1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This tablegen backend emits code for use by the GlobalISel instruction
11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
14 /// backend, filters out the ones that are unsupported, maps
15 /// SelectionDAG-specific constructs to their GlobalISel counterpart
16 /// (when applicable: MVT to LLT; SDNode to generic Instruction).
18 /// Not all patterns are supported: pass the tablegen invocation
19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
22 /// The generated file defines a single method:
23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
24 /// intended to be used in InstructionSelector::select as the first-step
25 /// selector for the patterns that don't require complex C++.
27 /// FIXME: We'll probably want to eventually define a base
28 /// "TargetGenInstructionSelector" class.
30 //===----------------------------------------------------------------------===//
32 #include "CodeGenDAGPatterns.h"
33 #include "SubtargetFeatureInfo.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Support/CodeGenCoverage.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/LowLevelTypeImpl.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include "llvm/Support/ScopedPrinter.h"
43 #include "llvm/TableGen/Error.h"
44 #include "llvm/TableGen/Record.h"
45 #include "llvm/TableGen/TableGenBackend.h"
50 #define DEBUG_TYPE "gisel-emitter"
52 STATISTIC(NumPatternTotal
, "Total number of patterns");
53 STATISTIC(NumPatternImported
, "Number of patterns imported from SelectionDAG");
54 STATISTIC(NumPatternImportsSkipped
, "Number of SelectionDAG imports skipped");
55 STATISTIC(NumPatternsTested
, "Number of patterns executed according to coverage information");
56 STATISTIC(NumPatternEmitted
, "Number of patterns emitted");
58 cl::OptionCategory
GlobalISelEmitterCat("Options for -gen-global-isel");
60 static cl::opt
<bool> WarnOnSkippedPatterns(
61 "warn-on-skipped-patterns",
62 cl::desc("Explain why a pattern was skipped for inclusion "
63 "in the GlobalISel selector"),
64 cl::init(false), cl::cat(GlobalISelEmitterCat
));
66 static cl::opt
<bool> GenerateCoverage(
67 "instrument-gisel-coverage",
68 cl::desc("Generate coverage instrumentation for GlobalISel"),
69 cl::init(false), cl::cat(GlobalISelEmitterCat
));
71 static cl::opt
<std::string
> UseCoverageFile(
72 "gisel-coverage-file", cl::init(""),
73 cl::desc("Specify file to retrieve coverage information from"),
74 cl::cat(GlobalISelEmitterCat
));
76 static cl::opt
<bool> OptimizeMatchTable(
77 "optimize-match-table",
78 cl::desc("Generate an optimized version of the match table"),
79 cl::init(true), cl::cat(GlobalISelEmitterCat
));
82 //===- Helper functions ---------------------------------------------------===//
84 /// Get the name of the enum value used to number the predicate function.
85 std::string
getEnumNameForPredicate(const TreePredicateFn
&Predicate
) {
86 if (Predicate
.hasGISelPredicateCode())
87 return "GIPFP_MI_" + Predicate
.getFnName();
88 return "GIPFP_" + Predicate
.getImmTypeIdentifier().str() + "_" +
89 Predicate
.getFnName();
92 /// Get the opcode used to check this predicate.
93 std::string
getMatchOpcodeForPredicate(const TreePredicateFn
&Predicate
) {
94 return "GIM_Check" + Predicate
.getImmTypeIdentifier().str() + "ImmPredicate";
97 /// This class stands in for LLT wherever we want to tablegen-erate an
98 /// equivalent at compiler run-time.
104 LLTCodeGen() = default;
105 LLTCodeGen(const LLT
&Ty
) : Ty(Ty
) {}
107 std::string
getCxxEnumValue() const {
109 raw_string_ostream
OS(Str
);
111 emitCxxEnumValue(OS
);
115 void emitCxxEnumValue(raw_ostream
&OS
) const {
117 OS
<< "GILLT_s" << Ty
.getSizeInBits();
121 OS
<< "GILLT_v" << Ty
.getNumElements() << "s" << Ty
.getScalarSizeInBits();
124 if (Ty
.isPointer()) {
125 OS
<< "GILLT_p" << Ty
.getAddressSpace();
126 if (Ty
.getSizeInBits() > 0)
127 OS
<< "s" << Ty
.getSizeInBits();
130 llvm_unreachable("Unhandled LLT");
133 void emitCxxConstructorCall(raw_ostream
&OS
) const {
135 OS
<< "LLT::scalar(" << Ty
.getSizeInBits() << ")";
139 OS
<< "LLT::vector(" << Ty
.getNumElements() << ", "
140 << Ty
.getScalarSizeInBits() << ")";
143 if (Ty
.isPointer() && Ty
.getSizeInBits() > 0) {
144 OS
<< "LLT::pointer(" << Ty
.getAddressSpace() << ", "
145 << Ty
.getSizeInBits() << ")";
148 llvm_unreachable("Unhandled LLT");
151 const LLT
&get() const { return Ty
; }
153 /// This ordering is used for std::unique() and llvm::sort(). There's no
154 /// particular logic behind the order but either A < B or B < A must be
156 bool operator<(const LLTCodeGen
&Other
) const {
157 if (Ty
.isValid() != Other
.Ty
.isValid())
158 return Ty
.isValid() < Other
.Ty
.isValid();
162 if (Ty
.isVector() != Other
.Ty
.isVector())
163 return Ty
.isVector() < Other
.Ty
.isVector();
164 if (Ty
.isScalar() != Other
.Ty
.isScalar())
165 return Ty
.isScalar() < Other
.Ty
.isScalar();
166 if (Ty
.isPointer() != Other
.Ty
.isPointer())
167 return Ty
.isPointer() < Other
.Ty
.isPointer();
169 if (Ty
.isPointer() && Ty
.getAddressSpace() != Other
.Ty
.getAddressSpace())
170 return Ty
.getAddressSpace() < Other
.Ty
.getAddressSpace();
172 if (Ty
.isVector() && Ty
.getNumElements() != Other
.Ty
.getNumElements())
173 return Ty
.getNumElements() < Other
.Ty
.getNumElements();
175 return Ty
.getSizeInBits() < Other
.Ty
.getSizeInBits();
178 bool operator==(const LLTCodeGen
&B
) const { return Ty
== B
.Ty
; }
181 // Track all types that are used so we can emit the corresponding enum.
182 std::set
<LLTCodeGen
> KnownTypes
;
184 class InstructionMatcher
;
185 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
186 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
187 static Optional
<LLTCodeGen
> MVTToLLT(MVT::SimpleValueType SVT
) {
190 if (VT
.isVector() && VT
.getVectorNumElements() != 1)
192 LLT::vector(VT
.getVectorNumElements(), VT
.getScalarSizeInBits()));
194 if (VT
.isInteger() || VT
.isFloatingPoint())
195 return LLTCodeGen(LLT::scalar(VT
.getSizeInBits()));
199 static std::string
explainPredicates(const TreePatternNode
*N
) {
200 std::string Explanation
= "";
201 StringRef Separator
= "";
202 for (const TreePredicateCall
&Call
: N
->getPredicateCalls()) {
203 const TreePredicateFn
&P
= Call
.Fn
;
205 (Separator
+ P
.getOrigPatFragRecord()->getRecord()->getName()).str();
208 if (P
.isAlwaysTrue())
209 Explanation
+= " always-true";
210 if (P
.isImmediatePattern())
211 Explanation
+= " immediate";
214 Explanation
+= " unindexed";
216 if (P
.isNonExtLoad())
217 Explanation
+= " non-extload";
218 if (P
.isAnyExtLoad())
219 Explanation
+= " extload";
220 if (P
.isSignExtLoad())
221 Explanation
+= " sextload";
222 if (P
.isZeroExtLoad())
223 Explanation
+= " zextload";
225 if (P
.isNonTruncStore())
226 Explanation
+= " non-truncstore";
227 if (P
.isTruncStore())
228 Explanation
+= " truncstore";
230 if (Record
*VT
= P
.getMemoryVT())
231 Explanation
+= (" MemVT=" + VT
->getName()).str();
232 if (Record
*VT
= P
.getScalarMemoryVT())
233 Explanation
+= (" ScalarVT(MemVT)=" + VT
->getName()).str();
235 if (P
.isAtomicOrderingMonotonic())
236 Explanation
+= " monotonic";
237 if (P
.isAtomicOrderingAcquire())
238 Explanation
+= " acquire";
239 if (P
.isAtomicOrderingRelease())
240 Explanation
+= " release";
241 if (P
.isAtomicOrderingAcquireRelease())
242 Explanation
+= " acq_rel";
243 if (P
.isAtomicOrderingSequentiallyConsistent())
244 Explanation
+= " seq_cst";
245 if (P
.isAtomicOrderingAcquireOrStronger())
246 Explanation
+= " >=acquire";
247 if (P
.isAtomicOrderingWeakerThanAcquire())
248 Explanation
+= " <acquire";
249 if (P
.isAtomicOrderingReleaseOrStronger())
250 Explanation
+= " >=release";
251 if (P
.isAtomicOrderingWeakerThanRelease())
252 Explanation
+= " <release";
257 std::string
explainOperator(Record
*Operator
) {
258 if (Operator
->isSubClassOf("SDNode"))
259 return (" (" + Operator
->getValueAsString("Opcode") + ")").str();
261 if (Operator
->isSubClassOf("Intrinsic"))
262 return (" (Operator is an Intrinsic, " + Operator
->getName() + ")").str();
264 if (Operator
->isSubClassOf("ComplexPattern"))
265 return (" (Operator is an unmapped ComplexPattern, " + Operator
->getName() +
269 if (Operator
->isSubClassOf("SDNodeXForm"))
270 return (" (Operator is an unmapped SDNodeXForm, " + Operator
->getName() +
274 return (" (Operator " + Operator
->getName() + " not understood)").str();
277 /// Helper function to let the emitter report skip reason error messages.
278 static Error
failedImport(const Twine
&Reason
) {
279 return make_error
<StringError
>(Reason
, inconvertibleErrorCode());
282 static Error
isTrivialOperatorNode(const TreePatternNode
*N
) {
283 std::string Explanation
= "";
284 std::string Separator
= "";
286 bool HasUnsupportedPredicate
= false;
287 for (const TreePredicateCall
&Call
: N
->getPredicateCalls()) {
288 const TreePredicateFn
&Predicate
= Call
.Fn
;
290 if (Predicate
.isAlwaysTrue())
293 if (Predicate
.isImmediatePattern())
296 if (Predicate
.isNonExtLoad() || Predicate
.isAnyExtLoad() ||
297 Predicate
.isSignExtLoad() || Predicate
.isZeroExtLoad())
300 if (Predicate
.isNonTruncStore())
303 if (Predicate
.isLoad() && Predicate
.getMemoryVT())
306 if (Predicate
.isLoad() || Predicate
.isStore()) {
307 if (Predicate
.isUnindexed())
311 if (Predicate
.isAtomic() && Predicate
.getMemoryVT())
314 if (Predicate
.isAtomic() &&
315 (Predicate
.isAtomicOrderingMonotonic() ||
316 Predicate
.isAtomicOrderingAcquire() ||
317 Predicate
.isAtomicOrderingRelease() ||
318 Predicate
.isAtomicOrderingAcquireRelease() ||
319 Predicate
.isAtomicOrderingSequentiallyConsistent() ||
320 Predicate
.isAtomicOrderingAcquireOrStronger() ||
321 Predicate
.isAtomicOrderingWeakerThanAcquire() ||
322 Predicate
.isAtomicOrderingReleaseOrStronger() ||
323 Predicate
.isAtomicOrderingWeakerThanRelease()))
326 if (Predicate
.hasGISelPredicateCode())
329 HasUnsupportedPredicate
= true;
330 Explanation
= Separator
+ "Has a predicate (" + explainPredicates(N
) + ")";
332 Explanation
+= (Separator
+ "first-failing:" +
333 Predicate
.getOrigPatFragRecord()->getRecord()->getName())
338 if (!HasUnsupportedPredicate
)
339 return Error::success();
341 return failedImport(Explanation
);
344 static Record
*getInitValueAsRegClass(Init
*V
) {
345 if (DefInit
*VDefInit
= dyn_cast
<DefInit
>(V
)) {
346 if (VDefInit
->getDef()->isSubClassOf("RegisterOperand"))
347 return VDefInit
->getDef()->getValueAsDef("RegClass");
348 if (VDefInit
->getDef()->isSubClassOf("RegisterClass"))
349 return VDefInit
->getDef();
355 getNameForFeatureBitset(const std::vector
<Record
*> &FeatureBitset
) {
356 std::string Name
= "GIFBS";
357 for (const auto &Feature
: FeatureBitset
)
358 Name
+= ("_" + Feature
->getName()).str();
362 //===- MatchTable Helpers -------------------------------------------------===//
366 /// A record to be stored in a MatchTable.
368 /// This class represents any and all output that may be required to emit the
369 /// MatchTable. Instances are most often configured to represent an opcode or
370 /// value that will be emitted to the table with some formatting but it can also
371 /// represent commas, comments, and other formatting instructions.
372 struct MatchTableRecord
{
373 enum RecordFlagsBits
{
375 /// Causes EmitStr to be formatted as comment when emitted.
377 /// Causes the record value to be followed by a comma when emitted.
378 MTRF_CommaFollows
= 0x2,
379 /// Causes the record value to be followed by a line break when emitted.
380 MTRF_LineBreakFollows
= 0x4,
381 /// Indicates that the record defines a label and causes an additional
382 /// comment to be emitted containing the index of the label.
384 /// Causes the record to be emitted as the index of the label specified by
385 /// LabelID along with a comment indicating where that label is.
386 MTRF_JumpTarget
= 0x10,
387 /// Causes the formatter to add a level of indentation before emitting the
390 /// Causes the formatter to remove a level of indentation after emitting the
395 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
396 /// reference or define.
398 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
399 /// value, a label name.
403 /// The number of MatchTable elements described by this record. Comments are 0
404 /// while values are typically 1. Values >1 may occur when we need to emit
405 /// values that exceed the size of a MatchTable element.
406 unsigned NumElements
;
409 /// A bitfield of RecordFlagsBits flags.
412 /// The actual run-time value, if known
415 MatchTableRecord(Optional
<unsigned> LabelID_
, StringRef EmitStr
,
416 unsigned NumElements
, unsigned Flags
,
417 int64_t RawValue
= std::numeric_limits
<int64_t>::min())
418 : LabelID(LabelID_
.hasValue() ? LabelID_
.getValue() : ~0u),
419 EmitStr(EmitStr
), NumElements(NumElements
), Flags(Flags
),
422 assert((!LabelID_
.hasValue() || LabelID
!= ~0u) &&
423 "This value is reserved for non-labels");
425 MatchTableRecord(const MatchTableRecord
&Other
) = default;
426 MatchTableRecord(MatchTableRecord
&&Other
) = default;
428 /// Useful if a Match Table Record gets optimized out
429 void turnIntoComment() {
430 Flags
|= MTRF_Comment
;
431 Flags
&= ~MTRF_CommaFollows
;
435 /// For Jump Table generation purposes
436 bool operator<(const MatchTableRecord
&Other
) const {
437 return RawValue
< Other
.RawValue
;
439 int64_t getRawValue() const { return RawValue
; }
441 void emit(raw_ostream
&OS
, bool LineBreakNextAfterThis
,
442 const MatchTable
&Table
) const;
443 unsigned size() const { return NumElements
; }
448 /// Holds the contents of a generated MatchTable to enable formatting and the
449 /// necessary index tracking needed to support GIM_Try.
451 /// An unique identifier for the table. The generated table will be named
454 /// The records that make up the table. Also includes comments describing the
455 /// values being emitted and line breaks to format it.
456 std::vector
<MatchTableRecord
> Contents
;
457 /// The currently defined labels.
458 DenseMap
<unsigned, unsigned> LabelMap
;
459 /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
460 unsigned CurrentSize
= 0;
461 /// A unique identifier for a MatchTable label.
462 unsigned CurrentLabelID
= 0;
463 /// Determines if the table should be instrumented for rule coverage tracking.
