[PowerPC] Look through copies for compare elimination
[llvm-core.git] / utils / TableGen / GlobalISelEmitter.cpp
blob4ec7a8192783638439b0c797a4069e278b1f3b38
1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This tablegen backend emits code for use by the GlobalISel instruction
11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
12 ///
13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
14 /// backend, filters out the ones that are unsupported, maps
15 /// SelectionDAG-specific constructs to their GlobalISel counterpart
16 /// (when applicable: MVT to LLT; SDNode to generic Instruction).
17 ///
18 /// Not all patterns are supported: pass the tablegen invocation
19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
20 /// as well as why.
21 ///
22 /// The generated file defines a single method:
23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
24 /// intended to be used in InstructionSelector::select as the first-step
25 /// selector for the patterns that don't require complex C++.
26 ///
27 /// FIXME: We'll probably want to eventually define a base
28 /// "TargetGenInstructionSelector" class.
29 ///
30 //===----------------------------------------------------------------------===//
32 #include "CodeGenDAGPatterns.h"
33 #include "SubtargetFeatureInfo.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Support/CodeGenCoverage.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/LowLevelTypeImpl.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include "llvm/Support/ScopedPrinter.h"
43 #include "llvm/TableGen/Error.h"
44 #include "llvm/TableGen/Record.h"
45 #include "llvm/TableGen/TableGenBackend.h"
46 #include <numeric>
47 #include <string>
48 using namespace llvm;
50 #define DEBUG_TYPE "gisel-emitter"
52 STATISTIC(NumPatternTotal, "Total number of patterns");
53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
56 STATISTIC(NumPatternEmitted, "Number of patterns emitted");
58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
60 static cl::opt<bool> WarnOnSkippedPatterns(
61 "warn-on-skipped-patterns",
62 cl::desc("Explain why a pattern was skipped for inclusion "
63 "in the GlobalISel selector"),
64 cl::init(false), cl::cat(GlobalISelEmitterCat));
66 static cl::opt<bool> GenerateCoverage(
67 "instrument-gisel-coverage",
68 cl::desc("Generate coverage instrumentation for GlobalISel"),
69 cl::init(false), cl::cat(GlobalISelEmitterCat));
71 static cl::opt<std::string> UseCoverageFile(
72 "gisel-coverage-file", cl::init(""),
73 cl::desc("Specify file to retrieve coverage information from"),
74 cl::cat(GlobalISelEmitterCat));
76 static cl::opt<bool> OptimizeMatchTable(
77 "optimize-match-table",
78 cl::desc("Generate an optimized version of the match table"),
79 cl::init(true), cl::cat(GlobalISelEmitterCat));
81 namespace {
82 //===- Helper functions ---------------------------------------------------===//
84 /// Get the name of the enum value used to number the predicate function.
85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
86 if (Predicate.hasGISelPredicateCode())
87 return "GIPFP_MI_" + Predicate.getFnName();
88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
89 Predicate.getFnName();
92 /// Get the opcode used to check this predicate.
93 std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
97 /// This class stands in for LLT wherever we want to tablegen-erate an
98 /// equivalent at compiler run-time.
99 class LLTCodeGen {
100 private:
101 LLT Ty;
103 public:
104 LLTCodeGen() = default;
105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
107 std::string getCxxEnumValue() const {
108 std::string Str;
109 raw_string_ostream OS(Str);
111 emitCxxEnumValue(OS);
112 return OS.str();
115 void emitCxxEnumValue(raw_ostream &OS) const {
116 if (Ty.isScalar()) {
117 OS << "GILLT_s" << Ty.getSizeInBits();
118 return;
120 if (Ty.isVector()) {
121 OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
122 return;
124 if (Ty.isPointer()) {
125 OS << "GILLT_p" << Ty.getAddressSpace();
126 if (Ty.getSizeInBits() > 0)
127 OS << "s" << Ty.getSizeInBits();
128 return;
130 llvm_unreachable("Unhandled LLT");
133 void emitCxxConstructorCall(raw_ostream &OS) const {
134 if (Ty.isScalar()) {
135 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
136 return;
138 if (Ty.isVector()) {
139 OS << "LLT::vector(" << Ty.getNumElements() << ", "
140 << Ty.getScalarSizeInBits() << ")";
141 return;
143 if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
144 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
145 << Ty.getSizeInBits() << ")";
146 return;
148 llvm_unreachable("Unhandled LLT");
151 const LLT &get() const { return Ty; }
153 /// This ordering is used for std::unique() and llvm::sort(). There's no
154 /// particular logic behind the order but either A < B or B < A must be
155 /// true if A != B.
156 bool operator<(const LLTCodeGen &Other) const {
157 if (Ty.isValid() != Other.Ty.isValid())
158 return Ty.isValid() < Other.Ty.isValid();
159 if (!Ty.isValid())
160 return false;
162 if (Ty.isVector() != Other.Ty.isVector())
163 return Ty.isVector() < Other.Ty.isVector();
164 if (Ty.isScalar() != Other.Ty.isScalar())
165 return Ty.isScalar() < Other.Ty.isScalar();
166 if (Ty.isPointer() != Other.Ty.isPointer())
167 return Ty.isPointer() < Other.Ty.isPointer();
169 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
170 return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
172 if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
173 return Ty.getNumElements() < Other.Ty.getNumElements();
175 return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
178 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
181 // Track all types that are used so we can emit the corresponding enum.
182 std::set<LLTCodeGen> KnownTypes;
184 class InstructionMatcher;
185 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
186 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
187 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
188 MVT VT(SVT);
190 if (VT.isVector() && VT.getVectorNumElements() != 1)
191 return LLTCodeGen(
192 LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
194 if (VT.isInteger() || VT.isFloatingPoint())
195 return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
196 return None;
199 static std::string explainPredicates(const TreePatternNode *N) {
200 std::string Explanation = "";
201 StringRef Separator = "";
202 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
203 const TreePredicateFn &P = Call.Fn;
204 Explanation +=
205 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
206 Separator = ", ";
208 if (P.isAlwaysTrue())
209 Explanation += " always-true";
210 if (P.isImmediatePattern())
211 Explanation += " immediate";
213 if (P.isUnindexed())
214 Explanation += " unindexed";
216 if (P.isNonExtLoad())
217 Explanation += " non-extload";
218 if (P.isAnyExtLoad())
219 Explanation += " extload";
220 if (P.isSignExtLoad())
221 Explanation += " sextload";
222 if (P.isZeroExtLoad())
223 Explanation += " zextload";
225 if (P.isNonTruncStore())
226 Explanation += " non-truncstore";
227 if (P.isTruncStore())
228 Explanation += " truncstore";
230 if (Record *VT = P.getMemoryVT())
231 Explanation += (" MemVT=" + VT->getName()).str();
232 if (Record *VT = P.getScalarMemoryVT())
233 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
235 if (P.isAtomicOrderingMonotonic())
236 Explanation += " monotonic";
237 if (P.isAtomicOrderingAcquire())
238 Explanation += " acquire";
239 if (P.isAtomicOrderingRelease())
240 Explanation += " release";
241 if (P.isAtomicOrderingAcquireRelease())
242 Explanation += " acq_rel";
243 if (P.isAtomicOrderingSequentiallyConsistent())
244 Explanation += " seq_cst";
245 if (P.isAtomicOrderingAcquireOrStronger())
246 Explanation += " >=acquire";
247 if (P.isAtomicOrderingWeakerThanAcquire())
248 Explanation += " <acquire";
249 if (P.isAtomicOrderingReleaseOrStronger())
250 Explanation += " >=release";
251 if (P.isAtomicOrderingWeakerThanRelease())
252 Explanation += " <release";
254 return Explanation;
257 std::string explainOperator(Record *Operator) {
258 if (Operator->isSubClassOf("SDNode"))
259 return (" (" + Operator->getValueAsString("Opcode") + ")").str();
261 if (Operator->isSubClassOf("Intrinsic"))
262 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
264 if (Operator->isSubClassOf("ComplexPattern"))
265 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
266 ")")
267 .str();
269 if (Operator->isSubClassOf("SDNodeXForm"))
270 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
271 ")")
272 .str();
274 return (" (Operator " + Operator->getName() + " not understood)").str();
277 /// Helper function to let the emitter report skip reason error messages.
278 static Error failedImport(const Twine &Reason) {
279 return make_error<StringError>(Reason, inconvertibleErrorCode());
282 static Error isTrivialOperatorNode(const TreePatternNode *N) {
283 std::string Explanation = "";
284 std::string Separator = "";
286 bool HasUnsupportedPredicate = false;
287 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
288 const TreePredicateFn &Predicate = Call.Fn;
290 if (Predicate.isAlwaysTrue())
291 continue;
293 if (Predicate.isImmediatePattern())
294 continue;
296 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
297 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
298 continue;
300 if (Predicate.isNonTruncStore())
301 continue;
303 if (Predicate.isLoad() && Predicate.getMemoryVT())
304 continue;
306 if (Predicate.isLoad() || Predicate.isStore()) {
307 if (Predicate.isUnindexed())
308 continue;
311 if (Predicate.isAtomic() && Predicate.getMemoryVT())
312 continue;
314 if (Predicate.isAtomic() &&
315 (Predicate.isAtomicOrderingMonotonic() ||
316 Predicate.isAtomicOrderingAcquire() ||
317 Predicate.isAtomicOrderingRelease() ||
318 Predicate.isAtomicOrderingAcquireRelease() ||
319 Predicate.isAtomicOrderingSequentiallyConsistent() ||
320 Predicate.isAtomicOrderingAcquireOrStronger() ||
321 Predicate.isAtomicOrderingWeakerThanAcquire() ||
322 Predicate.isAtomicOrderingReleaseOrStronger() ||
323 Predicate.isAtomicOrderingWeakerThanRelease()))
324 continue;
326 if (Predicate.hasGISelPredicateCode())
327 continue;
329 HasUnsupportedPredicate = true;
330 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
331 Separator = ", ";
332 Explanation += (Separator + "first-failing:" +
333 Predicate.getOrigPatFragRecord()->getRecord()->getName())
334 .str();
335 break;
338 if (!HasUnsupportedPredicate)
339 return Error::success();
341 return failedImport(Explanation);
344 static Record *getInitValueAsRegClass(Init *V) {
345 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
346 if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
347 return VDefInit->getDef()->getValueAsDef("RegClass");
348 if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
349 return VDefInit->getDef();
351 return nullptr;
354 std::string
355 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
356 std::string Name = "GIFBS";
357 for (const auto &Feature : FeatureBitset)
358 Name += ("_" + Feature->getName()).str();
359 return Name;
362 //===- MatchTable Helpers -------------------------------------------------===//
364 class MatchTable;
366 /// A record to be stored in a MatchTable.
368 /// This class represents any and all output that may be required to emit the
369 /// MatchTable. Instances are most often configured to represent an opcode or
370 /// value that will be emitted to the table with some formatting but it can also
371 /// represent commas, comments, and other formatting instructions.
372 struct MatchTableRecord {
373 enum RecordFlagsBits {
374 MTRF_None = 0x0,
375 /// Causes EmitStr to be formatted as comment when emitted.
376 MTRF_Comment = 0x1,
377 /// Causes the record value to be followed by a comma when emitted.
378 MTRF_CommaFollows = 0x2,
379 /// Causes the record value to be followed by a line break when emitted.
380 MTRF_LineBreakFollows = 0x4,
381 /// Indicates that the record defines a label and causes an additional
382 /// comment to be emitted containing the index of the label.
383 MTRF_Label = 0x8,
384 /// Causes the record to be emitted as the index of the label specified by
385 /// LabelID along with a comment indicating where that label is.
386 MTRF_JumpTarget = 0x10,
387 /// Causes the formatter to add a level of indentation before emitting the
388 /// record.
389 MTRF_Indent = 0x20,
390 /// Causes the formatter to remove a level of indentation after emitting the
391 /// record.
392 MTRF_Outdent = 0x40,
395 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
396 /// reference or define.
397 unsigned LabelID;
398 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
399 /// value, a label name.
400 std::string EmitStr;
402 private:
403 /// The number of MatchTable elements described by this record. Comments are 0
404 /// while values are typically 1. Values >1 may occur when we need to emit
405 /// values that exceed the size of a MatchTable element.
406 unsigned NumElements;
408 public:
409 /// A bitfield of RecordFlagsBits flags.
410 unsigned Flags;
412 /// The actual run-time value, if known
413 int64_t RawValue;
415 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
416 unsigned NumElements, unsigned Flags,
417 int64_t RawValue = std::numeric_limits<int64_t>::min())
418 : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
419 EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
420 RawValue(RawValue) {
422 assert((!LabelID_.hasValue() || LabelID != ~0u) &&
423 "This value is reserved for non-labels");
425 MatchTableRecord(const MatchTableRecord &Other) = default;
426 MatchTableRecord(MatchTableRecord &&Other) = default;
428 /// Useful if a Match Table Record gets optimized out
429 void turnIntoComment() {
430 Flags |= MTRF_Comment;
431 Flags &= ~MTRF_CommaFollows;
432 NumElements = 0;
435 /// For Jump Table generation purposes
436 bool operator<(const MatchTableRecord &Other) const {
437 return RawValue < Other.RawValue;
439 int64_t getRawValue() const { return RawValue; }
441 void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
442 const MatchTable &Table) const;
443 unsigned size() const { return NumElements; }
446 class Matcher;
448 /// Holds the contents of a generated MatchTable to enable formatting and the
449 /// necessary index tracking needed to support GIM_Try.
450 class MatchTable {
451 /// An unique identifier for the table. The generated table will be named
452 /// MatchTable${ID}.
453 unsigned ID;
454 /// The records that make up the table. Also includes comments describing the
455 /// values being emitted and line breaks to format it.
456 std::vector<MatchTableRecord> Contents;
457 /// The currently defined labels.
458 DenseMap<unsigned, unsigned> LabelMap;
459 /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
460 unsigned CurrentSize = 0;
461 /// A unique identifier for a MatchTable label.
462 unsigned CurrentLabelID = 0;
463 /// Determines if the table should be instrumented for rule coverage tracking.
464 bool IsWithCoverage;
466 public:
467 static MatchTableRecord LineBreak;
468 static MatchTableRecord Comment(StringRef Comment) {
469 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
471 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
472 unsigned ExtraFlags = 0;
473 if (IndentAdjust > 0)
474 ExtraFlags |= MatchTableRecord::MTRF_Indent;
475 if (IndentAdjust < 0)
476 ExtraFlags |= MatchTableRecord::MTRF_Outdent;
478 return MatchTableRecord(None, Opcode, 1,
479 MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
481 static MatchTableRecord NamedValue(StringRef NamedValue) {
482 return MatchTableRecord(None, NamedValue, 1,
483 MatchTableRecord::MTRF_CommaFollows);
485 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
486 return MatchTableRecord(None, NamedValue, 1,
487 MatchTableRecord::MTRF_CommaFollows, RawValue);
489 static MatchTableRecord NamedValue(StringRef Namespace,
490 StringRef NamedValue) {
491 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
492 MatchTableRecord::MTRF_CommaFollows);
494 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
495 int64_t RawValue) {
496 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
497 MatchTableRecord::MTRF_CommaFollows, RawValue);
499 static MatchTableRecord IntValue(int64_t IntValue) {
500 return MatchTableRecord(None, llvm::to_string(IntValue), 1,
501 MatchTableRecord::MTRF_CommaFollows);
503 static MatchTableRecord Label(unsigned LabelID) {
504 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
505 MatchTableRecord::MTRF_Label |
506 MatchTableRecord::MTRF_Comment |
507 MatchTableRecord::MTRF_LineBreakFollows);
509 static MatchTableRecord JumpTarget(unsigned LabelID) {
510 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
511 MatchTableRecord::MTRF_JumpTarget |
512 MatchTableRecord::MTRF_Comment |
513 MatchTableRecord::MTRF_CommaFollows);
516 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
518 MatchTable(bool WithCoverage, unsigned ID = 0)
519 : ID(ID), IsWithCoverage(WithCoverage) {}
521 bool isWithCoverage() const { return IsWithCoverage; }
523 void push_back(const MatchTableRecord &Value) {
524 if (Value.Flags & MatchTableRecord::MTRF_Label)
525 defineLabel(Value.LabelID);
526 Contents.push_back(Value);
527 CurrentSize += Value.size();
530 unsigned allocateLabelID() { return CurrentLabelID++; }
532 void defineLabel(unsigned LabelID) {
533 LabelMap.insert(std::make_pair(LabelID, CurrentSize));
536 unsigned getLabelIndex(unsigned LabelID) const {
537 const auto I = LabelMap.find(LabelID);
538 assert(I != LabelMap.end() && "Use of undeclared label");
539 return I->second;
542 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
544 void emitDeclaration(raw_ostream &OS) const {
545 unsigned Indentation = 4;
546 OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
547 LineBreak.emit(OS, true, *this);
548 OS << std::string(Indentation, ' ');
550 for (auto I = Contents.begin(), E = Contents.end(); I != E;
551 ++I) {
552 bool LineBreakIsNext = false;
553 const auto &NextI = std::next(I);
555 if (NextI != E) {
556 if (NextI->EmitStr == "" &&
557 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
558 LineBreakIsNext = true;
561 if (I->Flags & MatchTableRecord::MTRF_Indent)
562 Indentation += 2;
564 I->emit(OS, LineBreakIsNext, *this);
565 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
566 OS << std::string(Indentation, ' ');
568 if (I->Flags & MatchTableRecord::MTRF_Outdent)
569 Indentation -= 2;
571 OS << "};\n";
575 MatchTableRecord MatchTable::LineBreak = {
576 None, "" /* Emit String */, 0 /* Elements */,
577 MatchTableRecord::MTRF_LineBreakFollows};
579 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
580 const MatchTable &Table) const {
581 bool UseLineComment =
582 LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
583 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
584 UseLineComment = false;
586 if (Flags & MTRF_Comment)
587 OS << (UseLineComment ? "// " : "/*");
589 OS << EmitStr;
590 if (Flags & MTRF_Label)
591 OS << ": @" << Table.getLabelIndex(LabelID);
593 if (Flags & MTRF_Comment && !UseLineComment)
594 OS << "*/";
596 if (Flags & MTRF_JumpTarget) {
597 if (Flags & MTRF_Comment)
598 OS << " ";
599 OS << Table.getLabelIndex(LabelID);
602 if (Flags & MTRF_CommaFollows) {
603 OS << ",";
604 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
605 OS << " ";
608 if (Flags & MTRF_LineBreakFollows)
609 OS << "\n";
612 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
613 Table.push_back(Value);
614 return Table;
617 //===- Matchers -----------------------------------------------------------===//
619 class OperandMatcher;
620 class MatchAction;
621 class PredicateMatcher;
622 class RuleMatcher;
624 class Matcher {
625 public:
626 virtual ~Matcher() = default;
627 virtual void optimize() {}
628 virtual void emit(MatchTable &Table) = 0;
630 virtual bool hasFirstCondition() const = 0;
631 virtual const PredicateMatcher &getFirstCondition() const = 0;
632 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
635 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
636 bool WithCoverage) {
637 MatchTable Table(WithCoverage);
638 for (Matcher *Rule : Rules)
639 Rule->emit(Table);
641 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
644 class GroupMatcher final : public Matcher {
645 /// Conditions that form a common prefix of all the matchers contained.
