1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This class wraps target description classes used by the various code
10 // generation TableGen backends. This makes it easier to access the data and
11 // provides a single place that needs to check it for validity. All of these
12 // classes abort on error conditions.
14 //===----------------------------------------------------------------------===//
16 #include "CodeGenTarget.h"
17 #include "CodeGenDAGPatterns.h"
18 #include "CodeGenIntrinsics.h"
19 #include "CodeGenSchedule.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Timer.h"
24 #include "llvm/TableGen/Error.h"
25 #include "llvm/TableGen/Record.h"
26 #include "llvm/TableGen/TableGenBackend.h"
30 cl::OptionCategory
AsmParserCat("Options for -gen-asm-parser");
31 cl::OptionCategory
AsmWriterCat("Options for -gen-asm-writer");
33 static cl::opt
<unsigned>
34 AsmParserNum("asmparsernum", cl::init(0),
35 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
36 cl::cat(AsmParserCat
));
38 static cl::opt
<unsigned>
39 AsmWriterNum("asmwriternum", cl::init(0),
40 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
41 cl::cat(AsmWriterCat
));
43 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen
44 /// record corresponds to.
45 MVT::SimpleValueType
llvm::getValueType(Record
*Rec
) {
46 return (MVT::SimpleValueType
)Rec
->getValueAsInt("Value");
49 StringRef
llvm::getName(MVT::SimpleValueType T
) {
51 case MVT::Other
: return "UNKNOWN";
52 case MVT::iPTR
: return "TLI.getPointerTy()";
53 case MVT::iPTRAny
: return "TLI.getPointerTy()";
54 default: return getEnumName(T
);
58 StringRef
llvm::getEnumName(MVT::SimpleValueType T
) {
60 case MVT::Other
: return "MVT::Other";
61 case MVT::i1
: return "MVT::i1";
62 case MVT::i8
: return "MVT::i8";
63 case MVT::i16
: return "MVT::i16";
64 case MVT::i32
: return "MVT::i32";
65 case MVT::i64
: return "MVT::i64";
66 case MVT::i128
: return "MVT::i128";
67 case MVT::Any
: return "MVT::Any";
68 case MVT::iAny
: return "MVT::iAny";
69 case MVT::fAny
: return "MVT::fAny";
70 case MVT::vAny
: return "MVT::vAny";
71 case MVT::f16
: return "MVT::f16";
72 case MVT::f32
: return "MVT::f32";
73 case MVT::f64
: return "MVT::f64";
74 case MVT::f80
: return "MVT::f80";
75 case MVT::f128
: return "MVT::f128";
76 case MVT::ppcf128
: return "MVT::ppcf128";
77 case MVT::x86mmx
: return "MVT::x86mmx";
78 case MVT::Glue
: return "MVT::Glue";
79 case MVT::isVoid
: return "MVT::isVoid";
80 case MVT::v1i1
: return "MVT::v1i1";
81 case MVT::v2i1
: return "MVT::v2i1";
82 case MVT::v4i1
: return "MVT::v4i1";
83 case MVT::v8i1
: return "MVT::v8i1";
84 case MVT::v16i1
: return "MVT::v16i1";
85 case MVT::v32i1
: return "MVT::v32i1";
86 case MVT::v64i1
: return "MVT::v64i1";
87 case MVT::v128i1
: return "MVT::v128i1";
88 case MVT::v512i1
: return "MVT::v512i1";
89 case MVT::v1024i1
: return "MVT::v1024i1";
90 case MVT::v1i8
: return "MVT::v1i8";
91 case MVT::v2i8
: return "MVT::v2i8";
92 case MVT::v4i8
: return "MVT::v4i8";
93 case MVT::v8i8
: return "MVT::v8i8";
94 case MVT::v16i8
: return "MVT::v16i8";
95 case MVT::v32i8
: return "MVT::v32i8";
96 case MVT::v64i8
