only non-zero section can be at end of segment
3089 template <class ELFT>
3090 bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3091 if (Sec.sh_type == ELF::SHT_NOBITS)
3092 return true;
3093 bool IsSpecial =
3094 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3095 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3096 auto SectionSize =
3097 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3098 if (Sec.sh_offset >= Phdr.p_offset)
3099 return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
3100 /*only non-zero sized sections at end*/ &&
3101 (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
3102 return false;
3105 // SHF_ALLOC must have VMA inside segment
3106 // Only non-zero section can be at end of segment
3107 template <class ELFT>
3108 bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3109 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
3110 return true;
3111 bool IsSpecial =
3112 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3113 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3114 auto SectionSize =
3115 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3116 if (Sec.sh_addr >= Phdr.p_vaddr)
3117 return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
3118 (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
3119 return false;
3122 // No section with zero size must be at start or end of PT_DYNAMIC
3123 template <class ELFT>
3124 bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3125 if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
3126 return true;
3127 // Is section within the phdr both based on offset and VMA ?
3128 return ((Sec.sh_type == ELF::SHT_NOBITS) ||
3129 (Sec.sh_offset > Phdr.p_offset &&
3130 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
3131 (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
3132 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
3135 template <class ELFT>
3136 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
3137 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3138 unsigned Width = ELFT::Is64Bits ? 18 : 10;
3139 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
3140 std::string Type, Offset, VMA, LMA, FileSz, MemSz, Flag, Align;
3142 const Elf_Ehdr *Header = Obj->getHeader();
3143 Field Fields[8] = {2, 17, 26, 37 + Bias,
3144 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
3145 OS << "\nElf file type is "
3146 << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
3147 << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
3148 << "There are " << Header->e_phnum << " program headers,"
3149 << " starting at offset " << Header->e_phoff << "\n\n"
3150 << "Program Headers:\n";
3151 if (ELFT::Is64Bits)
3152 OS << " Type Offset VirtAddr PhysAddr "
3153 << " FileSiz MemSiz Flg Align\n";
3154 else
3155 OS << " Type Offset VirtAddr PhysAddr FileSiz "
3156 << "MemSiz Flg Align\n";
3157 for (const auto &Phdr : unwrapOrError(Obj->program_headers())) {
3158 Type = getElfPtType(Header->e_machine, Phdr.p_type);
3159 Offset = to_string(format_hex(Phdr.p_offset, 8));
3160 VMA = to_string(format_hex(Phdr.p_vaddr, Width));
3161 LMA = to_string(format_hex(Phdr.p_paddr, Width));
3162 FileSz = to_string(format_hex(Phdr.p_filesz, SizeWidth));
3163 MemSz = to_string(format_hex(Phdr.p_memsz, SizeWidth));
3164 Flag = printPhdrFlags(Phdr.p_flags);
3165 Align = to_string(format_hex(Phdr.p_align, 1));
3166 Fields[0].Str = Type;
3167 Fields[1].Str = Offset;
3168 Fields[2].Str = VMA;
3169 Fields[3].Str = LMA;
3170 Fields[4].Str = FileSz;
3171 Fields[5].Str = MemSz;
3172 Fields[6].Str = Flag;
3173 Fields[7].Str = Align;
3174 for (auto Field : Fields)
3175 printField(Field);
3176 if (Phdr.p_type == ELF::PT_INTERP) {
3177 OS << "\n [Requesting program interpreter: ";
3178 OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
3180 OS << "\n";
3182 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
3183 int Phnum = 0;
3184 for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
3185 std::string Sections;
3186 OS << format(" %2.2d ", Phnum++);
3187 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
3188 // Check if each section is in a segment and then print mapping.
3189 // readelf additionally makes sure it does not print zero sized sections
3190 // at end of segments and for PT_DYNAMIC both start and end of section
3191 // .tbss must only be shown in PT_TLS section.
3192 bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
3193 ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
3194 Phdr.p_type != ELF::PT_TLS;
3195 if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
3196 checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
3197 checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL))
3198 Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + " ";
3200 OS << Sections << "\n";
3201 OS.flush();
3205 template <class ELFT>
3206 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
3207 bool IsRela) {
3208 SmallString<32> RelocName;
3209 StringRef SymbolName;
3210 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3211 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3212 // First two fields are bit width dependent. The rest of them are after are
3213 // fixed width.