646 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
648 /// All the nested matchers, sharing a common prefix.
649 std::vector<Matcher *> Matchers;
651 /// An owning collection for any auxiliary matchers created while optimizing
652 /// nested matchers contained.
653 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
655 public:
656 /// Add a matcher to the collection of nested matchers if it meets the
657 /// requirements, and return true. If it doesn't, do nothing and return false.
659 /// Expected to preserve its argument, so it could be moved out later on.
660 bool addMatcher(Matcher &Candidate);
662 /// Mark the matcher as fully-built and ensure any invariants expected by both
663 /// optimize() and emit(...) methods. Generally, both sequences of calls
664 /// are expected to lead to a sensible result:
666 /// addMatcher(...)*; finalize(); optimize(); emit(...); and
667 /// addMatcher(...)*; finalize(); emit(...);
669 /// or generally
671 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
673 /// Multiple calls to optimize() are expected to be handled gracefully, though
674 /// optimize() is not expected to be idempotent. Multiple calls to finalize()
675 /// aren't generally supported. emit(...) is expected to be non-mutating and
676 /// producing the exact same results upon repeated calls.
678 /// addMatcher() calls after the finalize() call are not supported.
680 /// finalize() and optimize() are both allowed to mutate the contained
681 /// matchers, so moving them out after finalize() is not supported.
682 void finalize();
683 void optimize() override;
684 void emit(MatchTable &Table) override;
686 /// Could be used to move out the matchers added previously, unless finalize()
687 /// has been already called. If any of the matchers are moved out, the group
688 /// becomes safe to destroy, but not safe to re-use for anything else.
689 iterator_range<std::vector<Matcher *>::iterator> matchers() {
690 return make_range(Matchers.begin(), Matchers.end());
692 size_t size() const { return Matchers.size(); }
693 bool empty() const { return Matchers.empty(); }
695 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
696 assert(!Conditions.empty() &&
697 "Trying to pop a condition from a condition-less group");
698 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
699 Conditions.erase(Conditions.begin());
700 return P;
702 const PredicateMatcher &getFirstCondition() const override {
703 assert(!Conditions.empty() &&
704 "Trying to get a condition from a condition-less group");
705 return *Conditions.front();
707 bool hasFirstCondition() const override { return !Conditions.empty(); }
709 private:
710 /// See if a candidate matcher could be added to this group solely by
711 /// analyzing its first condition.
712 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
715 class SwitchMatcher : public Matcher {
716 /// All the nested matchers, representing distinct switch-cases. The first
717 /// conditions (as Matcher::getFirstCondition() reports) of all the nested
718 /// matchers must share the same type and path to a value they check, in other
719 /// words, be isIdenticalDownToValue, but have different values they check
720 /// against.
721 std::vector<Matcher *> Matchers;
723 /// The representative condition, with a type and a path (InsnVarID and OpIdx
724 /// in most cases) shared by all the matchers contained.
725 std::unique_ptr<PredicateMatcher> Condition = nullptr;
727 /// Temporary set used to check that the case values don't repeat within the
728 /// same switch.
729 std::set<MatchTableRecord> Values;
731 /// An owning collection for any auxiliary matchers created while optimizing
732 /// nested matchers contained.
733 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
735 public:
736 bool addMatcher(Matcher &Candidate);
738 void finalize();
739 void emit(MatchTable &Table) override;
741 iterator_range<std::vector<Matcher *>::iterator> matchers() {
742 return make_range(Matchers.begin(), Matchers.end());
744 size_t size() const { return Matchers.size(); }
745 bool empty() const { return Matchers.empty(); }
747 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
748 // SwitchMatcher doesn't have a common first condition for its cases, as all
749 // the cases only share a kind of a value (a type and a path to it) they
750 // match, but deliberately differ in the actual value they match.
751 llvm_unreachable("Trying to pop a condition from a condition-less group");
753 const PredicateMatcher &getFirstCondition() const override {
754 llvm_unreachable("Trying to pop a condition from a condition-less group");
756 bool hasFirstCondition() const override { return false; }
758 private:
759 /// See if the predicate type has a Switch-implementation for it.
760 static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
762 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
764 /// emit()-helper
765 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
766 MatchTable &Table);
769 /// Generates code to check that a match rule matches.
770 class RuleMatcher : public Matcher {
771 public:
772 using ActionList = std::list<std::unique_ptr<MatchAction>>;
773 using action_iterator = ActionList::iterator;
775 protected:
776 /// A list of matchers that all need to succeed for the current rule to match.
777 /// FIXME: This currently supports a single match position but could be
778 /// extended to support multiple positions to support div/rem fusion or
779 /// load-multiple instructions.
780 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
781 MatchersTy Matchers;
783 /// A list of actions that need to be taken when all predicates in this rule
784 /// have succeeded.
785 ActionList Actions;
787 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
789 /// A map of instruction matchers to the local variables
790 DefinedInsnVariablesMap InsnVariableIDs;
792 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
794 // The set of instruction matchers that have not yet been claimed for mutation
795 // by a BuildMI.
796 MutatableInsnSet MutatableInsns;
798 /// A map of named operands defined by the matchers that may be referenced by
799 /// the renderers.
800 StringMap<OperandMatcher *> DefinedOperands;
802 /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
803 unsigned NextInsnVarID;
805 /// ID for the next output instruction allocated with allocateOutputInsnID()
806 unsigned NextOutputInsnID;
808 /// ID for the next temporary register ID allocated with allocateTempRegID()
809 unsigned NextTempRegID;
811 std::vector<Record *> RequiredFeatures;
812 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
814 ArrayRef<SMLoc> SrcLoc;
816 typedef std::tuple<Record *, unsigned, unsigned>
817 DefinedComplexPatternSubOperand;
818 typedef StringMap<DefinedComplexPatternSubOperand>
819 DefinedComplexPatternSubOperandMap;
820 /// A map of Symbolic Names to ComplexPattern sub-operands.
821 DefinedComplexPatternSubOperandMap ComplexSubOperands;
823 uint64_t RuleID;
824 static uint64_t NextRuleID;
826 public:
827 RuleMatcher(ArrayRef<SMLoc> SrcLoc)
828 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
829 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
830 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
831 RuleID(NextRuleID++) {}
832 RuleMatcher(RuleMatcher &&Other) = default;
833 RuleMatcher &operator=(RuleMatcher &&Other) = default;
835 uint64_t getRuleID() const { return RuleID; }
837 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
838 void addRequiredFeature(Record *Feature);
839 const std::vector<Record *> &getRequiredFeatures() const;
841 template <class Kind, class... Args> Kind &addAction(Args &&... args);
842 template <class Kind, class... Args>
843 action_iterator insertAction(action_iterator InsertPt, Args &&... args);
845 /// Define an instruction without emitting any code to do so.
846 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
848 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
849 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
850 return InsnVariableIDs.begin();
852 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
853 return InsnVariableIDs.end();
855 iterator_range<typename DefinedInsnVariablesMap::const_iterator>
856 defined_insn_vars() const {
857 return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
860 MutatableInsnSet::const_iterator mutatable_insns_begin() const {
861 return MutatableInsns.begin();
863 MutatableInsnSet::const_iterator mutatable_insns_end() const {
864 return MutatableInsns.end();
866 iterator_range<typename MutatableInsnSet::const_iterator>
867 mutatable_insns() const {
868 return make_range(mutatable_insns_begin(), mutatable_insns_end());
870 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
871 bool R = MutatableInsns.erase(InsnMatcher);
872 assert(R && "Reserving a mutatable insn that isn't available");
873 (void)R;
876 action_iterator actions_begin() { return Actions.begin(); }
877 action_iterator actions_end() { return Actions.end(); }
878 iterator_range<action_iterator> actions() {
879 return make_range(actions_begin(), actions_end());
882 void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
884 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
885 unsigned RendererID, unsigned SubOperandID) {
886 if (ComplexSubOperands.count(SymbolicName))
887 return failedImport(
888 "Complex suboperand referenced more than once (Operand: " +
889 SymbolicName + ")");
891 ComplexSubOperands[SymbolicName] =
892 std::make_tuple(ComplexPattern, RendererID, SubOperandID);
894 return Error::success();
897 Optional<DefinedComplexPatternSubOperand>
898 getComplexSubOperand(StringRef SymbolicName) const {
899 const auto &I = ComplexSubOperands.find(SymbolicName);
900 if (I == ComplexSubOperands.end())
901 return None;
902 return I->second;
905 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
906 const OperandMatcher &getOperandMatcher(StringRef Name) const;
908 void optimize() override;
909 void emit(MatchTable &Table) override;
911 /// Compare the priority of this object and B.
913 /// Returns true if this object is more important than B.
914 bool isHigherPriorityThan(const RuleMatcher &B) const;
916 /// Report the maximum number of temporary operands needed by the rule
917 /// matcher.
918 unsigned countRendererFns() const;
920 std::unique_ptr<PredicateMatcher> popFirstCondition() override;
921 const PredicateMatcher &getFirstCondition() const override;
922 LLTCodeGen getFirstConditionAsRootType();
923 bool hasFirstCondition() const override;
924 unsigned getNumOperands() const;
925 StringRef getOpcode() const;
927 // FIXME: Remove this as soon as possible
928 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
930 unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
931 unsigned allocateTempRegID() { return NextTempRegID++; }
933 iterator_range<MatchersTy::iterator> insnmatchers() {
934 return make_range(Matchers.begin(), Matchers.end());
936 bool insnmatchers_empty() const { return Matchers.empty(); }
937 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
940 uint64_t RuleMatcher::NextRuleID = 0;
942 using action_iterator = RuleMatcher::action_iterator;
944 template <class PredicateTy> class PredicateListMatcher {
945 private:
946 /// Template instantiations should specialize this to return a string to use
947 /// for the comment emitted when there are no predicates.
948 std::string getNoPredicateComment() const;
950 protected:
951 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
952 PredicatesTy Predicates;
954 /// Track if the list of predicates was manipulated by one of the optimization
955 /// methods.
956 bool Optimized = false;
958 public:
959 /// Construct a new predicate and add it to the matcher.
960 template <class Kind, class... Args>
961 Optional<Kind *> addPredicate(Args &&... args);
963 typename PredicatesTy::iterator predicates_begin() {
964 return Predicates.begin();
966 typename PredicatesTy::iterator predicates_end() {
967 return Predicates.end();
969 iterator_range<typename PredicatesTy::iterator> predicates() {
970 return make_range(predicates_begin(), predicates_end());
972 typename PredicatesTy::size_type predicates_size() const {
973 return Predicates.size();
975 bool predicates_empty() const { return Predicates.empty(); }
977 std::unique_ptr<PredicateTy> predicates_pop_front() {
978 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
979 Predicates.pop_front();
980 Optimized = true;
981 return Front;
984 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
985 Predicates.push_front(std::move(Predicate));
988 void eraseNullPredicates() {
989 const auto NewEnd =
990 std::stable_partition(Predicates.begin(), Predicates.end(),
991 std::logical_not<std::unique_ptr<PredicateTy>>());
992 if (NewEnd != Predicates.begin()) {
993 Predicates.erase(Predicates.begin(), NewEnd);
994 Optimized = true;
998 /// Emit MatchTable opcodes that tests whether all the predicates are met.
999 template <class... Args>
1000 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
1001 if (Predicates.empty() && !Optimized) {
1002 Table << MatchTable::Comment(getNoPredicateComment())
1003 << MatchTable::LineBreak;
1004 return;
1007 for (const auto &Predicate : predicates())
1008 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1012 class PredicateMatcher {
1013 public:
1014 /// This enum is used for RTTI and also defines the priority that is given to
1015 /// the predicate when generating the matcher code. Kinds with higher priority
1016 /// must be tested first.
1018 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1019 /// but OPM_Int must have priority over OPM_RegBank since constant integers
1020 /// are represented by a virtual register defined by a G_CONSTANT instruction.
1022 /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1023 /// are currently not compared between each other.
1024 enum PredicateKind {
1025 IPM_Opcode,
1026 IPM_NumOperands,
1027 IPM_ImmPredicate,
1028 IPM_AtomicOrderingMMO,
1029 IPM_MemoryLLTSize,
1030 IPM_MemoryVsLLTSize,
1031 IPM_GenericPredicate,
1032 OPM_SameOperand,
1033 OPM_ComplexPattern,
1034 OPM_IntrinsicID,
1035 OPM_Instruction,
1036 OPM_Int,
1037 OPM_LiteralInt,
1038 OPM_LLT,
1039 OPM_PointerToAny,
1040 OPM_RegBank,
1041 OPM_MBB,
1044 protected:
1045 PredicateKind Kind;
1046 unsigned InsnVarID;
1047 unsigned OpIdx;
1049 public:
1050 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
1051 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
1053 unsigned getInsnVarID() const { return InsnVarID; }
1054 unsigned getOpIdx() const { return OpIdx; }
1056 virtual ~PredicateMatcher() = default;
1057 /// Emit MatchTable opcodes that check the predicate for the given operand.
1058 virtual void emitPredicateOpcodes(MatchTable &Table,
1059 RuleMatcher &Rule) const = 0;
1061 PredicateKind getKind() const { return Kind; }
1063 virtual bool isIdentical(const PredicateMatcher &B) const {
1064 return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
1065 OpIdx == B.OpIdx;
1068 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
1069 return hasValue() && PredicateMatcher::isIdentical(B);
1072 virtual MatchTableRecord getValue() const {
1073 assert(hasValue() && "Can not get a value of a value-less predicate!");
1074 llvm_unreachable("Not implemented yet");
1076 virtual bool hasValue() const { return false; }
1078 /// Report the maximum number of temporary operands needed by the predicate
1079 /// matcher.
1080 virtual unsigned countRendererFns() const { return 0; }
1083 /// Generates code to check a predicate of an operand.
1085 /// Typical predicates include:
1086 /// * Operand is a particular register.
1087 /// * Operand is assigned a particular register bank.
1088 /// * Operand is an MBB.
1089 class OperandPredicateMatcher : public PredicateMatcher {
1090 public:
1091 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
1092 unsigned OpIdx)
1093 : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
1094 virtual ~OperandPredicateMatcher() {}
1096 /// Compare the priority of this object and B.
1098 /// Returns true if this object is more important than B.
1099 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
1102 template <>
1103 std::string
1104 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
1105 return "No operand predicates";
1108 /// Generates code to check that a register operand is defined by the same exact
1109 /// one as another.
1110 class SameOperandMatcher : public OperandPredicateMatcher {
1111 std::string MatchingName;
1113 public:
1114 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
1115 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
1116 MatchingName(MatchingName) {}
1118 static bool classof(const PredicateMatcher *P) {
1119 return P->getKind() == OPM_SameOperand;
1122 void emitPredicateOpcodes(MatchTable &Table,
1123 RuleMatcher &Rule) const override;
1125 bool isIdentical(const PredicateMatcher &B) const override {
1126 return OperandPredicateMatcher::isIdentical(B) &&
1127 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
1131 /// Generates code to check that an operand is a particular LLT.
1132 class LLTOperandMatcher : public OperandPredicateMatcher {
1133 protected:
1134 LLTCodeGen Ty;
1136 public:
1137 static std::map<LLTCodeGen, unsigned> TypeIDValues;
1139 static void initTypeIDValuesMap() {
1140 TypeIDValues.clear();
1142 unsigned ID = 0;
1143 for (const LLTCodeGen LLTy : KnownTypes)
1144 TypeIDValues[LLTy] = ID++;
1147 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
1148 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
1149 KnownTypes.insert(Ty);
1152 static bool classof(const PredicateMatcher *P) {
1153 return P->getKind() == OPM_LLT;
1155 bool isIdentical(const PredicateMatcher &B) const override {
1156 return OperandPredicateMatcher::isIdentical(B) &&
1157 Ty == cast<LLTOperandMatcher>(&B)->Ty;
1159 MatchTableRecord getValue() const override {
1160 const auto VI = TypeIDValues.find(Ty);
1161 if (VI == TypeIDValues.end())
1162 return MatchTable::NamedValue(getTy().getCxxEnumValue());
1163 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
1165 bool hasValue() const override {
1166 if (TypeIDValues.size() != KnownTypes.size())
1167 initTypeIDValuesMap();
1168 return TypeIDValues.count(Ty);
1171 LLTCodeGen getTy() const { return Ty; }
1173 void emitPredicateOpcodes(MatchTable &Table,
1174 RuleMatcher &Rule) const override {
1175 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1176 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1177 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
1178 << getValue() << MatchTable::LineBreak;
1182 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
1184 /// Generates code to check that an operand is a pointer to any address space.
1186 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
1187 /// result, iN is used to describe a pointer of N bits to any address space and
1188 /// PatFrag predicates are typically used to constrain the address space. There's
1189 /// no reliable means to derive the missing type information from the pattern so
1190 /// imported rules must test the components of a pointer separately.
1192 /// If SizeInBits is zero, then the pointer size will be obtained from the
1193 /// subtarget.
