[PowerPC] Look through copies for compare elimination
[llvm-core.git] / utils / TableGen / CodeGenTarget.cpp
blob97a26a561b5fcffc5c3e32dde038b6d27119012e
1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends. This makes it easier to access the data and
11 // provides a single place that needs to check it for validity. All of these
12 // classes abort on error conditions.
14 //===----------------------------------------------------------------------===//
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
27 #include <algorithm>
28 using namespace llvm;
30 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
33 static cl::opt<unsigned>
34 AsmParserNum("asmparsernum", cl::init(0),
35 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36 cl::cat(AsmParserCat));
38 static cl::opt<unsigned>
39 AsmWriterNum("asmwriternum", cl::init(0),
40 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41 cl::cat(AsmWriterCat));
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType llvm::getValueType(Record *Rec) {
46 return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
49 StringRef llvm::getName(MVT::SimpleValueType T) {
50 switch (T) {
51 case MVT::Other: return "UNKNOWN";
52 case MVT::iPTR: return "TLI.getPointerTy()";
53 case MVT::iPTRAny: return "TLI.getPointerTy()";
54 default: return getEnumName(T);
58 StringRef llvm::getEnumName(MVT::SimpleValueType T) {
59 switch (T) {
60 case MVT::Other: return "MVT::Other";
61 case MVT::i1: return "MVT::i1";
62 case MVT::i8: return "MVT::i8";
63 case MVT::i16: return "MVT::i16";
64 case MVT::i32: return "MVT::i32";
65 case MVT::i64: return "MVT::i64";
66 case MVT::i128: return "MVT::i128";
67 case MVT::Any: return "MVT::Any";
68 case MVT::iAny: return "MVT::iAny";
69 case MVT::fAny: return "MVT::fAny";
70 case MVT::vAny: return "MVT::vAny";
71 case MVT::f16: return "MVT::f16";
72 case MVT::f32: return "MVT::f32";
73 case MVT::f64: return "MVT::f64";
74 case MVT::f80: return "MVT::f80";
75 case MVT::f128: return "MVT::f128";
76 case MVT::ppcf128: return "MVT::ppcf128";
77 case MVT::x86mmx: return "MVT::x86mmx";
78 case MVT::Glue: return "MVT::Glue";
79 case MVT::isVoid: return "MVT::isVoid";
80 case MVT::v1i1: return "MVT::v1i1";
81 case MVT::v2i1: return "MVT::v2i1";
82 case MVT::v4i1: return "MVT::v4i1";
83 case MVT::v8i1: return "MVT::v8i1";
84 case MVT::v16i1: return "MVT::v16i1";
85 case MVT::v32i1: return "MVT::v32i1";
86 case MVT::v64i1: return "MVT::v64i1";
87 case MVT::v128i1: return "MVT::v128i1";
88 case MVT::v512i1: return "MVT::v512i1";
89 case MVT::v1024i1: return "MVT::v1024i1";
90 case MVT::v1i8: return "MVT::v1i8";
91 case MVT::v2i8: return "MVT::v2i8";
92 case MVT::v4i8: return "MVT::v4i8";
93 case MVT::v8i8: return "MVT::v8i8";
94 case MVT::v16i8: return "MVT::v16i8";
95 case MVT::v32i8: return "MVT::v32i8";
96 case MVT::v64i8: return "MVT::v64i8";
97 case MVT::v128i8: return "MVT::v128i8";
98 case MVT::v256i8: return "MVT::v256i8";
99 case MVT::v1i16: return "MVT::v1i16";
100 case MVT::v2i16: return "MVT::v2i16";
101 case MVT::v4i16: return "MVT::v4i16";
102 case MVT::v8i16: return "MVT::v8i16";
103 case MVT::v16i16: return "MVT::v16i16";
104 case MVT::v32i16: return "MVT::v32i16";
105 case MVT::v64i16: return "MVT::v64i16";
106 case MVT::v128i16: return "MVT::v128i16";
107 case MVT::v1i32: return "MVT::v1i32";
108 case MVT::v2i32: return "MVT::v2i32";
109 case MVT::v3i32: return "MVT::v3i32";