467 static MatchTableRecord LineBreak
;
468 static MatchTableRecord
Comment(StringRef Comment
) {
469 return MatchTableRecord(None
, Comment
, 0, MatchTableRecord::MTRF_Comment
);
471 static MatchTableRecord
Opcode(StringRef Opcode
, int IndentAdjust
= 0) {
472 unsigned ExtraFlags
= 0;
473 if (IndentAdjust
> 0)
474 ExtraFlags
|= MatchTableRecord::MTRF_Indent
;
475 if (IndentAdjust
< 0)
476 ExtraFlags
|= MatchTableRecord::MTRF_Outdent
;
478 return MatchTableRecord(None
, Opcode
, 1,
479 MatchTableRecord::MTRF_CommaFollows
| ExtraFlags
);
481 static MatchTableRecord
NamedValue(StringRef NamedValue
) {
482 return MatchTableRecord(None
, NamedValue
, 1,
483 MatchTableRecord::MTRF_CommaFollows
);
485 static MatchTableRecord
NamedValue(StringRef NamedValue
, int64_t RawValue
) {
486 return MatchTableRecord(None
, NamedValue
, 1,
487 MatchTableRecord::MTRF_CommaFollows
, RawValue
);
489 static MatchTableRecord
NamedValue(StringRef Namespace
,
490 StringRef NamedValue
) {
491 return MatchTableRecord(None
, (Namespace
+ "::" + NamedValue
).str(), 1,
492 MatchTableRecord::MTRF_CommaFollows
);
494 static MatchTableRecord
NamedValue(StringRef Namespace
, StringRef NamedValue
,
496 return MatchTableRecord(None
, (Namespace
+ "::" + NamedValue
).str(), 1,
497 MatchTableRecord::MTRF_CommaFollows
, RawValue
);
499 static MatchTableRecord
IntValue(int64_t IntValue
) {
500 return MatchTableRecord(None
, llvm::to_string(IntValue
), 1,
501 MatchTableRecord::MTRF_CommaFollows
);
503 static MatchTableRecord
Label(unsigned LabelID
) {
504 return MatchTableRecord(LabelID
, "Label " + llvm::to_string(LabelID
), 0,
505 MatchTableRecord::MTRF_Label
|
506 MatchTableRecord::MTRF_Comment
|
507 MatchTableRecord::MTRF_LineBreakFollows
);
509 static MatchTableRecord
JumpTarget(unsigned LabelID
) {
510 return MatchTableRecord(LabelID
, "Label " + llvm::to_string(LabelID
), 1,
511 MatchTableRecord::MTRF_JumpTarget
|
512 MatchTableRecord::MTRF_Comment
|
513 MatchTableRecord::MTRF_CommaFollows
);
516 static MatchTable
buildTable(ArrayRef
<Matcher
*> Rules
, bool WithCoverage
);
518 MatchTable(bool WithCoverage
, unsigned ID
= 0)
519 : ID(ID
), IsWithCoverage(WithCoverage
) {}
521 bool isWithCoverage() const { return IsWithCoverage
; }
523 void push_back(const MatchTableRecord
&Value
) {
524 if (Value
.Flags
& MatchTableRecord::MTRF_Label
)
525 defineLabel(Value
.LabelID
);
526 Contents
.push_back(Value
);
527 CurrentSize
+= Value
.size();
530 unsigned allocateLabelID() { return CurrentLabelID
++; }
532 void defineLabel(unsigned LabelID
) {
533 LabelMap
.insert(std::make_pair(LabelID
, CurrentSize
));
536 unsigned getLabelIndex(unsigned LabelID
) const {
537 const auto I
= LabelMap
.find(LabelID
);
538 assert(I
!= LabelMap
.end() && "Use of undeclared label");
542 void emitUse(raw_ostream
&OS
) const { OS
<< "MatchTable" << ID
; }
544 void emitDeclaration(raw_ostream
&OS
) const {
545 unsigned Indentation
= 4;
546 OS
<< " constexpr static int64_t MatchTable" << ID
<< "[] = {";
547 LineBreak
.emit(OS
, true, *this);
548 OS
<< std::string(Indentation
, ' ');
550 for (auto I
= Contents
.begin(), E
= Contents
.end(); I
!= E
;
552 bool LineBreakIsNext
= false;
553 const auto &NextI
= std::next(I
);
556 if (NextI
->EmitStr
== "" &&
557 NextI
->Flags
== MatchTableRecord::MTRF_LineBreakFollows
)
558 LineBreakIsNext
= true;
561 if (I
->Flags
& MatchTableRecord::MTRF_Indent
)
564 I
->emit(OS
, LineBreakIsNext
, *this);
565 if (I
->Flags
& MatchTableRecord::MTRF_LineBreakFollows
)
566 OS
<< std::string(Indentation
, ' ');
568 if (I
->Flags
& MatchTableRecord::MTRF_Outdent
)
575 MatchTableRecord
MatchTable::LineBreak
= {
576 None
, "" /* Emit String */, 0 /* Elements */,
577 MatchTableRecord::MTRF_LineBreakFollows
};
579 void MatchTableRecord::emit(raw_ostream
&OS
, bool LineBreakIsNextAfterThis
,
580 const MatchTable
&Table
) const {
581 bool UseLineComment
=
582 LineBreakIsNextAfterThis
| (Flags
& MTRF_LineBreakFollows
);
583 if (Flags
& (MTRF_JumpTarget
| MTRF_CommaFollows
))
584 UseLineComment
= false;
586 if (Flags
& MTRF_Comment
)
587 OS
<< (UseLineComment
? "// " : "/*");
590 if (Flags
& MTRF_Label
)
591 OS
<< ": @" << Table
.getLabelIndex(LabelID
);
593 if (Flags
& MTRF_Comment
&& !UseLineComment
)
596 if (Flags
& MTRF_JumpTarget
) {
597 if (Flags
& MTRF_Comment
)
599 OS
<< Table
.getLabelIndex(LabelID
);
602 if (Flags
& MTRF_CommaFollows
) {
604 if (!LineBreakIsNextAfterThis
&& !(Flags
& MTRF_LineBreakFollows
))
608 if (Flags
& MTRF_LineBreakFollows
)
612 MatchTable
&operator<<(MatchTable
&Table
, const MatchTableRecord
&Value
) {
613 Table
.push_back(Value
);
617 //===- Matchers -----------------------------------------------------------===//
619 class OperandMatcher
;
621 class PredicateMatcher
;
626 virtual ~Matcher() = default;
627 virtual void optimize() {}
628 virtual void emit(MatchTable
&Table
) = 0;
630 virtual bool hasFirstCondition() const = 0;
631 virtual const PredicateMatcher
&getFirstCondition() const = 0;
632 virtual std::unique_ptr
<PredicateMatcher
> popFirstCondition() = 0;
635 MatchTable
MatchTable::buildTable(ArrayRef
<Matcher
*> Rules
,
637 MatchTable
Table(WithCoverage
);
638 for (Matcher
*Rule
: Rules
)
641 return Table
<< MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak
;
644 class GroupMatcher final
: public Matcher
{
645 /// Conditions that form a common prefix of all the matchers contained.
646 SmallVector
<std::unique_ptr
<PredicateMatcher
>, 1> Conditions
;
648 /// All the nested matchers, sharing a common prefix.
649 std::vector
<Matcher
*> Matchers
;
651 /// An owning collection for any auxiliary matchers created while optimizing
652 /// nested matchers contained.
653 std::vector
<std::unique_ptr
<Matcher
>> MatcherStorage
;
656 /// Add a matcher to the collection of nested matchers if it meets the
657 /// requirements, and return true. If it doesn't, do nothing and return false.
659 /// Expected to preserve its argument, so it could be moved out later on.
660 bool addMatcher(Matcher
&Candidate
);
662 /// Mark the matcher as fully-built and ensure any invariants expected by both
663 /// optimize() and emit(...) methods. Generally, both sequences of calls
664 /// are expected to lead to a sensible result:
666 /// addMatcher(...)*; finalize(); optimize(); emit(...); and
667 /// addMatcher(...)*; finalize(); emit(...);
671 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
673 /// Multiple calls to optimize() are expected to be handled gracefully, though
674 /// optimize() is not expected to be idempotent. Multiple calls to finalize()
675 /// aren't generally supported. emit(...) is expected to be non-mutating and
676 /// producing the exact same results upon repeated calls.
678 /// addMatcher() calls after the finalize() call are not supported.
680 /// finalize() and optimize() are both allowed to mutate the contained
681 /// matchers, so moving them out after finalize() is not supported.
683 void optimize() override
;
684 void emit(MatchTable
&Table
) override
;
686 /// Could be used to move out the matchers added previously, unless finalize()
687 /// has been already called. If any of the matchers are moved out, the group
688 /// becomes safe to destroy, but not safe to re-use for anything else.
689 iterator_range
<std::vector
<Matcher
*>::iterator
> matchers() {
690 return make_range(Matchers
.begin(), Matchers
.end());
692 size_t size() const { return Matchers
.size(); }
693 bool empty() const { return Matchers
.empty(); }
695 std::unique_ptr
<PredicateMatcher
> popFirstCondition() override
{
696 assert(!Conditions
.empty() &&
697 "Trying to pop a condition from a condition-less group");
698 std::unique_ptr
<PredicateMatcher
> P
= std::move(Conditions
.front());
699 Conditions
.erase(Conditions
.begin());
702 const PredicateMatcher
&getFirstCondition() const override
{
703 assert(!Conditions
.empty() &&
704 "Trying to get a condition from a condition-less group");
705 return *Conditions
.front();
707 bool hasFirstCondition() const override
{ return !Conditions
.empty(); }
710 /// See if a candidate matcher could be added to this group solely by
711 /// analyzing its first condition.
712 bool candidateConditionMatches(const PredicateMatcher
&Predicate
) const;
715 class SwitchMatcher
: public Matcher
{
716 /// All the nested matchers, representing distinct switch-cases. The first
717 /// conditions (as Matcher::getFirstCondition() reports) of all the nested
718 /// matchers must share the same type and path to a value they check, in other
719 /// words, be isIdenticalDownToValue, but have different values they check
721 std::vector
<Matcher
*> Matchers
;
723 /// The representative condition, with a type and a path (InsnVarID and OpIdx
724 /// in most cases) shared by all the matchers contained.
725 std::unique_ptr
<PredicateMatcher
> Condition
= nullptr;
727 /// Temporary set used to check that the case values don't repeat within the
729 std::set
<MatchTableRecord
> Values
;
731 /// An owning collection for any auxiliary matchers created while optimizing
732 /// nested matchers contained.
733 std::vector
<std::unique_ptr
<Matcher
>> MatcherStorage
;
736 bool addMatcher(Matcher
&Candidate
);
739 void emit(MatchTable
&Table
) override
;
741 iterator_range
<std::vector
<Matcher
*>::iterator
> matchers() {
742 return make_range(Matchers
.begin(), Matchers
.end());
744 size_t size() const { return Matchers
.size(); }
745 bool empty() const { return Matchers
.empty(); }
747 std::unique_ptr
<PredicateMatcher
> popFirstCondition() override
{
748 // SwitchMatcher doesn't have a common first condition for its cases, as all
749 // the cases only share a kind of a value (a type and a path to it) they
750 // match, but deliberately differ in the actual value they match.
751 llvm_unreachable("Trying to pop a condition from a condition-less group");
753 const PredicateMatcher
&getFirstCondition() const override
{
754 llvm_unreachable("Trying to pop a condition from a condition-less group");
756 bool hasFirstCondition() const override
{ return false; }
759 /// See if the predicate type has a Switch-implementation for it.
760 static bool isSupportedPredicateType(const PredicateMatcher
&Predicate
);
762 bool candidateConditionMatches(const PredicateMatcher
&Predicate
) const;
765 static void emitPredicateSpecificOpcodes(const PredicateMatcher
&P
,
769 /// Generates code to check that a match rule matches.
770 class RuleMatcher
: public Matcher
{
772 using ActionList
= std::list
<std::unique_ptr
<MatchAction
>>;
773 using action_iterator
= ActionList::iterator
;
776 /// A list of matchers that all need to succeed for the current rule to match.
777 /// FIXME: This currently supports a single match position but could be
778 /// extended to support multiple positions to support div/rem fusion or
779 /// load-multiple instructions.
780 using MatchersTy
= std::vector
<std::unique_ptr
<InstructionMatcher
>> ;
783 /// A list of actions that need to be taken when all predicates in this rule
787 using DefinedInsnVariablesMap
= std::map
<InstructionMatcher
*, unsigned>;
789 /// A map of instruction matchers to the local variables
790 DefinedInsnVariablesMap InsnVariableIDs
;
792 using MutatableInsnSet
= SmallPtrSet
<InstructionMatcher
*, 4>;
794 // The set of instruction matchers that have not yet been claimed for mutation
796 MutatableInsnSet MutatableInsns
;
798 /// A map of named operands defined by the matchers that may be referenced by
800 StringMap
<OperandMatcher
*> DefinedOperands
;
802 /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
803 unsigned NextInsnVarID
;
805 /// ID for the next output instruction allocated with allocateOutputInsnID()
806 unsigned NextOutputInsnID
;
808 /// ID for the next temporary register ID allocated with allocateTempRegID()
809 unsigned NextTempRegID
;
811 std::vector
<Record
*> RequiredFeatures
;
812 std::vector
<std::unique_ptr
<PredicateMatcher
>> EpilogueMatchers
;
814 ArrayRef
<SMLoc
> SrcLoc
;
816 typedef std::tuple
<Record
*, unsigned, unsigned>
817 DefinedComplexPatternSubOperand
;
818 typedef StringMap
<DefinedComplexPatternSubOperand
>
819 DefinedComplexPatternSubOperandMap
;
820 /// A map of Symbolic Names to ComplexPattern sub-operands.
821 DefinedComplexPatternSubOperandMap ComplexSubOperands
;
824 static uint64_t NextRuleID
;
827 RuleMatcher(ArrayRef
<SMLoc
> SrcLoc
)
828 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
829 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
830 NextTempRegID(0), SrcLoc(SrcLoc
), ComplexSubOperands(),
831 RuleID(NextRuleID
++) {}
832 RuleMatcher(RuleMatcher
&&Other
) = default;
833 RuleMatcher
&operator=(RuleMatcher
&&Other
) = default;
835 uint64_t getRuleID() const { return RuleID
; }
837 InstructionMatcher
&addInstructionMatcher(StringRef SymbolicName
);
838 void addRequiredFeature(Record
*Feature
);
839 const std::vector
<Record
*> &getRequiredFeatures() const;
841 template <class Kind
, class... Args
> Kind
&addAction(Args
&&... args
);
842 template <class Kind
, class... Args
>
843 action_iterator
insertAction(action_iterator InsertPt
, Args
&&... args
);
845 /// Define an instruction without emitting any code to do so.
846 unsigned implicitlyDefineInsnVar(InstructionMatcher
&Matcher
);
848 unsigned getInsnVarID(InstructionMatcher
&InsnMatcher
) const;
849 DefinedInsnVariablesMap::const_iterator
defined_insn_vars_begin() const {
850 return InsnVariableIDs
.begin();
852 DefinedInsnVariablesMap::const_iterator
defined_insn_vars_end() const {
853 return InsnVariableIDs
.end();
855 iterator_range
<typename
DefinedInsnVariablesMap::const_iterator
>
856 defined_insn_vars() const {
857 return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
860 MutatableInsnSet::const_iterator
mutatable_insns_begin() const {
861 return MutatableInsns
.begin();
863 MutatableInsnSet::const_iterator
mutatable_insns_end() const {
864 return MutatableInsns
.end();
866 iterator_range
<typename
MutatableInsnSet::const_iterator
>
867 mutatable_insns() const {
868 return make_range(mutatable_insns_begin(), mutatable_insns_end());
870 void reserveInsnMatcherForMutation(InstructionMatcher
*InsnMatcher
) {
871 bool R
= MutatableInsns
.erase(InsnMatcher
);
872 assert(R
&& "Reserving a mutatable insn that isn't available");
876 action_iterator
actions_begin() { return Actions
.begin(); }
877 action_iterator
actions_end() { return Actions
.end(); }
878 iterator_range
<action_iterator
> actions() {
879 return make_range(actions_begin(), actions_end());
882 void defineOperand(StringRef SymbolicName
, OperandMatcher
&OM
);
884 Error
defineComplexSubOperand(StringRef SymbolicName
, Record
*ComplexPattern
,
885 unsigned RendererID
, unsigned SubOperandID
) {
886 if (ComplexSubOperands
.count(SymbolicName
))
888 "Complex suboperand referenced more than once (Operand: " +
891 ComplexSubOperands
[SymbolicName
] =
892 std::make_tuple(ComplexPattern
, RendererID
, SubOperandID
);
894 return Error::success();
897 Optional
<DefinedComplexPatternSubOperand
>
898 getComplexSubOperand(StringRef SymbolicName
) const {
899 const auto &I
= ComplexSubOperands
.find(SymbolicName
);
900 if (I
== ComplexSubOperands
.end())
905 InstructionMatcher
&getInstructionMatcher(StringRef SymbolicName
) const;
906 const OperandMatcher
&getOperandMatcher(StringRef Name
) const;
908 void optimize() override
;
909 void emit(MatchTable
&Table
) override
;
911 /// Compare the priority of this object and B.
913 /// Returns true if this object is more important than B.