: return "MVT::v64i8";
97 case MVT::v128i8
: return "MVT::v128i8";
98 case MVT::v256i8
: return "MVT::v256i8";
99 case MVT::v1i16
: return "MVT::v1i16";
100 case MVT::v2i16
: return "MVT::v2i16";
101 case MVT::v4i16
: return "MVT::v4i16";
102 case MVT::v8i16
: return "MVT::v8i16";
103 case MVT::v16i16
: return "MVT::v16i16";
104 case MVT::v32i16
: return "MVT::v32i16";
105 case MVT::v64i16
: return "MVT::v64i16";
106 case MVT::v128i16
: return "MVT::v128i16";
107 case MVT::v1i32
: return "MVT::v1i32";
108 case MVT::v2i32
: return "MVT::v2i32";
109 case MVT::v3i32
: return "MVT::v3i32";
110 case MVT::v4i32
: return "MVT::v4i32";
111 case MVT::v5i32
: return "MVT::v5i32";
112 case MVT::v8i32
: return "MVT::v8i32";
113 case MVT::v16i32
: return "MVT::v16i32";
114 case MVT::v32i32
: return "MVT::v32i32";
115 case MVT::v64i32
: return "MVT::v64i32";
116 case MVT::v1i64
: return "MVT::v1i64";
117 case MVT::v2i64
: return "MVT::v2i64";
118 case MVT::v4i64
: return "MVT::v4i64";
119 case MVT::v8i64
: return "MVT::v8i64";
120 case MVT::v16i64
: return "MVT::v16i64";
121 case MVT::v32i64
: return "MVT::v32i64";
122 case MVT::v1i128
: return "MVT::v1i128";
123 case MVT::v2f16
: return "MVT::v2f16";
124 case MVT::v4f16
: return "MVT::v4f16";
125 case MVT::v8f16
: return "MVT::v8f16";
126 case MVT::v1f32
: return "MVT::v1f32";
127 case MVT::v2f32
: return "MVT::v2f32";
128 case MVT::v3f32
: return "MVT::v3f32";
129 case MVT::v4f32
: return "MVT::v4f32";
130 case MVT::v5f32
: return "MVT::v5f32";
131 case MVT::v8f32
: return "MVT::v8f32";
132 case MVT::v16f32
: return "MVT::v16f32";
133 case MVT::v1f64
: return "MVT::v1f64";
134 case MVT::v2f64
: return "MVT::v2f64";
135 case MVT::v4f64
: return "MVT::v4f64";
136 case MVT::v8f64
: return "MVT::v8f64";
137 case MVT::nxv1i1
: return "MVT::nxv1i1";
138 case MVT::nxv2i1
: return "MVT::nxv2i1";
139 case MVT::nxv4i1
: return "MVT::nxv4i1";
140 case MVT::nxv8i1
: return "MVT::nxv8i1";
141 case MVT::nxv16i1
: return "MVT::nxv16i1";
142 case MVT::nxv32i1
: return "MVT::nxv32i1";
143 case MVT::nxv1i8
: return "MVT::nxv1i8";
144 case MVT::nxv2i8
: return "MVT::nxv2i8";
145 case MVT::nxv4i8
: return "MVT::nxv4i8";
146 case MVT::nxv8i8
: return "MVT::nxv8i8";
147 case MVT::nxv16i8
: return "MVT::nxv16i8";
148 case MVT::nxv32i8
: return "MVT::nxv32i8";
149 case MVT::nxv1i16
: return "MVT::nxv1i16";
150 case MVT::nxv2i16
: return "MVT::nxv2i16";
151 case MVT::nxv4i16
: return "MVT::nxv4i16";
152 case MVT::nxv8i16
: return "MVT::nxv8i16";
153 case MVT::nxv16i16
: return "MVT::nxv16i16";
154 case MVT::nxv32i16
: return "MVT::nxv32i16";
155 case MVT::nxv1i32
: return "MVT::nxv1i32";
156 case MVT::nxv2i32
: return "MVT::nxv2i32";
157 case MVT::nxv4i32
: return "MVT::nxv4i32";
158 case MVT::nxv8i32
: return "MVT::nxv8i32";
159 case MVT::nxv16i32
: return "MVT::nxv16i32";
160 case MVT::nxv1i64
: return "MVT::nxv1i64";
161 case MVT::nxv2i64
: return "MVT::nxv2i64";
162 case MVT::nxv4i64
: return "MVT::nxv4i64";
163 case MVT::nxv8i64
: return "MVT::nxv8i64";
164 case MVT::nxv16i64
: return "MVT::nxv16i64";
165 case MVT::nxv2f16
: return "MVT::nxv2f16";
166 case MVT::nxv4f16