1194 class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
1195 protected:
1196 unsigned SizeInBits;
1198 public:
1199 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1200 unsigned SizeInBits)
1201 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
1202 SizeInBits(SizeInBits) {}
1204 static bool classof(const OperandPredicateMatcher *P) {
1205 return P->getKind() == OPM_PointerToAny;
1208 void emitPredicateOpcodes(MatchTable &Table,
1209 RuleMatcher &Rule) const override {
1210 Table << MatchTable::Opcode("GIM_CheckPointerToAny")
1211 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1212 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1213 << MatchTable::Comment("SizeInBits")
1214 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
1218 /// Generates code to check that an operand is a particular target constant.
1219 class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
1220 protected:
1221 const OperandMatcher &Operand;
1222 const Record &TheDef;
1224 unsigned getAllocatedTemporariesBaseID() const;
1226 public:
1227 bool isIdentical(const PredicateMatcher &B) const override { return false; }
1229 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1230 const OperandMatcher &Operand,
1231 const Record &TheDef)
1232 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
1233 Operand(Operand), TheDef(TheDef) {}
1235 static bool classof(const PredicateMatcher *P) {
1236 return P->getKind() == OPM_ComplexPattern;
1239 void emitPredicateOpcodes(MatchTable &Table,
1240 RuleMatcher &Rule) const override {
1241 unsigned ID = getAllocatedTemporariesBaseID();
1242 Table << MatchTable::Opcode("GIM_CheckComplexPattern")
1243 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1244 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1245 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
1246 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
1247 << MatchTable::LineBreak;
1250 unsigned countRendererFns() const override {
1251 return 1;
1255 /// Generates code to check that an operand is in a particular register bank.
1256 class RegisterBankOperandMatcher : public OperandPredicateMatcher {
1257 protected:
1258 const CodeGenRegisterClass &RC;
1260 public:
1261 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1262 const CodeGenRegisterClass &RC)
1263 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
1265 bool isIdentical(const PredicateMatcher &B) const override {
1266 return OperandPredicateMatcher::isIdentical(B) &&
1267 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
1270 static bool classof(const PredicateMatcher *P) {
1271 return P->getKind() == OPM_RegBank;
1274 void emitPredicateOpcodes(MatchTable &Table,
1275 RuleMatcher &Rule) const override {
1276 Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
1277 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1278 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1279 << MatchTable::Comment("RC")
1280 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
1281 << MatchTable::LineBreak;
1285 /// Generates code to check that an operand is a basic block.
1286 class MBBOperandMatcher : public OperandPredicateMatcher {
1287 public:
1288 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1289 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
1291 static bool classof(const PredicateMatcher *P) {
1292 return P->getKind() == OPM_MBB;
1295 void emitPredicateOpcodes(MatchTable &Table,
1296 RuleMatcher &Rule) const override {
1297 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1298 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1299 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1303 /// Generates code to check that an operand is a G_CONSTANT with a particular
1304 /// int.
1305 class ConstantIntOperandMatcher : public OperandPredicateMatcher {
1306 protected:
1307 int64_t Value;
1309 public:
1310 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1311 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
1313 bool isIdentical(const PredicateMatcher &B) const override {
1314 return OperandPredicateMatcher::isIdentical(B) &&
1315 Value == cast<ConstantIntOperandMatcher>(&B)->Value;
1318 static bool classof(const PredicateMatcher *P) {
1319 return P->getKind() == OPM_Int;
1322 void emitPredicateOpcodes(MatchTable &Table,
1323 RuleMatcher &Rule) const override {
1324 Table << MatchTable::Opcode("GIM_CheckConstantInt")
1325 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1326 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1327 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1331 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1332 /// MO.isCImm() is true).
1333 class LiteralIntOperandMatcher : public OperandPredicateMatcher {
1334 protected:
1335 int64_t Value;
1337 public:
1338 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1339 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
1340 Value(Value) {}
1342 bool isIdentical(const PredicateMatcher &B) const override {
1343 return OperandPredicateMatcher::isIdentical(B) &&
1344 Value == cast<LiteralIntOperandMatcher>(&B)->Value;
1347 static bool classof(const PredicateMatcher *P) {
1348 return P->getKind() == OPM_LiteralInt;
1351 void emitPredicateOpcodes(MatchTable &Table,
1352 RuleMatcher &Rule) const override {
1353 Table << MatchTable::Opcode("GIM_CheckLiteralInt")
1354 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1355 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1356 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1360 /// Generates code to check that an operand is an intrinsic ID.
1361 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
1362 protected:
1363 const CodeGenIntrinsic *II;
1365 public:
1366 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1367 const CodeGenIntrinsic *II)
1368 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
1370 bool isIdentical(const PredicateMatcher &B) const override {
1371 return OperandPredicateMatcher::isIdentical(B) &&
1372 II == cast<IntrinsicIDOperandMatcher>(&B)->II;
1375 static bool classof(const PredicateMatcher *P) {
1376 return P->getKind() == OPM_IntrinsicID;
1379 void emitPredicateOpcodes(MatchTable &Table,
1380 RuleMatcher &Rule) const override {
1381 Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
1382 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1383 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1384 << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
1385 << MatchTable::LineBreak;
1389 /// Generates code to check that a set of predicates match for a particular
1390 /// operand.
1391 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
1392 protected:
1393 InstructionMatcher &Insn;
1394 unsigned OpIdx;
1395 std::string SymbolicName;
1397 /// The index of the first temporary variable allocated to this operand. The
1398 /// number of allocated temporaries can be found with
1399 /// countRendererFns().
1400 unsigned AllocatedTemporariesBaseID;
1402 public:
1403 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
1404 const std::string &SymbolicName,
1405 unsigned AllocatedTemporariesBaseID)
1406 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
1407 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
1409 bool hasSymbolicName() const { return !SymbolicName.empty(); }
1410 const StringRef getSymbolicName() const { return SymbolicName; }
1411 void setSymbolicName(StringRef Name) {
1412 assert(SymbolicName.empty() && "Operand already has a symbolic name");
1413 SymbolicName = Name;
1416 /// Construct a new operand predicate and add it to the matcher.
1417 template <class Kind, class... Args>
1418 Optional<Kind *> addPredicate(Args &&... args) {
1419 if (isSameAsAnotherOperand())
1420 return None;
1421 Predicates.emplace_back(llvm::make_unique<Kind>(
1422 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
1423 return static_cast<Kind *>(Predicates.back().get());
1426 unsigned getOpIdx() const { return OpIdx; }
1427 unsigned getInsnVarID() const;
1429 std::string getOperandExpr(unsigned InsnVarID) const {
1430 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
1431 llvm::to_string(OpIdx) + ")";
1434 InstructionMatcher &getInstructionMatcher() const { return Insn; }
1436 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1437 bool OperandIsAPointer);
1439 /// Emit MatchTable opcodes that test whether the instruction named in
1440 /// InsnVarID matches all the predicates and all the operands.
1441 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1442 if (!Optimized) {
1443 std::string Comment;
1444 raw_string_ostream CommentOS(Comment);
1445 CommentOS << "MIs[" << getInsnVarID() << "] ";
1446 if (SymbolicName.empty())
1447 CommentOS << "Operand " << OpIdx;
1448 else
1449 CommentOS << SymbolicName;
1450 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
1453 emitPredicateListOpcodes(Table, Rule);
1456 /// Compare the priority of this object and B.
1458 /// Returns true if this object is more important than B.
1459 bool isHigherPriorityThan(OperandMatcher &B) {
1460 // Operand matchers involving more predicates have higher priority.
1461 if (predicates_size() > B.predicates_size())
1462 return true;
1463 if (predicates_size() < B.predicates_size())
1464 return false;
1466 // This assumes that predicates are added in a consistent order.
1467 for (auto &&Predicate : zip(predicates(), B.predicates())) {
1468 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1469 return true;
1470 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1471 return false;
1474 return false;
1477 /// Report the maximum number of temporary operands needed by the operand
1478 /// matcher.
1479 unsigned countRendererFns() {
1480 return std::accumulate(
1481 predicates().begin(), predicates().end(), 0,
1482 [](unsigned A,
1483 const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
1484 return A + Predicate->countRendererFns();
1488 unsigned getAllocatedTemporariesBaseID() const {
1489 return AllocatedTemporariesBaseID;
1492 bool isSameAsAnotherOperand() {
1493 for (const auto &Predicate : predicates())
1494 if (isa<SameOperandMatcher>(Predicate))
1495 return true;
1496 return false;
1500 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1501 bool OperandIsAPointer) {
1502 if (!VTy.isMachineValueType())
1503 return failedImport("unsupported typeset");
1505 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
1506 addPredicate<PointerToAnyOperandMatcher>(0);
1507 return Error::success();
1510 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
1511 if (!OpTyOrNone)
1512 return failedImport("unsupported type");
1514 if (OperandIsAPointer)
1515 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
1516 else if (VTy.isPointer())
1517 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
1518 OpTyOrNone->get().getSizeInBits()));
1519 else
1520 addPredicate<LLTOperandMatcher>(*OpTyOrNone);
1521 return Error::success();
1524 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1525 return Operand.getAllocatedTemporariesBaseID();
1528 /// Generates code to check a predicate on an instruction.
1530 /// Typical predicates include:
1531 /// * The opcode of the instruction is a particular value.
1532 /// * The nsw/nuw flag is/isn't set.
1533 class InstructionPredicateMatcher : public PredicateMatcher {
1534 public:
1535 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
1536 : PredicateMatcher(Kind, InsnVarID) {}
1537 virtual ~InstructionPredicateMatcher() {}
1539 /// Compare the priority of this object and B.
1541 /// Returns true if this object is more important than B.
1542 virtual bool
1543 isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
1544 return Kind < B.Kind;
1548 template <>
1549 std::string
1550 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
1551 return "No instruction predicates";
1554 /// Generates code to check the opcode of an instruction.
1555 class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
1556 protected:
1557 const CodeGenInstruction *I;
1559 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
1561 public:
1562 static void initOpcodeValuesMap(const CodeGenTarget &Target) {
1563 OpcodeValues.clear();
1565 unsigned OpcodeValue = 0;
1566 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
1567 OpcodeValues[I] = OpcodeValue++;
1570 InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
1571 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
1573 static bool classof(const PredicateMatcher *P) {
1574 return P->getKind() == IPM_Opcode;
1577 bool isIdentical(const PredicateMatcher &B) const override {
1578 return InstructionPredicateMatcher::isIdentical(B) &&
1579 I == cast<InstructionOpcodeMatcher>(&B)->I;
1581 MatchTableRecord getValue() const override {
1582 const auto VI = OpcodeValues.find(I);
1583 if (VI != OpcodeValues.end())
1584 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1585 VI->second);
1586 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1588 bool hasValue() const override { return OpcodeValues.count(I); }
1590 void emitPredicateOpcodes(MatchTable &Table,
1591 RuleMatcher &Rule) const override {
1592 Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
1593 << MatchTable::IntValue(InsnVarID) << getValue()
1594 << MatchTable::LineBreak;
1597 /// Compare the priority of this object and B.
1599 /// Returns true if this object is more important than B.
1600 bool
1601 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
1602 if (InstructionPredicateMatcher::isHigherPriorityThan(B))
1603 return true;
1604 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1605 return false;
1607 // Prioritize opcodes for cosmetic reasons in the generated source. Although
1608 // this is cosmetic at the moment, we may want to drive a similar ordering
1609 // using instruction frequency information to improve compile time.
1610 if (const InstructionOpcodeMatcher *BO =
1611 dyn_cast<InstructionOpcodeMatcher>(&B))
1612 return I->TheDef->getName() < BO->I->TheDef->getName();
1614 return false;
1617 bool isConstantInstruction() const {
1618 return I->TheDef->getName() == "G_CONSTANT";
1621 StringRef getOpcode() const { return I->TheDef->getName(); }
1622 unsigned getNumOperands() const { return I->Operands.size(); }
1624 StringRef getOperandType(unsigned OpIdx) const {
1625 return I->Operands[OpIdx].OperandType;
1629 DenseMap<const CodeGenInstruction *, unsigned>
1630 InstructionOpcodeMatcher::OpcodeValues;
1632 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
1633 unsigned NumOperands = 0;
1635 public:
1636 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
1637 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
1638 NumOperands(NumOperands) {}
1640 static bool classof(const PredicateMatcher *P) {
1641 return P->getKind() == IPM_NumOperands;
1644 bool isIdentical(const PredicateMatcher &B) const override {
1645 return InstructionPredicateMatcher::isIdentical(B) &&
1646 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
1649 void emitPredicateOpcodes(MatchTable &Table,
1650 RuleMatcher &Rule) const override {
1651 Table << MatchTable::Opcode("GIM_CheckNumOperands")
1652 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1653 << MatchTable::Comment("Expected")
1654 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
1658 /// Generates code to check that this instruction is a constant whose value
1659 /// meets an immediate predicate.
1661 /// Immediates are slightly odd since they are typically used like an operand
1662 /// but are represented as an operator internally. We typically write simm8:$src
1663 /// in a tablegen pattern, but this is just syntactic sugar for
1664 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1665 /// that will be matched and the predicate (which is attached to the imm
1666 /// operator) that will be tested. In SelectionDAG this describes a
1667 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1669 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1670 /// this representation, the immediate could be tested with an
1671 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1672 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1673 /// there are two implementation issues with producing that matcher
1674 /// configuration from the SelectionDAG pattern:
1675 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1676 /// were we to sink the immediate predicate to the operand we would have to
1677 /// have two partial implementations of PatFrag support, one for immediates
1678 /// and one for non-immediates.
1679 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1680 /// created yet. If we were to sink the predicate to the OperandMatcher we
1681 /// would also have to complicate (or duplicate) the code that descends and
1682 /// creates matchers for the subtree.
1683 /// Overall, it's simpler to handle it in the place it was found.
1684 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
1685 protected:
1686 TreePredicateFn Predicate;
1688 public:
1689 InstructionImmPredicateMatcher(unsigned InsnVarID,
1690 const TreePredicateFn &Predicate)
1691 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
1692 Predicate(Predicate) {}
1694 bool isIdentical(const PredicateMatcher &B) const override {
1695 return InstructionPredicateMatcher::isIdentical(B) &&
1696 Predicate.getOrigPatFragRecord() ==
1697 cast<InstructionImmPredicateMatcher>(&B)
1698 ->Predicate.getOrigPatFragRecord();
1701 static bool classof(const PredicateMatcher *P) {
1702 return P->getKind() == IPM_ImmPredicate;
1705 void emitPredicateOpcodes(MatchTable &Table,
1706 RuleMatcher &Rule) const override {
1707 Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
1708 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1709 << MatchTable::Comment("Predicate")
1710 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1711 << MatchTable::LineBreak;
1715 /// Generates code to check that a memory instruction has a atomic ordering
1716 /// MachineMemoryOperand.
1717 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
1718 public:
1719 enum AOComparator {
1720 AO_Exactly,
1721 AO_OrStronger,
1722 AO_WeakerThan,
1725 protected:
1726 StringRef Order;
1727 AOComparator Comparator;
1729 public:
1730 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
1731 AOComparator Comparator = AO_Exactly)
1732 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
1733 Order(Order), Comparator(Comparator) {}
1735 static bool classof(const PredicateMatcher *P) {
1736 return P->getKind() == IPM_AtomicOrderingMMO;
1739 bool isIdentical(const PredicateMatcher &B) const override {
1740 if (!InstructionPredicateMatcher::isIdentical(B))
1741 return false;
1742 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
1743 return Order == R.Order && Comparator == R.Comparator;
1746 void emitPredicateOpcodes(MatchTable &Table,
1747 RuleMatcher &Rule) const override {
1748 StringRef Opcode = "GIM_CheckAtomicOrdering";
1750 if (Comparator == AO_OrStronger)
1751 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
1752 if (Comparator == AO_WeakerThan)
1753 Opcode = "GIM_CheckAtomicOrderingWeakerThan";
1755 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
1756 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
1757 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
1758 << MatchTable::LineBreak;
1762 /// Generates code to check that the size of an MMO is exactly N bytes.
1763 class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
1764 protected:
1765 unsigned MMOIdx;
1766 uint64_t Size;
1768 public:
1769 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
1770 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
1771 MMOIdx(MMOIdx), Size(Size) {}
1773 static bool classof(const PredicateMatcher *P) {
1774 return P->getKind() == IPM_MemoryLLTSize;
1776 bool isIdentical(const PredicateMatcher &B) const override {
1777 return InstructionPredicateMatcher::isIdentical(B) &&
1778 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
1779 Size == cast<MemorySizePredicateMatcher>(&B)->Size;
1782 void emitPredicateOpcodes(MatchTable &Table,
1783 RuleMatcher &Rule) const override {
1784 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
1785 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1786 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1787 << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
1788 << MatchTable::LineBreak;
1792 /// Generates code to check that the size of an MMO is less-than, equal-to, or
1793 /// greater than a given LLT.
1794 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
1795 public:
1796 enum RelationKind {
1797 GreaterThan,
1798 EqualTo,
1799 LessThan,
1802 protected:
1803 unsigned MMOIdx;
1804 RelationKind Relation;
1805 unsigned OpIdx;
1807 public:
1808 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1809 enum RelationKind Relation,
1810 unsigned OpIdx)
1811 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
1812 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
1814 static bool classof(const PredicateMatcher *P) {
1815 return P->getKind() == IPM_MemoryVsLLTSize;
1817 bool isIdentical(const PredicateMatcher &B) const override {
1818 return InstructionPredicateMatcher::isIdentical(B) &&
1819 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
1820 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
1821 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
1824 void emitPredicateOpcodes(MatchTable &Table,
1825 RuleMatcher &Rule) const override {
1826 Table << MatchTable::Opcode(Relation == EqualTo
1827 ? "GIM_CheckMemorySizeEqualToLLT"
1828 : Relation == GreaterThan
1829 ? "GIM_CheckMemorySizeGreaterThanLLT"
1830 : "GIM_CheckMemorySizeLessThanLLT")
1831 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1832 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1833 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
1834 << MatchTable::LineBreak;
1838 /// Generates code to check an arbitrary C++ instruction predicate.