914 bool isHigherPriorityThan(const RuleMatcher
&B
) const;
916 /// Report the maximum number of temporary operands needed by the rule
918 unsigned countRendererFns() const;
920 std::unique_ptr
<PredicateMatcher
> popFirstCondition() override
;
921 const PredicateMatcher
&getFirstCondition() const override
;
922 LLTCodeGen
getFirstConditionAsRootType();
923 bool hasFirstCondition() const override
;
924 unsigned getNumOperands() const;
925 StringRef
getOpcode() const;
927 // FIXME: Remove this as soon as possible
928 InstructionMatcher
&insnmatchers_front() const { return *Matchers
.front(); }
930 unsigned allocateOutputInsnID() { return NextOutputInsnID
++; }
931 unsigned allocateTempRegID() { return NextTempRegID
++; }
933 iterator_range
<MatchersTy::iterator
> insnmatchers() {
934 return make_range(Matchers
.begin(), Matchers
.end());
936 bool insnmatchers_empty() const { return Matchers
.empty(); }
937 void insnmatchers_pop_front() { Matchers
.erase(Matchers
.begin()); }
940 uint64_t RuleMatcher::NextRuleID
= 0;
942 using action_iterator
= RuleMatcher::action_iterator
;
944 template <class PredicateTy
> class PredicateListMatcher
{
946 /// Template instantiations should specialize this to return a string to use
947 /// for the comment emitted when there are no predicates.
948 std::string
getNoPredicateComment() const;
951 using PredicatesTy
= std::deque
<std::unique_ptr
<PredicateTy
>>;
952 PredicatesTy Predicates
;
954 /// Track if the list of predicates was manipulated by one of the optimization
956 bool Optimized
= false;
959 /// Construct a new predicate and add it to the matcher.
960 template <class Kind
, class... Args
>
961 Optional
<Kind
*> addPredicate(Args
&&... args
);
963 typename
PredicatesTy::iterator
predicates_begin() {
964 return Predicates
.begin();
966 typename
PredicatesTy::iterator
predicates_end() {
967 return Predicates
.end();
969 iterator_range
<typename
PredicatesTy::iterator
> predicates() {
970 return make_range(predicates_begin(), predicates_end());
972 typename
PredicatesTy::size_type
predicates_size() const {
973 return Predicates
.size();
975 bool predicates_empty() const { return Predicates
.empty(); }
977 std::unique_ptr
<PredicateTy
> predicates_pop_front() {
978 std::unique_ptr
<PredicateTy
> Front
= std::move(Predicates
.front());
979 Predicates
.pop_front();
984 void prependPredicate(std::unique_ptr
<PredicateTy
> &&Predicate
) {
985 Predicates
.push_front(std::move(Predicate
));
988 void eraseNullPredicates() {
990 std::stable_partition(Predicates
.begin(), Predicates
.end(),
991 std::logical_not
<std::unique_ptr
<PredicateTy
>>());
992 if (NewEnd
!= Predicates
.begin()) {
993 Predicates
.erase(Predicates
.begin(), NewEnd
);
998 /// Emit MatchTable opcodes that tests whether all the predicates are met.
999 template <class... Args
>
1000 void emitPredicateListOpcodes(MatchTable
&Table
, Args
&&... args
) {
1001 if (Predicates
.empty() && !Optimized
) {
1002 Table
<< MatchTable::Comment(getNoPredicateComment())
1003 << MatchTable::LineBreak
;
1007 for (const auto &Predicate
: predicates())
1008 Predicate
->emitPredicateOpcodes(Table
, std::forward
<Args
>(args
)...);
1012 class PredicateMatcher
{
1014 /// This enum is used for RTTI and also defines the priority that is given to
1015 /// the predicate when generating the matcher code. Kinds with higher priority
1016 /// must be tested first.
1018 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1019 /// but OPM_Int must have priority over OPM_RegBank since constant integers
1020 /// are represented by a virtual register defined by a G_CONSTANT instruction.
1022 /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1023 /// are currently not compared between each other.
1024 enum PredicateKind
{
1028 IPM_AtomicOrderingMMO
,
1030 IPM_MemoryVsLLTSize
,
1031 IPM_GenericPredicate
,
1050 PredicateMatcher(PredicateKind Kind
, unsigned InsnVarID
, unsigned OpIdx
= ~0)
1051 : Kind(Kind
), InsnVarID(InsnVarID
), OpIdx(OpIdx
) {}
1053 unsigned getInsnVarID() const { return InsnVarID
; }
1054 unsigned getOpIdx() const { return OpIdx
; }
1056 virtual ~PredicateMatcher() = default;
1057 /// Emit MatchTable opcodes that check the predicate for the given operand.
1058 virtual void emitPredicateOpcodes(MatchTable
&Table
,
1059 RuleMatcher
&Rule
) const = 0;
1061 PredicateKind
getKind() const { return Kind
; }
1063 virtual bool isIdentical(const PredicateMatcher
&B
) const {
1064 return B
.getKind() == getKind() && InsnVarID
== B
.InsnVarID
&&
1068 virtual bool isIdenticalDownToValue(const PredicateMatcher
&B
) const {
1069 return hasValue() && PredicateMatcher::isIdentical(B
);
1072 virtual MatchTableRecord
getValue() const {
1073 assert(hasValue() && "Can not get a value of a value-less predicate!");
1074 llvm_unreachable("Not implemented yet");
1076 virtual bool hasValue() const { return false; }
1078 /// Report the maximum number of temporary operands needed by the predicate
1080 virtual unsigned countRendererFns() const { return 0; }
1083 /// Generates code to check a predicate of an operand.
1085 /// Typical predicates include:
1086 /// * Operand is a particular register.
1087 /// * Operand is assigned a particular register bank.
1088 /// * Operand is an MBB.
1089 class OperandPredicateMatcher
: public PredicateMatcher
{
1091 OperandPredicateMatcher(PredicateKind Kind
, unsigned InsnVarID
,
1093 : PredicateMatcher(Kind
, InsnVarID
, OpIdx
) {}
1094 virtual ~OperandPredicateMatcher() {}
1096 /// Compare the priority of this object and B.
1098 /// Returns true if this object is more important than B.
1099 virtual bool isHigherPriorityThan(const OperandPredicateMatcher
&B
) const;
1104 PredicateListMatcher
<OperandPredicateMatcher
>::getNoPredicateComment() const {
1105 return "No operand predicates";
1108 /// Generates code to check that a register operand is defined by the same exact
1110 class SameOperandMatcher
: public OperandPredicateMatcher
{
1111 std::string MatchingName
;
1114 SameOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
, StringRef MatchingName
)
1115 : OperandPredicateMatcher(OPM_SameOperand
, InsnVarID
, OpIdx
),
1116 MatchingName(MatchingName
) {}
1118 static bool classof(const PredicateMatcher
*P
) {
1119 return P
->getKind() == OPM_SameOperand
;
1122 void emitPredicateOpcodes(MatchTable
&Table
,
1123 RuleMatcher
&Rule
) const override
;
1125 bool isIdentical(const PredicateMatcher
&B
) const override
{
1126 return OperandPredicateMatcher::isIdentical(B
) &&
1127 MatchingName
== cast
<SameOperandMatcher
>(&B
)->MatchingName
;
1131 /// Generates code to check that an operand is a particular LLT.
1132 class LLTOperandMatcher
: public OperandPredicateMatcher
{
1137 static std::map
<LLTCodeGen
, unsigned> TypeIDValues
;
1139 static void initTypeIDValuesMap() {
1140 TypeIDValues
.clear();
1143 for (const LLTCodeGen LLTy
: KnownTypes
)
1144 TypeIDValues
[LLTy
] = ID
++;
1147 LLTOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
, const LLTCodeGen
&Ty
)
1148 : OperandPredicateMatcher(OPM_LLT
, InsnVarID
, OpIdx
), Ty(Ty
) {
1149 KnownTypes
.insert(Ty
);
1152 static bool classof(const PredicateMatcher
*P
) {
1153 return P
->getKind() == OPM_LLT
;
1155 bool isIdentical(const PredicateMatcher
&B
) const override
{
1156 return OperandPredicateMatcher::isIdentical(B
) &&
1157 Ty
== cast
<LLTOperandMatcher
>(&B
)->Ty
;
1159 MatchTableRecord
getValue() const override
{
1160 const auto VI
= TypeIDValues
.find(Ty
);
1161 if (VI
== TypeIDValues
.end())
1162 return MatchTable::NamedValue(getTy().getCxxEnumValue());
1163 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI
->second
);
1165 bool hasValue() const override
{
1166 if (TypeIDValues
.size() != KnownTypes
.size())
1167 initTypeIDValuesMap();
1168 return TypeIDValues
.count(Ty
);
1171 LLTCodeGen
getTy() const { return Ty
; }
1173 void emitPredicateOpcodes(MatchTable
&Table
,
1174 RuleMatcher
&Rule
) const override
{
1175 Table
<< MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1176 << MatchTable::IntValue(InsnVarID
) << MatchTable::Comment("Op")
1177 << MatchTable::IntValue(OpIdx
) << MatchTable::Comment("Type")
1178 << getValue() << MatchTable::LineBreak
;
1182 std::map
<LLTCodeGen
, unsigned> LLTOperandMatcher::TypeIDValues
;
1184 /// Generates code to check that an operand is a pointer to any address space.
1186 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
1187 /// result, iN is used to describe a pointer of N bits to any address space and
1188 /// PatFrag predicates are typically used to constrain the address space. There's
1189 /// no reliable means to derive the missing type information from the pattern so
1190 /// imported rules must test the components of a pointer separately.
1192 /// If SizeInBits is zero, then the pointer size will be obtained from the
1194 class PointerToAnyOperandMatcher
: public OperandPredicateMatcher
{
1196 unsigned SizeInBits
;
1199 PointerToAnyOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
1200 unsigned SizeInBits
)
1201 : OperandPredicateMatcher(OPM_PointerToAny
, InsnVarID
, OpIdx
),
1202 SizeInBits(SizeInBits
) {}
1204 static bool classof(const OperandPredicateMatcher
*P
) {
1205 return P
->getKind() == OPM_PointerToAny
;
1208 void emitPredicateOpcodes(MatchTable
&Table
,
1209 RuleMatcher
&Rule
) const override
{
1210 Table
<< MatchTable::Opcode("GIM_CheckPointerToAny")
1211 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1212 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1213 << MatchTable::Comment("SizeInBits")
1214 << MatchTable::IntValue(SizeInBits
) << MatchTable::LineBreak
;
1218 /// Generates code to check that an operand is a particular target constant.
1219 class ComplexPatternOperandMatcher
: public OperandPredicateMatcher
{
1221 const OperandMatcher
&Operand
;
1222 const Record
&TheDef
;
1224 unsigned getAllocatedTemporariesBaseID() const;
1227 bool isIdentical(const PredicateMatcher
&B
) const override
{ return false; }
1229 ComplexPatternOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
1230 const OperandMatcher
&Operand
,
1231 const Record
&TheDef
)
1232 : OperandPredicateMatcher(OPM_ComplexPattern
, InsnVarID
, OpIdx
),
1233 Operand(Operand
), TheDef(TheDef
) {}
1235 static bool classof(const PredicateMatcher
*P
) {
1236 return P
->getKind() == OPM_ComplexPattern
;
1239 void emitPredicateOpcodes(MatchTable
&Table
,
1240 RuleMatcher
&Rule
) const override
{
1241 unsigned ID
= getAllocatedTemporariesBaseID();
1242 Table
<< MatchTable::Opcode("GIM_CheckComplexPattern")
1243 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1244 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1245 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID
)
1246 << MatchTable::NamedValue(("GICP_" + TheDef
.getName()).str())
1247 << MatchTable::LineBreak
;
1250 unsigned countRendererFns() const override
{
1255 /// Generates code to check that an operand is in a particular register bank.
1256 class RegisterBankOperandMatcher
: public OperandPredicateMatcher
{
1258 const CodeGenRegisterClass
&RC
;
1261 RegisterBankOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
1262 const CodeGenRegisterClass
&RC
)
1263 : OperandPredicateMatcher(OPM_RegBank
, InsnVarID
, OpIdx
), RC(RC
) {}
1265 bool isIdentical(const PredicateMatcher
&B
) const override
{
1266 return OperandPredicateMatcher::isIdentical(B
) &&
1267 RC
.getDef() == cast
<RegisterBankOperandMatcher
>(&B
)->RC
.getDef();
1270 static bool classof(const PredicateMatcher
*P
) {
1271 return P
->getKind() == OPM_RegBank
;
1274 void emitPredicateOpcodes(MatchTable
&Table
,
1275 RuleMatcher
&Rule
) const override
{
1276 Table
<< MatchTable::Opcode("GIM_CheckRegBankForClass")
1277 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1278 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1279 << MatchTable::Comment("RC")
1280 << MatchTable::NamedValue(RC
.getQualifiedName() + "RegClassID")
1281 << MatchTable::LineBreak
;
1285 /// Generates code to check that an operand is a basic block.
1286 class MBBOperandMatcher
: public OperandPredicateMatcher
{
1288 MBBOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
)
1289 : OperandPredicateMatcher(OPM_MBB
, InsnVarID
, OpIdx
) {}
1291 static bool classof(const PredicateMatcher
*P
) {
1292 return P
->getKind() == OPM_MBB
;
1295 void emitPredicateOpcodes(MatchTable
&Table
,
1296 RuleMatcher
&Rule
) const override
{
1297 Table
<< MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1298 << MatchTable::IntValue(InsnVarID
) << MatchTable::Comment("Op")
1299 << MatchTable::IntValue(OpIdx
) << MatchTable::LineBreak
;
1303 /// Generates code to check that an operand is a G_CONSTANT with a particular
1305 class ConstantIntOperandMatcher
: public OperandPredicateMatcher
{
1310 ConstantIntOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
, int64_t Value
)
1311 : OperandPredicateMatcher(OPM_Int
, InsnVarID
, OpIdx
), Value(Value
) {}
1313 bool isIdentical(const PredicateMatcher
&B
) const override
{
1314 return OperandPredicateMatcher::isIdentical(B
) &&
1315 Value
== cast
<ConstantIntOperandMatcher
>(&B
)->Value
;
1318 static bool classof(const PredicateMatcher
*P
) {
1319 return P
->getKind() == OPM_Int
;
1322 void emitPredicateOpcodes(MatchTable
&Table
,
1323 RuleMatcher
&Rule
) const override
{
1324 Table
<< MatchTable::Opcode("GIM_CheckConstantInt")
1325 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1326 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1327 << MatchTable::IntValue(Value
) << MatchTable::LineBreak
;
1331 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1332 /// MO.isCImm() is true).
1333 class LiteralIntOperandMatcher
: public OperandPredicateMatcher
{
1338 LiteralIntOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
, int64_t Value
)
1339 : OperandPredicateMatcher(OPM_LiteralInt
, InsnVarID
, OpIdx
),
1342 bool isIdentical(const PredicateMatcher
&B
) const override
{
1343 return OperandPredicateMatcher::isIdentical(B
) &&
1344 Value
== cast
<LiteralIntOperandMatcher
>(&B
)->Value
;
1347 static bool classof(const PredicateMatcher
*P
) {
1348 return P
->getKind() == OPM_LiteralInt
;
1351 void emitPredicateOpcodes(MatchTable
&Table
,
1352 RuleMatcher
&Rule
) const override
{
1353 Table
<< MatchTable::Opcode("GIM_CheckLiteralInt")
1354 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1355 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1356 << MatchTable::IntValue(Value
) << MatchTable::LineBreak
;
1360 /// Generates code to check that an operand is an intrinsic ID.
1361 class IntrinsicIDOperandMatcher
: public OperandPredicateMatcher
{
1363 const CodeGenIntrinsic
*II
;
1366 IntrinsicIDOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
1367 const CodeGenIntrinsic
*II
)
1368 : OperandPredicateMatcher(OPM_IntrinsicID
, InsnVarID
, OpIdx
), II(II
) {}
1370 bool isIdentical(const PredicateMatcher
&B
) const override
{
1371 return OperandPredicateMatcher::isIdentical(B
) &&
1372 II
== cast
<IntrinsicIDOperandMatcher
>(&B
)->II
;
1375 static bool classof(const PredicateMatcher
*P
) {
1376 return P
->getKind() == OPM_IntrinsicID
;
1379 void emitPredicateOpcodes(MatchTable
&Table
,
1380 RuleMatcher
&Rule
) const override
{
1381 Table
<< MatchTable::Opcode("GIM_CheckIntrinsicID")
1382 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1383 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
1384 << MatchTable::NamedValue("Intrinsic::" + II
->EnumName
)
1385 << MatchTable::LineBreak
;
1389 /// Generates code to check that a set of predicates match for a particular
1391 class OperandMatcher
: public PredicateListMatcher
<OperandPredicateMatcher
> {
1393 InstructionMatcher
&Insn
;
1395 std::string SymbolicName
;
1397 /// The index of the first temporary variable allocated to this operand. The
1398 /// number of allocated temporaries can be found with
1399 /// countRendererFns().