110 case MVT::v4i32: return "MVT::v4i32";
111 case MVT::v5i32: return "MVT::v5i32";
112 case MVT::v8i32: return "MVT::v8i32";
113 case MVT::v16i32: return "MVT::v16i32";
114 case MVT::v32i32: return "MVT::v32i32";
115 case MVT::v64i32: return "MVT::v64i32";
116 case MVT::v1i64: return "MVT::v1i64";
117 case MVT::v2i64: return "MVT::v2i64";
118 case MVT::v4i64: return "MVT::v4i64";
119 case MVT::v8i64: return "MVT::v8i64";
120 case MVT::v16i64: return "MVT::v16i64";
121 case MVT::v32i64: return "MVT::v32i64";
122 case MVT::v1i128: return "MVT::v1i128";
123 case MVT::v2f16: return "MVT::v2f16";
124 case MVT::v4f16: return "MVT::v4f16";
125 case MVT::v8f16: return "MVT::v8f16";
126 case MVT::v1f32: return "MVT::v1f32";
127 case MVT::v2f32: return "MVT::v2f32";
128 case MVT::v3f32: return "MVT::v3f32";
129 case MVT::v4f32: return "MVT::v4f32";
130 case MVT::v5f32: return "MVT::v5f32";
131 case MVT::v8f32: return "MVT::v8f32";
132 case MVT::v16f32: return "MVT::v16f32";
133 case MVT::v1f64: return "MVT::v1f64";
134 case MVT::v2f64: return "MVT::v2f64";
135 case MVT::v4f64: return "MVT::v4f64";
136 case MVT::v8f64: return "MVT::v8f64";
137 case MVT::nxv1i1: return "MVT::nxv1i1";
138 case MVT::nxv2i1: return "MVT::nxv2i1";
139 case MVT::nxv4i1: return "MVT::nxv4i1";
140 case MVT::nxv8i1: return "MVT::nxv8i1";
141 case MVT::nxv16i1: return "MVT::nxv16i1";
142 case MVT::nxv32i1: return "MVT::nxv32i1";
143 case MVT::nxv1i8: return "MVT::nxv1i8";
144 case MVT::nxv2i8: return "MVT::nxv2i8";
145 case MVT::nxv4i8: return "MVT::nxv4i8";
146 case MVT::nxv8i8: return "MVT::nxv8i8";
147 case MVT::nxv16i8: return "MVT::nxv16i8";
148 case MVT::nxv32i8: return "MVT::nxv32i8";
149 case MVT::nxv1i16: return "MVT::nxv1i16";
150 case MVT::nxv2i16: return "MVT::nxv2i16";
151 case MVT::nxv4i16: return "MVT::nxv4i16";
152 case MVT::nxv8i16: return "MVT::nxv8i16";
153 case MVT::nxv16i16: return "MVT::nxv16i16";
154 case MVT::nxv32i16: return "MVT::nxv32i16";
155 case MVT::nxv1i32: return "MVT::nxv1i32";
156 case MVT::nxv2i32: return "MVT::nxv2i32";
157 case MVT::nxv4i32: return "MVT::nxv4i32";
158 case MVT::nxv8i32: return "MVT::nxv8i32";
159 case MVT::nxv16i32: return "MVT::nxv16i32";
160 case MVT::nxv1i64: return "MVT::nxv1i64";
161 case MVT::nxv2i64: return "MVT::nxv2i64";
162 case MVT::nxv4i64: return "MVT::nxv4i64";
163 case MVT::nxv8i64: return "MVT::nxv8i64";
164 case MVT::nxv16i64: return "MVT::nxv16i64";
165 case MVT::nxv2f16: return "MVT::nxv2f16";
166 case MVT::nxv4f16: return "MVT::nxv4f16";
167 case MVT::nxv8f16: return "MVT::nxv8f16";
168 case MVT::nxv1f32: return "MVT::nxv1f32";
169 case MVT::nxv2f32: return "MVT::nxv2f32";
170 case MVT::nxv4f32: return "MVT::nxv4f32";
171 case MVT::nxv8f32: return "MVT::nxv8f32";
172 case MVT::nxv16f32: return "MVT::nxv16f32";
173 case MVT::nxv1f64: return "MVT::nxv1f64";
174 case MVT::nxv2f64: return "MVT::nxv2f64";
175 case MVT::nxv4f64: return "MVT::nxv4f64";
176 case MVT::nxv8f64: return "MVT::nxv8f64";
177 case MVT::token: return "MVT::token";
178 case MVT::Metadata: return "MVT::Metadata";
179 case MVT::iPTR: return "MVT::iPTR";
180 case MVT::iPTRAny: return "MVT::iPTRAny";
181 case MVT::Untyped: return "MVT::Untyped";
182 case MVT::ExceptRef: return "MVT::ExceptRef";
183 default: llvm_unreachable("ILLEGAL VALUE TYPE!");
187 /// getQualifiedName - Return the name of the specified record, with a
188 /// namespace qualifier if the record contains one.