3214 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3216 uint32_t SymIndex = R.getSymbol(Obj->isMips64EL());
3217 const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
3218 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
3219 SymbolName =
3220 unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
3221 std::string Addend, Info, Offset, Value;
3222 Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
3223 Info = to_string(format_hex_no_prefix(R.r_info, Width));
3224 Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
3225 int64_t RelAddend = R.r_addend;
3226 if (!SymbolName.empty() && IsRela) {
3227 if (R.r_addend < 0)
3228 Addend = " - ";
3229 else
3230 Addend = " + ";
3233 if (SymbolName.empty() && Sym->getValue() == 0)
3234 Value = "";
3236 if (IsRela)
3237 Addend += to_string(format_hex_no_prefix(std::abs(RelAddend), 1));
3240 Fields[0].Str = Offset;
3241 Fields[1].Str = Info;
3242 Fields[2].Str = RelocName.c_str();
3243 Fields[3].Str = Value;
3244 Fields[4].Str = SymbolName;
3245 for (auto &Field : Fields)
3246 printField(Field);
3247 OS << Addend;
3248 OS << "\n";
3251 template <class ELFT>
3252 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
3253 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
3254 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
3255 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
3256 if (DynRelaRegion.Size > 0) {
3257 OS << "\n'RELA' relocation section at offset "
3258 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
3259 Obj->base(),
3260 1) << " contains " << DynRelaRegion.Size << " bytes:\n";
3261 printRelocHeader(OS, ELFT::Is64Bits, true);
3262 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
3263 printDynamicRelocation(Obj, Rela, true);
3265 if (DynRelRegion.Size > 0) {
3266 OS << "\n'REL' relocation section at offset "
3267 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
3268 Obj->base(),
3269 1) << " contains " << DynRelRegion.Size << " bytes:\n";
3270 printRelocHeader(OS, ELFT::Is64Bits, false);
3271 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
3272 Elf_Rela Rela;
3273 Rela.r_offset = Rel.r_offset;
3274 Rela.r_info = Rel.r_info;
3275 Rela.r_addend = 0;
3276 printDynamicRelocation(Obj, Rela, false);
3279 if (DynPLTRelRegion.Size) {
3280 OS << "\n'PLT' relocation section at offset "
3281 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
3282 Obj->base(),
3283 1) << " contains " << DynPLTRelRegion.Size << " bytes:\n";
3285 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
3286 printRelocHeader(OS, ELFT::Is64Bits, true);
3287 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
3288 printDynamicRelocation(Obj, Rela, true);
3289 } else {
3290 printRelocHeader(OS, ELFT::Is64Bits, false);
3291 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
3292 Elf_Rela Rela;
3293 Rela.r_offset = Rel.r_offset;
3294 Rela.r_info = Rel.r_info;
3295 Rela.r_addend = 0;
3296 printDynamicRelocation(Obj, Rela, false);
3301 // Hash histogram shows statistics of how efficient the hash was for the
3302 // dynamic symbol table. The table shows number of hash buckets for different
3303 // lengths of chains as absolute number and percentage of the total buckets.
3304 // Additionally cumulative coverage of symbols for each set of buckets.
3305 template <class ELFT>
3306 void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
3308 const Elf_Hash *HashTable = this->dumper()->getHashTable();
3309 const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable();
3311 // Print histogram for .hash section
3312 if (HashTable) {
3313 size_t NBucket = HashTable->nbucket;
3314 size_t NChain = HashTable->nchain;
3315 ArrayRef<Elf_Word> Buckets = HashTable->buckets();
3316 ArrayRef<Elf_Word> Chains = HashTable->chains();
3317 size_t TotalSyms = 0;
3318 // If hash table is correct, we have at least chains with 0 length
3319 size_t MaxChain = 1;
3320 size_t CumulativeNonZero = 0;
3322 if (NChain == 0 || NBucket == 0)
3323 return;
3325 std::vector<size_t> ChainLen(NBucket, 0);
3326 // Go over all buckets and and note chain lengths of each bucket (total
3327 // unique chain lengths).
3328 for (size_t B = 0; B < NBucket; B++) {
3329 for (size_t C = Buckets[B]; C > 0 && C < NChain; C = Chains[C])
3330 if (MaxChain <= ++ChainLen[B])
3331 MaxChain++;
3332 TotalSyms += ChainLen[B];
3335 if (!TotalSyms)
3336 return;
3338 std::vector<size_t> Count(MaxChain, 0) ;
3339 // Count how long is the chain for each bucket
3340 for (size_t B = 0; B < NBucket; B++)
3341 ++Count[ChainLen[B]];
3342 // Print Number of buckets with each chain lengths and their cumulative
3343 // coverage of the symbols