1839 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
1840 protected:
1841 TreePredicateFn Predicate;
1843 public:
1844 GenericInstructionPredicateMatcher(unsigned InsnVarID,
1845 TreePredicateFn Predicate)
1846 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
1847 Predicate(Predicate) {}
1849 static bool classof(const InstructionPredicateMatcher *P) {
1850 return P->getKind() == IPM_GenericPredicate;
1852 bool isIdentical(const PredicateMatcher &B) const override {
1853 return InstructionPredicateMatcher::isIdentical(B) &&
1854 Predicate ==
1855 static_cast<const GenericInstructionPredicateMatcher &>(B)
1856 .Predicate;
1858 void emitPredicateOpcodes(MatchTable &Table,
1859 RuleMatcher &Rule) const override {
1860 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
1861 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1862 << MatchTable::Comment("FnId")
1863 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1864 << MatchTable::LineBreak;
1868 /// Generates code to check that a set of predicates and operands match for a
1869 /// particular instruction.
1871 /// Typical predicates include:
1872 /// * Has a specific opcode.
1873 /// * Has an nsw/nuw flag or doesn't.
1874 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
1875 protected:
1876 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
1878 RuleMatcher &Rule;
1880 /// The operands to match. All rendered operands must be present even if the
1881 /// condition is always true.
1882 OperandVec Operands;
1883 bool NumOperandsCheck = true;
1885 std::string SymbolicName;
1886 unsigned InsnVarID;
1888 public:
1889 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
1890 : Rule(Rule), SymbolicName(SymbolicName) {
1891 // We create a new instruction matcher.
1892 // Get a new ID for that instruction.
1893 InsnVarID = Rule.implicitlyDefineInsnVar(*this);
1896 /// Construct a new instruction predicate and add it to the matcher.
1897 template <class Kind, class... Args>
1898 Optional<Kind *> addPredicate(Args &&... args) {
1899 Predicates.emplace_back(
1900 llvm::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
1901 return static_cast<Kind *>(Predicates.back().get());
1904 RuleMatcher &getRuleMatcher() const { return Rule; }
1906 unsigned getInsnVarID() const { return InsnVarID; }
1908 /// Add an operand to the matcher.
1909 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
1910 unsigned AllocatedTemporariesBaseID) {
1911 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
1912 AllocatedTemporariesBaseID));
1913 if (!SymbolicName.empty())
1914 Rule.defineOperand(SymbolicName, *Operands.back());
1916 return *Operands.back();
1919 OperandMatcher &getOperand(unsigned OpIdx) {
1920 auto I = std::find_if(Operands.begin(), Operands.end(),
1921 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
1922 return X->getOpIdx() == OpIdx;
1924 if (I != Operands.end())
1925 return **I;
1926 llvm_unreachable("Failed to lookup operand");
1929 StringRef getSymbolicName() const { return SymbolicName; }
1930 unsigned getNumOperands() const { return Operands.size(); }
1931 OperandVec::iterator operands_begin() { return Operands.begin(); }
1932 OperandVec::iterator operands_end() { return Operands.end(); }
1933 iterator_range<OperandVec::iterator> operands() {
1934 return make_range(operands_begin(), operands_end());
1936 OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
1937 OperandVec::const_iterator operands_end() const { return Operands.end(); }
1938 iterator_range<OperandVec::const_iterator> operands() const {
1939 return make_range(operands_begin(), operands_end());
1941 bool operands_empty() const { return Operands.empty(); }
1943 void pop_front() { Operands.erase(Operands.begin()); }
1945 void optimize();
1947 /// Emit MatchTable opcodes that test whether the instruction named in
1948 /// InsnVarName matches all the predicates and all the operands.
1949 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1950 if (NumOperandsCheck)
1951 InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
1952 .emitPredicateOpcodes(Table, Rule);
1954 emitPredicateListOpcodes(Table, Rule);
1956 for (const auto &Operand : Operands)
1957 Operand->emitPredicateOpcodes(Table, Rule);
1960 /// Compare the priority of this object and B.
1962 /// Returns true if this object is more important than B.
1963 bool isHigherPriorityThan(InstructionMatcher &B) {
1964 // Instruction matchers involving more operands have higher priority.
1965 if (Operands.size() > B.Operands.size())
1966 return true;
1967 if (Operands.size() < B.Operands.size())
1968 return false;
1970 for (auto &&P : zip(predicates(), B.predicates())) {
1971 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
1972 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
1973 if (L->isHigherPriorityThan(*R))
1974 return true;
1975 if (R->isHigherPriorityThan(*L))
1976 return false;
1979 for (const auto &Operand : zip(Operands, B.Operands)) {
1980 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
1981 return true;
1982 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
1983 return false;
1986 return false;
1989 /// Report the maximum number of temporary operands needed by the instruction
1990 /// matcher.
1991 unsigned countRendererFns() {
1992 return std::accumulate(
1993 predicates().begin(), predicates().end(), 0,
1994 [](unsigned A,
1995 const std::unique_ptr<PredicateMatcher> &Predicate) {
1996 return A + Predicate->countRendererFns();
1997 }) +
1998 std::accumulate(
1999 Operands.begin(), Operands.end(), 0,
2000 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
2001 return A + Operand->countRendererFns();
2005 InstructionOpcodeMatcher &getOpcodeMatcher() {
2006 for (auto &P : predicates())
2007 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
2008 return *OpMatcher;
2009 llvm_unreachable("Didn't find an opcode matcher");
2012 bool isConstantInstruction() {
2013 return getOpcodeMatcher().isConstantInstruction();
2016 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
2019 StringRef RuleMatcher::getOpcode() const {
2020 return Matchers.front()->getOpcode();
2023 unsigned RuleMatcher::getNumOperands() const {
2024 return Matchers.front()->getNumOperands();
2027 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
2028 InstructionMatcher &InsnMatcher = *Matchers.front();
2029 if (!InsnMatcher.predicates_empty())
2030 if (const auto *TM =
2031 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
2032 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
2033 return TM->getTy();
2034 return {};
2037 /// Generates code to check that the operand is a register defined by an
2038 /// instruction that matches the given instruction matcher.
2040 /// For example, the pattern:
2041 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2042 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2043 /// the:
2044 /// (G_ADD $src1, $src2)
2045 /// subpattern.
2046 class InstructionOperandMatcher : public OperandPredicateMatcher {
2047 protected:
2048 std::unique_ptr<InstructionMatcher> InsnMatcher;
2050 public:
2051 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
2052 RuleMatcher &Rule, StringRef SymbolicName)
2053 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
2054 InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
2056 static bool classof(const PredicateMatcher *P) {
2057 return P->getKind() == OPM_Instruction;
2060 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
2062 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
2063 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
2064 Table << MatchTable::Opcode("GIM_RecordInsn")
2065 << MatchTable::Comment("DefineMI")
2066 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
2067 << MatchTable::IntValue(getInsnVarID())
2068 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2069 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
2070 << MatchTable::LineBreak;
2073 void emitPredicateOpcodes(MatchTable &Table,
2074 RuleMatcher &Rule) const override {
2075 emitCaptureOpcodes(Table, Rule);
2076 InsnMatcher->emitPredicateOpcodes(Table, Rule);
2079 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
2080 if (OperandPredicateMatcher::isHigherPriorityThan(B))
2081 return true;
2082 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
2083 return false;
2085 if (const InstructionOperandMatcher *BP =
2086 dyn_cast<InstructionOperandMatcher>(&B))
2087 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
2088 return true;
2089 return false;
2093 void InstructionMatcher::optimize() {
2094 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
2095 const auto &OpcMatcher = getOpcodeMatcher();
2097 Stash.push_back(predicates_pop_front());
2098 if (Stash.back().get() == &OpcMatcher) {
2099 if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands())
2100 Stash.emplace_back(
2101 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
2102 NumOperandsCheck = false;
2104 for (auto &OM : Operands)
2105 for (auto &OP : OM->predicates())
2106 if (isa<IntrinsicIDOperandMatcher>(OP)) {
2107 Stash.push_back(std::move(OP));
2108 OM->eraseNullPredicates();
2109 break;
2113 if (InsnVarID > 0) {
2114 assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
2115 for (auto &OP : Operands[0]->predicates())
2116 OP.reset();
2117 Operands[0]->eraseNullPredicates();
2119 for (auto &OM : Operands) {
2120 for (auto &OP : OM->predicates())
2121 if (isa<LLTOperandMatcher>(OP))
2122 Stash.push_back(std::move(OP));
2123 OM->eraseNullPredicates();
2125 while (!Stash.empty())
2126 prependPredicate(Stash.pop_back_val());
2129 //===- Actions ------------------------------------------------------------===//
2130 class OperandRenderer {
2131 public:
2132 enum RendererKind {
2133 OR_Copy,
2134 OR_CopyOrAddZeroReg,
2135 OR_CopySubReg,
2136 OR_CopyConstantAsImm,
2137 OR_CopyFConstantAsFPImm,
2138 OR_Imm,
2139 OR_Register,
2140 OR_TempRegister,
2141 OR_ComplexPattern,
2142 OR_Custom
2145 protected:
2146 RendererKind Kind;
2148 public:
2149 OperandRenderer(RendererKind Kind) : Kind(Kind) {}
2150 virtual ~OperandRenderer() {}
2152 RendererKind getKind() const { return Kind; }
2154 virtual void emitRenderOpcodes(MatchTable &Table,
2155 RuleMatcher &Rule) const = 0;
2158 /// A CopyRenderer emits code to copy a single operand from an existing
2159 /// instruction to the one being built.
2160 class CopyRenderer : public OperandRenderer {
2161 protected:
2162 unsigned NewInsnID;
2163 /// The name of the operand.
2164 const StringRef SymbolicName;
2166 public:
2167 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
2168 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
2169 SymbolicName(SymbolicName) {
2170 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2173 static bool classof(const OperandRenderer *R) {
2174 return R->getKind() == OR_Copy;
2177 const StringRef getSymbolicName() const { return SymbolicName; }
2179 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2180 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2181 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2182 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2183 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2184 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2185 << MatchTable::IntValue(Operand.getOpIdx())
2186 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2190 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2191 /// existing instruction to the one being built. If the operand turns out to be
2192 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2193 class CopyOrAddZeroRegRenderer : public OperandRenderer {
2194 protected:
2195 unsigned NewInsnID;
2196 /// The name of the operand.
2197 const StringRef SymbolicName;
2198 const Record *ZeroRegisterDef;
2200 public:
2201 CopyOrAddZeroRegRenderer(unsigned NewInsnID,
2202 StringRef SymbolicName, Record *ZeroRegisterDef)
2203 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
2204 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
2205 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2208 static bool classof(const OperandRenderer *R) {
2209 return R->getKind() == OR_CopyOrAddZeroReg;
2212 const StringRef getSymbolicName() const { return SymbolicName; }
2214 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2215 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2216 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2217 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2218 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2219 << MatchTable::Comment("OldInsnID")
2220 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2221 << MatchTable::IntValue(Operand.getOpIdx())
2222 << MatchTable::NamedValue(
2223 (ZeroRegisterDef->getValue("Namespace")
2224 ? ZeroRegisterDef->getValueAsString("Namespace")
2225 : ""),
2226 ZeroRegisterDef->getName())
2227 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2231 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2232 /// an extended immediate operand.
2233 class CopyConstantAsImmRenderer : public OperandRenderer {
2234 protected:
2235 unsigned NewInsnID;
2236 /// The name of the operand.
2237 const std::string SymbolicName;
2238 bool Signed;
2240 public:
2241 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2242 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
2243 SymbolicName(SymbolicName), Signed(true) {}
2245 static bool classof(const OperandRenderer *R) {
2246 return R->getKind() == OR_CopyConstantAsImm;
2249 const StringRef getSymbolicName() const { return SymbolicName; }
2251 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2252 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2253 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2254 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
2255 : "GIR_CopyConstantAsUImm")
2256 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2257 << MatchTable::Comment("OldInsnID")
2258 << MatchTable::IntValue(OldInsnVarID)
2259 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2263 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2264 /// instruction to an extended immediate operand.
2265 class CopyFConstantAsFPImmRenderer : public OperandRenderer {
2266 protected:
2267 unsigned NewInsnID;
2268 /// The name of the operand.
2269 const std::string SymbolicName;
2271 public:
2272 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2273 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
2274 SymbolicName(SymbolicName) {}
2276 static bool classof(const OperandRenderer *R) {
2277 return R->getKind() == OR_CopyFConstantAsFPImm;
2280 const StringRef getSymbolicName() const { return SymbolicName; }
2282 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2283 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2284 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2285 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2286 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2287 << MatchTable::Comment("OldInsnID")
2288 << MatchTable::IntValue(OldInsnVarID)
2289 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2293 /// A CopySubRegRenderer emits code to copy a single register operand from an
2294 /// existing instruction to the one being built and indicate that only a
2295 /// subregister should be copied.
2296 class CopySubRegRenderer : public OperandRenderer {
2297 protected:
2298 unsigned NewInsnID;
2299 /// The name of the operand.
2300 const StringRef SymbolicName;
2301 /// The subregister to extract.
2302 const CodeGenSubRegIndex *SubReg;
2304 public:
2305 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
2306 const CodeGenSubRegIndex *SubReg)
2307 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
2308 SymbolicName(SymbolicName), SubReg(SubReg) {}
2310 static bool classof(const OperandRenderer *R) {
2311 return R->getKind() == OR_CopySubReg;
2314 const StringRef getSymbolicName() const { return SymbolicName; }
2316 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2317 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2318 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2319 Table << MatchTable::Opcode("GIR_CopySubReg")
2320 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2321 << MatchTable::Comment("OldInsnID")
2322 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2323 << MatchTable::IntValue(Operand.getOpIdx())
2324 << MatchTable::Comment("SubRegIdx")
2325 << MatchTable::IntValue(SubReg->EnumValue)
2326 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2330 /// Adds a specific physical register to the instruction being built.
2331 /// This is typically useful for WZR/XZR on AArch64.
2332 class AddRegisterRenderer : public OperandRenderer {
2333 protected:
2334 unsigned InsnID;
2335 const Record *RegisterDef;
2337 public:
2338 AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
2339 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
2342 static bool classof(const OperandRenderer *R) {
2343 return R->getKind() == OR_Register;
2346 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2347 Table << MatchTable::Opcode("GIR_AddRegister")
2348 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2349 << MatchTable::NamedValue(
2350 (RegisterDef->getValue("Namespace")
2351 ? RegisterDef->getValueAsString("Namespace")
2352 : ""),
2353 RegisterDef->getName())
2354 << MatchTable::LineBreak;
2358 /// Adds a specific temporary virtual register to the instruction being built.
2359 /// This is used to chain instructions together when emitting multiple
2360 /// instructions.
2361 class TempRegRenderer : public OperandRenderer {
2362 protected:
2363 unsigned InsnID;
2364 unsigned TempRegID;
2365 bool IsDef;
2367 public:
2368 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
2369 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
2370 IsDef(IsDef) {}
2372 static bool classof(const OperandRenderer *R) {
2373 return R->getKind() == OR_TempRegister;
2376 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2377 Table << MatchTable::Opcode("GIR_AddTempRegister")
2378 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2379 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2380 << MatchTable::Comment("TempRegFlags");
2381 if (IsDef)
2382 Table << MatchTable::NamedValue("RegState::Define");
2383 else
2384 Table << MatchTable::IntValue(0);
2385 Table << MatchTable::LineBreak;
2389 /// Adds a specific immediate to the instruction being built.
2390 class ImmRenderer : public OperandRenderer {
2391 protected:
2392 unsigned InsnID;
2393 int64_t Imm;
2395 public:
2396 ImmRenderer(unsigned InsnID, int64_t Imm)
2397 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
2399 static bool classof(const OperandRenderer *R) {
2400 return R->getKind() == OR_Imm;
2403 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2404 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2405 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
2406 << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
2410 /// Adds operands by calling a renderer function supplied by the ComplexPattern
2411 /// matcher function.
2412 class RenderComplexPatternOperand : public OperandRenderer {
2413 private:
2414 unsigned InsnID;
2415 const Record &TheDef;
2416 /// The name of the operand.
2417 const StringRef SymbolicName;
2418 /// The renderer number. This must be unique within a rule since it's used to
2419 /// identify a temporary variable to hold the renderer function.
2420 unsigned RendererID;
2421 /// When provided, this is the suboperand of the ComplexPattern operand to
2422 /// render. Otherwise all the suboperands will be rendered.
2423 Optional<unsigned> SubOperand;
2425 unsigned getNumOperands() const {
2426 return TheDef.getValueAsDag("Operands")->getNumArgs();
2429 public:
2430 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
2431 StringRef SymbolicName, unsigned RendererID,
2432 Optional<unsigned> SubOperand = None)
2433 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
2434 SymbolicName(SymbolicName), RendererID(RendererID),
2435 SubOperand(SubOperand) {}
2437 static bool classof(const OperandRenderer *R) {
2438 return R->getKind() == OR_ComplexPattern;
2441 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2442 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
2443 : "GIR_ComplexRenderer")
2444 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2445 << MatchTable::Comment("RendererID")
2446 << MatchTable::IntValue(RendererID);
2447 if (SubOperand.hasValue())
2448 Table << MatchTable::Comment("SubOperand")
2449 << MatchTable::IntValue(SubOperand.getValue());
2450 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2454 class CustomRenderer : public OperandRenderer {
2455 protected:
2456 unsigned InsnID;
2457 const Record &Renderer;
2458 /// The name of the operand.
2459 const std::string SymbolicName;
2461 public:
2462 CustomRenderer(unsigned InsnID, const Record &Renderer,
2463 StringRef SymbolicName)
2464 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
2465 SymbolicName(SymbolicName) {}
2467 static bool classof(const OperandRenderer *R) {
2468 return R->getKind() == OR_Custom;
2471 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2472 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2473 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2474 Table << MatchTable::Opcode("GIR_CustomRenderer")
2475 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2476 << MatchTable::Comment("OldInsnID")
2477 << MatchTable::IntValue(OldInsnVarID)
2478 << MatchTable::Comment("Renderer")
2479 << MatchTable::NamedValue(
2480 "GICR_" + Renderer.getValueAsString("RendererFn").str())
2481 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2485 /// An action taken when all Matcher predicates succeeded for a parent rule.
2487 /// Typical actions include:
2488 /// * Changing the opcode of an instruction.
2489 /// * Adding an operand to an instruction.
2490 class MatchAction {
2491 public:
2492 virtual ~MatchAction() {}
2494 /// Emit the MatchTable opcodes to implement the action.
2495 virtual void emitActionOpcodes(MatchTable &Table,
2496 RuleMatcher &Rule) const = 0;
2499 /// Generates a comment describing the matched rule being acted upon.