190 std::string llvm::getQualifiedName(const Record *R) {
191 std::string Namespace;
192 if (R->getValue("Namespace"))
193 Namespace = R->getValueAsString("Namespace");
194 if (Namespace.empty()) return R->getName();
195 return Namespace + "::" + R->getName().str();
199 /// getTarget - Return the current instance of the Target class.
201 CodeGenTarget::CodeGenTarget(RecordKeeper &records)
202 : Records(records), CGH(records) {
203 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
204 if (Targets.size() == 0)
205 PrintFatalError("ERROR: No 'Target' subclasses defined!");
206 if (Targets.size() != 1)
207 PrintFatalError("ERROR: Multiple subclasses of Target defined!");
208 TargetRec = Targets[0];
211 CodeGenTarget::~CodeGenTarget() {
214 const StringRef CodeGenTarget::getName() const {
215 return TargetRec->getName();
218 StringRef CodeGenTarget::getInstNamespace() const {
219 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
220 // Make sure not to pick up "TargetOpcode" by accidentally getting
221 // the namespace off the PHI instruction or something.
222 if (Inst->Namespace != "TargetOpcode")
223 return Inst->Namespace;
226 return "";
229 Record *CodeGenTarget::getInstructionSet() const {
230 return TargetRec->getValueAsDef("InstructionSet");
233 bool CodeGenTarget::getAllowRegisterRenaming() const {
234 return TargetRec->getValueAsInt("AllowRegisterRenaming");
237 /// getAsmParser - Return the AssemblyParser definition for this target.
239 Record *CodeGenTarget::getAsmParser() const {
240 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
241 if (AsmParserNum >= LI.size())
242 PrintFatalError("Target does not have an AsmParser #" +
243 Twine(AsmParserNum) + "!");
244 return LI[AsmParserNum];
247 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
248 /// this target.
250 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
251 std::vector<Record*> LI =
252 TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
253 if (i >= LI.size())
254 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
255 "!");
256 return LI[i];
259 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
260 /// available for this target.
262 unsigned CodeGenTarget::getAsmParserVariantCount() const {
263 std::vector<Record*> LI =
264 TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
265 return LI.size();
268 /// getAsmWriter - Return the AssemblyWriter definition for this target.
270 Record *CodeGenTarget::getAsmWriter() const {
271 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
272 if (AsmWriterNum >= LI.size())
273 PrintFatalError("Target does not have an AsmWriter #" +
274 Twine(AsmWriterNum) + "!");
275 return LI[AsmWriterNum];
278 CodeGenRegBank &CodeGenTarget::getRegBank() const {
279 if (!RegBank)
280 RegBank = llvm::make_unique<CodeGenRegBank>(Records, getHwModes());
281 return *RegBank;
284 void CodeGenTarget::ReadRegAltNameIndices() const {
285 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
286 llvm::sort(RegAltNameIndices, LessRecord());
289 /// getRegisterByName - If there is a register with the specific AsmName,
290 /// return it.