: return "MVT::nxv4f16";
167 case MVT::nxv8f16
: return "MVT::nxv8f16";
168 case MVT::nxv1f32
: return "MVT::nxv1f32";
169 case MVT::nxv2f32
: return "MVT::nxv2f32";
170 case MVT::nxv4f32
: return "MVT::nxv4f32";
171 case MVT::nxv8f32
: return "MVT::nxv8f32";
172 case MVT::nxv16f32
: return "MVT::nxv16f32";
173 case MVT::nxv1f64
: return "MVT::nxv1f64";
174 case MVT::nxv2f64
: return "MVT::nxv2f64";
175 case MVT::nxv4f64
: return "MVT::nxv4f64";
176 case MVT::nxv8f64
: return "MVT::nxv8f64";
177 case MVT::token
: return "MVT::token";
178 case MVT::Metadata
: return "MVT::Metadata";
179 case MVT::iPTR
: return "MVT::iPTR";
180 case MVT::iPTRAny
: return "MVT::iPTRAny";
181 case MVT::Untyped
: return "MVT::Untyped";
182 case MVT::ExceptRef
: return "MVT::ExceptRef";
183 default: llvm_unreachable("ILLEGAL VALUE TYPE!");
187 /// getQualifiedName - Return the name of the specified record, with a
188 /// namespace qualifier if the record contains one.
190 std::string
llvm::getQualifiedName(const Record
*R
) {
191 std::string Namespace
;
192 if (R
->getValue("Namespace"))
193 Namespace
= R
->getValueAsString("Namespace");
194 if (Namespace
.empty()) return R
->getName();
195 return Namespace
+ "::" + R
->getName().str();
199 /// getTarget - Return the current instance of the Target class.
201 CodeGenTarget::CodeGenTarget(RecordKeeper
&records
)
202 : Records(records
), CGH(records
) {
203 std::vector
<Record
*> Targets
= Records
.getAllDerivedDefinitions("Target");
204 if (Targets
.size() == 0)
205 PrintFatalError("ERROR: No 'Target' subclasses defined!");
206 if (Targets
.size() != 1)
207 PrintFatalError("ERROR: Multiple subclasses of Target defined!");
208 TargetRec
= Targets
[0];
211 CodeGenTarget::~CodeGenTarget() {
214 const StringRef
CodeGenTarget::getName() const {
215 return TargetRec
->getName();
218 StringRef
CodeGenTarget::getInstNamespace() const {
219 for (const CodeGenInstruction
*Inst
: getInstructionsByEnumValue()) {
220 // Make sure not to pick up "TargetOpcode" by accidentally getting
221 // the namespace off the PHI instruction or something.
222 if (Inst
->Namespace
!= "TargetOpcode")
223 return Inst
->Namespace
;
229 Record
*CodeGenTarget::getInstructionSet() const {
230 return TargetRec
->getValueAsDef("InstructionSet");
233 bool CodeGenTarget::getAllowRegisterRenaming() const {
234 return TargetRec
->getValueAsInt("AllowRegisterRenaming");
237 /// getAsmParser - Return the AssemblyParser definition for this target.
239 Record
*CodeGenTarget::getAsmParser() const {
240 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyParsers");
241 if (AsmParserNum
>= LI
.size())
242 PrintFatalError("Target does not have an AsmParser #" +
243 Twine(AsmParserNum
) + "!");
244 return LI
[AsmParserNum
];
247 /// getAsmParserVariant - Return the AssmblyParserVariant definition for
250 Record
*CodeGenTarget::getAsmParserVariant(unsigned i
) const {
251 std::vector
<Record
*> LI
=
252 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
254 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i
) +
259 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition
260 /// available for this target.