2500 class DebugCommentAction : public MatchAction {
2501 private:
2502 std::string S;
2504 public:
2505 DebugCommentAction(StringRef S) : S(S) {}
2507 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2508 Table << MatchTable::Comment(S) << MatchTable::LineBreak;
2512 /// Generates code to build an instruction or mutate an existing instruction
2513 /// into the desired instruction when this is possible.
2514 class BuildMIAction : public MatchAction {
2515 private:
2516 unsigned InsnID;
2517 const CodeGenInstruction *I;
2518 InstructionMatcher *Matched;
2519 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
2521 /// True if the instruction can be built solely by mutating the opcode.
2522 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
2523 if (!Insn)
2524 return false;
2526 if (OperandRenderers.size() != Insn->getNumOperands())
2527 return false;
2529 for (const auto &Renderer : enumerate(OperandRenderers)) {
2530 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
2531 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
2532 if (Insn != &OM.getInstructionMatcher() ||
2533 OM.getOpIdx() != Renderer.index())
2534 return false;
2535 } else
2536 return false;
2539 return true;
2542 public:
2543 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
2544 : InsnID(InsnID), I(I), Matched(nullptr) {}
2546 unsigned getInsnID() const { return InsnID; }
2547 const CodeGenInstruction *getCGI() const { return I; }
2549 void chooseInsnToMutate(RuleMatcher &Rule) {
2550 for (auto *MutateCandidate : Rule.mutatable_insns()) {
2551 if (canMutate(Rule, MutateCandidate)) {
2552 // Take the first one we're offered that we're able to mutate.
2553 Rule.reserveInsnMatcherForMutation(MutateCandidate);
2554 Matched = MutateCandidate;
2555 return;
2560 template <class Kind, class... Args>
2561 Kind &addRenderer(Args&&... args) {
2562 OperandRenderers.emplace_back(
2563 llvm::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
2564 return *static_cast<Kind *>(OperandRenderers.back().get());
2567 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2568 if (Matched) {
2569 assert(canMutate(Rule, Matched) &&
2570 "Arranged to mutate an insn that isn't mutatable");
2572 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
2573 Table << MatchTable::Opcode("GIR_MutateOpcode")
2574 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2575 << MatchTable::Comment("RecycleInsnID")
2576 << MatchTable::IntValue(RecycleInsnID)
2577 << MatchTable::Comment("Opcode")
2578 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2579 << MatchTable::LineBreak;
2581 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
2582 for (auto Def : I->ImplicitDefs) {
2583 auto Namespace = Def->getValue("Namespace")
2584 ? Def->getValueAsString("Namespace")
2585 : "";
2586 Table << MatchTable::Opcode("GIR_AddImplicitDef")
2587 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2588 << MatchTable::NamedValue(Namespace, Def->getName())
2589 << MatchTable::LineBreak;
2591 for (auto Use : I->ImplicitUses) {
2592 auto Namespace = Use->getValue("Namespace")
2593 ? Use->getValueAsString("Namespace")
2594 : "";
2595 Table << MatchTable::Opcode("GIR_AddImplicitUse")
2596 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2597 << MatchTable::NamedValue(Namespace, Use->getName())
2598 << MatchTable::LineBreak;
2601 return;
2604 // TODO: Simple permutation looks like it could be almost as common as
2605 // mutation due to commutative operations.
2607 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
2608 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
2609 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2610 << MatchTable::LineBreak;
2611 for (const auto &Renderer : OperandRenderers)
2612 Renderer->emitRenderOpcodes(Table, Rule);
2614 if (I->mayLoad || I->mayStore) {
2615 Table << MatchTable::Opcode("GIR_MergeMemOperands")
2616 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2617 << MatchTable::Comment("MergeInsnID's");
2618 // Emit the ID's for all the instructions that are matched by this rule.
2619 // TODO: Limit this to matched instructions that mayLoad/mayStore or have
2620 // some other means of having a memoperand. Also limit this to
2621 // emitted instructions that expect to have a memoperand too. For
2622 // example, (G_SEXT (G_LOAD x)) that results in separate load and
2623 // sign-extend instructions shouldn't put the memoperand on the
2624 // sign-extend since it has no effect there.
2625 std::vector<unsigned> MergeInsnIDs;
2626 for (const auto &IDMatcherPair : Rule.defined_insn_vars())
2627 MergeInsnIDs.push_back(IDMatcherPair.second);
2628 llvm::sort(MergeInsnIDs);
2629 for (const auto &MergeInsnID : MergeInsnIDs)
2630 Table << MatchTable::IntValue(MergeInsnID);
2631 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
2632 << MatchTable::LineBreak;
2635 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
2636 // better for combines. Particularly when there are multiple match
2637 // roots.
2638 if (InsnID == 0)
2639 Table << MatchTable::Opcode("GIR_EraseFromParent")
2640 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2641 << MatchTable::LineBreak;
2645 /// Generates code to constrain the operands of an output instruction to the
2646 /// register classes specified by the definition of that instruction.
2647 class ConstrainOperandsToDefinitionAction : public MatchAction {
2648 unsigned InsnID;
2650 public:
2651 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
2653 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2654 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
2655 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2656 << MatchTable::LineBreak;
2660 /// Generates code to constrain the specified operand of an output instruction
2661 /// to the specified register class.
2662 class ConstrainOperandToRegClassAction : public MatchAction {
2663 unsigned InsnID;
2664 unsigned OpIdx;
2665 const CodeGenRegisterClass &RC;
2667 public:
2668 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
2669 const CodeGenRegisterClass &RC)
2670 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
2672 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2673 Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
2674 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2675 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
2676 << MatchTable::Comment("RC " + RC.getName())
2677 << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
2681 /// Generates code to create a temporary register which can be used to chain
2682 /// instructions together.
2683 class MakeTempRegisterAction : public MatchAction {
2684 private:
2685 LLTCodeGen Ty;
2686 unsigned TempRegID;
2688 public:
2689 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
2690 : Ty(Ty), TempRegID(TempRegID) {}
2692 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2693 Table << MatchTable::Opcode("GIR_MakeTempReg")
2694 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2695 << MatchTable::Comment("TypeID")
2696 << MatchTable::NamedValue(Ty.getCxxEnumValue())
2697 << MatchTable::LineBreak;
2701 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
2702 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
2703 MutatableInsns.insert(Matchers.back().get());
2704 return *Matchers.back();
2707 void RuleMatcher::addRequiredFeature(Record *Feature) {
2708 RequiredFeatures.push_back(Feature);
2711 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
2712 return RequiredFeatures;
2715 // Emplaces an action of the specified Kind at the end of the action list.
2717 // Returns a reference to the newly created action.
2719 // Like std::vector::emplace_back(), may invalidate all iterators if the new
2720 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
2721 // iterator.
2722 template <class Kind, class... Args>
2723 Kind &RuleMatcher::addAction(Args &&... args) {
2724 Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
2725 return *static_cast<Kind *>(Actions.back().get());
2728 // Emplaces an action of the specified Kind before the given insertion point.
2730 // Returns an iterator pointing at the newly created instruction.
2732 // Like std::vector::insert(), may invalidate all iterators if the new size
2733 // exceeds the capacity. Otherwise, only invalidates the iterators from the
2734 // insertion point onwards.
2735 template <class Kind, class... Args>
2736 action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
2737 Args &&... args) {
2738 return Actions.emplace(InsertPt,
2739 llvm::make_unique<Kind>(std::forward<Args>(args)...));
2742 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
2743 unsigned NewInsnVarID = NextInsnVarID++;
2744 InsnVariableIDs[&Matcher] = NewInsnVarID;
2745 return NewInsnVarID;
2748 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
2749 const auto &I = InsnVariableIDs.find(&InsnMatcher);
2750 if (I != InsnVariableIDs.end())
2751 return I->second;
2752 llvm_unreachable("Matched Insn was not captured in a local variable");
2755 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
2756 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
2757 DefinedOperands[SymbolicName] = &OM;
2758 return;
2761 // If the operand is already defined, then we must ensure both references in
2762 // the matcher have the exact same node.
2763 OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
2766 InstructionMatcher &
2767 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
2768 for (const auto &I : InsnVariableIDs)
2769 if (I.first->getSymbolicName() == SymbolicName)
2770 return *I.first;
2771 llvm_unreachable(
2772 ("Failed to lookup instruction " + SymbolicName).str().c_str());
2775 const OperandMatcher &
2776 RuleMatcher::getOperandMatcher(StringRef Name) const {
2777 const auto &I = DefinedOperands.find(Name);
2779 if (I == DefinedOperands.end())
2780 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
2782 return *I->second;
2785 void RuleMatcher::emit(MatchTable &Table) {
2786 if (Matchers.empty())
2787 llvm_unreachable("Unexpected empty matcher!");
2789 // The representation supports rules that require multiple roots such as:
2790 // %ptr(p0) = ...
2791 // %elt0(s32) = G_LOAD %ptr
2792 // %1(p0) = G_ADD %ptr, 4
2793 // %elt1(s32) = G_LOAD p0 %1
2794 // which could be usefully folded into:
2795 // %ptr(p0) = ...
2796 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
2797 // on some targets but we don't need to make use of that yet.
2798 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
2800 unsigned LabelID = Table.allocateLabelID();
2801 Table << MatchTable::Opcode("GIM_Try", +1)
2802 << MatchTable::Comment("On fail goto")
2803 << MatchTable::JumpTarget(LabelID)
2804 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
2805 << MatchTable::LineBreak;
2807 if (!RequiredFeatures.empty()) {
2808 Table << MatchTable::Opcode("GIM_CheckFeatures")
2809 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
2810 << MatchTable::LineBreak;
2813 Matchers.front()->emitPredicateOpcodes(Table, *this);
2815 // We must also check if it's safe to fold the matched instructions.
2816 if (InsnVariableIDs.size() >= 2) {
2817 // Invert the map to create stable ordering (by var names)
2818 SmallVector<unsigned, 2> InsnIDs;
2819 for (const auto &Pair : InsnVariableIDs) {
2820 // Skip the root node since it isn't moving anywhere. Everything else is
2821 // sinking to meet it.
2822 if (Pair.first == Matchers.front().get())
2823 continue;
2825 InsnIDs.push_back(Pair.second);
2827 llvm::sort(InsnIDs);
2829 for (const auto &InsnID : InsnIDs) {
2830 // Reject the difficult cases until we have a more accurate check.
2831 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
2832 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2833 << MatchTable::LineBreak;
2835 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
2836 // account for unsafe cases.
2838 // Example:
2839 // MI1--> %0 = ...
2840 // %1 = ... %0
2841 // MI0--> %2 = ... %0
2842 // It's not safe to erase MI1. We currently handle this by not
2843 // erasing %0 (even when it's dead).
2845 // Example:
2846 // MI1--> %0 = load volatile @a
2847 // %1 = load volatile @a
2848 // MI0--> %2 = ... %0
2849 // It's not safe to sink %0's def past %1. We currently handle
2850 // this by rejecting all loads.
2852 // Example:
2853 // MI1--> %0 = load @a
2854 // %1 = store @a
2855 // MI0--> %2 = ... %0
2856 // It's not safe to sink %0's def past %1. We currently handle
2857 // this by rejecting all loads.
2859 // Example:
2860 // G_CONDBR %cond, @BB1
2861 // BB0:
2862 // MI1--> %0 = load @a
2863 // G_BR @BB1
2864 // BB1:
2865 // MI0--> %2 = ... %0
2866 // It's not always safe to sink %0 across control flow. In this
2867 // case it may introduce a memory fault. We currentl handle this
2868 // by rejecting all loads.
2872 for (const auto &PM : EpilogueMatchers)
2873 PM->emitPredicateOpcodes(Table, *this);
2875 for (const auto &MA : Actions)
2876 MA->emitActionOpcodes(Table, *this);
2878 if (Table.isWithCoverage())
2879 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
2880 << MatchTable::LineBreak;
2881 else
2882 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
2883 << MatchTable::LineBreak;
2885 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
2886 << MatchTable::Label(LabelID);
2887 ++NumPatternEmitted;
2890 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
2891 // Rules involving more match roots have higher priority.
2892 if (Matchers.size() > B.Matchers.size())
2893 return true;
2894 if (Matchers.size() < B.Matchers.size())
2895 return false;
2897 for (const auto &Matcher : zip(Matchers, B.Matchers)) {
2898 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
2899 return true;
2900 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
2901 return false;
2904 return false;
2907 unsigned RuleMatcher::countRendererFns() const {
2908 return std::accumulate(
2909 Matchers.begin(), Matchers.end(), 0,
2910 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
2911 return A + Matcher->countRendererFns();
2915 bool OperandPredicateMatcher::isHigherPriorityThan(
2916 const OperandPredicateMatcher &B) const {
2917 // Generally speaking, an instruction is more important than an Int or a
2918 // LiteralInt because it can cover more nodes but theres an exception to
2919 // this. G_CONSTANT's are less important than either of those two because they
2920 // are more permissive.
2922 const InstructionOperandMatcher *AOM =
2923 dyn_cast<InstructionOperandMatcher>(this);
2924 const InstructionOperandMatcher *BOM =
2925 dyn_cast<InstructionOperandMatcher>(&B);
2926 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
2927 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
2929 if (AOM && BOM) {
2930 // The relative priorities between a G_CONSTANT and any other instruction
2931 // don't actually matter but this code is needed to ensure a strict weak
2932 // ordering. This is particularly important on Windows where the rules will
2933 // be incorrectly sorted without it.
2934 if (AIsConstantInsn != BIsConstantInsn)
2935 return AIsConstantInsn < BIsConstantInsn;
2936 return false;
2939 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
2940 return false;
2941 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
2942 return true;
2944 return Kind < B.Kind;
2947 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
2948 RuleMatcher &Rule) const {
2949 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
2950 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
2951 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
2953 Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
2954 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2955 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
2956 << MatchTable::Comment("OtherMI")
2957 << MatchTable::IntValue(OtherInsnVarID)
2958 << MatchTable::Comment("OtherOpIdx")
2959 << MatchTable::IntValue(OtherOM.getOpIdx())
2960 << MatchTable::LineBreak;
2963 //===- GlobalISelEmitter class --------------------------------------------===//
2965 class GlobalISelEmitter {
2966 public:
2967 explicit GlobalISelEmitter(RecordKeeper &RK);
2968 void run(raw_ostream &OS);
2970 private:
2971 const RecordKeeper &RK;
2972 const CodeGenDAGPatterns CGP;
2973 const CodeGenTarget &Target;
2974 CodeGenRegBank CGRegs;
2976 /// Keep track of the equivalence between SDNodes and Instruction by mapping
2977 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
2978 /// check for attributes on the relation such as CheckMMOIsNonAtomic.
2979 /// This is defined using 'GINodeEquiv' in the target description.
2980 DenseMap<Record *, Record *> NodeEquivs;
2982 /// Keep track of the equivalence between ComplexPattern's and
2983 /// GIComplexOperandMatcher. Map entries are specified by subclassing
2984 /// GIComplexPatternEquiv.
2985 DenseMap<const Record *, const Record *> ComplexPatternEquivs;
2987 /// Keep track of the equivalence between SDNodeXForm's and
2988 /// GICustomOperandRenderer. Map entries are specified by subclassing
2989 /// GISDNodeXFormEquiv.
2990 DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
2992 /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
2993 /// This adds compatibility for RuleMatchers to use this for ordering rules.
2994 DenseMap<uint64_t, int> RuleMatcherScores;
2996 // Map of predicates to their subtarget features.
2997 SubtargetFeatureInfoMap SubtargetFeatures;
2999 // Rule coverage information.
3000 Optional<CodeGenCoverage> RuleCoverage;
3002 void gatherOpcodeValues();
3003 void gatherTypeIDValues();
3004 void gatherNodeEquivs();
3006 Record *findNodeEquiv(Record *N) const;
3007 const CodeGenInstruction *getEquivNode(Record &Equiv,
3008 const TreePatternNode *N) const;
3010 Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
3011 Expected<InstructionMatcher &>
3012 createAndImportSelDAGMatcher(RuleMatcher &Rule,
3013 InstructionMatcher &InsnMatcher,
3014 const TreePatternNode *Src, unsigned &TempOpIdx);
3015 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
3016 unsigned &TempOpIdx) const;
3017 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3018 const TreePatternNode *SrcChild,
3019 bool OperandIsAPointer, unsigned OpIdx,
3020 unsigned &TempOpIdx);
3022 Expected<BuildMIAction &>
3023 createAndImportInstructionRenderer(RuleMatcher &M,
3024 const TreePatternNode *Dst);
3025 Expected<action_iterator> createAndImportSubInstructionRenderer(
3026 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3027 unsigned TempReg);
3028 Expected<action_iterator>
3029 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
3030 const TreePatternNode *Dst);
3031 void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
3032 Expected<action_iterator>
3033 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
3034 BuildMIAction &DstMIBuilder,
3035 const llvm::TreePatternNode *Dst);
3036 Expected<action_iterator>
3037 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
3038 BuildMIAction &DstMIBuilder,
3039 TreePatternNode *DstChild);
3040 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
3041 BuildMIAction &DstMIBuilder,
3042 DagInit *DefaultOps) const;
3043 Error
3044 importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
3045 const std::vector<Record *> &ImplicitDefs) const;
3047 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
3048 StringRef TypeIdentifier, StringRef ArgType,
3049 StringRef ArgName, StringRef AdditionalDeclarations,
3050 std::function<bool(const Record *R)> Filter);
3051 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
3052 StringRef ArgType,
3053 std::function<bool(const Record *R)> Filter);
3054 void emitMIPredicateFns(raw_ostream &OS);
3056 /// Analyze pattern \p P, returning a matcher for it if possible.
3057 /// Otherwise, return an Error explaining why we don't support it.
3058 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
3060 void declareSubtargetFeature(Record *Predicate);
3062 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
3063 bool WithCoverage);
3065 public:
3066 /// Takes a sequence of \p Rules and group them based on the predicates
3067 /// they share. \p MatcherStorage is used as a memory container
3068 /// for the group that are created as part of this process.
3070 /// What this optimization does looks like if GroupT = GroupMatcher:
3071 /// Output without optimization:
3072 /// \verbatim
3073 /// # R1
3074 /// # predicate A
3075 /// # predicate B
3076 /// ...