291 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
292 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
293 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
294 if (I == Regs.end())
295 return nullptr;
296 return I->second;
299 std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
300 const {
301 const CodeGenRegister *Reg = getRegBank().getReg(R);
302 std::vector<ValueTypeByHwMode> Result;
303 for (const auto &RC : getRegBank().getRegClasses()) {
304 if (RC.contains(Reg)) {
305 ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
306 Result.insert(Result.end(), InVTs.begin(), InVTs.end());
310 // Remove duplicates.
311 llvm::sort(Result);
312 Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
313 return Result;
317 void CodeGenTarget::ReadLegalValueTypes() const {
318 for (const auto &RC : getRegBank().getRegClasses())
319 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
321 // Remove duplicates.
322 llvm::sort(LegalValueTypes);
323 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
324 LegalValueTypes.end()),
325 LegalValueTypes.end());
328 CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
329 if (!SchedModels)
330 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
331 return *SchedModels;
334 void CodeGenTarget::ReadInstructions() const {
335 NamedRegionTimer T("Read Instructions", "Time spent reading instructions",
336 "CodeGenTarget", "CodeGenTarget", TimeRegions);
337 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
338 if (Insts.size() <= 2)
339 PrintFatalError("No 'Instruction' subclasses defined!");
341 // Parse the instructions defined in the .td file.
342 for (unsigned i = 0, e = Insts.size(); i != e; ++i)
343 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
346 static const CodeGenInstruction *
347 GetInstByName(const char *Name,
348 const DenseMap<const Record*,
349 std::unique_ptr<CodeGenInstruction>> &Insts,
350 RecordKeeper &Records) {
351 const Record *Rec = Records.getDef(Name);
353 const auto I = Insts.find(Rec);
354 if (!Rec || I == Insts.end())
355 PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
356 return I->second.get();
359 static const char *const FixedInstrs[] = {
360 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
361 #include "llvm/Support/TargetOpcodes.def"
362 nullptr};
364 unsigned CodeGenTarget::getNumFixedInstructions() {
365 return array_lengthof(FixedInstrs) - 1;
368 /// Return all of the instructions defined by the target, ordered by
369 /// their enum value.
370 void CodeGenTarget::ComputeInstrsByEnum() const {
371 const auto &Insts = getInstructions();
372 for (const char *const *p = FixedInstrs; *p; ++p) {
373 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
374 assert(Instr && "Missing target independent instruction");
375 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
376 InstrsByEnum.push_back(Instr);
378 unsigned EndOfPredefines = InstrsByEnum.size();
379 assert(EndOfPredefines == getNumFixedInstructions() &&
380 "Missing generic opcode");
382 for (const auto &I : Insts) {
383 const CodeGenInstruction *CGI = I.second.get();
384 if (CGI->Namespace != "TargetOpcode") {
385 InstrsByEnum.push_back(CGI);
386 if (CGI->TheDef->getValueAsBit("isPseudo"))
387 ++NumPseudoInstructions;
391 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
393 // All of the instructions are now in random order based on the map iteration.
394 llvm::sort(
395 InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
396 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
397 const auto &D1 = *Rec1->TheDef;
398 const auto &D2 = *Rec2->TheDef;
399 return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
400 std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
405 /// isLittleEndianEncoding - Return whether this target encodes its instruction
406 /// in little-endian format, i.e. bits laid out in the order [0..n]
408 bool CodeGenTarget::isLittleEndianEncoding() const {
409 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
412 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
413 /// encodings, reverse the bit order of all instructions.