262 unsigned CodeGenTarget::getAsmParserVariantCount() const {
263 std::vector
<Record
*> LI
=
264 TargetRec
->getValueAsListOfDefs("AssemblyParserVariants");
268 /// getAsmWriter - Return the AssemblyWriter definition for this target.
270 Record
*CodeGenTarget::getAsmWriter() const {
271 std::vector
<Record
*> LI
= TargetRec
->getValueAsListOfDefs("AssemblyWriters");
272 if (AsmWriterNum
>= LI
.size())
273 PrintFatalError("Target does not have an AsmWriter #" +
274 Twine(AsmWriterNum
) + "!");
275 return LI
[AsmWriterNum
];
278 CodeGenRegBank
&CodeGenTarget::getRegBank() const {
280 RegBank
= llvm::make_unique
<CodeGenRegBank
>(Records
, getHwModes());
284 void CodeGenTarget::ReadRegAltNameIndices() const {
285 RegAltNameIndices
= Records
.getAllDerivedDefinitions("RegAltNameIndex");
286 llvm::sort(RegAltNameIndices
, LessRecord());
289 /// getRegisterByName - If there is a register with the specific AsmName,
291 const CodeGenRegister
*CodeGenTarget::getRegisterByName(StringRef Name
) const {
292 const StringMap
<CodeGenRegister
*> &Regs
= getRegBank().getRegistersByName();
293 StringMap
<CodeGenRegister
*>::const_iterator I
= Regs
.find(Name
);
299 std::vector
<ValueTypeByHwMode
> CodeGenTarget::getRegisterVTs(Record
*R
)
301 const CodeGenRegister
*Reg
= getRegBank().getReg(R
);
302 std::vector
<ValueTypeByHwMode
> Result
;
303 for (const auto &RC
: getRegBank().getRegClasses()) {
304 if (RC
.contains(Reg
)) {
305 ArrayRef
<ValueTypeByHwMode
> InVTs
= RC
.getValueTypes();
306 Result
.insert(Result
.end(), InVTs
.begin(), InVTs
.end());
310 // Remove duplicates.
312 Result
.erase(std::unique(Result
.begin(), Result
.end()), Result
.end());
317 void CodeGenTarget::ReadLegalValueTypes() const {
318 for (const auto &RC
: getRegBank().getRegClasses())
319 LegalValueTypes
.insert(LegalValueTypes
.end(), RC
.VTs
.begin(), RC
.VTs
.end());
321 // Remove duplicates.
322 llvm::sort(LegalValueTypes
);
323 LegalValueTypes
.erase(std::unique(LegalValueTypes
.begin(),
324 LegalValueTypes
.end()),
325 LegalValueTypes
.end());
328 CodeGenSchedModels
&CodeGenTarget::getSchedModels() const {
330 SchedModels
= llvm::make_unique
<CodeGenSchedModels
>(Records
, *this);
334 void CodeGenTarget::ReadInstructions() const {
335 NamedRegionTimer
T("Read Instructions", "Time spent reading instructions",
336 "CodeGenTarget", "CodeGenTarget", TimeRegions
);
337 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
338 if (Insts
.size() <= 2)
339 PrintFatalError("No 'Instruction' subclasses defined!");
341 // Parse the instructions defined in the .td file.
342 for (unsigned i
= 0, e
= Insts
.size(); i
!= e
; ++i
)
343 Instructions
[Insts
[i
]] = llvm::make_unique
<CodeGenInstruction
>(Insts
[i
]);
346 static const CodeGenInstruction
*
347 GetInstByName(const char *Name
,
348 const DenseMap
<const Record
*,
349 std::unique_ptr
<CodeGenInstruction
>> &Insts
,
350 RecordKeeper
&Records
) {
351 const Record
*Rec
= Records
.getDef(Name
);
353 const auto I
= Insts
.find(Rec
);
354 if (!Rec
|| I
== Insts
.end())
355 PrintFatalError(Twine("Could not find '") + Name
+ "' instruction!");
356 return I
->second
.get();
359 static const char *const FixedInstrs
[] = {
360 #define HANDLE_TARGET_OPCODE(OPC) #OPC,
361 #include "llvm/Support/TargetOpcodes.def"
364 unsigned CodeGenTarget::getNumFixedInstructions() {
365 return array_lengthof(FixedInstrs
) - 1;
368 /// Return all of the instructions defined by the target, ordered by
369 /// their enum value.