3077 /// # R2
3078 /// # predicate A // <-- effectively this is going to be checked twice.
3079 /// // Once in R1 and once in R2.
3080 /// # predicate C
3081 /// \endverbatim
3082 /// Output with optimization:
3083 /// \verbatim
3084 /// # Group1_2
3085 /// # predicate A // <-- Check is now shared.
3086 /// # R1
3087 /// # predicate B
3088 /// # R2
3089 /// # predicate C
3090 /// \endverbatim
3091 template <class GroupT>
3092 static std::vector<Matcher *> optimizeRules(
3093 ArrayRef<Matcher *> Rules,
3094 std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
3097 void GlobalISelEmitter::gatherOpcodeValues() {
3098 InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
3101 void GlobalISelEmitter::gatherTypeIDValues() {
3102 LLTOperandMatcher::initTypeIDValuesMap();
3105 void GlobalISelEmitter::gatherNodeEquivs() {
3106 assert(NodeEquivs.empty());
3107 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
3108 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
3110 assert(ComplexPatternEquivs.empty());
3111 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3112 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3113 if (!SelDAGEquiv)
3114 continue;
3115 ComplexPatternEquivs[SelDAGEquiv] = Equiv;
3118 assert(SDNodeXFormEquivs.empty());
3119 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3120 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3121 if (!SelDAGEquiv)
3122 continue;
3123 SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
3127 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
3128 return NodeEquivs.lookup(N);
3131 const CodeGenInstruction *
3132 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
3133 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
3134 const TreePredicateFn &Predicate = Call.Fn;
3135 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
3136 Predicate.isSignExtLoad())
3137 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
3138 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
3139 Predicate.isZeroExtLoad())
3140 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
3142 return &Target.getInstruction(Equiv.getValueAsDef("I"));
3145 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
3146 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
3147 CGRegs(RK, Target.getHwModes()) {}
3149 //===- Emitter ------------------------------------------------------------===//
3151 Error
3152 GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
3153 ArrayRef<Predicate> Predicates) {
3154 for (const Predicate &P : Predicates) {
3155 if (!P.Def)
3156 continue;
3157 declareSubtargetFeature(P.Def);
3158 M.addRequiredFeature(P.Def);
3161 return Error::success();
3164 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
3165 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3166 const TreePatternNode *Src, unsigned &TempOpIdx) {
3167 Record *SrcGIEquivOrNull = nullptr;
3168 const CodeGenInstruction *SrcGIOrNull = nullptr;
3170 // Start with the defined operands (i.e., the results of the root operator).
3171 if (Src->getExtTypes().size() > 1)
3172 return failedImport("Src pattern has multiple results");
3174 if (Src->isLeaf()) {
3175 Init *SrcInit = Src->getLeafValue();
3176 if (isa<IntInit>(SrcInit)) {
3177 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
3178 &Target.getInstruction(RK.getDef("G_CONSTANT")));
3179 } else
3180 return failedImport(
3181 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3182 } else {
3183 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
3184 if (!SrcGIEquivOrNull)
3185 return failedImport("Pattern operator lacks an equivalent Instruction" +
3186 explainOperator(Src->getOperator()));
3187 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
3189 // The operators look good: match the opcode
3190 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
3193 unsigned OpIdx = 0;
3194 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3195 // Results don't have a name unless they are the root node. The caller will
3196 // set the name if appropriate.
3197 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3198 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
3199 return failedImport(toString(std::move(Error)) +
3200 " for result of Src pattern operator");
3203 for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
3204 const TreePredicateFn &Predicate = Call.Fn;
3205 if (Predicate.isAlwaysTrue())
3206 continue;
3208 if (Predicate.isImmediatePattern()) {
3209 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
3210 continue;
3213 // G_LOAD is used for both non-extending and any-extending loads.
3214 if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
3215 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3216 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3217 continue;
3219 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
3220 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3221 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3222 continue;
3225 // No check required. We already did it by swapping the opcode.
3226 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
3227 Predicate.isSignExtLoad())
3228 continue;
3230 // No check required. We already did it by swapping the opcode.
3231 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
3232 Predicate.isZeroExtLoad())
3233 continue;
3235 // No check required. G_STORE by itself is a non-extending store.
3236 if (Predicate.isNonTruncStore())
3237 continue;
3239 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3240 if (Predicate.getMemoryVT() != nullptr) {
3241 Optional<LLTCodeGen> MemTyOrNone =
3242 MVTToLLT(getValueType(Predicate.getMemoryVT()));
3244 if (!MemTyOrNone)
3245 return failedImport("MemVT could not be converted to LLT");
3247 // MMO's work in bytes so we must take care of unusual types like i1
3248 // don't round down.
3249 unsigned MemSizeInBits =
3250 llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
3252 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
3253 0, MemSizeInBits / 8);
3254 continue;
3258 if (Predicate.isLoad() || Predicate.isStore()) {
3259 // No check required. A G_LOAD/G_STORE is an unindexed load.
3260 if (Predicate.isUnindexed())
3261 continue;
3264 if (Predicate.isAtomic()) {
3265 if (Predicate.isAtomicOrderingMonotonic()) {
3266 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3267 "Monotonic");
3268 continue;
3270 if (Predicate.isAtomicOrderingAcquire()) {
3271 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
3272 continue;
3274 if (Predicate.isAtomicOrderingRelease()) {
3275 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
3276 continue;
3278 if (Predicate.isAtomicOrderingAcquireRelease()) {
3279 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3280 "AcquireRelease");
3281 continue;
3283 if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
3284 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3285 "SequentiallyConsistent");
3286 continue;
3289 if (Predicate.isAtomicOrderingAcquireOrStronger()) {
3290 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3291 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3292 continue;
3294 if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
3295 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3296 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3297 continue;
3300 if (Predicate.isAtomicOrderingReleaseOrStronger()) {
3301 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3302 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3303 continue;
3305 if (Predicate.isAtomicOrderingWeakerThanRelease()) {
3306 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3307 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3308 continue;
3312 if (Predicate.hasGISelPredicateCode()) {
3313 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
3314 continue;
3317 return failedImport("Src pattern child has predicate (" +
3318 explainPredicates(Src) + ")");
3320 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
3321 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
3323 if (Src->isLeaf()) {
3324 Init *SrcInit = Src->getLeafValue();
3325 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
3326 OperandMatcher &OM =
3327 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
3328 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
3329 } else
3330 return failedImport(
3331 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3332 } else {
3333 assert(SrcGIOrNull &&
3334 "Expected to have already found an equivalent Instruction");
3335 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
3336 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
3337 // imm/fpimm still have operands but we don't need to do anything with it
3338 // here since we don't support ImmLeaf predicates yet. However, we still
3339 // need to note the hidden operand to get GIM_CheckNumOperands correct.
3340 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3341 return InsnMatcher;
3344 // Match the used operands (i.e. the children of the operator).
3345 for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
3346 TreePatternNode *SrcChild = Src->getChild(i);
3348 // SelectionDAG allows pointers to be represented with iN since it doesn't
3349 // distinguish between pointers and integers but they are different types in GlobalISel.
3350 // Coerce integers to pointers to address space 0 if the context indicates a pointer.
3351 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
3353 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
3354 // following the defs is an intrinsic ID.
3355 if ((SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
3356 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
3357 i == 0) {
3358 if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
3359 OperandMatcher &OM =
3360 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
3361 OM.addPredicate<IntrinsicIDOperandMatcher>(II);
3362 continue;
3365 return failedImport("Expected IntInit containing instrinsic ID)");
3368 if (auto Error =
3369 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
3370 OpIdx++, TempOpIdx))
3371 return std::move(Error);
3375 return InsnMatcher;
3378 Error GlobalISelEmitter::importComplexPatternOperandMatcher(
3379 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
3380 const auto &ComplexPattern = ComplexPatternEquivs.find(R);
3381 if (ComplexPattern == ComplexPatternEquivs.end())
3382 return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
3383 ") not mapped to GlobalISel");
3385 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
3386 TempOpIdx++;
3387 return Error::success();
3390 Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
3391 InstructionMatcher &InsnMatcher,
3392 const TreePatternNode *SrcChild,
3393 bool OperandIsAPointer,
3394 unsigned OpIdx,
3395 unsigned &TempOpIdx) {
3396 OperandMatcher &OM =
3397 InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
3398 if (OM.isSameAsAnotherOperand())
3399 return Error::success();
3401 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
3402 if (ChildTypes.size() != 1)
3403 return failedImport("Src pattern child has multiple results");
3405 // Check MBB's before the type check since they are not a known type.
3406 if (!SrcChild->isLeaf()) {
3407 if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
3408 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
3409 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3410 OM.addPredicate<MBBOperandMatcher>();
3411 return Error::success();
3416 if (auto Error =
3417 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
3418 return failedImport(toString(std::move(Error)) + " for Src operand (" +
3419 to_string(*SrcChild) + ")");
3421 // Check for nested instructions.
3422 if (!SrcChild->isLeaf()) {
3423 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
3424 // When a ComplexPattern is used as an operator, it should do the same
3425 // thing as when used as a leaf. However, the children of the operator
3426 // name the sub-operands that make up the complex operand and we must
3427 // prepare to reference them in the renderer too.
3428 unsigned RendererID = TempOpIdx;
3429 if (auto Error = importComplexPatternOperandMatcher(
3430 OM, SrcChild->getOperator(), TempOpIdx))
3431 return Error;
3433 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
3434 auto *SubOperand = SrcChild->getChild(i);
3435 if (!SubOperand->getName().empty()) {
3436 if (auto Error = Rule.defineComplexSubOperand(SubOperand->getName(),
3437 SrcChild->getOperator(),
3438 RendererID, i))
3439 return Error;
3443 return Error::success();
3446 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
3447 InsnMatcher.getRuleMatcher(), SrcChild->getName());
3448 if (!MaybeInsnOperand.hasValue()) {
3449 // This isn't strictly true. If the user were to provide exactly the same
3450 // matchers as the original operand then we could allow it. However, it's
3451 // simpler to not permit the redundant specification.
3452 return failedImport("Nested instruction cannot be the same as another operand");
3455 // Map the node to a gMIR instruction.
3456 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
3457 auto InsnMatcherOrError = createAndImportSelDAGMatcher(
3458 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
3459 if (auto Error = InsnMatcherOrError.takeError())
3460 return Error;
3462 return Error::success();
3465 if (SrcChild->hasAnyPredicate())
3466 return failedImport("Src pattern child has unsupported predicate");
3468 // Check for constant immediates.
3469 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
3470 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
3471 return Error::success();
3474 // Check for def's like register classes or ComplexPattern's.
3475 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
3476 auto *ChildRec = ChildDefInit->getDef();
3478 // Check for register classes.
3479 if (ChildRec->isSubClassOf("RegisterClass") ||
3480 ChildRec->isSubClassOf("RegisterOperand")) {
3481 OM.addPredicate<RegisterBankOperandMatcher>(
3482 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
3483 return Error::success();
3486 // Check for ValueType.
3487 if (ChildRec->isSubClassOf("ValueType")) {
3488 // We already added a type check as standard practice so this doesn't need
3489 // to do anything.
3490 return Error::success();
3493 // Check for ComplexPattern's.
3494 if (ChildRec->isSubClassOf("ComplexPattern"))
3495 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
3497 if (ChildRec->isSubClassOf("ImmLeaf")) {
3498 return failedImport(
3499 "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
3502 return failedImport(
3503 "Src pattern child def is an unsupported tablegen class");
3506 return failedImport("Src pattern child is an unsupported kind");
3509 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
3510 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
3511 TreePatternNode *DstChild) {
3513 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
3514 if (SubOperand.hasValue()) {
3515 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3516 *std::get<0>(*SubOperand), DstChild->getName(),
3517 std::get<1>(*SubOperand), std::get<2>(*SubOperand));
3518 return InsertPt;
3521 if (!DstChild->isLeaf()) {
3523 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
3524 auto Child = DstChild->getChild(0);
3525 auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
3526 if (I != SDNodeXFormEquivs.end()) {
3527 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
3528 return InsertPt;
3530 return failedImport("SDNodeXForm " + Child->getName() +
3531 " has no custom renderer");
3534 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
3535 // inline, but in MI it's just another operand.
3536 if (DstChild->getOperator()->isSubClassOf("SDNode")) {
3537 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
3538 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3539 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3540 return InsertPt;
3544 // Similarly, imm is an operator in TreePatternNode's view but must be
3545 // rendered as operands.
3546 // FIXME: The target should be able to choose sign-extended when appropriate
3547 // (e.g. on Mips).
3548 if (DstChild->getOperator()->getName() == "imm") {
3549 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
3550 return InsertPt;
3551 } else if (DstChild->getOperator()->getName() == "fpimm") {
3552 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
3553 DstChild->getName());
3554 return InsertPt;
3557 if (DstChild->getOperator()->isSubClassOf("Instruction")) {
3558 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3559 if (ChildTypes.size() != 1)
3560 return failedImport("Dst pattern child has multiple results");
3562 Optional<LLTCodeGen> OpTyOrNone = None;
3563 if (ChildTypes.front().isMachineValueType())
3564 OpTyOrNone =
3565 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3566 if (!OpTyOrNone)
3567 return failedImport("Dst operand has an unsupported type");
3569 unsigned TempRegID = Rule.allocateTempRegID();
3570 InsertPt = Rule.insertAction<MakeTempRegisterAction>(
3571 InsertPt, OpTyOrNone.getValue(), TempRegID);
3572 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
3574 auto InsertPtOrError = createAndImportSubInstructionRenderer(
3575 ++InsertPt, Rule, DstChild, TempRegID);
3576 if (auto Error = InsertPtOrError.takeError())
3577 return std::move(Error);
3578 return InsertPtOrError.get();
3581 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
3584 // It could be a specific immediate in which case we should just check for
3585 // that immediate.
3586 if (const IntInit *ChildIntInit =
3587 dyn_cast<IntInit>(DstChild->getLeafValue())) {
3588 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
3589 return InsertPt;
3592 // Otherwise, we're looking for a bog-standard RegisterClass operand.
3593 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
3594 auto *ChildRec = ChildDefInit->getDef();
3596 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3597 if (ChildTypes.size() != 1)
3598 return failedImport("Dst pattern child has multiple results");
3600 Optional<LLTCodeGen> OpTyOrNone = None;
3601 if (ChildTypes.front().isMachineValueType())
3602 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3603 if (!OpTyOrNone)
3604 return failedImport("Dst operand has an unsupported type");
3606 if (ChildRec->isSubClassOf("Register")) {
3607 DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
3608 return InsertPt;
3611 if (ChildRec->isSubClassOf("RegisterClass") ||
3612 ChildRec->isSubClassOf("RegisterOperand") ||
3613 ChildRec->isSubClassOf("ValueType")) {
3614 if (ChildRec->isSubClassOf("RegisterOperand") &&
3615 !ChildRec->isValueUnset("GIZeroRegister")) {
3616 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
3617 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
3618 return InsertPt;
3621 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3622 return InsertPt;
3625 if (ChildRec->isSubClassOf("ComplexPattern")) {
3626 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
3627 if (ComplexPattern == ComplexPatternEquivs.end())
3628 return failedImport(
3629 "SelectionDAG ComplexPattern not mapped to GlobalISel");
3631 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
3632 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3633 *ComplexPattern->second, DstChild->getName(),
3634 OM.getAllocatedTemporariesBaseID());
3635 return InsertPt;
3638 return failedImport(
3639 "Dst pattern child def is an unsupported tablegen class");
3642 return failedImport("Dst pattern child is an unsupported kind");
3645 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
3646 RuleMatcher &M, const TreePatternNode *Dst) {
3647 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
3648 if (auto Error = InsertPtOrError.takeError())
3649 return std::move(Error);
3651 action_iterator InsertPt = InsertPtOrError.get();
3652 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
3654 importExplicitDefRenderers(DstMIBuilder);
3656 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
3657 .takeError())
3658 return std::move(Error);
3660 return DstMIBuilder;
3663 Expected<action_iterator>
3664 GlobalISelEmitter::createAndImportSubInstructionRenderer(
3665 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3666 unsigned TempRegID) {
3667 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
3669 // TODO: Assert there's exactly one result.
3671 if (auto Error = InsertPtOrError.takeError())
3672 return std::move(Error);
3674 BuildMIAction &DstMIBuilder =
3675 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
3677 // Assign the result to TempReg.
3678 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
3680 InsertPtOrError =
3681 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
3682 if (auto Error = InsertPtOrError.takeError())
3683 return std::move(Error);
3685 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
3686 DstMIBuilder.getInsnID());
3687 return InsertPtOrError.get();
3690 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
3691 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
3692 Record *DstOp = Dst->getOperator();
3693 if (!DstOp->isSubClassOf("Instruction")) {
3694 if (DstOp->isSubClassOf("ValueType"))
3695 return failedImport(
3696 "Pattern operator isn't an instruction (it's a ValueType)");
3697 return failedImport("Pattern operator isn't an instruction");
3699 CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
3701 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
3702 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
3703 if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
3704 DstI = &Target.getInstruction(RK.getDef("COPY"));
3705 else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
3706 DstI = &Target.getInstruction(RK.getDef("COPY"));
3707 else if (DstI->TheDef->getName() == "REG_SEQUENCE")
3708 return failedImport("Unable to emit REG_SEQUENCE");
3710 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
3711 DstI);
3714 void GlobalISelEmitter::importExplicitDefRenderers(
3715 BuildMIAction &DstMIBuilder) {
3716 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
3717 for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
3718 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
3719 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
3723 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
3724 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
3725 const llvm::TreePatternNode *Dst) {
3726 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
3727 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
3729 // EXTRACT_SUBREG needs to use a subregister COPY.
3730 if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
3731 if (!Dst->getChild(0)->isLeaf())
3732 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
3734 if (DefInit *SubRegInit =
3735 dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
3736 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
3737 if (!RCDef)
3738 return failedImport("EXTRACT_SUBREG child #0 could not "
3739 "be coerced to a register class");
3741 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
3742 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
3744 const auto &SrcRCDstRCPair =
3745 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
3746 if (SrcRCDstRCPair.hasValue()) {
3747 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
3748 if (SrcRCDstRCPair->first != RC)
3749 return failedImport("EXTRACT_SUBREG requires an additional COPY");
3752 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
3753 SubIdx);
3754 return InsertPt;
3757 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
3760 // Render the explicit uses.