3344 OS << "Histogram for bucket list length (total of " << NBucket
3345 << " buckets)\n"
3346 << " Length Number % of total Coverage\n";
3347 for (size_t I = 0; I < MaxChain; I++) {
3348 CumulativeNonZero += Count[I] * I;
3349 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
3350 (Count[I] * 100.0) / NBucket,
3351 (CumulativeNonZero * 100.0) / TotalSyms);
3355 // Print histogram for .gnu.hash section
3356 if (GnuHashTable) {
3357 size_t NBucket = GnuHashTable->nbuckets;
3358 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
3359 unsigned NumSyms = this->dumper()->dynamic_symbols().size();
3360 if (!NumSyms)
3361 return;
3362 ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
3363 size_t Symndx = GnuHashTable->symndx;
3364 size_t TotalSyms = 0;
3365 size_t MaxChain = 1;
3366 size_t CumulativeNonZero = 0;
3368 if (Chains.empty() || NBucket == 0)
3369 return;
3371 std::vector<size_t> ChainLen(NBucket, 0);
3373 for (size_t B = 0; B < NBucket; B++) {
3374 if (!Buckets[B])
3375 continue;
3376 size_t Len = 1;
3377 for (size_t C = Buckets[B] - Symndx;
3378 C < Chains.size() && (Chains[C] & 1) == 0; C++)
3379 if (MaxChain < ++Len)
3380 MaxChain++;
3381 ChainLen[B] = Len;
3382 TotalSyms += Len;
3384 MaxChain++;
3386 if (!TotalSyms)
3387 return;
3389 std::vector<size_t> Count(MaxChain, 0) ;
3390 for (size_t B = 0; B < NBucket; B++)
3391 ++Count[ChainLen[B]];
3392 // Print Number of buckets with each chain lengths and their cumulative
3393 // coverage of the symbols
3394 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3395 << " buckets)\n"
3396 << " Length Number % of total Coverage\n";
3397 for (size_t I = 0; I <MaxChain; I++) {
3398 CumulativeNonZero += Count[I] * I;
3399 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
3400 (Count[I] * 100.0) / NBucket,
3401 (CumulativeNonZero * 100.0) / TotalSyms);
3406 static std::string getGNUNoteTypeName(const uint32_t NT) {
3407 static const struct {
3408 uint32_t ID;
3409 const char *Name;
3410 } Notes[] = {
3411 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
3412 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
3413 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
3414 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
3417 for (const auto &Note : Notes)
3418 if (Note.ID == NT)
3419 return std::string(Note.Name);
3421 std::string string;
3422 raw_string_ostream OS(string);
3423 OS << format("Unknown note type (0x%08x)", NT);
3424 return OS.str();
3427 static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
3428 static const struct {
3429 uint32_t ID;
3430 const char *Name;
3431 } Notes[] = {
3432 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
3433 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
3434 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
3435 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
3436 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
3437 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
3438 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
3439 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
3440 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
3441 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
3442 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
3445 for (const auto &Note : Notes)
3446 if (Note.ID == NT)
3447 return std::string(Note.Name);
3449 std::string string;
3450 raw_string_ostream OS(string);
3451 OS << format("Unknown note type (0x%08x)", NT);
3452 return OS.str();
3455 static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
3456 static const struct {
3457 uint32_t ID;
3458 const char *Name;
3459 } Notes[] = {
3460 {ELF::NT_AMD_AMDGPU_HSA_METADATA,
3461 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
3462 {ELF::NT_AMD_AMDGPU_ISA,
3463 "NT_AMD_AMDGPU_ISA (ISA Version)"},
3464 {ELF::NT_AMD_AMDGPU_PAL_METADATA,
3465 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}
3468 for (const auto &Note : Notes)
3469 if (Note.ID == NT)
3470 return std::string(Note.Name);
3472 std::string string;
3473 raw_string_ostream OS(string);
3474 OS << format("Unknown note type (0x%08x)", NT);
3475 return OS.str();
3478 template <typename ELFT>
3479 static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
3480 ArrayRef<typename ELFT::Word> Words, size_t Size) {
3481 switch (NoteType) {
3482 default:
3483 return;
3484 case ELF::NT_GNU_ABI_TAG: {
3485 static const char *OSNames[] = {
3486 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
3489 StringRef OSName = "Unknown";
3490 if (Words[0] < array_lengthof(OSNames))
3491 OSName = OSNames[Words[0]];
3492 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
3494 if (Words.size() < 4)