414 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
415 if (!isLittleEndianEncoding())
416 return;
418 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
419 for (Record *R : Insts) {
420 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
421 R->getValueAsBit("isPseudo"))
422 continue;
424 BitsInit *BI = R->getValueAsBitsInit("Inst");
426 unsigned numBits = BI->getNumBits();
428 SmallVector<Init *, 16> NewBits(numBits);
430 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
431 unsigned bitSwapIdx = numBits - bit - 1;
432 Init *OrigBit = BI->getBit(bit);
433 Init *BitSwap = BI->getBit(bitSwapIdx);
434 NewBits[bit] = BitSwap;
435 NewBits[bitSwapIdx] = OrigBit;
437 if (numBits % 2) {
438 unsigned middle = (numBits + 1) / 2;
439 NewBits[middle] = BI->getBit(middle);
442 BitsInit *NewBI = BitsInit::get(NewBits);
444 // Update the bits in reversed order so that emitInstrOpBits will get the
445 // correct endianness.
446 R->getValue("Inst")->setValue(NewBI);
450 /// guessInstructionProperties - Return true if it's OK to guess instruction
451 /// properties instead of raising an error.
453 /// This is configurable as a temporary migration aid. It will eventually be
454 /// permanently false.
455 bool CodeGenTarget::guessInstructionProperties() const {
456 return getInstructionSet()->getValueAsBit("guessInstructionProperties");
459 //===----------------------------------------------------------------------===//
460 // ComplexPattern implementation
462 ComplexPattern::ComplexPattern(Record *R) {
463 Ty = ::getValueType(R->getValueAsDef("Ty"));
464 NumOperands = R->getValueAsInt("NumOperands");
465 SelectFunc = R->getValueAsString("SelectFunc");
466 RootNodes = R->getValueAsListOfDefs("RootNodes");
468 // FIXME: This is a hack to statically increase the priority of patterns which
469 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
470 // possible pattern match we'll need to dynamically calculate the complexity
471 // of all patterns a dag can potentially map to.
472 int64_t RawComplexity = R->getValueAsInt("Complexity");
473 if (RawComplexity == -1)
474 Complexity = NumOperands * 3;
475 else
476 Complexity = RawComplexity;
478 // FIXME: Why is this different from parseSDPatternOperatorProperties?
479 // Parse the properties.
480 Properties = 0;
481 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
482 for (unsigned i = 0, e = PropList.size(); i != e; ++i)
483 if (PropList[i]->getName() == "SDNPHasChain") {
484 Properties |= 1 << SDNPHasChain;
485 } else if (PropList[i]->getName() == "SDNPOptInGlue") {
486 Properties |= 1 << SDNPOptInGlue;
487 } else if (PropList[i]->getName() == "SDNPMayStore") {
488 Properties |= 1 << SDNPMayStore;
489 } else if (PropList[i]->getName() == "SDNPMayLoad") {
490 Properties |= 1 << SDNPMayLoad;
491 } else if (PropList[i]->getName() == "SDNPSideEffect") {
492 Properties |= 1 << SDNPSideEffect;
493 } else if (PropList[i]->getName() == "SDNPMemOperand") {
494 Properties |= 1 << SDNPMemOperand;
495 } else if (PropList[i]->getName() == "SDNPVariadic") {
496 Properties |= 1 << SDNPVariadic;
497 } else if (PropList[i]->getName() == "SDNPWantRoot") {
498 Properties |= 1 << SDNPWantRoot;
499 } else if (PropList[i]->getName() == "SDNPWantParent") {
500 Properties |= 1 << SDNPWantParent;
501 } else {
502 PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
503 PropList[i]->getName() +
504 "' on ComplexPattern '" + R->getName() +
505 "'!");
509 //===----------------------------------------------------------------------===//
510 // CodeGenIntrinsic Implementation
511 //===----------------------------------------------------------------------===//
513 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC,
514 bool TargetOnly) {
515 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
517 Intrinsics.reserve(Defs.size());
519 for (unsigned I = 0, e = Defs.size(); I != e; ++I) {