3761 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
3762 unsigned ExpectedDstINumUses = Dst->getNumChildren();
3763 if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
3764 DstINumUses--; // Ignore the class constraint.
3765 ExpectedDstINumUses--;
3768 unsigned Child = 0;
3769 unsigned NumDefaultOps = 0;
3770 for (unsigned I = 0; I != DstINumUses; ++I) {
3771 const CGIOperandList::OperandInfo &DstIOperand =
3772 DstI->Operands[DstI->Operands.NumDefs + I];
3774 // If the operand has default values, introduce them now.
3775 // FIXME: Until we have a decent test case that dictates we should do
3776 // otherwise, we're going to assume that operands with default values cannot
3777 // be specified in the patterns. Therefore, adding them will not cause us to
3778 // end up with too many rendered operands.
3779 if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
3780 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
3781 if (auto Error = importDefaultOperandRenderers(
3782 InsertPt, M, DstMIBuilder, DefaultOps))
3783 return std::move(Error);
3784 ++NumDefaultOps;
3785 continue;
3788 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
3789 Dst->getChild(Child));
3790 if (auto Error = InsertPtOrError.takeError())
3791 return std::move(Error);
3792 InsertPt = InsertPtOrError.get();
3793 ++Child;
3796 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
3797 return failedImport("Expected " + llvm::to_string(DstINumUses) +
3798 " used operands but found " +
3799 llvm::to_string(ExpectedDstINumUses) +
3800 " explicit ones and " + llvm::to_string(NumDefaultOps) +
3801 " default ones");
3803 return InsertPt;
3806 Error GlobalISelEmitter::importDefaultOperandRenderers(
3807 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
3808 DagInit *DefaultOps) const {
3809 for (const auto *DefaultOp : DefaultOps->getArgs()) {
3810 Optional<LLTCodeGen> OpTyOrNone = None;
3812 // Look through ValueType operators.
3813 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
3814 if (const DefInit *DefaultDagOperator =
3815 dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
3816 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
3817 OpTyOrNone = MVTToLLT(getValueType(
3818 DefaultDagOperator->getDef()));
3819 DefaultOp = DefaultDagOp->getArg(0);
3824 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
3825 auto Def = DefaultDefOp->getDef();
3826 if (Def->getName() == "undef_tied_input") {
3827 unsigned TempRegID = M.allocateTempRegID();
3828 M.insertAction<MakeTempRegisterAction>(
3829 InsertPt, OpTyOrNone.getValue(), TempRegID);
3830 InsertPt = M.insertAction<BuildMIAction>(
3831 InsertPt, M.allocateOutputInsnID(),
3832 &Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
3833 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
3834 InsertPt->get());
3835 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
3836 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
3837 } else {
3838 DstMIBuilder.addRenderer<AddRegisterRenderer>(Def);
3840 continue;
3843 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
3844 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
3845 continue;
3848 return failedImport("Could not add default op");
3851 return Error::success();
3854 Error GlobalISelEmitter::importImplicitDefRenderers(
3855 BuildMIAction &DstMIBuilder,
3856 const std::vector<Record *> &ImplicitDefs) const {
3857 if (!ImplicitDefs.empty())
3858 return failedImport("Pattern defines a physical register");
3859 return Error::success();
3862 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
3863 // Keep track of the matchers and actions to emit.
3864 int Score = P.getPatternComplexity(CGP);
3865 RuleMatcher M(P.getSrcRecord()->getLoc());
3866 RuleMatcherScores[M.getRuleID()] = Score;
3867 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
3868 " => " +
3869 llvm::to_string(*P.getDstPattern()));
3871 if (auto Error = importRulePredicates(M, P.getPredicates()))
3872 return std::move(Error);
3874 // Next, analyze the pattern operators.
3875 TreePatternNode *Src = P.getSrcPattern();
3876 TreePatternNode *Dst = P.getDstPattern();
3878 // If the root of either pattern isn't a simple operator, ignore it.
3879 if (auto Err = isTrivialOperatorNode(Dst))
3880 return failedImport("Dst pattern root isn't a trivial operator (" +
3881 toString(std::move(Err)) + ")");
3882 if (auto Err = isTrivialOperatorNode(Src))
3883 return failedImport("Src pattern root isn't a trivial operator (" +
3884 toString(std::move(Err)) + ")");
3886 // The different predicates and matchers created during
3887 // addInstructionMatcher use the RuleMatcher M to set up their
3888 // instruction ID (InsnVarID) that are going to be used when
3889 // M is going to be emitted.
3890 // However, the code doing the emission still relies on the IDs
3891 // returned during that process by the RuleMatcher when issuing
3892 // the recordInsn opcodes.
3893 // Because of that:
3894 // 1. The order in which we created the predicates
3895 // and such must be the same as the order in which we emit them,
3896 // and
3897 // 2. We need to reset the generation of the IDs in M somewhere between
3898 // addInstructionMatcher and emit
3900 // FIXME: Long term, we don't want to have to rely on this implicit
3901 // naming being the same. One possible solution would be to have
3902 // explicit operator for operation capture and reference those.
3903 // The plus side is that it would expose opportunities to share
3904 // the capture accross rules. The downside is that it would
3905 // introduce a dependency between predicates (captures must happen
3906 // before their first use.)
3907 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
3908 unsigned TempOpIdx = 0;
3909 auto InsnMatcherOrError =
3910 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
3911 if (auto Error = InsnMatcherOrError.takeError())
3912 return std::move(Error);
3913 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
3915 if (Dst->isLeaf()) {
3916 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
3918 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
3919 if (RCDef) {
3920 // We need to replace the def and all its uses with the specified
3921 // operand. However, we must also insert COPY's wherever needed.
3922 // For now, emit a copy and let the register allocator clean up.
3923 auto &DstI = Target.getInstruction(RK.getDef("COPY"));
3924 const auto &DstIOperand = DstI.Operands[0];
3926 OperandMatcher &OM0 = InsnMatcher.getOperand(0);
3927 OM0.setSymbolicName(DstIOperand.Name);
3928 M.defineOperand(OM0.getSymbolicName(), OM0);
3929 OM0.addPredicate<RegisterBankOperandMatcher>(RC);
3931 auto &DstMIBuilder =
3932 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
3933 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
3934 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
3935 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
3937 // We're done with this pattern! It's eligible for GISel emission; return
3938 // it.
3939 ++NumPatternImported;
3940 return std::move(M);
3943 return failedImport("Dst pattern root isn't a known leaf");
3946 // Start with the defined operands (i.e., the results of the root operator).
3947 Record *DstOp = Dst->getOperator();
3948 if (!DstOp->isSubClassOf("Instruction"))
3949 return failedImport("Pattern operator isn't an instruction");
3951 auto &DstI = Target.getInstruction(DstOp);
3952 if (DstI.Operands.NumDefs != Src->getExtTypes().size())
3953 return failedImport("Src pattern results and dst MI defs are different (" +
3954 to_string(Src->getExtTypes().size()) + " def(s) vs " +
3955 to_string(DstI.Operands.NumDefs) + " def(s))");
3957 // The root of the match also has constraints on the register bank so that it
3958 // matches the result instruction.
3959 unsigned OpIdx = 0;
3960 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3961 (void)VTy;
3963 const auto &DstIOperand = DstI.Operands[OpIdx];
3964 Record *DstIOpRec = DstIOperand.Rec;
3965 if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
3966 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
3968 if (DstIOpRec == nullptr)
3969 return failedImport(
3970 "COPY_TO_REGCLASS operand #1 isn't a register class");
3971 } else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
3972 if (!Dst->getChild(0)->isLeaf())
3973 return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
3975 // We can assume that a subregister is in the same bank as it's super
3976 // register.
3977 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
3979 if (DstIOpRec == nullptr)
3980 return failedImport(
3981 "EXTRACT_SUBREG operand #0 isn't a register class");
3982 } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
3983 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
3984 else if (!DstIOpRec->isSubClassOf("RegisterClass"))
3985 return failedImport("Dst MI def isn't a register class" +
3986 to_string(*Dst));
3988 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
3989 OM.setSymbolicName(DstIOperand.Name);
3990 M.defineOperand(OM.getSymbolicName(), OM);
3991 OM.addPredicate<RegisterBankOperandMatcher>(
3992 Target.getRegisterClass(DstIOpRec));
3993 ++OpIdx;
3996 auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
3997 if (auto Error = DstMIBuilderOrError.takeError())
3998 return std::move(Error);
3999 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
4001 // Render the implicit defs.
4002 // These are only added to the root of the result.
4003 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
4004 return std::move(Error);
4006 DstMIBuilder.chooseInsnToMutate(M);
4008 // Constrain the registers to classes. This is normally derived from the
4009 // emitted instruction but a few instructions require special handling.
4010 if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
4011 // COPY_TO_REGCLASS does not provide operand constraints itself but the
4012 // result is constrained to the class given by the second child.
4013 Record *DstIOpRec =
4014 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
4016 if (DstIOpRec == nullptr)
4017 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
4019 M.addAction<ConstrainOperandToRegClassAction>(
4020 0, 0, Target.getRegisterClass(DstIOpRec));
4022 // We're done with this pattern! It's eligible for GISel emission; return
4023 // it.
4024 ++NumPatternImported;
4025 return std::move(M);
4028 if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
4029 // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4030 // instructions, the result register class is controlled by the
4031 // subregisters of the operand. As a result, we must constrain the result
4032 // class rather than check that it's already the right one.
4033 if (!Dst->getChild(0)->isLeaf())
4034 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4036 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
4037 if (!SubRegInit)
4038 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4040 // Constrain the result to the same register bank as the operand.
4041 Record *DstIOpRec =
4042 getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4044 if (DstIOpRec == nullptr)
4045 return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
4047 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4048 CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
4050 // It would be nice to leave this constraint implicit but we're required
4051 // to pick a register class so constrain the result to a register class
4052 // that can hold the correct MVT.
4054 // FIXME: This may introduce an extra copy if the chosen class doesn't
4055 // actually contain the subregisters.
4056 assert(Src->getExtTypes().size() == 1 &&
4057 "Expected Src of EXTRACT_SUBREG to have one result type");
4059 const auto &SrcRCDstRCPair =
4060 SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
4061 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4062 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
4063 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
4065 // We're done with this pattern! It's eligible for GISel emission; return
4066 // it.
4067 ++NumPatternImported;
4068 return std::move(M);
4071 M.addAction<ConstrainOperandsToDefinitionAction>(0);
4073 // We're done with this pattern! It's eligible for GISel emission; return it.
4074 ++NumPatternImported;
4075 return std::move(M);
4078 // Emit imm predicate table and an enum to reference them with.
4079 // The 'Predicate_' part of the name is redundant but eliminating it is more
4080 // trouble than it's worth.
4081 void GlobalISelEmitter::emitCxxPredicateFns(
4082 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
4083 StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations,
4084 std::function<bool(const Record *R)> Filter) {
4085 std::vector<const Record *> MatchedRecords;
4086 const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
4087 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
4088 [&](Record *Record) {
4089 return !Record->getValueAsString(CodeFieldName).empty() &&
4090 Filter(Record);
4093 if (!MatchedRecords.empty()) {
4094 OS << "// PatFrag predicates.\n"
4095 << "enum {\n";
4096 std::string EnumeratorSeparator =
4097 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
4098 for (const auto *Record : MatchedRecords) {
4099 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
4100 << EnumeratorSeparator;
4101 EnumeratorSeparator = ",\n";
4103 OS << "};\n";
4106 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
4107 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
4108 << ArgName << ") const {\n"
4109 << AdditionalDeclarations;
4110 if (!AdditionalDeclarations.empty())
4111 OS << "\n";
4112 if (!MatchedRecords.empty())
4113 OS << " switch (PredicateID) {\n";
4114 for (const auto *Record : MatchedRecords) {
4115 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
4116 << Record->getName() << ": {\n"
4117 << " " << Record->getValueAsString(CodeFieldName) << "\n"
4118 << " llvm_unreachable(\"" << CodeFieldName
4119 << " should have returned\");\n"
4120 << " return false;\n"
4121 << " }\n";
4123 if (!MatchedRecords.empty())
4124 OS << " }\n";
4125 OS << " llvm_unreachable(\"Unknown predicate\");\n"
4126 << " return false;\n"
4127 << "}\n";
4130 void GlobalISelEmitter::emitImmPredicateFns(
4131 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
4132 std::function<bool(const Record *R)> Filter) {
4133 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
4134 "Imm", "", Filter);
4137 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
4138 return emitCxxPredicateFns(
4139 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
4140 " const MachineFunction &MF = *MI.getParent()->getParent();\n"
4141 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4142 " (void)MRI;",
4143 [](const Record *R) { return true; });
4146 template <class GroupT>
4147 std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
4148 ArrayRef<Matcher *> Rules,
4149 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
4151 std::vector<Matcher *> OptRules;
4152 std::unique_ptr<GroupT> CurrentGroup = make_unique<GroupT>();
4153 assert(CurrentGroup->empty() && "Newly created group isn't empty!");
4154 unsigned NumGroups = 0;
4156 auto ProcessCurrentGroup = [&]() {
4157 if (CurrentGroup->empty())
4158 // An empty group is good to be reused:
4159 return;
4161 // If the group isn't large enough to provide any benefit, move all the
4162 // added rules out of it and make sure to re-create the group to properly
4163 // re-initialize it:
4164 if (CurrentGroup->size() < 2)
4165 for (Matcher *M : CurrentGroup->matchers())
4166 OptRules.push_back(M);
4167 else {
4168 CurrentGroup->finalize();
4169 OptRules.push_back(CurrentGroup.get());
4170 MatcherStorage.emplace_back(std::move(CurrentGroup));
4171 ++NumGroups;
4173 CurrentGroup = make_unique<GroupT>();
4175 for (Matcher *Rule : Rules) {
4176 // Greedily add as many matchers as possible to the current group:
4177 if (CurrentGroup->addMatcher(*Rule))
4178 continue;
4180 ProcessCurrentGroup();
4181 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
4183 // Try to add the pending matcher to a newly created empty group:
4184 if (!CurrentGroup->addMatcher(*Rule))
4185 // If we couldn't add the matcher to an empty group, that group type
4186 // doesn't support that kind of matchers at all, so just skip it:
4187 OptRules.push_back(Rule);
4189 ProcessCurrentGroup();
4191 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
4192 assert(CurrentGroup->empty() && "The last group wasn't properly processed");
4193 return OptRules;
4196 MatchTable
4197 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
4198 bool Optimize, bool WithCoverage) {
4199 std::vector<Matcher *> InputRules;
4200 for (Matcher &Rule : Rules)
4201 InputRules.push_back(&Rule);
4203 if (!Optimize)
4204 return MatchTable::buildTable(InputRules, WithCoverage);
4206 unsigned CurrentOrdering = 0;
4207 StringMap<unsigned> OpcodeOrder;
4208 for (RuleMatcher &Rule : Rules) {
4209 const StringRef Opcode = Rule.getOpcode();
4210 assert(!Opcode.empty() && "Didn't expect an undefined opcode");
4211 if (OpcodeOrder.count(Opcode) == 0)
4212 OpcodeOrder[Opcode] = CurrentOrdering++;
4215 std::stable_sort(InputRules.begin(), InputRules.end(),
4216 [&OpcodeOrder](const Matcher *A, const Matcher *B) {
4217 auto *L = static_cast<const RuleMatcher *>(A);
4218 auto *R = static_cast<const RuleMatcher *>(B);
4219 return std::make_tuple(OpcodeOrder[L->getOpcode()],
4220 L->getNumOperands()) <
4221 std::make_tuple(OpcodeOrder[R->getOpcode()],
4222 R->getNumOperands());
4225 for (Matcher *Rule : InputRules)
4226 Rule->optimize();
4228 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
4229 std::vector<Matcher *> OptRules =
4230 optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
4232 for (Matcher *Rule : OptRules)
4233 Rule->optimize();
4235 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
4237 return MatchTable::buildTable(OptRules, WithCoverage);
4240 void GroupMatcher::optimize() {
4241 // Make sure we only sort by a specific predicate within a range of rules that
4242 // all have that predicate checked against a specific value (not a wildcard):
4243 auto F = Matchers.begin();
4244 auto T = F;
4245 auto E = Matchers.end();
4246 while (T != E) {
4247 while (T != E) {
4248 auto *R = static_cast<RuleMatcher *>(*T);
4249 if (!R->getFirstConditionAsRootType().get().isValid())
4250 break;
4251 ++T;
4253 std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
4254 auto *L = static_cast<RuleMatcher *>(A);
4255 auto *R = static_cast<RuleMatcher *>(B);
4256 return L->getFirstConditionAsRootType() <
4257 R->getFirstConditionAsRootType();
4259 if (T != E)
4260 F = ++T;
4262 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
4263 .swap(Matchers);
4264 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
4265 .swap(Matchers);
4268 void GlobalISelEmitter::run(raw_ostream &OS) {
4269 if (!UseCoverageFile.empty()) {
4270 RuleCoverage = CodeGenCoverage();
4271 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
4272 if (!RuleCoverageBufOrErr) {
4273 PrintWarning(SMLoc(), "Missing rule coverage data");
4274 RuleCoverage = None;
4275 } else {
4276 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
4277 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
4278 RuleCoverage = None;
4283 // Track the run-time opcode values
4284 gatherOpcodeValues();
4285 // Track the run-time LLT ID values
4286 gatherTypeIDValues();
4288 // Track the GINodeEquiv definitions.
4289 gatherNodeEquivs();
4291 emitSourceFileHeader(("Global Instruction Selector for the " +
4292 Target.getName() + " target").str(), OS);
4293 std::vector<RuleMatcher> Rules;
4294 // Look through the SelectionDAG patterns we found, possibly emitting some.
4295 for (const PatternToMatch &Pat : CGP.ptms()) {
4296 ++NumPatternTotal;
4298 auto MatcherOrErr = runOnPattern(Pat);
4300 // The pattern analysis can fail, indicating an unsupported pattern.
4301 // Report that if we've been asked to do so.