3495 OS << " <corrupt GNU_ABI_TAG>";
3496 else
3497 OS << " OS: " << OSName << ", ABI: " << Major << "." << Minor << "."
3498 << Patch;
3499 break;
3501 case ELF::NT_GNU_BUILD_ID: {
3502 OS << " Build ID: ";
3503 ArrayRef<uint8_t> ID(reinterpret_cast<const uint8_t *>(Words.data()), Size);
3504 for (const auto &B : ID)
3505 OS << format_hex_no_prefix(B, 2);
3506 break;
3508 case ELF::NT_GNU_GOLD_VERSION:
3509 OS << " Version: "
3510 << StringRef(reinterpret_cast<const char *>(Words.data()), Size);
3511 break;
3514 OS << '\n';
3517 template <typename ELFT>
3518 static void printAMDGPUNote(raw_ostream &OS, uint32_t NoteType,
3519 ArrayRef<typename ELFT::Word> Words, size_t Size) {
3520 switch (NoteType) {
3521 default:
3522 return;
3523 case ELF::NT_AMD_AMDGPU_HSA_METADATA:
3524 OS << " HSA Metadata:\n"
3525 << StringRef(reinterpret_cast<const char *>(Words.data()), Size);
3526 break;
3527 case ELF::NT_AMD_AMDGPU_ISA:
3528 OS << " ISA Version:\n"
3529 << " "
3530 << StringRef(reinterpret_cast<const char *>(Words.data()), Size);
3531 break;
3532 case ELF::NT_AMD_AMDGPU_PAL_METADATA:
3533 const uint32_t *PALMetadataBegin = reinterpret_cast<const uint32_t *>(Words.data());
3534 const uint32_t *PALMetadataEnd = PALMetadataBegin + Size;
3535 std::vector<uint32_t> PALMetadata(PALMetadataBegin, PALMetadataEnd);
3536 std::string PALMetadataString;
3537 auto Error = AMDGPU::PALMD::toString(PALMetadata, PALMetadataString);
3538 OS << " PAL Metadata:\n";
3539 if (Error) {
3540 OS << " Invalid";
3541 return;
3543 OS << PALMetadataString;
3544 break;
3546 OS.flush();
3549 template <class ELFT>
3550 void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
3551 const Elf_Ehdr *e = Obj->getHeader();
3552 bool IsCore = e->e_type == ELF::ET_CORE;
3554 auto PrintHeader = [&](const typename ELFT::Off Offset,
3555 const typename ELFT::Addr Size) {
3556 OS << "Displaying notes found at file offset " << format_hex(Offset, 10)
3557 << " with length " << format_hex(Size, 10) << ":\n"
3558 << " Owner Data size\tDescription\n";
3561 auto ProcessNote = [&](const Elf_Note &Note) {
3562 StringRef Name = Note.getName();
3563 ArrayRef<Elf_Word> Descriptor = Note.getDesc();
3564 Elf_Word Type = Note.getType();
3566 OS << " " << Name << std::string(22 - Name.size(), ' ')
3567 << format_hex(Descriptor.size(), 10) << '\t';
3569 if (Name == "GNU") {
3570 OS << getGNUNoteTypeName(Type) << '\n';
3571 printGNUNote<ELFT>(OS, Type, Descriptor, Descriptor.size());
3572 } else if (Name == "FreeBSD") {
3573 OS << getFreeBSDNoteTypeName(Type) << '\n';
3574 } else if (Name == "AMD") {
3575 OS << getAMDGPUNoteTypeName(Type) << '\n';
3576 printAMDGPUNote<ELFT>(OS, Type, Descriptor, Descriptor.size());
3577 } else {
3578 OS << "Unknown note type: (" << format_hex(Type, 10) << ')';
3580 OS << '\n';
3583 if (IsCore) {
3584 for (const auto &P : unwrapOrError(Obj->program_headers())) {
3585 if (P.p_type != PT_NOTE)
3586 continue;
3587 PrintHeader(P.p_offset, P.p_filesz);
3588 Error Err = Error::success();
3589 for (const auto &Note : Obj->notes(P, Err))
3590 ProcessNote(Note);
3591 if (Err)
3592 error(std::move(Err));
3594 } else {
3595 for (const auto &S : unwrapOrError(Obj->sections())) {
3596 if (S.sh_type != SHT_NOTE)
3597 continue;
3598 PrintHeader(S.sh_offset, S.sh_size);
3599 Error Err = Error::success();
3600 for (const auto &Note : Obj->notes(S, Err))
3601 ProcessNote(Note);
3602 if (Err)
3603 error(std::move(Err));
3608 template <class ELFT>
3609 void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
3610 OS << "printELFLinkerOptions not implemented!\n";
3613 template <class ELFT>
3614 void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
3615 size_t Bias = ELFT::Is64Bits ? 8 : 0;
3616 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
3617 OS.PadToColumn(2);
3618 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
3619 OS.PadToColumn(11 + Bias);
3620 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
3621 OS.PadToColumn(22 + Bias);
3622 OS << format_hex_no_prefix(*E, 8 + Bias);
3623 OS.PadToColumn(31 + 2 * Bias);
3624 OS << Purpose << "\n";
3627 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
3628 OS << " Canonical gp value: "
3629 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
3631 OS << " Reserved entries:\n";
3632 OS << " Address Access Initial Purpose\n";
3633 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
3634 if (Parser.getGotModulePointer())
3635 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
3637 if (!Parser.getLocalEntries().empty()) {
3638 OS << "\n";
3639 OS << " Local entries:\n";
3640 OS << " Address Access Initial\n";
3641 for (auto &E : Parser.getLocalEntries())
3642 PrintEntry(&E, "");
3645 if (Parser.IsStatic)
3646 return;
3648 if (!Parser.getGlobalEntries().empty()) {
3649 OS << "\n";
3650 OS << " Global entries:\n";
3651 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
3652 for (auto &E : Parser.getGlobalEntries()) {