1400 unsigned AllocatedTemporariesBaseID
;
1403 OperandMatcher(InstructionMatcher
&Insn
, unsigned OpIdx
,
1404 const std::string
&SymbolicName
,
1405 unsigned AllocatedTemporariesBaseID
)
1406 : Insn(Insn
), OpIdx(OpIdx
), SymbolicName(SymbolicName
),
1407 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID
) {}
1409 bool hasSymbolicName() const { return !SymbolicName
.empty(); }
1410 const StringRef
getSymbolicName() const { return SymbolicName
; }
1411 void setSymbolicName(StringRef Name
) {
1412 assert(SymbolicName
.empty() && "Operand already has a symbolic name");
1413 SymbolicName
= Name
;
1416 /// Construct a new operand predicate and add it to the matcher.
1417 template <class Kind
, class... Args
>
1418 Optional
<Kind
*> addPredicate(Args
&&... args
) {
1419 if (isSameAsAnotherOperand())
1421 Predicates
.emplace_back(llvm::make_unique
<Kind
>(
1422 getInsnVarID(), getOpIdx(), std::forward
<Args
>(args
)...));
1423 return static_cast<Kind
*>(Predicates
.back().get());
1426 unsigned getOpIdx() const { return OpIdx
; }
1427 unsigned getInsnVarID() const;
1429 std::string
getOperandExpr(unsigned InsnVarID
) const {
1430 return "State.MIs[" + llvm::to_string(InsnVarID
) + "]->getOperand(" +
1431 llvm::to_string(OpIdx
) + ")";
1434 InstructionMatcher
&getInstructionMatcher() const { return Insn
; }
1436 Error
addTypeCheckPredicate(const TypeSetByHwMode
&VTy
,
1437 bool OperandIsAPointer
);
1439 /// Emit MatchTable opcodes that test whether the instruction named in
1440 /// InsnVarID matches all the predicates and all the operands.
1441 void emitPredicateOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) {
1443 std::string Comment
;
1444 raw_string_ostream
CommentOS(Comment
);
1445 CommentOS
<< "MIs[" << getInsnVarID() << "] ";
1446 if (SymbolicName
.empty())
1447 CommentOS
<< "Operand " << OpIdx
;
1449 CommentOS
<< SymbolicName
;
1450 Table
<< MatchTable::Comment(CommentOS
.str()) << MatchTable::LineBreak
;
1453 emitPredicateListOpcodes(Table
, Rule
);
1456 /// Compare the priority of this object and B.
1458 /// Returns true if this object is more important than B.
1459 bool isHigherPriorityThan(OperandMatcher
&B
) {
1460 // Operand matchers involving more predicates have higher priority.
1461 if (predicates_size() > B
.predicates_size())
1463 if (predicates_size() < B
.predicates_size())
1466 // This assumes that predicates are added in a consistent order.
1467 for (auto &&Predicate
: zip(predicates(), B
.predicates())) {
1468 if (std::get
<0>(Predicate
)->isHigherPriorityThan(*std::get
<1>(Predicate
)))
1470 if (std::get
<1>(Predicate
)->isHigherPriorityThan(*std::get
<0>(Predicate
)))
1477 /// Report the maximum number of temporary operands needed by the operand
1479 unsigned countRendererFns() {
1480 return std::accumulate(
1481 predicates().begin(), predicates().end(), 0,
1483 const std::unique_ptr
<OperandPredicateMatcher
> &Predicate
) {
1484 return A
+ Predicate
->countRendererFns();
1488 unsigned getAllocatedTemporariesBaseID() const {
1489 return AllocatedTemporariesBaseID
;
1492 bool isSameAsAnotherOperand() {
1493 for (const auto &Predicate
: predicates())
1494 if (isa
<SameOperandMatcher
>(Predicate
))
1500 Error
OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode
&VTy
,
1501 bool OperandIsAPointer
) {
1502 if (!VTy
.isMachineValueType())
1503 return failedImport("unsupported typeset");
1505 if (VTy
.getMachineValueType() == MVT::iPTR
&& OperandIsAPointer
) {
1506 addPredicate
<PointerToAnyOperandMatcher
>(0);
1507 return Error::success();
1510 auto OpTyOrNone
= MVTToLLT(VTy
.getMachineValueType().SimpleTy
);
1512 return failedImport("unsupported type");
1514 if (OperandIsAPointer
)
1515 addPredicate
<PointerToAnyOperandMatcher
>(OpTyOrNone
->get().getSizeInBits());
1516 else if (VTy
.isPointer())
1517 addPredicate
<LLTOperandMatcher
>(LLT::pointer(VTy
.getPtrAddrSpace(),
1518 OpTyOrNone
->get().getSizeInBits()));
1520 addPredicate
<LLTOperandMatcher
>(*OpTyOrNone
);
1521 return Error::success();
1524 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1525 return Operand
.getAllocatedTemporariesBaseID();
1528 /// Generates code to check a predicate on an instruction.
1530 /// Typical predicates include:
1531 /// * The opcode of the instruction is a particular value.
1532 /// * The nsw/nuw flag is/isn't set.
1533 class InstructionPredicateMatcher
: public PredicateMatcher
{
1535 InstructionPredicateMatcher(PredicateKind Kind
, unsigned InsnVarID
)
1536 : PredicateMatcher(Kind
, InsnVarID
) {}
1537 virtual ~InstructionPredicateMatcher() {}
1539 /// Compare the priority of this object and B.
1541 /// Returns true if this object is more important than B.
1543 isHigherPriorityThan(const InstructionPredicateMatcher
&B
) const {
1544 return Kind
< B
.Kind
;
1550 PredicateListMatcher
<PredicateMatcher
>::getNoPredicateComment() const {
1551 return "No instruction predicates";
1554 /// Generates code to check the opcode of an instruction.
1555 class InstructionOpcodeMatcher
: public InstructionPredicateMatcher
{
1557 const CodeGenInstruction
*I
;
1559 static DenseMap
<const CodeGenInstruction
*, unsigned> OpcodeValues
;
1562 static void initOpcodeValuesMap(const CodeGenTarget
&Target
) {
1563 OpcodeValues
.clear();
1565 unsigned OpcodeValue
= 0;
1566 for (const CodeGenInstruction
*I
: Target
.getInstructionsByEnumValue())
1567 OpcodeValues
[I
] = OpcodeValue
++;
1570 InstructionOpcodeMatcher(unsigned InsnVarID
, const CodeGenInstruction
*I
)
1571 : InstructionPredicateMatcher(IPM_Opcode
, InsnVarID
), I(I
) {}
1573 static bool classof(const PredicateMatcher
*P
) {
1574 return P
->getKind() == IPM_Opcode
;
1577 bool isIdentical(const PredicateMatcher
&B
) const override
{
1578 return InstructionPredicateMatcher::isIdentical(B
) &&
1579 I
== cast
<InstructionOpcodeMatcher
>(&B
)->I
;
1581 MatchTableRecord
getValue() const override
{
1582 const auto VI
= OpcodeValues
.find(I
);
1583 if (VI
!= OpcodeValues
.end())
1584 return MatchTable::NamedValue(I
->Namespace
, I
->TheDef
->getName(),
1586 return MatchTable::NamedValue(I
->Namespace
, I
->TheDef
->getName());
1588 bool hasValue() const override
{ return OpcodeValues
.count(I
); }
1590 void emitPredicateOpcodes(MatchTable
&Table
,
1591 RuleMatcher
&Rule
) const override
{
1592 Table
<< MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
1593 << MatchTable::IntValue(InsnVarID
) << getValue()
1594 << MatchTable::LineBreak
;
1597 /// Compare the priority of this object and B.
1599 /// Returns true if this object is more important than B.
1601 isHigherPriorityThan(const InstructionPredicateMatcher
&B
) const override
{
1602 if (InstructionPredicateMatcher::isHigherPriorityThan(B
))
1604 if (B
.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1607 // Prioritize opcodes for cosmetic reasons in the generated source. Although
1608 // this is cosmetic at the moment, we may want to drive a similar ordering
1609 // using instruction frequency information to improve compile time.
1610 if (const InstructionOpcodeMatcher
*BO
=
1611 dyn_cast
<InstructionOpcodeMatcher
>(&B
))
1612 return I
->TheDef
->getName() < BO
->I
->TheDef
->getName();
1617 bool isConstantInstruction() const {
1618 return I
->TheDef
->getName() == "G_CONSTANT";
1621 StringRef
getOpcode() const { return I
->TheDef
->getName(); }
1622 unsigned getNumOperands() const { return I
->Operands
.size(); }
1624 StringRef
getOperandType(unsigned OpIdx
) const {
1625 return I
->Operands
[OpIdx
].OperandType
;
1629 DenseMap
<const CodeGenInstruction
*, unsigned>
1630 InstructionOpcodeMatcher::OpcodeValues
;
1632 class InstructionNumOperandsMatcher final
: public InstructionPredicateMatcher
{
1633 unsigned NumOperands
= 0;
1636 InstructionNumOperandsMatcher(unsigned InsnVarID
, unsigned NumOperands
)
1637 : InstructionPredicateMatcher(IPM_NumOperands
, InsnVarID
),
1638 NumOperands(NumOperands
) {}
1640 static bool classof(const PredicateMatcher
*P
) {
1641 return P
->getKind() == IPM_NumOperands
;
1644 bool isIdentical(const PredicateMatcher
&B
) const override
{
1645 return InstructionPredicateMatcher::isIdentical(B
) &&
1646 NumOperands
== cast
<InstructionNumOperandsMatcher
>(&B
)->NumOperands
;
1649 void emitPredicateOpcodes(MatchTable
&Table
,
1650 RuleMatcher
&Rule
) const override
{
1651 Table
<< MatchTable::Opcode("GIM_CheckNumOperands")
1652 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1653 << MatchTable::Comment("Expected")
1654 << MatchTable::IntValue(NumOperands
) << MatchTable::LineBreak
;
1658 /// Generates code to check that this instruction is a constant whose value
1659 /// meets an immediate predicate.
1661 /// Immediates are slightly odd since they are typically used like an operand
1662 /// but are represented as an operator internally. We typically write simm8:$src
1663 /// in a tablegen pattern, but this is just syntactic sugar for
1664 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1665 /// that will be matched and the predicate (which is attached to the imm
1666 /// operator) that will be tested. In SelectionDAG this describes a
1667 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1669 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1670 /// this representation, the immediate could be tested with an
1671 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1672 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1673 /// there are two implementation issues with producing that matcher
1674 /// configuration from the SelectionDAG pattern:
1675 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1676 /// were we to sink the immediate predicate to the operand we would have to
1677 /// have two partial implementations of PatFrag support, one for immediates
1678 /// and one for non-immediates.
1679 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1680 /// created yet. If we were to sink the predicate to the OperandMatcher we
1681 /// would also have to complicate (or duplicate) the code that descends and
1682 /// creates matchers for the subtree.
1683 /// Overall, it's simpler to handle it in the place it was found.
1684 class InstructionImmPredicateMatcher
: public InstructionPredicateMatcher
{
1686 TreePredicateFn Predicate
;
1689 InstructionImmPredicateMatcher(unsigned InsnVarID
,
1690 const TreePredicateFn
&Predicate
)
1691 : InstructionPredicateMatcher(IPM_ImmPredicate
, InsnVarID
),
1692 Predicate(Predicate
) {}
1694 bool isIdentical(const PredicateMatcher
&B
) const override
{
1695 return InstructionPredicateMatcher::isIdentical(B
) &&
1696 Predicate
.getOrigPatFragRecord() ==
1697 cast
<InstructionImmPredicateMatcher
>(&B
)
1698 ->Predicate
.getOrigPatFragRecord();
1701 static bool classof(const PredicateMatcher
*P
) {
1702 return P
->getKind() == IPM_ImmPredicate
;
1705 void emitPredicateOpcodes(MatchTable
&Table
,
1706 RuleMatcher
&Rule
) const override
{
1707 Table
<< MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate
))
1708 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1709 << MatchTable::Comment("Predicate")
1710 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate
))
1711 << MatchTable::LineBreak
;
1715 /// Generates code to check that a memory instruction has a atomic ordering
1716 /// MachineMemoryOperand.
1717 class AtomicOrderingMMOPredicateMatcher
: public InstructionPredicateMatcher
{
1727 AOComparator Comparator
;
1730 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID
, StringRef Order
,
1731 AOComparator Comparator
= AO_Exactly
)
1732 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO
, InsnVarID
),
1733 Order(Order
), Comparator(Comparator
) {}
1735 static bool classof(const PredicateMatcher
*P
) {
1736 return P
->getKind() == IPM_AtomicOrderingMMO
;
1739 bool isIdentical(const PredicateMatcher
&B
) const override
{
1740 if (!InstructionPredicateMatcher::isIdentical(B
))
1742 const auto &R
= *cast
<AtomicOrderingMMOPredicateMatcher
>(&B
);
1743 return Order
== R
.Order
&& Comparator
== R
.Comparator
;
1746 void emitPredicateOpcodes(MatchTable
&Table
,
1747 RuleMatcher
&Rule
) const override
{
1748 StringRef Opcode
= "GIM_CheckAtomicOrdering";
1750 if (Comparator
== AO_OrStronger
)
1751 Opcode
= "GIM_CheckAtomicOrderingOrStrongerThan";
1752 if (Comparator
== AO_WeakerThan
)
1753 Opcode
= "GIM_CheckAtomicOrderingWeakerThan";
1755 Table
<< MatchTable::Opcode(Opcode
) << MatchTable::Comment("MI")
1756 << MatchTable::IntValue(InsnVarID
) << MatchTable::Comment("Order")
1757 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order
).str())
1758 << MatchTable::LineBreak
;
1762 /// Generates code to check that the size of an MMO is exactly N bytes.
1763 class MemorySizePredicateMatcher
: public InstructionPredicateMatcher
{
1769 MemorySizePredicateMatcher(unsigned InsnVarID
, unsigned MMOIdx
, unsigned Size
)
1770 : InstructionPredicateMatcher(IPM_MemoryLLTSize
, InsnVarID
),
1771 MMOIdx(MMOIdx
), Size(Size
) {}
1773 static bool classof(const PredicateMatcher
*P
) {
1774 return P
->getKind() == IPM_MemoryLLTSize
;
1776 bool isIdentical(const PredicateMatcher
&B
) const override
{
1777 return InstructionPredicateMatcher::isIdentical(B
) &&
1778 MMOIdx
== cast
<MemorySizePredicateMatcher
>(&B
)->MMOIdx
&&
1779 Size
== cast
<MemorySizePredicateMatcher
>(&B
)->Size
;
1782 void emitPredicateOpcodes(MatchTable
&Table
,
1783 RuleMatcher
&Rule
) const override
{
1784 Table
<< MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
1785 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1786 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx
)
1787 << MatchTable::Comment("Size") << MatchTable::IntValue(Size
)
1788 << MatchTable::LineBreak
;
1792 /// Generates code to check that the size of an MMO is less-than, equal-to, or
1793 /// greater than a given LLT.
1794 class MemoryVsLLTSizePredicateMatcher
: public InstructionPredicateMatcher
{
1804 RelationKind Relation
;
1808 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID
, unsigned MMOIdx
,
1809 enum RelationKind Relation
,
1811 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize
, InsnVarID
),
1812 MMOIdx(MMOIdx
), Relation(Relation
), OpIdx(OpIdx
) {}
1814 static bool classof(const PredicateMatcher
*P
) {
1815 return P
->getKind() == IPM_MemoryVsLLTSize
;
1817 bool isIdentical(const PredicateMatcher
&B
) const override
{
1818 return InstructionPredicateMatcher::isIdentical(B
) &&
1819 MMOIdx
== cast
<MemoryVsLLTSizePredicateMatcher
>(&B
)->MMOIdx
&&
1820 Relation
== cast
<MemoryVsLLTSizePredicateMatcher
>(&B
)->Relation
&&
1821 OpIdx
== cast
<MemoryVsLLTSizePredicateMatcher
>(&B
)->OpIdx
;
1824 void emitPredicateOpcodes(MatchTable
&Table
,
1825 RuleMatcher
&Rule
) const override
{
1826 Table
<< MatchTable::Opcode(Relation
== EqualTo
1827 ? "GIM_CheckMemorySizeEqualToLLT"
1828 : Relation
== GreaterThan
1829 ? "GIM_CheckMemorySizeGreaterThanLLT"
1830 : "GIM_CheckMemorySizeLessThanLLT")
1831 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1832 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx
)
1833 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx
)
1834 << MatchTable::LineBreak
;
1838 /// Generates code to check an arbitrary C++ instruction predicate.
1839 class GenericInstructionPredicateMatcher
: public InstructionPredicateMatcher
{
1841 TreePredicateFn Predicate
;
1844 GenericInstructionPredicateMatcher(unsigned InsnVarID
,
1845 TreePredicateFn Predicate
)
1846 : InstructionPredicateMatcher(IPM_GenericPredicate
, InsnVarID
),
1847 Predicate(Predicate
) {}
1849 static bool classof(const InstructionPredicateMatcher
*P
) {
1850 return P
->getKind() == IPM_GenericPredicate
;
1852 bool isIdentical(const PredicateMatcher
&B
) const override
{
1853 return InstructionPredicateMatcher::isIdentical(B
) &&
1855 static_cast<const GenericInstructionPredicateMatcher
&>(B
)
1858 void emitPredicateOpcodes(MatchTable
&Table
,
1859 RuleMatcher
&Rule
) const override
{
1860 Table
<< MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
1861 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
1862 << MatchTable::Comment("FnId")
1863 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate
))
1864 << MatchTable::LineBreak
;
1868 /// Generates code to check that a set of predicates and operands match for a
1869 /// particular instruction.