4302 if (auto Err = MatcherOrErr.takeError()) {
4303 if (WarnOnSkippedPatterns) {
4304 PrintWarning(Pat.getSrcRecord()->getLoc(),
4305 "Skipped pattern: " + toString(std::move(Err)));
4306 } else {
4307 consumeError(std::move(Err));
4309 ++NumPatternImportsSkipped;
4310 continue;
4313 if (RuleCoverage) {
4314 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
4315 ++NumPatternsTested;
4316 else
4317 PrintWarning(Pat.getSrcRecord()->getLoc(),
4318 "Pattern is not covered by a test");
4320 Rules.push_back(std::move(MatcherOrErr.get()));
4323 // Comparison function to order records by name.
4324 auto orderByName = [](const Record *A, const Record *B) {
4325 return A->getName() < B->getName();
4328 std::vector<Record *> ComplexPredicates =
4329 RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
4330 llvm::sort(ComplexPredicates, orderByName);
4332 std::vector<Record *> CustomRendererFns =
4333 RK.getAllDerivedDefinitions("GICustomOperandRenderer");
4334 llvm::sort(CustomRendererFns, orderByName);
4336 unsigned MaxTemporaries = 0;
4337 for (const auto &Rule : Rules)
4338 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
4340 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
4341 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
4342 << ";\n"
4343 << "using PredicateBitset = "
4344 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
4345 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
4347 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
4348 << " mutable MatcherState State;\n"
4349 << " typedef "
4350 "ComplexRendererFns("
4351 << Target.getName()
4352 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
4354 << " typedef void(" << Target.getName()
4355 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
4356 "MachineInstr&) "
4357 "const;\n"
4358 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
4359 "CustomRendererFn> "
4360 "ISelInfo;\n";
4361 OS << " static " << Target.getName()
4362 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
4363 << " static " << Target.getName()
4364 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
4365 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
4366 "override;\n"
4367 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
4368 "const override;\n"
4369 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
4370 "&Imm) const override;\n"
4371 << " const int64_t *getMatchTable() const override;\n"
4372 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
4373 "const override;\n"
4374 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
4376 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
4377 << ", State(" << MaxTemporaries << "),\n"
4378 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
4379 << ", ComplexPredicateFns, CustomRenderers)\n"
4380 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
4382 OS << "#ifdef GET_GLOBALISEL_IMPL\n";
4383 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
4384 OS);
4386 // Separate subtarget features by how often they must be recomputed.
4387 SubtargetFeatureInfoMap ModuleFeatures;
4388 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
4389 std::inserter(ModuleFeatures, ModuleFeatures.end()),
4390 [](const SubtargetFeatureInfoMap::value_type &X) {
4391 return !X.second.mustRecomputePerFunction();
4393 SubtargetFeatureInfoMap FunctionFeatures;
4394 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
4395 std::inserter(FunctionFeatures, FunctionFeatures.end()),
4396 [](const SubtargetFeatureInfoMap::value_type &X) {
4397 return X.second.mustRecomputePerFunction();
4400 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4401 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
4402 ModuleFeatures, OS);
4403 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4404 Target.getName(), "InstructionSelector",
4405 "computeAvailableFunctionFeatures", FunctionFeatures, OS,
4406 "const MachineFunction *MF");
4408 // Emit a table containing the LLT objects needed by the matcher and an enum
4409 // for the matcher to reference them with.
4410 std::vector<LLTCodeGen> TypeObjects;
4411 for (const auto &Ty : KnownTypes)
4412 TypeObjects.push_back(Ty);
4413 llvm::sort(TypeObjects);
4414 OS << "// LLT Objects.\n"
4415 << "enum {\n";
4416 for (const auto &TypeObject : TypeObjects) {
4417 OS << " ";
4418 TypeObject.emitCxxEnumValue(OS);
4419 OS << ",\n";
4421 OS << "};\n";
4422 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
4423 << "const static LLT TypeObjects[] = {\n";
4424 for (const auto &TypeObject : TypeObjects) {
4425 OS << " ";
4426 TypeObject.emitCxxConstructorCall(OS);
4427 OS << ",\n";
4429 OS << "};\n\n";
4431 // Emit a table containing the PredicateBitsets objects needed by the matcher
4432 // and an enum for the matcher to reference them with.
4433 std::vector<std::vector<Record *>> FeatureBitsets;
4434 for (auto &Rule : Rules)
4435 FeatureBitsets.push_back(Rule.getRequiredFeatures());
4436 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
4437 const std::vector<Record *> &B) {
4438 if (A.size() < B.size())
4439 return true;
4440 if (A.size() > B.size())
4441 return false;
4442 for (const auto &Pair : zip(A, B)) {
4443 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
4444 return true;
4445 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
4446 return false;
4448 return false;
4450 FeatureBitsets.erase(
4451 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
4452 FeatureBitsets.end());
4453 OS << "// Feature bitsets.\n"
4454 << "enum {\n"
4455 << " GIFBS_Invalid,\n";
4456 for (const auto &FeatureBitset : FeatureBitsets) {
4457 if (FeatureBitset.empty())
4458 continue;
4459 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
4461 OS << "};\n"
4462 << "const static PredicateBitset FeatureBitsets[] {\n"
4463 << " {}, // GIFBS_Invalid\n";
4464 for (const auto &FeatureBitset : FeatureBitsets) {
4465 if (FeatureBitset.empty())
4466 continue;
4467 OS << " {";
4468 for (const auto &Feature : FeatureBitset) {
4469 const auto &I = SubtargetFeatures.find(Feature);
4470 assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
4471 OS << I->second.getEnumBitName() << ", ";
4473 OS << "},\n";
4475 OS << "};\n\n";
4477 // Emit complex predicate table and an enum to reference them with.
4478 OS << "// ComplexPattern predicates.\n"
4479 << "enum {\n"
4480 << " GICP_Invalid,\n";
4481 for (const auto &Record : ComplexPredicates)
4482 OS << " GICP_" << Record->getName() << ",\n";
4483 OS << "};\n"
4484 << "// See constructor for table contents\n\n";
4486 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
4487 bool Unset;
4488 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
4489 !R->getValueAsBit("IsAPInt");
4491 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
4492 bool Unset;
4493 return R->getValueAsBitOrUnset("IsAPFloat", Unset);
4495 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
4496 return R->getValueAsBit("IsAPInt");
4498 emitMIPredicateFns(OS);
4499 OS << "\n";
4501 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
4502 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
4503 << " nullptr, // GICP_Invalid\n";
4504 for (const auto &Record : ComplexPredicates)
4505 OS << " &" << Target.getName()
4506 << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
4507 << ", // " << Record->getName() << "\n";
4508 OS << "};\n\n";
4510 OS << "// Custom renderers.\n"
4511 << "enum {\n"
4512 << " GICR_Invalid,\n";
4513 for (const auto &Record : CustomRendererFns)
4514 OS << " GICR_" << Record->getValueAsString("RendererFn") << ", \n";
4515 OS << "};\n";
4517 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
4518 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
4519 << " nullptr, // GICP_Invalid\n";
4520 for (const auto &Record : CustomRendererFns)
4521 OS << " &" << Target.getName()
4522 << "InstructionSelector::" << Record->getValueAsString("RendererFn")
4523 << ", // " << Record->getName() << "\n";
4524 OS << "};\n\n";
4526 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
4527 int ScoreA = RuleMatcherScores[A.getRuleID()];
4528 int ScoreB = RuleMatcherScores[B.getRuleID()];
4529 if (ScoreA > ScoreB)
4530 return true;
4531 if (ScoreB > ScoreA)
4532 return false;
4533 if (A.isHigherPriorityThan(B)) {
4534 assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
4535 "and less important at "
4536 "the same time");
4537 return true;
4539 return false;
4542 OS << "bool " << Target.getName()
4543 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
4544 "&CoverageInfo) const {\n"
4545 << " MachineFunction &MF = *I.getParent()->getParent();\n"
4546 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4547 << " // FIXME: This should be computed on a per-function basis rather "
4548 "than per-insn.\n"
4549 << " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
4550 "&MF);\n"
4551 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
4552 << " NewMIVector OutMIs;\n"
4553 << " State.MIs.clear();\n"
4554 << " State.MIs.push_back(&I);\n\n"
4555 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
4556 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
4557 << ", CoverageInfo)) {\n"
4558 << " return true;\n"
4559 << " }\n\n"
4560 << " return false;\n"
4561 << "}\n\n";
4563 const MatchTable Table =
4564 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
4565 OS << "const int64_t *" << Target.getName()
4566 << "InstructionSelector::getMatchTable() const {\n";
4567 Table.emitDeclaration(OS);
4568 OS << " return ";
4569 Table.emitUse(OS);
4570 OS << ";\n}\n";
4571 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
4573 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
4574 << "PredicateBitset AvailableModuleFeatures;\n"
4575 << "mutable PredicateBitset AvailableFunctionFeatures;\n"
4576 << "PredicateBitset getAvailableFeatures() const {\n"
4577 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
4578 << "}\n"
4579 << "PredicateBitset\n"
4580 << "computeAvailableModuleFeatures(const " << Target.getName()
4581 << "Subtarget *Subtarget) const;\n"
4582 << "PredicateBitset\n"
4583 << "computeAvailableFunctionFeatures(const " << Target.getName()
4584 << "Subtarget *Subtarget,\n"
4585 << " const MachineFunction *MF) const;\n"
4586 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
4588 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
4589 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
4590 << "AvailableFunctionFeatures()\n"
4591 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
4594 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
4595 if (SubtargetFeatures.count(Predicate) == 0)
4596 SubtargetFeatures.emplace(
4597 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
4600 void RuleMatcher::optimize() {
4601 for (auto &Item : InsnVariableIDs) {
4602 InstructionMatcher &InsnMatcher = *Item.first;
4603 for (auto &OM : InsnMatcher.operands()) {
4604 // Complex Patterns are usually expensive and they relatively rarely fail
4605 // on their own: more often we end up throwing away all the work done by a
4606 // matching part of a complex pattern because some other part of the
4607 // enclosing pattern didn't match. All of this makes it beneficial to
4608 // delay complex patterns until the very end of the rule matching,
4609 // especially for targets having lots of complex patterns.
4610 for (auto &OP : OM->predicates())
4611 if (isa<ComplexPatternOperandMatcher>(OP))
4612 EpilogueMatchers.emplace_back(std::move(OP));
4613 OM->eraseNullPredicates();
4615 InsnMatcher.optimize();
4617 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
4618 const std::unique_ptr<PredicateMatcher> &R) {
4619 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
4620 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
4624 bool RuleMatcher::hasFirstCondition() const {
4625 if (insnmatchers_empty())
4626 return false;
4627 InstructionMatcher &Matcher = insnmatchers_front();
4628 if (!Matcher.predicates_empty())
4629 return true;
4630 for (auto &OM : Matcher.operands())
4631 for (auto &OP : OM->predicates())
4632 if (!isa<InstructionOperandMatcher>(OP))
4633 return true;
4634 return false;
4637 const PredicateMatcher &RuleMatcher::getFirstCondition() const {
4638 assert(!insnmatchers_empty() &&
4639 "Trying to get a condition from an empty RuleMatcher");
4641 InstructionMatcher &Matcher = insnmatchers_front();
4642 if (!Matcher.predicates_empty())
4643 return **Matcher.predicates_begin();
4644 // If there is no more predicate on the instruction itself, look at its
4645 // operands.
4646 for (auto &OM : Matcher.operands())
4647 for (auto &OP : OM->predicates())
4648 if (!isa<InstructionOperandMatcher>(OP))
4649 return *OP;
4651 llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
4652 "no conditions");
4655 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
4656 assert(!insnmatchers_empty() &&
4657 "Trying to pop a condition from an empty RuleMatcher");
4659 InstructionMatcher &Matcher = insnmatchers_front();
4660 if (!Matcher.predicates_empty())
4661 return Matcher.predicates_pop_front();
4662 // If there is no more predicate on the instruction itself, look at its
4663 // operands.
4664 for (auto &OM : Matcher.operands())
4665 for (auto &OP : OM->predicates())
4666 if (!isa<InstructionOperandMatcher>(OP)) {
4667 std::unique_ptr<PredicateMatcher> Result = std::move(OP);
4668 OM->eraseNullPredicates();
4669 return Result;
4672 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
4673 "no conditions");
4676 bool GroupMatcher::candidateConditionMatches(
4677 const PredicateMatcher &Predicate) const {
4679 if (empty()) {
4680 // Sharing predicates for nested instructions is not supported yet as we
4681 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
4682 // only work on the original root instruction (InsnVarID == 0):
4683 if (Predicate.getInsnVarID() != 0)
4684 return false;
4685 // ... otherwise an empty group can handle any predicate with no specific
4686 // requirements:
4687 return true;
4690 const Matcher &Representative = **Matchers.begin();
4691 const auto &RepresentativeCondition = Representative.getFirstCondition();
4692 // ... if not empty, the group can only accomodate matchers with the exact
4693 // same first condition:
4694 return Predicate.isIdentical(RepresentativeCondition);
4697 bool GroupMatcher::addMatcher(Matcher &Candidate) {
4698 if (!Candidate.hasFirstCondition())
4699 return false;
4701 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
4702 if (!candidateConditionMatches(Predicate))
4703 return false;
4705 Matchers.push_back(&Candidate);
4706 return true;
4709 void GroupMatcher::finalize() {
4710 assert(Conditions.empty() && "Already finalized?");
4711 if (empty())
4712 return;
4714 Matcher &FirstRule = **Matchers.begin();
4715 for (;;) {
4716 // All the checks are expected to succeed during the first iteration:
4717 for (const auto &Rule : Matchers)
4718 if (!Rule->hasFirstCondition())
4719 return;
4720 const auto &FirstCondition = FirstRule.getFirstCondition();
4721 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
4722 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
4723 return;
4725 Conditions.push_back(FirstRule.popFirstCondition());
4726 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
4727 Matchers[I]->popFirstCondition();
4731 void GroupMatcher::emit(MatchTable &Table) {
4732 unsigned LabelID = ~0U;
4733 if (!Conditions.empty()) {
4734 LabelID = Table.allocateLabelID();
4735 Table << MatchTable::Opcode("GIM_Try", +1)
4736 << MatchTable::Comment("On fail goto")
4737 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
4739 for (auto &Condition : Conditions)
4740 Condition->emitPredicateOpcodes(
4741 Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
4743 for (const auto &M : Matchers)
4744 M->emit(Table);
4746 // Exit the group
4747 if (!Conditions.empty())
4748 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
4749 << MatchTable::Label(LabelID);
4752 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
4753 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
4756 bool SwitchMatcher::candidateConditionMatches(
4757 const PredicateMatcher &Predicate) const {
4759 if (empty()) {
4760 // Sharing predicates for nested instructions is not supported yet as we
4761 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
4762 // only work on the original root instruction (InsnVarID == 0):
4763 if (Predicate.getInsnVarID() != 0)
4764 return false;
4765 // ... while an attempt to add even a root matcher to an empty SwitchMatcher
4766 // could fail as not all the types of conditions are supported:
4767 if (!isSupportedPredicateType(Predicate))
4768 return false;
4769 // ... or the condition might not have a proper implementation of
4770 // getValue() / isIdenticalDownToValue() yet:
4771 if (!Predicate.hasValue())
4772 return false;
4773 // ... otherwise an empty Switch can accomodate the condition with no
4774 // further requirements:
4775 return true;
4778 const Matcher &CaseRepresentative = **Matchers.begin();
4779 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
4780 // Switch-cases must share the same kind of condition and path to the value it
4781 // checks:
4782 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
4783 return false;
4785 const auto Value = Predicate.getValue();
4786 // ... but be unique with respect to the actual value they check:
4787 return Values.count(Value) == 0;
4790 bool SwitchMatcher::addMatcher(Matcher &Candidate) {
4791 if (!Candidate.hasFirstCondition())
4792 return false;
4794 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
4795 if (!candidateConditionMatches(Predicate))
4796 return false;
4797 const auto Value = Predicate.getValue();
4798 Values.insert(Value);
4800 Matchers.push_back(&Candidate);
4801 return true;
4804 void SwitchMatcher::finalize() {
4805 assert(Condition == nullptr && "Already finalized");
4806 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
4807 if (empty())
4808 return;
4810 std::stable_sort(Matchers.begin(), Matchers.end(),
4811 [](const Matcher *L, const Matcher *R) {
4812 return L->getFirstCondition().getValue() <
4813 R->getFirstCondition().getValue();
4815 Condition = Matchers[0]->popFirstCondition();
4816 for (unsigned I = 1, E = Values.size(); I < E; ++I)
4817 Matchers[I]->popFirstCondition();
4820 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
4821 MatchTable &Table) {
4822 assert(isSupportedPredicateType(P) && "Predicate type is not supported");
4824 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
4825 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
4826 << MatchTable::IntValue(Condition->getInsnVarID());
4827 return;
4829 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
4830 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
4831 << MatchTable::IntValue(Condition->getInsnVarID())
4832 << MatchTable::Comment("Op")
4833 << MatchTable::IntValue(Condition->getOpIdx());
4834 return;
4837 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
4838 "predicate type that is claimed to be supported");
4841 void SwitchMatcher::emit(MatchTable &Table) {
4842 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
4843 if (empty())
4844 return;
4845 assert(Condition != nullptr &&
4846 "Broken SwitchMatcher, hasn't been finalized?");
4848 std::vector<unsigned> LabelIDs(Values.size());
4849 std::generate(LabelIDs.begin(), LabelIDs.end(),
4850 [&Table]() { return Table.allocateLabelID(); });
4851 const unsigned Default = Table.allocateLabelID();
4853 const int64_t LowerBound = Values.begin()->getRawValue();
4854 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
4856 emitPredicateSpecificOpcodes(*Condition, Table);
4858 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
4859 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
4860 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
4862 int64_t J = LowerBound;
4863 auto VI = Values.begin();
4864 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
4865 auto V = *VI++;
4866 while (J++ < V.getRawValue())
4867 Table << MatchTable::IntValue(0);
4868 V.turnIntoComment();
4869 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
4871 Table << MatchTable::LineBreak;
4873 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
4874 Table << MatchTable::Label(LabelIDs[I]);
4875 Matchers[I]->emit(Table);
4876 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
4878 Table << MatchTable::Label(Default);
4881 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
4883 } // end anonymous namespace
4885 //===----------------------------------------------------------------------===//
4887 namespace llvm {
4888 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
4889 GlobalISelEmitter(RK).run(OS);
4891 } // End llvm namespace