370 void CodeGenTarget::ComputeInstrsByEnum() const {
371 const auto &Insts
= getInstructions();
372 for (const char *const *p
= FixedInstrs
; *p
; ++p
) {
373 const CodeGenInstruction
*Instr
= GetInstByName(*p
, Insts
, Records
);
374 assert(Instr
&& "Missing target independent instruction");
375 assert(Instr
->Namespace
== "TargetOpcode" && "Bad namespace");
376 InstrsByEnum
.push_back(Instr
);
378 unsigned EndOfPredefines
= InstrsByEnum
.size();
379 assert(EndOfPredefines
== getNumFixedInstructions() &&
380 "Missing generic opcode");
382 for (const auto &I
: Insts
) {
383 const CodeGenInstruction
*CGI
= I
.second
.get();
384 if (CGI
->Namespace
!= "TargetOpcode") {
385 InstrsByEnum
.push_back(CGI
);
386 if (CGI
->TheDef
->getValueAsBit("isPseudo"))
387 ++NumPseudoInstructions
;
391 assert(InstrsByEnum
.size() == Insts
.size() && "Missing predefined instr");
393 // All of the instructions are now in random order based on the map iteration.
395 InstrsByEnum
.begin() + EndOfPredefines
, InstrsByEnum
.end(),
396 [](const CodeGenInstruction
*Rec1
, const CodeGenInstruction
*Rec2
) {
397 const auto &D1
= *Rec1
->TheDef
;
398 const auto &D2
= *Rec2
->TheDef
;
399 return std::make_tuple(!D1
.getValueAsBit("isPseudo"), D1
.getName()) <
400 std::make_tuple(!D2
.getValueAsBit("isPseudo"), D2
.getName());
405 /// isLittleEndianEncoding - Return whether this target encodes its instruction
406 /// in little-endian format, i.e. bits laid out in the order [0..n]
408 bool CodeGenTarget::isLittleEndianEncoding() const {
409 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
412 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
413 /// encodings, reverse the bit order of all instructions.
414 void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
415 if (!isLittleEndianEncoding())
418 std::vector
<Record
*> Insts
= Records
.getAllDerivedDefinitions("Instruction");
419 for (Record
*R
: Insts
) {
420 if (R
->getValueAsString("Namespace") == "TargetOpcode" ||
421 R
->getValueAsBit("isPseudo"))
424 BitsInit
*BI
= R
->getValueAsBitsInit("Inst");
426 unsigned numBits
= BI
->getNumBits();
428 SmallVector
<Init
*, 16> NewBits(numBits
);
430 for (unsigned bit
= 0, end
= numBits
/ 2; bit
!= end
; ++bit
) {
431 unsigned bitSwapIdx
= numBits
- bit
- 1;
432 Init
*OrigBit
= BI
->getBit(bit
);
433 Init
*BitSwap
= BI
->getBit(bitSwapIdx
);
434 NewBits
[bit
] = BitSwap
;
435 NewBits
[bitSwapIdx
] = OrigBit
;
438 unsigned middle
= (numBits
+ 1) / 2;
439 NewBits
[middle
] = BI
->getBit(middle
);
442 BitsInit
*NewBI
= BitsInit::get(NewBits
);
444 // Update the bits in reversed order so that emitInstrOpBits will get the
445 // correct endianness.
446 R
->getValue("Inst")->setValue(NewBI
);
450 /// guessInstructionProperties - Return true if it's OK to guess instruction
451 /// properties instead of raising an error.