1871 /// Typical predicates include:
1872 /// * Has a specific opcode.
1873 /// * Has an nsw/nuw flag or doesn't.
1874 class InstructionMatcher final
: public PredicateListMatcher
<PredicateMatcher
> {
1876 typedef std::vector
<std::unique_ptr
<OperandMatcher
>> OperandVec
;
1880 /// The operands to match. All rendered operands must be present even if the
1881 /// condition is always true.
1882 OperandVec Operands
;
1883 bool NumOperandsCheck
= true;
1885 std::string SymbolicName
;
1889 InstructionMatcher(RuleMatcher
&Rule
, StringRef SymbolicName
)
1890 : Rule(Rule
), SymbolicName(SymbolicName
) {
1891 // We create a new instruction matcher.
1892 // Get a new ID for that instruction.
1893 InsnVarID
= Rule
.implicitlyDefineInsnVar(*this);
1896 /// Construct a new instruction predicate and add it to the matcher.
1897 template <class Kind
, class... Args
>
1898 Optional
<Kind
*> addPredicate(Args
&&... args
) {
1899 Predicates
.emplace_back(
1900 llvm::make_unique
<Kind
>(getInsnVarID(), std::forward
<Args
>(args
)...));
1901 return static_cast<Kind
*>(Predicates
.back().get());
1904 RuleMatcher
&getRuleMatcher() const { return Rule
; }
1906 unsigned getInsnVarID() const { return InsnVarID
; }
1908 /// Add an operand to the matcher.
1909 OperandMatcher
&addOperand(unsigned OpIdx
, const std::string
&SymbolicName
,
1910 unsigned AllocatedTemporariesBaseID
) {
1911 Operands
.emplace_back(new OperandMatcher(*this, OpIdx
, SymbolicName
,
1912 AllocatedTemporariesBaseID
));
1913 if (!SymbolicName
.empty())
1914 Rule
.defineOperand(SymbolicName
, *Operands
.back());
1916 return *Operands
.back();
1919 OperandMatcher
&getOperand(unsigned OpIdx
) {
1920 auto I
= std::find_if(Operands
.begin(), Operands
.end(),
1921 [&OpIdx
](const std::unique_ptr
<OperandMatcher
> &X
) {
1922 return X
->getOpIdx() == OpIdx
;
1924 if (I
!= Operands
.end())
1926 llvm_unreachable("Failed to lookup operand");
1929 StringRef
getSymbolicName() const { return SymbolicName
; }
1930 unsigned getNumOperands() const { return Operands
.size(); }
1931 OperandVec::iterator
operands_begin() { return Operands
.begin(); }
1932 OperandVec::iterator
operands_end() { return Operands
.end(); }
1933 iterator_range
<OperandVec::iterator
> operands() {
1934 return make_range(operands_begin(), operands_end());
1936 OperandVec::const_iterator
operands_begin() const { return Operands
.begin(); }
1937 OperandVec::const_iterator
operands_end() const { return Operands
.end(); }
1938 iterator_range
<OperandVec::const_iterator
> operands() const {
1939 return make_range(operands_begin(), operands_end());
1941 bool operands_empty() const { return Operands
.empty(); }
1943 void pop_front() { Operands
.erase(Operands
.begin()); }
1947 /// Emit MatchTable opcodes that test whether the instruction named in
1948 /// InsnVarName matches all the predicates and all the operands.
1949 void emitPredicateOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) {
1950 if (NumOperandsCheck
)
1951 InstructionNumOperandsMatcher(InsnVarID
, getNumOperands())
1952 .emitPredicateOpcodes(Table
, Rule
);
1954 emitPredicateListOpcodes(Table
, Rule
);
1956 for (const auto &Operand
: Operands
)
1957 Operand
->emitPredicateOpcodes(Table
, Rule
);
1960 /// Compare the priority of this object and B.
1962 /// Returns true if this object is more important than B.
1963 bool isHigherPriorityThan(InstructionMatcher
&B
) {
1964 // Instruction matchers involving more operands have higher priority.
1965 if (Operands
.size() > B
.Operands
.size())
1967 if (Operands
.size() < B
.Operands
.size())
1970 for (auto &&P
: zip(predicates(), B
.predicates())) {
1971 auto L
= static_cast<InstructionPredicateMatcher
*>(std::get
<0>(P
).get());
1972 auto R
= static_cast<InstructionPredicateMatcher
*>(std::get
<1>(P
).get());
1973 if (L
->isHigherPriorityThan(*R
))
1975 if (R
->isHigherPriorityThan(*L
))
1979 for (const auto &Operand
: zip(Operands
, B
.Operands
)) {
1980 if (std::get
<0>(Operand
)->isHigherPriorityThan(*std::get
<1>(Operand
)))
1982 if (std::get
<1>(Operand
)->isHigherPriorityThan(*std::get
<0>(Operand
)))
1989 /// Report the maximum number of temporary operands needed by the instruction
1991 unsigned countRendererFns() {
1992 return std::accumulate(
1993 predicates().begin(), predicates().end(), 0,
1995 const std::unique_ptr
<PredicateMatcher
> &Predicate
) {
1996 return A
+ Predicate
->countRendererFns();
1999 Operands
.begin(), Operands
.end(), 0,
2000 [](unsigned A
, const std::unique_ptr
<OperandMatcher
> &Operand
) {
2001 return A
+ Operand
->countRendererFns();
2005 InstructionOpcodeMatcher
&getOpcodeMatcher() {
2006 for (auto &P
: predicates())
2007 if (auto *OpMatcher
= dyn_cast
<InstructionOpcodeMatcher
>(P
.get()))
2009 llvm_unreachable("Didn't find an opcode matcher");
2012 bool isConstantInstruction() {
2013 return getOpcodeMatcher().isConstantInstruction();
2016 StringRef
getOpcode() { return getOpcodeMatcher().getOpcode(); }
2019 StringRef
RuleMatcher::getOpcode() const {
2020 return Matchers
.front()->getOpcode();
2023 unsigned RuleMatcher::getNumOperands() const {
2024 return Matchers
.front()->getNumOperands();
2027 LLTCodeGen
RuleMatcher::getFirstConditionAsRootType() {
2028 InstructionMatcher
&InsnMatcher
= *Matchers
.front();
2029 if (!InsnMatcher
.predicates_empty())
2030 if (const auto *TM
=
2031 dyn_cast
<LLTOperandMatcher
>(&**InsnMatcher
.predicates_begin()))
2032 if (TM
->getInsnVarID() == 0 && TM
->getOpIdx() == 0)
2037 /// Generates code to check that the operand is a register defined by an
2038 /// instruction that matches the given instruction matcher.
2040 /// For example, the pattern:
2041 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2042 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2044 /// (G_ADD $src1, $src2)
2046 class InstructionOperandMatcher
: public OperandPredicateMatcher
{
2048 std::unique_ptr
<InstructionMatcher
> InsnMatcher
;
2051 InstructionOperandMatcher(unsigned InsnVarID
, unsigned OpIdx
,
2052 RuleMatcher
&Rule
, StringRef SymbolicName
)
2053 : OperandPredicateMatcher(OPM_Instruction
, InsnVarID
, OpIdx
),
2054 InsnMatcher(new InstructionMatcher(Rule
, SymbolicName
)) {}
2056 static bool classof(const PredicateMatcher
*P
) {
2057 return P
->getKind() == OPM_Instruction
;
2060 InstructionMatcher
&getInsnMatcher() const { return *InsnMatcher
; }
2062 void emitCaptureOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const {
2063 const unsigned NewInsnVarID
= InsnMatcher
->getInsnVarID();
2064 Table
<< MatchTable::Opcode("GIM_RecordInsn")
2065 << MatchTable::Comment("DefineMI")
2066 << MatchTable::IntValue(NewInsnVarID
) << MatchTable::Comment("MI")
2067 << MatchTable::IntValue(getInsnVarID())
2068 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2069 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID
) + "]")
2070 << MatchTable::LineBreak
;
2073 void emitPredicateOpcodes(MatchTable
&Table
,
2074 RuleMatcher
&Rule
) const override
{
2075 emitCaptureOpcodes(Table
, Rule
);
2076 InsnMatcher
->emitPredicateOpcodes(Table
, Rule
);
2079 bool isHigherPriorityThan(const OperandPredicateMatcher
&B
) const override
{
2080 if (OperandPredicateMatcher::isHigherPriorityThan(B
))
2082 if (B
.OperandPredicateMatcher::isHigherPriorityThan(*this))
2085 if (const InstructionOperandMatcher
*BP
=
2086 dyn_cast
<InstructionOperandMatcher
>(&B
))
2087 if (InsnMatcher
->isHigherPriorityThan(*BP
->InsnMatcher
))
2093 void InstructionMatcher::optimize() {
2094 SmallVector
<std::unique_ptr
<PredicateMatcher
>, 8> Stash
;
2095 const auto &OpcMatcher
= getOpcodeMatcher();
2097 Stash
.push_back(predicates_pop_front());
2098 if (Stash
.back().get() == &OpcMatcher
) {
2099 if (NumOperandsCheck
&& OpcMatcher
.getNumOperands() < getNumOperands())
2101 new InstructionNumOperandsMatcher(InsnVarID
, getNumOperands()));
2102 NumOperandsCheck
= false;
2104 for (auto &OM
: Operands
)
2105 for (auto &OP
: OM
->predicates())
2106 if (isa
<IntrinsicIDOperandMatcher
>(OP
)) {
2107 Stash
.push_back(std::move(OP
));
2108 OM
->eraseNullPredicates();
2113 if (InsnVarID
> 0) {
2114 assert(!Operands
.empty() && "Nested instruction is expected to def a vreg");
2115 for (auto &OP
: Operands
[0]->predicates())
2117 Operands
[0]->eraseNullPredicates();
2119 for (auto &OM
: Operands
) {
2120 for (auto &OP
: OM
->predicates())
2121 if (isa
<LLTOperandMatcher
>(OP
))
2122 Stash
.push_back(std::move(OP
));
2123 OM
->eraseNullPredicates();
2125 while (!Stash
.empty())
2126 prependPredicate(Stash
.pop_back_val());
2129 //===- Actions ------------------------------------------------------------===//
2130 class OperandRenderer
{
2134 OR_CopyOrAddZeroReg
,
2136 OR_CopyConstantAsImm
,
2137 OR_CopyFConstantAsFPImm
,
2149 OperandRenderer(RendererKind Kind
) : Kind(Kind
) {}
2150 virtual ~OperandRenderer() {}
2152 RendererKind
getKind() const { return Kind
; }
2154 virtual void emitRenderOpcodes(MatchTable
&Table
,
2155 RuleMatcher
&Rule
) const = 0;
2158 /// A CopyRenderer emits code to copy a single operand from an existing
2159 /// instruction to the one being built.
2160 class CopyRenderer
: public OperandRenderer
{
2163 /// The name of the operand.
2164 const StringRef SymbolicName
;
2167 CopyRenderer(unsigned NewInsnID
, StringRef SymbolicName
)
2168 : OperandRenderer(OR_Copy
), NewInsnID(NewInsnID
),
2169 SymbolicName(SymbolicName
) {
2170 assert(!SymbolicName
.empty() && "Cannot copy from an unspecified source");
2173 static bool classof(const OperandRenderer
*R
) {
2174 return R
->getKind() == OR_Copy
;
2177 const StringRef
getSymbolicName() const { return SymbolicName
; }
2179 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2180 const OperandMatcher
&Operand
= Rule
.getOperandMatcher(SymbolicName
);
2181 unsigned OldInsnVarID
= Rule
.getInsnVarID(Operand
.getInstructionMatcher());
2182 Table
<< MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2183 << MatchTable::IntValue(NewInsnID
) << MatchTable::Comment("OldInsnID")
2184 << MatchTable::IntValue(OldInsnVarID
) << MatchTable::Comment("OpIdx")
2185 << MatchTable::IntValue(Operand
.getOpIdx())
2186 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2190 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2191 /// existing instruction to the one being built. If the operand turns out to be
2192 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2193 class CopyOrAddZeroRegRenderer
: public OperandRenderer
{
2196 /// The name of the operand.
2197 const StringRef SymbolicName
;
2198 const Record
*ZeroRegisterDef
;
2201 CopyOrAddZeroRegRenderer(unsigned NewInsnID
,
2202 StringRef SymbolicName
, Record
*ZeroRegisterDef
)
2203 : OperandRenderer(OR_CopyOrAddZeroReg
), NewInsnID(NewInsnID
),
2204 SymbolicName(SymbolicName
), ZeroRegisterDef(ZeroRegisterDef
) {
2205 assert(!SymbolicName
.empty() && "Cannot copy from an unspecified source");
2208 static bool classof(const OperandRenderer
*R
) {
2209 return R
->getKind() == OR_CopyOrAddZeroReg
;
2212 const StringRef
getSymbolicName() const { return SymbolicName
; }
2214 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2215 const OperandMatcher
&Operand
= Rule
.getOperandMatcher(SymbolicName
);
2216 unsigned OldInsnVarID
= Rule
.getInsnVarID(Operand
.getInstructionMatcher());
2217 Table
<< MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2218 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID
)
2219 << MatchTable::Comment("OldInsnID")
2220 << MatchTable::IntValue(OldInsnVarID
) << MatchTable::Comment("OpIdx")
2221 << MatchTable::IntValue(Operand
.getOpIdx())
2222 << MatchTable::NamedValue(
2223 (ZeroRegisterDef
->getValue("Namespace")
2224 ? ZeroRegisterDef
->getValueAsString("Namespace")
2226 ZeroRegisterDef
->getName())
2227 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2231 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2232 /// an extended immediate operand.
2233 class CopyConstantAsImmRenderer
: public OperandRenderer
{
2236 /// The name of the operand.
2237 const std::string SymbolicName
;
2241 CopyConstantAsImmRenderer(unsigned NewInsnID
, StringRef SymbolicName
)
2242 : OperandRenderer(OR_CopyConstantAsImm
), NewInsnID(NewInsnID
),
2243 SymbolicName(SymbolicName
), Signed(true) {}
2245 static bool classof(const OperandRenderer
*R
) {
2246 return R
->getKind() == OR_CopyConstantAsImm
;
2249 const StringRef
getSymbolicName() const { return SymbolicName
; }
2251 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2252 InstructionMatcher
&InsnMatcher
= Rule
.getInstructionMatcher(SymbolicName
);
2253 unsigned OldInsnVarID
= Rule
.getInsnVarID(InsnMatcher
);
2254 Table
<< MatchTable::Opcode(Signed
? "GIR_CopyConstantAsSImm"
2255 : "GIR_CopyConstantAsUImm")
2256 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID
)
2257 << MatchTable::Comment("OldInsnID")
2258 << MatchTable::IntValue(OldInsnVarID
)
2259 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2263 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2264 /// instruction to an extended immediate operand.
2265 class CopyFConstantAsFPImmRenderer
: public OperandRenderer
{
2268 /// The name of the operand.
2269 const std::string SymbolicName
;
2272 CopyFConstantAsFPImmRenderer(unsigned NewInsnID
, StringRef SymbolicName
)
2273 : OperandRenderer(OR_CopyFConstantAsFPImm
), NewInsnID(NewInsnID
),
2274 SymbolicName(SymbolicName
) {}
2276 static bool classof(const OperandRenderer
*R
) {
2277 return R
->getKind() == OR_CopyFConstantAsFPImm
;
2280 const StringRef
getSymbolicName() const { return SymbolicName
; }
2282 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2283 InstructionMatcher
&InsnMatcher
= Rule
.getInstructionMatcher(SymbolicName
);
2284 unsigned OldInsnVarID
= Rule
.getInsnVarID(InsnMatcher
);
2285 Table
<< MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2286 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID
)
2287 << MatchTable::Comment("OldInsnID")
2288 << MatchTable::IntValue(OldInsnVarID
)
2289 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2293 /// A CopySubRegRenderer emits code to copy a single register operand from an
2294 /// existing instruction to the one being built and indicate that only a
2295 /// subregister should be copied.
2296 class CopySubRegRenderer
: public OperandRenderer
{
2299 /// The name of the operand.
2300 const StringRef SymbolicName
;
2301 /// The subregister to extract.