3653 const Elf_Sym *Sym = Parser.getGotSym(&E);
3654 std::string SymName = this->dumper()->getFullSymbolName(
3655 Sym, this->dumper()->getDynamicStringTable(), false);
3657 OS.PadToColumn(2);
3658 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
3659 OS.PadToColumn(11 + Bias);
3660 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
3661 OS.PadToColumn(22 + Bias);
3662 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
3663 OS.PadToColumn(31 + 2 * Bias);
3664 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
3665 OS.PadToColumn(40 + 3 * Bias);
3666 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
3667 OS.PadToColumn(48 + 3 * Bias);
3668 OS << getSymbolSectionNdx(Parser.Obj, Sym,
3669 this->dumper()->dynamic_symbols().begin());
3670 OS.PadToColumn(52 + 3 * Bias);
3671 OS << SymName << "\n";
3675 if (!Parser.getOtherEntries().empty())
3676 OS << "\n Number of TLS and multi-GOT entries "
3677 << Parser.getOtherEntries().size() << "\n";
3680 template <class ELFT>
3681 void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
3682 size_t Bias = ELFT::Is64Bits ? 8 : 0;
3683 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
3684 OS.PadToColumn(2);
3685 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
3686 OS.PadToColumn(11 + Bias);
3687 OS << format_hex_no_prefix(*E, 8 + Bias);
3688 OS.PadToColumn(20 + 2 * Bias);
3689 OS << Purpose << "\n";
3692 OS << "PLT GOT:\n\n";
3694 OS << " Reserved entries:\n";
3695 OS << " Address Initial Purpose\n";
3696 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
3697 if (Parser.getPltModulePointer())
3698 PrintEntry(Parser.getGotModulePointer(), "Module pointer");
3700 if (!Parser.getPltEntries().empty()) {
3701 OS << "\n";
3702 OS << " Entries:\n";
3703 OS << " Address Initial Sym.Val. Type Ndx Name\n";
3704 for (auto &E : Parser.getPltEntries()) {
3705 const Elf_Sym *Sym = Parser.getPltSym(&E);
3706 std::string SymName = this->dumper()->getFullSymbolName(
3707 Sym, this->dumper()->getDynamicStringTable(), false);
3709 OS.PadToColumn(2);
3710 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
3711 OS.PadToColumn(11 + Bias);
3712 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
3713 OS.PadToColumn(20 + 2 * Bias);
3714 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
3715 OS.PadToColumn(29 + 3 * Bias);
3716 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
3717 OS.PadToColumn(37 + 3 * Bias);
3718 OS << getSymbolSectionNdx(Parser.Obj, Sym,
3719 this->dumper()->dynamic_symbols().begin());
3720 OS.PadToColumn(41 + 3 * Bias);
3721 OS << SymName << "\n";
3726 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
3727 const Elf_Ehdr *e = Obj->getHeader();
3729 DictScope D(W, "ElfHeader");
3731 DictScope D(W, "Ident");
3732 W.printBinary("Magic", makeArrayRef(e->e_ident).slice(ELF::EI_MAG0, 4));
3733 W.printEnum("Class", e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3734 W.printEnum("DataEncoding", e->e_ident[ELF::EI_DATA],
3735 makeArrayRef(ElfDataEncoding));
3736 W.printNumber("FileVersion", e->e_ident[ELF::EI_VERSION]);
3738 auto OSABI = makeArrayRef(ElfOSABI);
3739 if (e->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
3740 e->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
3741 switch (e->e_machine) {
3742 case ELF::EM_AMDGPU:
3743 OSABI = makeArrayRef(AMDGPUElfOSABI);
3744 break;
3745 case ELF::EM_ARM:
3746 OSABI = makeArrayRef(ARMElfOSABI);
3747 break;
3748 case ELF::EM_TI_C6000:
3749 OSABI = makeArrayRef(C6000ElfOSABI);
3750 break;
3753 W.printEnum("OS/ABI", e->e_ident[ELF::EI_OSABI], OSABI);
3754 W.printNumber("ABIVersion", e->e_ident[ELF::EI_ABIVERSION]);
3755 W.printBinary("Unused", makeArrayRef(e->e_ident).slice(ELF::EI_PAD));
3758 W.printEnum("Type", e->e_type, makeArrayRef(ElfObjectFileType));
3759 W.printEnum("Machine", e->e_machine, makeArrayRef(ElfMachineType));
3760 W.printNumber("Version", e->e_version);
3761 W.printHex("Entry", e->e_entry);
3762 W.printHex("ProgramHeaderOffset", e->e_phoff);
3763 W.printHex("SectionHeaderOffset", e->e_shoff);
3764 if (e->e_machine == EM_MIPS)
3765 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
3766 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3767 unsigned(ELF::EF_MIPS_MACH));
3768 else if (e->e_machine == EM_AMDGPU)
3769 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
3770 unsigned(ELF::EF_AMDGPU_MACH));
3771 else if (e->e_machine == EM_RISCV)
3772 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3773 else
3774 W.printFlags("Flags", e->e_flags);
3775 W.printNumber("HeaderSize", e->e_ehsize);
3776 W.printNumber("ProgramHeaderEntrySize", e->e_phentsize);
3777 W.printNumber("ProgramHeaderCount", e->e_phnum);
3778 W.printNumber("SectionHeaderEntrySize", e->e_shentsize);
3779 W.printNumber("SectionHeaderCount", e->e_shnum);
3780 W.printNumber("StringTableSectionIndex", e->e_shstrndx);
3784 template <class ELFT>
3785 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
3786 DictScope Lists(W, "Groups");