453 /// This is configurable as a temporary migration aid. It will eventually be
454 /// permanently false.
455 bool CodeGenTarget::guessInstructionProperties() const {
456 return getInstructionSet()->getValueAsBit("guessInstructionProperties");
459 //===----------------------------------------------------------------------===//
460 // ComplexPattern implementation
462 ComplexPattern::ComplexPattern(Record
*R
) {
463 Ty
= ::getValueType(R
->getValueAsDef("Ty"));
464 NumOperands
= R
->getValueAsInt("NumOperands");
465 SelectFunc
= R
->getValueAsString("SelectFunc");
466 RootNodes
= R
->getValueAsListOfDefs("RootNodes");
468 // FIXME: This is a hack to statically increase the priority of patterns which
469 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
470 // possible pattern match we'll need to dynamically calculate the complexity
471 // of all patterns a dag can potentially map to.
472 int64_t RawComplexity
= R
->getValueAsInt("Complexity");
473 if (RawComplexity
== -1)
474 Complexity
= NumOperands
* 3;
476 Complexity
= RawComplexity
;
478 // FIXME: Why is this different from parseSDPatternOperatorProperties?
479 // Parse the properties.
481 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
482 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
)
483 if (PropList
[i
]->getName() == "SDNPHasChain") {
484 Properties
|= 1 << SDNPHasChain
;
485 } else if (PropList
[i
]->getName() == "SDNPOptInGlue") {
486 Properties
|= 1 << SDNPOptInGlue
;
487 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
488 Properties
|= 1 << SDNPMayStore
;
489 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
490 Properties
|= 1 << SDNPMayLoad
;
491 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
492 Properties
|= 1 << SDNPSideEffect
;
493 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
494 Properties
|= 1 << SDNPMemOperand
;
495 } else if (PropList
[i
]->getName() == "SDNPVariadic") {
496 Properties
|= 1 << SDNPVariadic
;
497 } else if (PropList
[i
]->getName() == "SDNPWantRoot") {
498 Properties
|= 1 << SDNPWantRoot
;
499 } else if (PropList
[i
]->getName() == "SDNPWantParent") {
500 Properties
|= 1 << SDNPWantParent
;
502 PrintFatalError(R
->getLoc(), "Unsupported SD Node property '" +
503 PropList
[i
]->getName() +
504 "' on ComplexPattern '" + R
->getName() +
509 //===----------------------------------------------------------------------===//
510 // CodeGenIntrinsic Implementation
511 //===----------------------------------------------------------------------===//
513 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper
&RC
,
515 std::vector
<Record
*> Defs
= RC
.getAllDerivedDefinitions("Intrinsic");
517 Intrinsics
.reserve(Defs
.size());
519 for (unsigned I
= 0, e
= Defs
.size(); I
!= e
; ++I
) {
520 bool isTarget
= Defs
[I
]->getValueAsBit("isTarget");
521 if (isTarget
== TargetOnly
)
522 Intrinsics
.push_back(CodeGenIntrinsic(Defs
[I
]));
524 llvm::sort(Intrinsics
,
525 [](const CodeGenIntrinsic
&LHS
, const CodeGenIntrinsic
&RHS
) {
526 return std::tie(LHS
.TargetPrefix
, LHS
.Name
) <
527 std::tie(RHS
.TargetPrefix
, RHS
.Name
);
529 Targets
.push_back({"", 0, 0});
530 for (size_t I
= 0, E
= Intrinsics
.size(); I
< E
; ++I
)
531 if (Intrinsics
[I
].TargetPrefix
!= Targets
.back().Name
) {
532 Targets
.back().Count
= I
- Targets
.back().Offset
;
533 Targets
.push_back({Intrinsics
[I
].TargetPrefix
, I
, 0});
535 Targets
.back().Count
= Intrinsics
.size() - Targets
.back().Offset
;
538 CodeGenIntrinsic::CodeGenIntrinsic(Record
*R
) {
540 std::string DefName
= R
->getName();
541 ArrayRef
<SMLoc
> DefLoc
= R
->getLoc();
542 ModRef
= ReadWriteMem
;
544 isOverloaded
= false;
545 isCommutative
= false;
549 isNoDuplicate
= false;
550 isConvergent
= false;
551 isSpeculatable
= false;
552 hasSideEffects
= false;
554 if (DefName
.size() <= 4 ||
555 std::string(DefName
.begin(), DefName
.begin() + 4) != "int_")
556 PrintFatalError(DefLoc
,
557 "Intrinsic '" + DefName
+ "' does not start with 'int_'!");
559 EnumName
= std::string(DefName
.begin()+4, DefName
.end());
561 if (R
->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
562 GCCBuiltinName
= R
->getValueAsString("GCCBuiltinName");
563 if (R
->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
564 MSBuiltinName
= R
->getValueAsString("MSBuiltinName");
566 TargetPrefix
= R
->getValueAsString("TargetPrefix");
567 Name
= R
->getValueAsString("LLVMName");
570 // If an explicit name isn't specified, derive one from the DefName.