2302 const CodeGenSubRegIndex
*SubReg
;
2305 CopySubRegRenderer(unsigned NewInsnID
, StringRef SymbolicName
,
2306 const CodeGenSubRegIndex
*SubReg
)
2307 : OperandRenderer(OR_CopySubReg
), NewInsnID(NewInsnID
),
2308 SymbolicName(SymbolicName
), SubReg(SubReg
) {}
2310 static bool classof(const OperandRenderer
*R
) {
2311 return R
->getKind() == OR_CopySubReg
;
2314 const StringRef
getSymbolicName() const { return SymbolicName
; }
2316 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2317 const OperandMatcher
&Operand
= Rule
.getOperandMatcher(SymbolicName
);
2318 unsigned OldInsnVarID
= Rule
.getInsnVarID(Operand
.getInstructionMatcher());
2319 Table
<< MatchTable::Opcode("GIR_CopySubReg")
2320 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID
)
2321 << MatchTable::Comment("OldInsnID")
2322 << MatchTable::IntValue(OldInsnVarID
) << MatchTable::Comment("OpIdx")
2323 << MatchTable::IntValue(Operand
.getOpIdx())
2324 << MatchTable::Comment("SubRegIdx")
2325 << MatchTable::IntValue(SubReg
->EnumValue
)
2326 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2330 /// Adds a specific physical register to the instruction being built.
2331 /// This is typically useful for WZR/XZR on AArch64.
2332 class AddRegisterRenderer
: public OperandRenderer
{
2335 const Record
*RegisterDef
;
2338 AddRegisterRenderer(unsigned InsnID
, const Record
*RegisterDef
)
2339 : OperandRenderer(OR_Register
), InsnID(InsnID
), RegisterDef(RegisterDef
) {
2342 static bool classof(const OperandRenderer
*R
) {
2343 return R
->getKind() == OR_Register
;
2346 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2347 Table
<< MatchTable::Opcode("GIR_AddRegister")
2348 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2349 << MatchTable::NamedValue(
2350 (RegisterDef
->getValue("Namespace")
2351 ? RegisterDef
->getValueAsString("Namespace")
2353 RegisterDef
->getName())
2354 << MatchTable::LineBreak
;
2358 /// Adds a specific temporary virtual register to the instruction being built.
2359 /// This is used to chain instructions together when emitting multiple
2361 class TempRegRenderer
: public OperandRenderer
{
2368 TempRegRenderer(unsigned InsnID
, unsigned TempRegID
, bool IsDef
= false)
2369 : OperandRenderer(OR_Register
), InsnID(InsnID
), TempRegID(TempRegID
),
2372 static bool classof(const OperandRenderer
*R
) {
2373 return R
->getKind() == OR_TempRegister
;
2376 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2377 Table
<< MatchTable::Opcode("GIR_AddTempRegister")
2378 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2379 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID
)
2380 << MatchTable::Comment("TempRegFlags");
2382 Table
<< MatchTable::NamedValue("RegState::Define");
2384 Table
<< MatchTable::IntValue(0);
2385 Table
<< MatchTable::LineBreak
;
2389 /// Adds a specific immediate to the instruction being built.
2390 class ImmRenderer
: public OperandRenderer
{
2396 ImmRenderer(unsigned InsnID
, int64_t Imm
)
2397 : OperandRenderer(OR_Imm
), InsnID(InsnID
), Imm(Imm
) {}
2399 static bool classof(const OperandRenderer
*R
) {
2400 return R
->getKind() == OR_Imm
;
2403 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2404 Table
<< MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2405 << MatchTable::IntValue(InsnID
) << MatchTable::Comment("Imm")
2406 << MatchTable::IntValue(Imm
) << MatchTable::LineBreak
;
2410 /// Adds operands by calling a renderer function supplied by the ComplexPattern
2411 /// matcher function.
2412 class RenderComplexPatternOperand
: public OperandRenderer
{
2415 const Record
&TheDef
;
2416 /// The name of the operand.
2417 const StringRef SymbolicName
;
2418 /// The renderer number. This must be unique within a rule since it's used to
2419 /// identify a temporary variable to hold the renderer function.
2420 unsigned RendererID
;
2421 /// When provided, this is the suboperand of the ComplexPattern operand to
2422 /// render. Otherwise all the suboperands will be rendered.
2423 Optional
<unsigned> SubOperand
;
2425 unsigned getNumOperands() const {
2426 return TheDef
.getValueAsDag("Operands")->getNumArgs();
2430 RenderComplexPatternOperand(unsigned InsnID
, const Record
&TheDef
,
2431 StringRef SymbolicName
, unsigned RendererID
,
2432 Optional
<unsigned> SubOperand
= None
)
2433 : OperandRenderer(OR_ComplexPattern
), InsnID(InsnID
), TheDef(TheDef
),
2434 SymbolicName(SymbolicName
), RendererID(RendererID
),
2435 SubOperand(SubOperand
) {}
2437 static bool classof(const OperandRenderer
*R
) {
2438 return R
->getKind() == OR_ComplexPattern
;
2441 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2442 Table
<< MatchTable::Opcode(SubOperand
.hasValue() ? "GIR_ComplexSubOperandRenderer"
2443 : "GIR_ComplexRenderer")
2444 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2445 << MatchTable::Comment("RendererID")
2446 << MatchTable::IntValue(RendererID
);
2447 if (SubOperand
.hasValue())
2448 Table
<< MatchTable::Comment("SubOperand")
2449 << MatchTable::IntValue(SubOperand
.getValue());
2450 Table
<< MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2454 class CustomRenderer
: public OperandRenderer
{
2457 const Record
&Renderer
;
2458 /// The name of the operand.
2459 const std::string SymbolicName
;
2462 CustomRenderer(unsigned InsnID
, const Record
&Renderer
,
2463 StringRef SymbolicName
)
2464 : OperandRenderer(OR_Custom
), InsnID(InsnID
), Renderer(Renderer
),
2465 SymbolicName(SymbolicName
) {}
2467 static bool classof(const OperandRenderer
*R
) {
2468 return R
->getKind() == OR_Custom
;
2471 void emitRenderOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2472 InstructionMatcher
&InsnMatcher
= Rule
.getInstructionMatcher(SymbolicName
);
2473 unsigned OldInsnVarID
= Rule
.getInsnVarID(InsnMatcher
);
2474 Table
<< MatchTable::Opcode("GIR_CustomRenderer")
2475 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2476 << MatchTable::Comment("OldInsnID")
2477 << MatchTable::IntValue(OldInsnVarID
)
2478 << MatchTable::Comment("Renderer")
2479 << MatchTable::NamedValue(
2480 "GICR_" + Renderer
.getValueAsString("RendererFn").str())
2481 << MatchTable::Comment(SymbolicName
) << MatchTable::LineBreak
;
2485 /// An action taken when all Matcher predicates succeeded for a parent rule.
2487 /// Typical actions include:
2488 /// * Changing the opcode of an instruction.
2489 /// * Adding an operand to an instruction.
2492 virtual ~MatchAction() {}
2494 /// Emit the MatchTable opcodes to implement the action.
2495 virtual void emitActionOpcodes(MatchTable
&Table
,
2496 RuleMatcher
&Rule
) const = 0;
2499 /// Generates a comment describing the matched rule being acted upon.
2500 class DebugCommentAction
: public MatchAction
{
2505 DebugCommentAction(StringRef S
) : S(S
) {}
2507 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2508 Table
<< MatchTable::Comment(S
) << MatchTable::LineBreak
;
2512 /// Generates code to build an instruction or mutate an existing instruction
2513 /// into the desired instruction when this is possible.
2514 class BuildMIAction
: public MatchAction
{
2517 const CodeGenInstruction
*I
;
2518 InstructionMatcher
*Matched
;
2519 std::vector
<std::unique_ptr
<OperandRenderer
>> OperandRenderers
;
2521 /// True if the instruction can be built solely by mutating the opcode.
2522 bool canMutate(RuleMatcher
&Rule
, const InstructionMatcher
*Insn
) const {
2526 if (OperandRenderers
.size() != Insn
->getNumOperands())
2529 for (const auto &Renderer
: enumerate(OperandRenderers
)) {
2530 if (const auto *Copy
= dyn_cast
<CopyRenderer
>(&*Renderer
.value())) {
2531 const OperandMatcher
&OM
= Rule
.getOperandMatcher(Copy
->getSymbolicName());
2532 if (Insn
!= &OM
.getInstructionMatcher() ||
2533 OM
.getOpIdx() != Renderer
.index())
2543 BuildMIAction(unsigned InsnID
, const CodeGenInstruction
*I
)
2544 : InsnID(InsnID
), I(I
), Matched(nullptr) {}
2546 unsigned getInsnID() const { return InsnID
; }
2547 const CodeGenInstruction
*getCGI() const { return I
; }
2549 void chooseInsnToMutate(RuleMatcher
&Rule
) {
2550 for (auto *MutateCandidate
: Rule
.mutatable_insns()) {
2551 if (canMutate(Rule
, MutateCandidate
)) {
2552 // Take the first one we're offered that we're able to mutate.
2553 Rule
.reserveInsnMatcherForMutation(MutateCandidate
);
2554 Matched
= MutateCandidate
;
2560 template <class Kind
, class... Args
>
2561 Kind
&addRenderer(Args
&&... args
) {
2562 OperandRenderers
.emplace_back(
2563 llvm::make_unique
<Kind
>(InsnID
, std::forward
<Args
>(args
)...));
2564 return *static_cast<Kind
*>(OperandRenderers
.back().get());
2567 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2569 assert(canMutate(Rule
, Matched
) &&
2570 "Arranged to mutate an insn that isn't mutatable");
2572 unsigned RecycleInsnID
= Rule
.getInsnVarID(*Matched
);
2573 Table
<< MatchTable::Opcode("GIR_MutateOpcode")
2574 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2575 << MatchTable::Comment("RecycleInsnID")
2576 << MatchTable::IntValue(RecycleInsnID
)
2577 << MatchTable::Comment("Opcode")
2578 << MatchTable::NamedValue(I
->Namespace
, I
->TheDef
->getName())
2579 << MatchTable::LineBreak
;
2581 if (!I
->ImplicitDefs
.empty() || !I
->ImplicitUses
.empty()) {
2582 for (auto Def
: I
->ImplicitDefs
) {
2583 auto Namespace
= Def
->getValue("Namespace")
2584 ? Def
->getValueAsString("Namespace")
2586 Table
<< MatchTable::Opcode("GIR_AddImplicitDef")
2587 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2588 << MatchTable::NamedValue(Namespace
, Def
->getName())
2589 << MatchTable::LineBreak
;
2591 for (auto Use
: I
->ImplicitUses
) {
2592 auto Namespace
= Use
->getValue("Namespace")
2593 ? Use
->getValueAsString("Namespace")
2595 Table
<< MatchTable::Opcode("GIR_AddImplicitUse")
2596 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2597 << MatchTable::NamedValue(Namespace
, Use
->getName())
2598 << MatchTable::LineBreak
;
2604 // TODO: Simple permutation looks like it could be almost as common as
2605 // mutation due to commutative operations.
2607 Table
<< MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
2608 << MatchTable::IntValue(InsnID
) << MatchTable::Comment("Opcode")
2609 << MatchTable::NamedValue(I
->Namespace
, I
->TheDef
->getName())
2610 << MatchTable::LineBreak
;
2611 for (const auto &Renderer
: OperandRenderers
)
2612 Renderer
->emitRenderOpcodes(Table
, Rule
);
2614 if (I
->mayLoad
|| I
->mayStore
) {
2615 Table
<< MatchTable::Opcode("GIR_MergeMemOperands")
2616 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2617 << MatchTable::Comment("MergeInsnID's");
2618 // Emit the ID's for all the instructions that are matched by this rule.
2619 // TODO: Limit this to matched instructions that mayLoad/mayStore or have
2620 // some other means of having a memoperand. Also limit this to
2621 // emitted instructions that expect to have a memoperand too. For
2622 // example, (G_SEXT (G_LOAD x)) that results in separate load and
2623 // sign-extend instructions shouldn't put the memoperand on the
2624 // sign-extend since it has no effect there.
2625 std::vector
<unsigned> MergeInsnIDs
;
2626 for (const auto &IDMatcherPair
: Rule
.defined_insn_vars())
2627 MergeInsnIDs
.push_back(IDMatcherPair
.second
);
2628 llvm::sort(MergeInsnIDs
);
2629 for (const auto &MergeInsnID
: MergeInsnIDs
)
2630 Table
<< MatchTable::IntValue(MergeInsnID
);
2631 Table
<< MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
2632 << MatchTable::LineBreak
;
2635 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
2636 // better for combines. Particularly when there are multiple match
2639 Table
<< MatchTable::Opcode("GIR_EraseFromParent")
2640 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2641 << MatchTable::LineBreak
;
2645 /// Generates code to constrain the operands of an output instruction to the
2646 /// register classes specified by the definition of that instruction.
2647 class ConstrainOperandsToDefinitionAction
: public MatchAction
{
2651 ConstrainOperandsToDefinitionAction(unsigned InsnID
) : InsnID(InsnID
) {}
2653 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2654 Table
<< MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
2655 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2656 << MatchTable::LineBreak
;
2660 /// Generates code to constrain the specified operand of an output instruction
2661 /// to the specified register class.
2662 class ConstrainOperandToRegClassAction
: public MatchAction
{
2665 const CodeGenRegisterClass
&RC
;
2668 ConstrainOperandToRegClassAction(unsigned InsnID
, unsigned OpIdx
,
2669 const CodeGenRegisterClass
&RC
)
2670 : InsnID(InsnID
), OpIdx(OpIdx
), RC(RC
) {}
2672 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2673 Table
<< MatchTable::Opcode("GIR_ConstrainOperandRC")
2674 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2675 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx
)
2676 << MatchTable::Comment("RC " + RC
.getName())
2677 << MatchTable::IntValue(RC
.EnumValue
) << MatchTable::LineBreak
;
2681 /// Generates code to create a temporary register which can be used to chain
2682 /// instructions together.
2683 class MakeTempRegisterAction
: public MatchAction
{
2689 MakeTempRegisterAction(const LLTCodeGen
&Ty
, unsigned TempRegID
)
2690 : Ty(Ty
), TempRegID(TempRegID
) {}
2692 void emitActionOpcodes(MatchTable
&Table
, RuleMatcher
&Rule
) const override
{
2693 Table
<< MatchTable::Opcode("GIR_MakeTempReg")
2694 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID
)
2695 << MatchTable::Comment("TypeID")
2696 << MatchTable::NamedValue(Ty
.getCxxEnumValue())
2697 << MatchTable::LineBreak
;
2701 InstructionMatcher
&RuleMatcher::addInstructionMatcher(StringRef SymbolicName
) {
2702 Matchers
.emplace_back(new InstructionMatcher(*this, SymbolicName
));
2703 MutatableInsns
.insert(Matchers
.back().get());
2704 return *Matchers
.back();
2707 void RuleMatcher::addRequiredFeature(Record
*Feature
) {
2708 RequiredFeatures
.push_back(Feature
);
2711 const std::vector
<Record
*> &RuleMatcher::getRequiredFeatures() const {
2712 return RequiredFeatures
;
2715 // Emplaces an action of the specified Kind at the end of the action list.
2717 // Returns a reference to the newly created action.
2719 // Like std::vector::emplace_back(), may invalidate all iterators if the new
2720 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
2722 template <class Kind
, class... Args
>
2723 Kind
&RuleMatcher::addAction(Args
&&... args
) {
2724 Actions
.emplace_back(llvm::make_unique
<Kind
>(std::forward
<Args
>(args
)...));
2725 return *static_cast<Kind
*>(Actions
.back().get());
2728 // Emplaces an action of the specified Kind before the given insertion point.
2730 // Returns an iterator pointing at the newly created instruction.
2732 // Like std::vector::insert(), may invalidate all iterators if the new size
2733 // exceeds the capacity. Otherwise, only invalidates the iterators from the
2734 // insertion point onwards.
2735 template <class Kind
, class... Args
>
2736 action_iterator
RuleMatcher::insertAction(action_iterator InsertPt
,
2738 return Actions
.emplace(InsertPt
,
2739 llvm::make_unique
<Kind
>(std::forward
<Args
>(args
)...));
2742 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher
&Matcher
) {
2743 unsigned NewInsnVarID
= NextInsnVarID
++;
2744 InsnVariableIDs
[&Matcher
] = NewInsnVarID
;
2745 return NewInsnVarID
;
2748 unsigned RuleMatcher::getInsnVarID(InstructionMatcher
&InsnMatcher
) const {
2749 const auto &I
= InsnVariableIDs
.find(&InsnMatcher
);
2750 if (I
!= InsnVariableIDs
.end())
2752 llvm_unreachable("Matched Insn was not captured in a local variable");
2755 void RuleMatcher::defineOperand(StringRef SymbolicName
, OperandMatcher
&OM
) {
2756 if (DefinedOperands
.find(SymbolicName
) == DefinedOperands
.end()) {
2757 DefinedOperands
[SymbolicName
] = &OM
;
2761 // If the operand is already defined, then we must ensure both references in
2762 // the matcher have the exact same node.