3787 std::vector<GroupSection> V = getGroups<ELFT>(Obj);
3788 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3789 for (const GroupSection &G : V) {
3790 DictScope D(W, "Group");
3791 W.printNumber("Name", G.Name, G.ShName);
3792 W.printNumber("Index", G.Index);
3793 W.printNumber("Link", G.Link);
3794 W.printNumber("Info", G.Info);
3795 W.printHex("Type", getGroupType(G.Type), G.Type);
3796 W.startLine() << "Signature: " << G.Signature << "\n";
3798 ListScope L(W, "Section(s) in group");
3799 for (const GroupMember &GM : G.Members) {
3800 const GroupSection *MainGroup = Map[GM.Index];
3801 if (MainGroup != &G) {
3802 W.flush();
3803 errs() << "Error: " << GM.Name << " (" << GM.Index
3804 << ") in a group " + G.Name + " (" << G.Index
3805 << ") is already in a group " + MainGroup->Name + " ("
3806 << MainGroup->Index << ")\n";
3807 errs().flush();
3808 continue;
3810 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
3814 if (V.empty())
3815 W.startLine() << "There are no group sections in the file.\n";
3818 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
3819 ListScope D(W, "Relocations");
3821 int SectionNumber = -1;
3822 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
3823 ++SectionNumber;
3825 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
3826 Sec.sh_type != ELF::SHT_ANDROID_REL &&
3827 Sec.sh_type != ELF::SHT_ANDROID_RELA)
3828 continue;
3830 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3832 W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
3833 W.indent();
3835 printRelocations(&Sec, Obj);
3837 W.unindent();
3838 W.startLine() << "}\n";
3842 template <class ELFT>
3843 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
3844 const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec->sh_link));
3846 switch (Sec->sh_type) {
3847 case ELF::SHT_REL:
3848 for (const Elf_Rel &R : unwrapOrError(Obj->rels(Sec))) {
3849 Elf_Rela Rela;
3850 Rela.r_offset = R.r_offset;
3851 Rela.r_info = R.r_info;
3852 Rela.r_addend = 0;
3853 printRelocation(Obj, Rela, SymTab);
3855 break;
3856 case ELF::SHT_RELA:
3857 for (const Elf_Rela &R : unwrapOrError(Obj->relas(Sec)))
3858 printRelocation(Obj, R, SymTab);
3859 break;
3860 case ELF::SHT_ANDROID_REL:
3861 case ELF::SHT_ANDROID_RELA:
3862 for (const Elf_Rela &R : unwrapOrError(Obj->android_relas(Sec)))
3863 printRelocation(Obj, R, SymTab);
3864 break;
3868 template <class ELFT>
3869 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
3870 const Elf_Shdr *SymTab) {
3871 SmallString<32> RelocName;
3872 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
3873 StringRef TargetName;
3874 const Elf_Sym *Sym = unwrapOrError(Obj->getRelocationSymbol(&Rel, SymTab));
3875 if (Sym && Sym->getType() == ELF::STT_SECTION) {
3876 const Elf_Shdr *Sec = unwrapOrError(
3877 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
3878 TargetName = unwrapOrError(Obj->getSectionName(Sec));
3879 } else if (Sym) {
3880 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
3881 TargetName = unwrapOrError(Sym->getName(StrTable));
3884 if (opts::ExpandRelocs) {
3885 DictScope Group(W, "Relocation");
3886 W.printHex("Offset", Rel.r_offset);
3887 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
3888 W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
3889 Rel.getSymbol(Obj->isMips64EL()));
3890 W.printHex("Addend", Rel.r_addend);
3891 } else {
3892 raw_ostream &OS = W.startLine();
3893 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
3894 << (!TargetName.empty() ? TargetName : "-") << " "
3895 << W.hex(Rel.r_addend) << "\n";
3899 template <class ELFT> void LLVMStyle<ELFT>::printSections(const ELFO *Obj) {
3900 ListScope SectionsD(W, "Sections");
3902 int SectionIndex = -1;
3903 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
3904 ++SectionIndex;
3906 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3908 DictScope SectionD(W, "Section");
3909 W.printNumber("Index", SectionIndex);
3910 W.printNumber("Name", Name, Sec.sh_name);
3911 W.printHex(
3912 "Type",
3913 object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
3914 Sec.sh_type);
3915 std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
3916 std::end(ElfSectionFlags));
3917 switch (Obj->getHeader()->e_machine) {
3918 case EM_ARM:
3919 SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags),
3920 std::end(ElfARMSectionFlags));
3921 break;
3922 case EM_HEXAGON:
3923 SectionFlags.insert(SectionFlags.end(),
3924 std::begin(ElfHexagonSectionFlags),
3925 std::end(ElfHexagonSectionFlags));
3926 break;
3927 case EM_MIPS:
3928 SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
3929 std::end(ElfMipsSectionFlags));
3930 break;
3931 case EM_X86_64:
3932 SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
3933 std::end(ElfX86_64SectionFlags));
3934 break;
3935 case EM_XCORE:
3936 SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
3937 std::end(ElfXCoreSectionFlags));
3938 break;
3939 default:
3940 // Nothing to do.