520 bool isTarget = Defs[I]->getValueAsBit("isTarget");
521 if (isTarget == TargetOnly)
522 Intrinsics.push_back(CodeGenIntrinsic(Defs[I]));
524 llvm::sort(Intrinsics,
525 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
526 return std::tie(LHS.TargetPrefix, LHS.Name) <
527 std::tie(RHS.TargetPrefix, RHS.Name);
529 Targets.push_back({"", 0, 0});
530 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
531 if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
532 Targets.back().Count = I - Targets.back().Offset;
533 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
535 Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
538 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
539 TheDef = R;
540 std::string DefName = R->getName();
541 ArrayRef<SMLoc> DefLoc = R->getLoc();
542 ModRef = ReadWriteMem;
543 Properties = 0;
544 isOverloaded = false;
545 isCommutative = false;
546 canThrow = false;
547 isNoReturn = false;
548 isCold = false;
549 isNoDuplicate = false;
550 isConvergent = false;
551 isSpeculatable = false;
552 hasSideEffects = false;
554 if (DefName.size() <= 4 ||
555 std::string(DefName.begin(), DefName.begin() + 4) != "int_")
556 PrintFatalError(DefLoc,
557 "Intrinsic '" + DefName + "' does not start with 'int_'!");
559 EnumName = std::string(DefName.begin()+4, DefName.end());
561 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
562 GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
563 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
564 MSBuiltinName = R->getValueAsString("MSBuiltinName");
566 TargetPrefix = R->getValueAsString("TargetPrefix");
567 Name = R->getValueAsString("LLVMName");
569 if (Name == "") {
570 // If an explicit name isn't specified, derive one from the DefName.
571 Name = "llvm.";
573 for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
574 Name += (EnumName[i] == '_') ? '.' : EnumName[i];
575 } else {
576 // Verify it starts with "llvm.".
577 if (Name.size() <= 5 ||
578 std::string(Name.begin(), Name.begin() + 5) != "llvm.")
579 PrintFatalError(DefLoc, "Intrinsic '" + DefName +
580 "'s name does not start with 'llvm.'!");
583 // If TargetPrefix is specified, make sure that Name starts with
584 // "llvm.<targetprefix>.".
585 if (!TargetPrefix.empty()) {
586 if (Name.size() < 6+TargetPrefix.size() ||
587 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
588 != (TargetPrefix + "."))
589 PrintFatalError(DefLoc, "Intrinsic '" + DefName +
590 "' does not start with 'llvm." +
591 TargetPrefix + ".'!");
594 // Parse the list of return types.
595 std::vector<MVT::SimpleValueType> OverloadedVTs;
596 ListInit *TypeList = R->getValueAsListInit("RetTypes");
597 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
598 Record *TyEl = TypeList->getElementAsRecord(i);
599 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
600 MVT::SimpleValueType VT;
601 if (TyEl->isSubClassOf("LLVMMatchType")) {
602 unsigned MatchTy = TyEl->getValueAsInt("Number");
603 assert(MatchTy < OverloadedVTs.size() &&
604 "Invalid matching number!");
605 VT = OverloadedVTs[MatchTy];
606 // It only makes sense to use the extended and truncated vector element
607 // variants with iAny types; otherwise, if the intrinsic is not
608 // overloaded, all the types can be specified directly.
609 assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
610 !TyEl->isSubClassOf("LLVMTruncatedType")) ||
611 VT == MVT::iAny || VT == MVT::vAny) &&
612 "Expected iAny or vAny type");
613 } else {
614 VT = getValueType(TyEl->getValueAsDef("VT"));
616 if (MVT(VT).isOverloaded()) {
617 OverloadedVTs.push_back(VT);
618 isOverloaded = true;
621 // Reject invalid types.
622 if (VT == MVT::isVoid)
623 PrintFatalError(DefLoc, "Intrinsic '" + DefName +
624 " has void in result type list!");
626 IS.RetVTs.push_back(VT);
627 IS.RetTypeDefs.push_back(TyEl);
630 // Parse the list of parameter types.