2763 OM
.addPredicate
<SameOperandMatcher
>(OM
.getSymbolicName());
2766 InstructionMatcher
&
2767 RuleMatcher::getInstructionMatcher(StringRef SymbolicName
) const {
2768 for (const auto &I
: InsnVariableIDs
)
2769 if (I
.first
->getSymbolicName() == SymbolicName
)
2772 ("Failed to lookup instruction " + SymbolicName
).str().c_str());
2775 const OperandMatcher
&
2776 RuleMatcher::getOperandMatcher(StringRef Name
) const {
2777 const auto &I
= DefinedOperands
.find(Name
);
2779 if (I
== DefinedOperands
.end())
2780 PrintFatalError(SrcLoc
, "Operand " + Name
+ " was not declared in matcher");
2785 void RuleMatcher::emit(MatchTable
&Table
) {
2786 if (Matchers
.empty())
2787 llvm_unreachable("Unexpected empty matcher!");
2789 // The representation supports rules that require multiple roots such as:
2791 // %elt0(s32) = G_LOAD %ptr
2792 // %1(p0) = G_ADD %ptr, 4
2793 // %elt1(s32) = G_LOAD p0 %1
2794 // which could be usefully folded into:
2796 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
2797 // on some targets but we don't need to make use of that yet.
2798 assert(Matchers
.size() == 1 && "Cannot handle multi-root matchers yet");
2800 unsigned LabelID
= Table
.allocateLabelID();
2801 Table
<< MatchTable::Opcode("GIM_Try", +1)
2802 << MatchTable::Comment("On fail goto")
2803 << MatchTable::JumpTarget(LabelID
)
2804 << MatchTable::Comment(("Rule ID " + Twine(RuleID
) + " //").str())
2805 << MatchTable::LineBreak
;
2807 if (!RequiredFeatures
.empty()) {
2808 Table
<< MatchTable::Opcode("GIM_CheckFeatures")
2809 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures
))
2810 << MatchTable::LineBreak
;
2813 Matchers
.front()->emitPredicateOpcodes(Table
, *this);
2815 // We must also check if it's safe to fold the matched instructions.
2816 if (InsnVariableIDs
.size() >= 2) {
2817 // Invert the map to create stable ordering (by var names)
2818 SmallVector
<unsigned, 2> InsnIDs
;
2819 for (const auto &Pair
: InsnVariableIDs
) {
2820 // Skip the root node since it isn't moving anywhere. Everything else is
2821 // sinking to meet it.
2822 if (Pair
.first
== Matchers
.front().get())
2825 InsnIDs
.push_back(Pair
.second
);
2827 llvm::sort(InsnIDs
);
2829 for (const auto &InsnID
: InsnIDs
) {
2830 // Reject the difficult cases until we have a more accurate check.
2831 Table
<< MatchTable::Opcode("GIM_CheckIsSafeToFold")
2832 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID
)
2833 << MatchTable::LineBreak
;
2835 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
2836 // account for unsafe cases.
2841 // MI0--> %2 = ... %0
2842 // It's not safe to erase MI1. We currently handle this by not
2843 // erasing %0 (even when it's dead).
2846 // MI1--> %0 = load volatile @a
2847 // %1 = load volatile @a
2848 // MI0--> %2 = ... %0
2849 // It's not safe to sink %0's def past %1. We currently handle
2850 // this by rejecting all loads.
2853 // MI1--> %0 = load @a
2855 // MI0--> %2 = ... %0
2856 // It's not safe to sink %0's def past %1. We currently handle
2857 // this by rejecting all loads.
2860 // G_CONDBR %cond, @BB1
2862 // MI1--> %0 = load @a
2865 // MI0--> %2 = ... %0
2866 // It's not always safe to sink %0 across control flow. In this
2867 // case it may introduce a memory fault. We currentl handle this
2868 // by rejecting all loads.
2872 for (const auto &PM
: EpilogueMatchers
)
2873 PM
->emitPredicateOpcodes(Table
, *this);
2875 for (const auto &MA
: Actions
)
2876 MA
->emitActionOpcodes(Table
, *this);
2878 if (Table
.isWithCoverage())
2879 Table
<< MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID
)
2880 << MatchTable::LineBreak
;
2882 Table
<< MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID
) + ",").str())
2883 << MatchTable::LineBreak
;
2885 Table
<< MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
2886 << MatchTable::Label(LabelID
);
2887 ++NumPatternEmitted
;
2890 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher
&B
) const {
2891 // Rules involving more match roots have higher priority.
2892 if (Matchers
.size() > B
.Matchers
.size())
2894 if (Matchers
.size() < B
.Matchers
.size())
2897 for (const auto &Matcher
: zip(Matchers
, B
.Matchers
)) {
2898 if (std::get
<0>(Matcher
)->isHigherPriorityThan(*std::get
<1>(Matcher
)))
2900 if (std::get
<1>(Matcher
)->isHigherPriorityThan(*std::get
<0>(Matcher
)))
2907 unsigned RuleMatcher::countRendererFns() const {
2908 return std::accumulate(
2909 Matchers
.begin(), Matchers
.end(), 0,
2910 [](unsigned A
, const std::unique_ptr
<InstructionMatcher
> &Matcher
) {
2911 return A
+ Matcher
->countRendererFns();
2915 bool OperandPredicateMatcher::isHigherPriorityThan(
2916 const OperandPredicateMatcher
&B
) const {
2917 // Generally speaking, an instruction is more important than an Int or a
2918 // LiteralInt because it can cover more nodes but theres an exception to
2919 // this. G_CONSTANT's are less important than either of those two because they
2920 // are more permissive.
2922 const InstructionOperandMatcher
*AOM
=
2923 dyn_cast
<InstructionOperandMatcher
>(this);
2924 const InstructionOperandMatcher
*BOM
=
2925 dyn_cast
<InstructionOperandMatcher
>(&B
);
2926 bool AIsConstantInsn
= AOM
&& AOM
->getInsnMatcher().isConstantInstruction();
2927 bool BIsConstantInsn
= BOM
&& BOM
->getInsnMatcher().isConstantInstruction();
2930 // The relative priorities between a G_CONSTANT and any other instruction
2931 // don't actually matter but this code is needed to ensure a strict weak
2932 // ordering. This is particularly important on Windows where the rules will
2933 // be incorrectly sorted without it.
2934 if (AIsConstantInsn
!= BIsConstantInsn
)
2935 return AIsConstantInsn
< BIsConstantInsn
;
2939 if (AOM
&& AIsConstantInsn
&& (B
.Kind
== OPM_Int
|| B
.Kind
== OPM_LiteralInt
))
2941 if (BOM
&& BIsConstantInsn
&& (Kind
== OPM_Int
|| Kind
== OPM_LiteralInt
))
2944 return Kind
< B
.Kind
;
2947 void SameOperandMatcher::emitPredicateOpcodes(MatchTable
&Table
,
2948 RuleMatcher
&Rule
) const {
2949 const OperandMatcher
&OtherOM
= Rule
.getOperandMatcher(MatchingName
);
2950 unsigned OtherInsnVarID
= Rule
.getInsnVarID(OtherOM
.getInstructionMatcher());
2951 assert(OtherInsnVarID
== OtherOM
.getInstructionMatcher().getInsnVarID());
2953 Table
<< MatchTable::Opcode("GIM_CheckIsSameOperand")
2954 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID
)
2955 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx
)
2956 << MatchTable::Comment("OtherMI")
2957 << MatchTable::IntValue(OtherInsnVarID
)
2958 << MatchTable::Comment("OtherOpIdx")
2959 << MatchTable::IntValue(OtherOM
.getOpIdx())
2960 << MatchTable::LineBreak
;
2963 //===- GlobalISelEmitter class --------------------------------------------===//
2965 class GlobalISelEmitter
{
2967 explicit GlobalISelEmitter(RecordKeeper
&RK
);
2968 void run(raw_ostream
&OS
);
2971 const RecordKeeper
&RK
;
2972 const CodeGenDAGPatterns CGP
;
2973 const CodeGenTarget
&Target
;
2974 CodeGenRegBank CGRegs
;
2976 /// Keep track of the equivalence between SDNodes and Instruction by mapping
2977 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
2978 /// check for attributes on the relation such as CheckMMOIsNonAtomic.
2979 /// This is defined using 'GINodeEquiv' in the target description.
2980 DenseMap
<Record
*, Record
*> NodeEquivs
;
2982 /// Keep track of the equivalence between ComplexPattern's and
2983 /// GIComplexOperandMatcher. Map entries are specified by subclassing
2984 /// GIComplexPatternEquiv.
2985 DenseMap
<const Record
*, const Record
*> ComplexPatternEquivs
;
2987 /// Keep track of the equivalence between SDNodeXForm's and
2988 /// GICustomOperandRenderer. Map entries are specified by subclassing
2989 /// GISDNodeXFormEquiv.
2990 DenseMap
<const Record
*, const Record
*> SDNodeXFormEquivs
;
2992 /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
2993 /// This adds compatibility for RuleMatchers to use this for ordering rules.
2994 DenseMap
<uint64_t, int> RuleMatcherScores
;
2996 // Map of predicates to their subtarget features.
2997 SubtargetFeatureInfoMap SubtargetFeatures
;
2999 // Rule coverage information.
3000 Optional
<CodeGenCoverage
> RuleCoverage
;
3002 void gatherOpcodeValues();
3003 void gatherTypeIDValues();
3004 void gatherNodeEquivs();
3006 Record
*findNodeEquiv(Record
*N
) const;
3007 const CodeGenInstruction
*getEquivNode(Record
&Equiv
,
3008 const TreePatternNode
*N
) const;
3010 Error
importRulePredicates(RuleMatcher
&M
, ArrayRef
<Predicate
> Predicates
);
3011 Expected
<InstructionMatcher
&>
3012 createAndImportSelDAGMatcher(RuleMatcher
&Rule
,
3013 InstructionMatcher
&InsnMatcher
,
3014 const TreePatternNode
*Src
, unsigned &TempOpIdx
);
3015 Error
importComplexPatternOperandMatcher(OperandMatcher
&OM
, Record
*R
,
3016 unsigned &TempOpIdx
) const;
3017 Error
importChildMatcher(RuleMatcher
&Rule
, InstructionMatcher
&InsnMatcher
,
3018 const TreePatternNode
*SrcChild
,
3019 bool OperandIsAPointer
, unsigned OpIdx
,
3020 unsigned &TempOpIdx
);
3022 Expected
<BuildMIAction
&>
3023 createAndImportInstructionRenderer(RuleMatcher
&M
,
3024 const TreePatternNode
*Dst
);
3025 Expected
<action_iterator
> createAndImportSubInstructionRenderer(
3026 action_iterator InsertPt
, RuleMatcher
&M
, const TreePatternNode
*Dst
,
3028 Expected
<action_iterator
>
3029 createInstructionRenderer(action_iterator InsertPt
, RuleMatcher
&M
,
3030 const TreePatternNode
*Dst
);
3031 void importExplicitDefRenderers(BuildMIAction
&DstMIBuilder
);
3032 Expected
<action_iterator
>
3033 importExplicitUseRenderers(action_iterator InsertPt
, RuleMatcher
&M
,
3034 BuildMIAction
&DstMIBuilder
,
3035 const llvm::TreePatternNode
*Dst
);
3036 Expected
<action_iterator
>
3037 importExplicitUseRenderer(action_iterator InsertPt
, RuleMatcher
&Rule
,
3038 BuildMIAction
&DstMIBuilder
,
3039 TreePatternNode
*DstChild
);
3040 Error
importDefaultOperandRenderers(action_iterator InsertPt
, RuleMatcher
&M
,
3041 BuildMIAction
&DstMIBuilder
,
3042 DagInit
*DefaultOps
) const;
3044 importImplicitDefRenderers(BuildMIAction
&DstMIBuilder
,
3045 const std::vector
<Record
*> &ImplicitDefs
) const;
3047 void emitCxxPredicateFns(raw_ostream
&OS
, StringRef CodeFieldName
,
3048 StringRef TypeIdentifier
, StringRef ArgType
,
3049 StringRef ArgName
, StringRef AdditionalDeclarations
,
3050 std::function
<bool(const Record
*R
)> Filter
);
3051 void emitImmPredicateFns(raw_ostream
&OS
, StringRef TypeIdentifier
,
3053 std::function
<bool(const Record
*R
)> Filter
);
3054 void emitMIPredicateFns(raw_ostream
&OS
);
3056 /// Analyze pattern \p P, returning a matcher for it if possible.
3057 /// Otherwise, return an Error explaining why we don't support it.
3058 Expected
<RuleMatcher
> runOnPattern(const PatternToMatch
&P
);
3060 void declareSubtargetFeature(Record
*Predicate
);
3062 MatchTable
buildMatchTable(MutableArrayRef
<RuleMatcher
> Rules
, bool Optimize
,
3066 /// Takes a sequence of \p Rules and group them based on the predicates
3067 /// they share. \p MatcherStorage is used as a memory container
3068 /// for the group that are created as part of this process.
3070 /// What this optimization does looks like if GroupT = GroupMatcher:
3071 /// Output without optimization:
3078 /// # predicate A // <-- effectively this is going to be checked twice.
3079 /// // Once in R1 and once in R2.
3082 /// Output with optimization:
3085 /// # predicate A // <-- Check is now shared.
3091 template <class GroupT
>
3092 static std::vector
<Matcher
*> optimizeRules(
3093 ArrayRef
<Matcher
*> Rules
,
3094 std::vector
<std::unique_ptr
<Matcher
>> &MatcherStorage
);
3097 void GlobalISelEmitter::gatherOpcodeValues() {
3098 InstructionOpcodeMatcher::initOpcodeValuesMap(Target
);
3101 void GlobalISelEmitter::gatherTypeIDValues() {
3102 LLTOperandMatcher::initTypeIDValuesMap();
3105 void GlobalISelEmitter::gatherNodeEquivs() {
3106 assert(NodeEquivs
.empty());
3107 for (Record
*Equiv
: RK
.getAllDerivedDefinitions("GINodeEquiv"))
3108 NodeEquivs
[Equiv
->getValueAsDef("Node")] = Equiv
;
3110 assert(ComplexPatternEquivs
.empty());
3111 for (Record
*Equiv
: RK
.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3112 Record
*SelDAGEquiv
= Equiv
->getValueAsDef("SelDAGEquivalent");
3115 ComplexPatternEquivs
[SelDAGEquiv
] = Equiv
;
3118 assert(SDNodeXFormEquivs
.empty());
3119 for (Record
*Equiv
: RK
.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3120 Record
*SelDAGEquiv
= Equiv
->getValueAsDef("SelDAGEquivalent");
3123 SDNodeXFormEquivs
[SelDAGEquiv
] = Equiv
;
3127 Record
*GlobalISelEmitter::findNodeEquiv(Record
*N
) const {
3128 return NodeEquivs
.lookup(N
);
3131 const CodeGenInstruction
*
3132 GlobalISelEmitter::getEquivNode(Record
&Equiv
, const TreePatternNode
*N
) const {
3133 for (const TreePredicateCall
&Call
: N
->getPredicateCalls()) {
3134 const TreePredicateFn
&Predicate
= Call
.Fn
;
3135 if (!Equiv
.isValueUnset("IfSignExtend") && Predicate
.isLoad() &&
3136 Predicate
.isSignExtLoad())
3137 return &Target
.getInstruction(Equiv
.getValueAsDef("IfSignExtend"));
3138 if (!Equiv
.isValueUnset("IfZeroExtend") && Predicate
.isLoad() &&
3139 Predicate
.isZeroExtLoad())
3140 return &Target
.getInstruction(Equiv
.getValueAsDef("IfZeroExtend"));
3142 return &Target
.getInstruction(Equiv
.getValueAsDef("I"));
3145 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper
&RK
)
3146 : RK(RK
), CGP(RK
), Target(CGP
.getTargetInfo()),
3147 CGRegs(RK
, Target
.getHwModes()) {}
3149 //===- Emitter ------------------------------------------------------------===//
3152 GlobalISelEmitter::importRulePredicates(RuleMatcher
&M
,
3153 ArrayRef
<Predicate
> Predicates
) {
3154 for (const Predicate
&P
: Predicates
) {
3157 declareSubtargetFeature(P
.Def
);
3158 M
.addRequiredFeature(P
.Def
);
3161 return Error::success();
3164 Expected
<InstructionMatcher
&> GlobalISelEmitter::createAndImportSelDAGMatcher(
3165 RuleMatcher
&Rule
, InstructionMatcher
&InsnMatcher
,
3166 const TreePatternNode
*Src
, unsigned &TempOpIdx
) {
3167 Record
*SrcGIEquivOrNull
= nullptr;
3168 const CodeGenInstruction
*SrcGIOrNull
= nullptr;
3170 // Start with the defined operands (i.e., the results of the root operator).