3941 break;
3943 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
3944 W.printHex("Address", Sec.sh_addr);
3945 W.printHex("Offset", Sec.sh_offset);
3946 W.printNumber("Size", Sec.sh_size);
3947 W.printNumber("Link", Sec.sh_link);
3948 W.printNumber("Info", Sec.sh_info);
3949 W.printNumber("AddressAlignment", Sec.sh_addralign);
3950 W.printNumber("EntrySize", Sec.sh_entsize);
3952 if (opts::SectionRelocations) {
3953 ListScope D(W, "Relocations");
3954 printRelocations(&Sec, Obj);
3957 if (opts::SectionSymbols) {
3958 ListScope D(W, "Symbols");
3959 const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
3960 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
3962 for (const Elf_Sym &Sym : unwrapOrError(Obj->symbols(Symtab))) {
3963 const Elf_Shdr *SymSec = unwrapOrError(
3964 Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
3965 if (SymSec == &Sec)
3966 printSymbol(Obj, &Sym, unwrapOrError(Obj->symbols(Symtab)).begin(),
3967 StrTable, false);
3971 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
3972 ArrayRef<uint8_t> Data = unwrapOrError(Obj->getSectionContents(&Sec));
3973 W.printBinaryBlock("SectionData",
3974 StringRef((const char *)Data.data(), Data.size()));
3979 template <class ELFT>
3980 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
3981 const Elf_Sym *First, StringRef StrTable,
3982 bool IsDynamic) {
3983 unsigned SectionIndex = 0;
3984 StringRef SectionName;
3985 this->dumper()->getSectionNameIndex(Symbol, First, SectionName, SectionIndex);
3986 std::string FullSymbolName =
3987 this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
3988 unsigned char SymbolType = Symbol->getType();
3990 DictScope D(W, "Symbol");
3991 W.printNumber("Name", FullSymbolName, Symbol->st_name);
3992 W.printHex("Value", Symbol->st_value);
3993 W.printNumber("Size", Symbol->st_size);
3994 W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3995 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3996 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3997 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3998 else
3999 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
4000 if (Symbol->st_other == 0)
4001 // Usually st_other flag is zero. Do not pollute the output
4002 // by flags enumeration in that case.
4003 W.printNumber("Other", 0);
4004 else {
4005 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
4006 std::end(ElfSymOtherFlags));
4007 if (Obj->getHeader()->e_machine == EM_MIPS) {
4008 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
4009 // flag overlapped with other ST_MIPS_xxx flags. So consider both
4010 // cases separately.
4011 if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
4012 SymOtherFlags.insert(SymOtherFlags.end(),
4013 std::begin(ElfMips16SymOtherFlags),
4014 std::end(ElfMips16SymOtherFlags));
4015 else
4016 SymOtherFlags.insert(SymOtherFlags.end(),
4017 std::begin(ElfMipsSymOtherFlags),
4018 std::end(ElfMipsSymOtherFlags));
4020 W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
4022 W.printHex("Section", SectionName, SectionIndex);
4025 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
4026 ListScope Group(W, "Symbols");
4027 this->dumper()->printSymbolsHelper(false);
4030 template <class ELFT>
4031 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
4032 ListScope Group(W, "DynamicSymbols");
4033 this->dumper()->printSymbolsHelper(true);
4036 template <class ELFT>
4037 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
4038 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
4039 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
4040 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
4041 if (DynRelRegion.Size && DynRelaRegion.Size)
4042 report_fatal_error("There are both REL and RELA dynamic relocations");
4043 W.startLine() << "Dynamic Relocations {\n";
4044 W.indent();
4045 if (DynRelaRegion.Size > 0)
4046 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
4047 printDynamicRelocation(Obj, Rela);
4048 else
4049 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
4050 Elf_Rela Rela;
4051 Rela.r_offset = Rel.r_offset;
4052 Rela.r_info = Rel.r_info;
4053 Rela.r_addend = 0;
4054 printDynamicRelocation(Obj, Rela);
4056 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
4057 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
4058 printDynamicRelocation(Obj, Rela);
4059 else
4060 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
4061 Elf_Rela Rela;
4062 Rela.r_offset = Rel.r_offset;
4063 Rela.r_info = Rel.r_info;
4064 Rela.r_addend = 0;
4065 printDynamicRelocation(Obj, Rela);
4067 W.unindent();
4068 W.startLine() << "}\n";
4071 template <class ELFT>
4072 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
4073 SmallString<32> RelocName;
4074 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
4075 StringRef SymbolName;
4076 uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
4077 const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
4078 SymbolName =
4079 unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
4080 if (opts::ExpandRelocs) {