631 TypeList = R->getValueAsListInit("ParamTypes");
632 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
633 Record *TyEl = TypeList->getElementAsRecord(i);
634 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
635 MVT::SimpleValueType VT;
636 if (TyEl->isSubClassOf("LLVMMatchType")) {
637 unsigned MatchTy = TyEl->getValueAsInt("Number");
638 if (MatchTy >= OverloadedVTs.size()) {
639 PrintError(R->getLoc(),
640 "Parameter #" + Twine(i) + " has out of bounds matching "
641 "number " + Twine(MatchTy));
642 PrintFatalError(DefLoc,
643 Twine("ParamTypes is ") + TypeList->getAsString());
645 VT = OverloadedVTs[MatchTy];
646 // It only makes sense to use the extended and truncated vector element
647 // variants with iAny types; otherwise, if the intrinsic is not
648 // overloaded, all the types can be specified directly.
649 assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
650 !TyEl->isSubClassOf("LLVMTruncatedType") &&
651 !TyEl->isSubClassOf("LLVMScalarOrSameVectorWidth")) ||
652 VT == MVT::iAny || VT == MVT::vAny) &&
653 "Expected iAny or vAny type");
654 } else
655 VT = getValueType(TyEl->getValueAsDef("VT"));
657 if (MVT(VT).isOverloaded()) {
658 OverloadedVTs.push_back(VT);
659 isOverloaded = true;
662 // Reject invalid types.
663 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
664 PrintFatalError(DefLoc, "Intrinsic '" + DefName +
665 " has void in result type list!");
667 IS.ParamVTs.push_back(VT);
668 IS.ParamTypeDefs.push_back(TyEl);
671 // Parse the intrinsic properties.
672 ListInit *PropList = R->getValueAsListInit("IntrProperties");
673 for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
674 Record *Property = PropList->getElementAsRecord(i);
675 assert(Property->isSubClassOf("IntrinsicProperty") &&
676 "Expected a property!");
678 if (Property->getName() == "IntrNoMem")
679 ModRef = NoMem;
680 else if (Property->getName() == "IntrReadMem")
681 ModRef = ModRefBehavior(ModRef & ~MR_Mod);
682 else if (Property->getName() == "IntrWriteMem")
683 ModRef = ModRefBehavior(ModRef & ~MR_Ref);
684 else if (Property->getName() == "IntrArgMemOnly")
685 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
686 else if (Property->getName() == "IntrInaccessibleMemOnly")
687 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
688 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly")
689 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
690 MR_InaccessibleMem);
691 else if (Property->getName() == "Commutative")
692 isCommutative = true;
693 else if (Property->getName() == "Throws")
694 canThrow = true;
695 else if (Property->getName() == "IntrNoDuplicate")
696 isNoDuplicate = true;
697 else if (Property->getName() == "IntrConvergent")
698 isConvergent = true;
699 else if (Property->getName() == "IntrNoReturn")
700 isNoReturn = true;
701 else if (Property->getName() == "IntrCold")
702 isCold = true;
703 else if (Property->getName() == "IntrSpeculatable")
704 isSpeculatable = true;
705 else if (Property->getName() == "IntrHasSideEffects")
706 hasSideEffects = true;
707 else if (Property->isSubClassOf("NoCapture")) {
708 unsigned ArgNo = Property->getValueAsInt("ArgNo");
709 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
710 } else if (Property->isSubClassOf("Returned")) {
711 unsigned ArgNo = Property->getValueAsInt("ArgNo");
712 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
713 } else if (Property->isSubClassOf("ReadOnly")) {
714 unsigned ArgNo = Property->getValueAsInt("ArgNo");
715 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
716 } else if (Property->isSubClassOf("WriteOnly")) {
717 unsigned ArgNo = Property->getValueAsInt("ArgNo");
718 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
719 } else if (Property->isSubClassOf("ReadNone")) {
720 unsigned ArgNo = Property->getValueAsInt("ArgNo");
721 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
722 } else if (Property->isSubClassOf("ImmArg")) {
723 unsigned ArgNo = Property->getValueAsInt("ArgNo");
724 ArgumentAttributes.push_back(std::make_pair(ArgNo, ImmArg));
725 } else
726 llvm_unreachable("Unknown property!");
729 // Also record the SDPatternOperator Properties.
730 Properties = parseSDPatternOperatorProperties(R);
732 // Sort the argument attributes for later benefit.
733 llvm::sort(ArgumentAttributes);