573 for (unsigned i
= 0, e
= EnumName
.size(); i
!= e
; ++i
)
574 Name
+= (EnumName
[i
] == '_') ? '.' : EnumName
[i
];
576 // Verify it starts with "llvm.".
577 if (Name
.size() <= 5 ||
578 std::string(Name
.begin(), Name
.begin() + 5) != "llvm.")
579 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
580 "'s name does not start with 'llvm.'!");
583 // If TargetPrefix is specified, make sure that Name starts with
584 // "llvm.<targetprefix>.".
585 if (!TargetPrefix
.empty()) {
586 if (Name
.size() < 6+TargetPrefix
.size() ||
587 std::string(Name
.begin() + 5, Name
.begin() + 6 + TargetPrefix
.size())
588 != (TargetPrefix
+ "."))
589 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
590 "' does not start with 'llvm." +
591 TargetPrefix
+ ".'!");
594 // Parse the list of return types.
595 std::vector
<MVT::SimpleValueType
> OverloadedVTs
;
596 ListInit
*TypeList
= R
->getValueAsListInit("RetTypes");
597 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
598 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
599 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
600 MVT::SimpleValueType VT
;
601 if (TyEl
->isSubClassOf("LLVMMatchType")) {
602 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
603 assert(MatchTy
< OverloadedVTs
.size() &&
604 "Invalid matching number!");
605 VT
= OverloadedVTs
[MatchTy
];
606 // It only makes sense to use the extended and truncated vector element
607 // variants with iAny types; otherwise, if the intrinsic is not
608 // overloaded, all the types can be specified directly.
609 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
610 !TyEl
->isSubClassOf("LLVMTruncatedType")) ||
611 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
612 "Expected iAny or vAny type");
614 VT
= getValueType(TyEl
->getValueAsDef("VT"));
616 if (MVT(VT
).isOverloaded()) {
617 OverloadedVTs
.push_back(VT
);
621 // Reject invalid types.
622 if (VT
== MVT::isVoid
)
623 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
624 " has void in result type list!");
626 IS
.RetVTs
.push_back(VT
);
627 IS
.RetTypeDefs
.push_back(TyEl
);
630 // Parse the list of parameter types.
631 TypeList
= R
->getValueAsListInit("ParamTypes");
632 for (unsigned i
= 0, e
= TypeList
->size(); i
!= e
; ++i
) {
633 Record
*TyEl
= TypeList
->getElementAsRecord(i
);
634 assert(TyEl
->isSubClassOf("LLVMType") && "Expected a type!");
635 MVT::SimpleValueType VT
;
636 if (TyEl
->isSubClassOf("LLVMMatchType")) {
637 unsigned MatchTy
= TyEl
->getValueAsInt("Number");
638 if (MatchTy
>= OverloadedVTs
.size()) {
639 PrintError(R
->getLoc(),
640 "Parameter #" + Twine(i
) + " has out of bounds matching "
641 "number " + Twine(MatchTy
));
642 PrintFatalError(DefLoc
,
643 Twine("ParamTypes is ") + TypeList
->getAsString());
645 VT
= OverloadedVTs
[MatchTy
];
646 // It only makes sense to use the extended and truncated vector element
647 // variants with iAny types; otherwise, if the intrinsic is not
648 // overloaded, all the types can be specified directly.