4081 DictScope Group(W, "Relocation");
4082 W.printHex("Offset", Rel.r_offset);
4083 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
4084 W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
4085 W.printHex("Addend", Rel.r_addend);
4086 } else {
4087 raw_ostream &OS = W.startLine();
4088 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
4089 << (!SymbolName.empty() ? SymbolName : "-") << " "
4090 << W.hex(Rel.r_addend) << "\n";
4094 template <class ELFT>
4095 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
4096 ListScope L(W, "ProgramHeaders");
4098 for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
4099 DictScope P(W, "ProgramHeader");
4100 W.printHex("Type",
4101 getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
4102 Phdr.p_type);
4103 W.printHex("Offset", Phdr.p_offset);
4104 W.printHex("VirtualAddress", Phdr.p_vaddr);
4105 W.printHex("PhysicalAddress", Phdr.p_paddr);
4106 W.printNumber("FileSize", Phdr.p_filesz);
4107 W.printNumber("MemSize", Phdr.p_memsz);
4108 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
4109 W.printNumber("Alignment", Phdr.p_align);
4113 template <class ELFT>
4114 void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
4115 W.startLine() << "Hash Histogram not implemented!\n";
4118 template <class ELFT>
4119 void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
4120 W.startLine() << "printNotes not implemented!\n";
4123 template <class ELFT>
4124 void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
4125 ListScope L(W, "LinkerOptions");
4127 for (const Elf_Shdr &Shdr : unwrapOrError(Obj->sections())) {
4128 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
4129 continue;
4131 ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Shdr));
4132 for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) {
4133 StringRef Key = StringRef(reinterpret_cast<const char *>(P));
4134 StringRef Value =
4135 StringRef(reinterpret_cast<const char *>(P) + Key.size() + 1);
4137 W.printString(Key, Value);
4139 P = P + Key.size() + Value.size() + 2;
4144 template <class ELFT>
4145 void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
4146 auto PrintEntry = [&](const Elf_Addr *E) {
4147 W.printHex("Address", Parser.getGotAddress(E));
4148 W.printNumber("Access", Parser.getGotOffset(E));
4149 W.printHex("Initial", *E);
4152 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
4154 W.printHex("Canonical gp value", Parser.getGp());
4156 ListScope RS(W, "Reserved entries");
4158 DictScope D(W, "Entry");
4159 PrintEntry(Parser.getGotLazyResolver());
4160 W.printString("Purpose", StringRef("Lazy resolver"));
4163 if (Parser.getGotModulePointer()) {
4164 DictScope D(W, "Entry");
4165 PrintEntry(Parser.getGotModulePointer());
4166 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
4170 ListScope LS(W, "Local entries");
4171 for (auto &E : Parser.getLocalEntries()) {
4172 DictScope D(W, "Entry");
4173 PrintEntry(&E);
4177 if (Parser.IsStatic)
4178 return;
4181 ListScope GS(W, "Global entries");
4182 for (auto &E : Parser.getGlobalEntries()) {
4183 DictScope D(W, "Entry");
4185 PrintEntry(&E);
4187 const Elf_Sym *Sym = Parser.getGotSym(&E);
4188 W.printHex("Value", Sym->st_value);
4189 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
4191 unsigned SectionIndex = 0;
4192 StringRef SectionName;
4193 this->dumper()->getSectionNameIndex(
4194 Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
4195 SectionIndex);
4196 W.printHex("Section", SectionName, SectionIndex);
4198 std::string SymName = this->dumper()->getFullSymbolName(
4199 Sym, this->dumper()->getDynamicStringTable(), true);
4200 W.printNumber("Name", SymName, Sym->st_name);
4204 W.printNumber("Number of TLS and multi-GOT entries",
4205 uint64_t(Parser.getOtherEntries().size()));
4208 template <class ELFT>
4209 void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
4210 auto PrintEntry = [&](const Elf_Addr *E) {
4211 W.printHex("Address", Parser.getPltAddress(E));
4212 W.printHex("Initial", *E);
4215 DictScope GS(W, "PLT GOT");
4218 ListScope RS(W, "Reserved entries");
4220 DictScope D(W, "Entry");
4221 PrintEntry(Parser.getPltLazyResolver());
4222 W.printString("Purpose", StringRef("PLT lazy resolver"));
4225 if (auto E = Parser.getPltModulePointer()) {
4226 DictScope D(W, "Entry");
4227 PrintEntry(E);
4228 W.printString("Purpose", StringRef("Module pointer"));
4232 ListScope LS(W, "Entries");
4233 for (auto &E : Parser.getPltEntries()) {
4234 DictScope D(W, "Entry");
4235 PrintEntry(&E);
4237 const Elf_Sym *Sym = Parser.getPltSym(&E);
4238 W.printHex("Value", Sym->st_value);
4239 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
4241 unsigned SectionIndex = 0;
4242 StringRef SectionName;
4243 this->dumper()->getSectionNameIndex(
4244 Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
4245 SectionIndex);
4246 W.printHex("Section", SectionName, SectionIndex);
4248 std::string SymName =
4249 this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
4250 W.printNumber("Name", SymName, Sym->st_name);