649 assert(((!TyEl
->isSubClassOf("LLVMExtendedType") &&
650 !TyEl
->isSubClassOf("LLVMTruncatedType") &&
651 !TyEl
->isSubClassOf("LLVMScalarOrSameVectorWidth")) ||
652 VT
== MVT::iAny
|| VT
== MVT::vAny
) &&
653 "Expected iAny or vAny type");
655 VT
= getValueType(TyEl
->getValueAsDef("VT"));
657 if (MVT(VT
).isOverloaded()) {
658 OverloadedVTs
.push_back(VT
);
662 // Reject invalid types.
663 if (VT
== MVT::isVoid
&& i
!= e
-1 /*void at end means varargs*/)
664 PrintFatalError(DefLoc
, "Intrinsic '" + DefName
+
665 " has void in result type list!");
667 IS
.ParamVTs
.push_back(VT
);
668 IS
.ParamTypeDefs
.push_back(TyEl
);
671 // Parse the intrinsic properties.
672 ListInit
*PropList
= R
->getValueAsListInit("IntrProperties");
673 for (unsigned i
= 0, e
= PropList
->size(); i
!= e
; ++i
) {
674 Record
*Property
= PropList
->getElementAsRecord(i
);
675 assert(Property
->isSubClassOf("IntrinsicProperty") &&
676 "Expected a property!");
678 if (Property
->getName() == "IntrNoMem")
680 else if (Property
->getName() == "IntrReadMem")
681 ModRef
= ModRefBehavior(ModRef
& ~MR_Mod
);
682 else if (Property
->getName() == "IntrWriteMem")
683 ModRef
= ModRefBehavior(ModRef
& ~MR_Ref
);
684 else if (Property
->getName() == "IntrArgMemOnly")
685 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
);
686 else if (Property
->getName() == "IntrInaccessibleMemOnly")
687 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_InaccessibleMem
);
688 else if (Property
->getName() == "IntrInaccessibleMemOrArgMemOnly")
689 ModRef
= ModRefBehavior((ModRef
& ~MR_Anywhere
) | MR_ArgMem
|
691 else if (Property
->getName() == "Commutative")
692 isCommutative
= true;
693 else if (Property
->getName() == "Throws")
695 else if (Property
->getName() == "IntrNoDuplicate")
696 isNoDuplicate
= true;
697 else if (Property
->getName() == "IntrConvergent")
699 else if (Property
->getName() == "IntrNoReturn")
701 else if (Property
->getName() == "IntrCold")
703 else if (Property
->getName() == "IntrSpeculatable")
704 isSpeculatable
= true;
705 else if (Property
->getName() == "IntrHasSideEffects")
706 hasSideEffects
= true;
707 else if (Property
->isSubClassOf("NoCapture")) {
708 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
709 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, NoCapture
));
710 } else if (Property
->isSubClassOf("Returned")) {
711 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
712 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, Returned
));
713 } else if (Property
->isSubClassOf("ReadOnly")) {
714 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
715 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadOnly
));
716 } else if (Property
->isSubClassOf("WriteOnly")) {
717 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
718 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, WriteOnly
));
719 } else if (Property
->isSubClassOf("ReadNone")) {
720 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
721 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ReadNone
));
722 } else if (Property
->isSubClassOf("ImmArg")) {
723 unsigned ArgNo
= Property
->getValueAsInt("ArgNo");
724 ArgumentAttributes
.push_back(std::make_pair(ArgNo
, ImmArg
));
726 llvm_unreachable("Unknown property!");
729 // Also record the SDPatternOperator Properties.
730 Properties
= parseSDPatternOperatorProperties(R
);
732 // Sort the argument attributes for later benefit.
733 llvm::sort(ArgumentAttributes
);