3171 if (Src
->getExtTypes().size() > 1)
3172 return failedImport("Src pattern has multiple results");
3174 if (Src
->isLeaf()) {
3175 Init
*SrcInit
= Src
->getLeafValue();
3176 if (isa
<IntInit
>(SrcInit
)) {
3177 InsnMatcher
.addPredicate
<InstructionOpcodeMatcher
>(
3178 &Target
.getInstruction(RK
.getDef("G_CONSTANT")));
3180 return failedImport(
3181 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3183 SrcGIEquivOrNull
= findNodeEquiv(Src
->getOperator());
3184 if (!SrcGIEquivOrNull
)
3185 return failedImport("Pattern operator lacks an equivalent Instruction" +
3186 explainOperator(Src
->getOperator()));
3187 SrcGIOrNull
= getEquivNode(*SrcGIEquivOrNull
, Src
);
3189 // The operators look good: match the opcode
3190 InsnMatcher
.addPredicate
<InstructionOpcodeMatcher
>(SrcGIOrNull
);
3194 for (const TypeSetByHwMode
&VTy
: Src
->getExtTypes()) {
3195 // Results don't have a name unless they are the root node. The caller will
3196 // set the name if appropriate.
3197 OperandMatcher
&OM
= InsnMatcher
.addOperand(OpIdx
++, "", TempOpIdx
);
3198 if (auto Error
= OM
.addTypeCheckPredicate(VTy
, false /* OperandIsAPointer */))
3199 return failedImport(toString(std::move(Error
)) +
3200 " for result of Src pattern operator");
3203 for (const TreePredicateCall
&Call
: Src
->getPredicateCalls()) {
3204 const TreePredicateFn
&Predicate
= Call
.Fn
;
3205 if (Predicate
.isAlwaysTrue())
3208 if (Predicate
.isImmediatePattern()) {
3209 InsnMatcher
.addPredicate
<InstructionImmPredicateMatcher
>(Predicate
);
3213 // G_LOAD is used for both non-extending and any-extending loads.
3214 if (Predicate
.isLoad() && Predicate
.isNonExtLoad()) {
3215 InsnMatcher
.addPredicate
<MemoryVsLLTSizePredicateMatcher
>(
3216 0, MemoryVsLLTSizePredicateMatcher::EqualTo
, 0);
3219 if (Predicate
.isLoad() && Predicate
.isAnyExtLoad()) {
3220 InsnMatcher
.addPredicate
<MemoryVsLLTSizePredicateMatcher
>(
3221 0, MemoryVsLLTSizePredicateMatcher::LessThan
, 0);
3225 // No check required. We already did it by swapping the opcode.
3226 if (!SrcGIEquivOrNull
->isValueUnset("IfSignExtend") &&
3227 Predicate
.isSignExtLoad())
3230 // No check required. We already did it by swapping the opcode.
3231 if (!SrcGIEquivOrNull
->isValueUnset("IfZeroExtend") &&
3232 Predicate
.isZeroExtLoad())
3235 // No check required. G_STORE by itself is a non-extending store.
3236 if (Predicate
.isNonTruncStore())
3239 if (Predicate
.isLoad() || Predicate
.isStore() || Predicate
.isAtomic()) {
3240 if (Predicate
.getMemoryVT() != nullptr) {
3241 Optional
<LLTCodeGen
> MemTyOrNone
=
3242 MVTToLLT(getValueType(Predicate
.getMemoryVT()));
3245 return failedImport("MemVT could not be converted to LLT");
3247 // MMO's work in bytes so we must take care of unusual types like i1
3248 // don't round down.
3249 unsigned MemSizeInBits
=
3250 llvm::alignTo(MemTyOrNone
->get().getSizeInBits(), 8);
3252 InsnMatcher
.addPredicate
<MemorySizePredicateMatcher
>(
3253 0, MemSizeInBits
/ 8);
3258 if (Predicate
.isLoad() || Predicate
.isStore()) {
3259 // No check required. A G_LOAD/G_STORE is an unindexed load.
3260 if (Predicate
.isUnindexed())
3264 if (Predicate
.isAtomic()) {
3265 if (Predicate
.isAtomicOrderingMonotonic()) {
3266 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3270 if (Predicate
.isAtomicOrderingAcquire()) {
3271 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>("Acquire");
3274 if (Predicate
.isAtomicOrderingRelease()) {
3275 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>("Release");
3278 if (Predicate
.isAtomicOrderingAcquireRelease()) {
3279 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3283 if (Predicate
.isAtomicOrderingSequentiallyConsistent()) {
3284 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3285 "SequentiallyConsistent");
3289 if (Predicate
.isAtomicOrderingAcquireOrStronger()) {
3290 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3291 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger
);
3294 if (Predicate
.isAtomicOrderingWeakerThanAcquire()) {
3295 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3296 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan
);
3300 if (Predicate
.isAtomicOrderingReleaseOrStronger()) {
3301 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3302 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger
);
3305 if (Predicate
.isAtomicOrderingWeakerThanRelease()) {
3306 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>(
3307 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan
);
3312 if (Predicate
.hasGISelPredicateCode()) {
3313 InsnMatcher
.addPredicate
<GenericInstructionPredicateMatcher
>(Predicate
);
3317 return failedImport("Src pattern child has predicate (" +
3318 explainPredicates(Src
) + ")");
3320 if (SrcGIEquivOrNull
&& SrcGIEquivOrNull
->getValueAsBit("CheckMMOIsNonAtomic"))
3321 InsnMatcher
.addPredicate
<AtomicOrderingMMOPredicateMatcher
>("NotAtomic");
3323 if (Src
->isLeaf()) {
3324 Init
*SrcInit
= Src
->getLeafValue();
3325 if (IntInit
*SrcIntInit
= dyn_cast
<IntInit
>(SrcInit
)) {
3326 OperandMatcher
&OM
=
3327 InsnMatcher
.addOperand(OpIdx
++, Src
->getName(), TempOpIdx
);
3328 OM
.addPredicate
<LiteralIntOperandMatcher
>(SrcIntInit
->getValue());
3330 return failedImport(
3331 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3333 assert(SrcGIOrNull
&&
3334 "Expected to have already found an equivalent Instruction");
3335 if (SrcGIOrNull
->TheDef
->getName() == "G_CONSTANT" ||
3336 SrcGIOrNull
->TheDef
->getName() == "G_FCONSTANT") {
3337 // imm/fpimm still have operands but we don't need to do anything with it
3338 // here since we don't support ImmLeaf predicates yet. However, we still
3339 // need to note the hidden operand to get GIM_CheckNumOperands correct.
3340 InsnMatcher
.addOperand(OpIdx
++, "", TempOpIdx
);
3344 // Match the used operands (i.e. the children of the operator).
3345 for (unsigned i
= 0, e
= Src
->getNumChildren(); i
!= e
; ++i
) {
3346 TreePatternNode
*SrcChild
= Src
->getChild(i
);
3348 // SelectionDAG allows pointers to be represented with iN since it doesn't
3349 // distinguish between pointers and integers but they are different types in GlobalISel.
3350 // Coerce integers to pointers to address space 0 if the context indicates a pointer.
3351 bool OperandIsAPointer
= SrcGIOrNull
->isOperandAPointer(i
);
3353 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
3354 // following the defs is an intrinsic ID.
3355 if ((SrcGIOrNull
->TheDef
->getName() == "G_INTRINSIC" ||
3356 SrcGIOrNull
->TheDef
->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
3358 if (const CodeGenIntrinsic
*II
= Src
->getIntrinsicInfo(CGP
)) {
3359 OperandMatcher
&OM
=
3360 InsnMatcher
.addOperand(OpIdx
++, SrcChild
->getName(), TempOpIdx
);
3361 OM
.addPredicate
<IntrinsicIDOperandMatcher
>(II
);
3365 return failedImport("Expected IntInit containing instrinsic ID)");
3369 importChildMatcher(Rule
, InsnMatcher
, SrcChild
, OperandIsAPointer
,
3370 OpIdx
++, TempOpIdx
))
3371 return std::move(Error
);
3378 Error
GlobalISelEmitter::importComplexPatternOperandMatcher(
3379 OperandMatcher
&OM
, Record
*R
, unsigned &TempOpIdx
) const {
3380 const auto &ComplexPattern
= ComplexPatternEquivs
.find(R
);
3381 if (ComplexPattern
== ComplexPatternEquivs
.end())
3382 return failedImport("SelectionDAG ComplexPattern (" + R
->getName() +
3383 ") not mapped to GlobalISel");
3385 OM
.addPredicate
<ComplexPatternOperandMatcher
>(OM
, *ComplexPattern
->second
);
3387 return Error::success();
3390 Error
GlobalISelEmitter::importChildMatcher(RuleMatcher
&Rule
,
3391 InstructionMatcher
&InsnMatcher
,
3392 const TreePatternNode
*SrcChild
,
3393 bool OperandIsAPointer
,
3395 unsigned &TempOpIdx
) {
3396 OperandMatcher
&OM
=
3397 InsnMatcher
.addOperand(OpIdx
, SrcChild
->getName(), TempOpIdx
);
3398 if (OM
.isSameAsAnotherOperand())
3399 return Error::success();
3401 ArrayRef
<TypeSetByHwMode
> ChildTypes
= SrcChild
->getExtTypes();
3402 if (ChildTypes
.size() != 1)
3403 return failedImport("Src pattern child has multiple results");
3405 // Check MBB's before the type check since they are not a known type.
3406 if (!SrcChild
->isLeaf()) {
3407 if (SrcChild
->getOperator()->isSubClassOf("SDNode")) {
3408 auto &ChildSDNI
= CGP
.getSDNodeInfo(SrcChild
->getOperator());
3409 if (ChildSDNI
.getSDClassName() == "BasicBlockSDNode") {
3410 OM
.addPredicate
<MBBOperandMatcher
>();
3411 return Error::success();
3417 OM
.addTypeCheckPredicate(ChildTypes
.front(), OperandIsAPointer
))
3418 return failedImport(toString(std::move(Error
)) + " for Src operand (" +
3419 to_string(*SrcChild
) + ")");
3421 // Check for nested instructions.
3422 if (!SrcChild
->isLeaf()) {
3423 if (SrcChild
->getOperator()->isSubClassOf("ComplexPattern")) {
3424 // When a ComplexPattern is used as an operator, it should do the same
3425 // thing as when used as a leaf. However, the children of the operator
3426 // name the sub-operands that make up the complex operand and we must
3427 // prepare to reference them in the renderer too.
3428 unsigned RendererID
= TempOpIdx
;
3429 if (auto Error
= importComplexPatternOperandMatcher(
3430 OM
, SrcChild
->getOperator(), TempOpIdx
))
3433 for (unsigned i
= 0, e
= SrcChild
->getNumChildren(); i
!= e
; ++i
) {
3434 auto *SubOperand
= SrcChild
->getChild(i
);
3435 if (!SubOperand
->getName().empty()) {
3436 if (auto Error
= Rule
.defineComplexSubOperand(SubOperand
->getName(),
3437 SrcChild
->getOperator(),
3443 return Error::success();
3446 auto MaybeInsnOperand
= OM
.addPredicate
<InstructionOperandMatcher
>(
3447 InsnMatcher
.getRuleMatcher(), SrcChild
->getName());
3448 if (!MaybeInsnOperand
.hasValue()) {
3449 // This isn't strictly true. If the user were to provide exactly the same
3450 // matchers as the original operand then we could allow it. However, it's
3451 // simpler to not permit the redundant specification.
3452 return failedImport("Nested instruction cannot be the same as another operand");
3455 // Map the node to a gMIR instruction.
3456 InstructionOperandMatcher
&InsnOperand
= **MaybeInsnOperand
;
3457 auto InsnMatcherOrError
= createAndImportSelDAGMatcher(
3458 Rule
, InsnOperand
.getInsnMatcher(), SrcChild
, TempOpIdx
);
3459 if (auto Error
= InsnMatcherOrError
.takeError())
3462 return Error::success();
3465 if (SrcChild
->hasAnyPredicate())
3466 return failedImport("Src pattern child has unsupported predicate");
3468 // Check for constant immediates.
3469 if (auto *ChildInt
= dyn_cast
<IntInit
>(SrcChild
->getLeafValue())) {
3470 OM
.addPredicate
<ConstantIntOperandMatcher
>(ChildInt
->getValue());
3471 return Error::success();
3474 // Check for def's like register classes or ComplexPattern's.
3475 if (auto *ChildDefInit
= dyn_cast
<DefInit
>(SrcChild
->getLeafValue())) {
3476 auto *ChildRec
= ChildDefInit
->getDef();
3478 // Check for register classes.
3479 if (ChildRec
->isSubClassOf("RegisterClass") ||
3480 ChildRec
->isSubClassOf("RegisterOperand")) {
3481 OM
.addPredicate
<RegisterBankOperandMatcher
>(
3482 Target
.getRegisterClass(getInitValueAsRegClass(ChildDefInit
)));
3483 return Error::success();
3486 // Check for ValueType.
3487 if (ChildRec
->isSubClassOf("ValueType")) {
3488 // We already added a type check as standard practice so this doesn't need
3490 return Error::success();
3493 // Check for ComplexPattern's.
3494 if (ChildRec
->isSubClassOf("ComplexPattern"))
3495 return importComplexPatternOperandMatcher(OM
, ChildRec
, TempOpIdx
);
3497 if (ChildRec
->isSubClassOf("ImmLeaf")) {
3498 return failedImport(
3499 "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
3502 return failedImport(
3503 "Src pattern child def is an unsupported tablegen class");
3506 return failedImport("Src pattern child is an unsupported kind");
3509 Expected
<action_iterator
> GlobalISelEmitter::importExplicitUseRenderer(
3510 action_iterator InsertPt
, RuleMatcher
&Rule
, BuildMIAction
&DstMIBuilder
,
3511 TreePatternNode
*DstChild
) {
3513 const auto &SubOperand
= Rule
.getComplexSubOperand(DstChild
->getName());
3514 if (SubOperand
.hasValue()) {
3515 DstMIBuilder
.addRenderer
<RenderComplexPatternOperand
>(
3516 *std::get
<0>(*SubOperand
), DstChild
->getName(),
3517 std::get
<1>(*SubOperand
), std::get
<2>(*SubOperand
));
3521 if (!DstChild
->isLeaf()) {
3523 if (DstChild
->getOperator()->isSubClassOf("SDNodeXForm")) {
3524 auto Child
= DstChild
->getChild(0);
3525 auto I
= SDNodeXFormEquivs
.find(DstChild
->getOperator());
3526 if (I
!= SDNodeXFormEquivs
.end()) {
3527 DstMIBuilder
.addRenderer
<CustomRenderer
>(*I
->second
, Child
->getName());
3530 return failedImport("SDNodeXForm " + Child
->getName() +
3531 " has no custom renderer");
3534 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
3535 // inline, but in MI it's just another operand.
3536 if (DstChild
->getOperator()->isSubClassOf("SDNode")) {
3537 auto &ChildSDNI
= CGP
.getSDNodeInfo(DstChild
->getOperator());
3538 if (ChildSDNI
.getSDClassName() == "BasicBlockSDNode") {
3539 DstMIBuilder
.addRenderer
<CopyRenderer
>(DstChild
->getName());
3544 // Similarly, imm is an operator in TreePatternNode's view but must be
3545 // rendered as operands.
3546 // FIXME: The target should be able to choose sign-extended when appropriate
3548 if (DstChild
->getOperator()->getName() == "imm") {
3549 DstMIBuilder
.addRenderer
<CopyConstantAsImmRenderer
>(DstChild
->getName());
3551 } else if (DstChild
->getOperator()->getName() == "fpimm") {
3552 DstMIBuilder
.addRenderer
<CopyFConstantAsFPImmRenderer
>(
3553 DstChild
->getName());
3557 if (DstChild
->getOperator()->isSubClassOf("Instruction")) {
3558 ArrayRef
<TypeSetByHwMode
> ChildTypes
= DstChild
->getExtTypes();
3559 if (ChildTypes
.size() != 1)
3560 return failedImport("Dst pattern child has multiple results");
3562 Optional
<LLTCodeGen
> OpTyOrNone
= None
;
3563 if (ChildTypes
.front().isMachineValueType())
3565 MVTToLLT(ChildTypes
.front().getMachineValueType().SimpleTy
);
3567 return failedImport("Dst operand has an unsupported type");
3569 unsigned TempRegID
= Rule
.allocateTempRegID();
3570 InsertPt
= Rule
.insertAction
<MakeTempRegisterAction
>(
3571 InsertPt
, OpTyOrNone
.getValue(), TempRegID
);
3572 DstMIBuilder
.addRenderer
<TempRegRenderer
>(TempRegID
);
3574 auto InsertPtOrError
= createAndImportSubInstructionRenderer(
3575 ++InsertPt
, Rule
, DstChild
, TempRegID
);
3576 if (auto Error
= InsertPtOrError
.takeError())
3577 return std::move(Error
);
3578 return InsertPtOrError
.get();
3581 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild
));
3584 // It could be a specific immediate in which case we should just check for
3586 if (const IntInit
*ChildIntInit
=
3587 dyn_cast
<IntInit
>(DstChild
->getLeafValue())) {
3588 DstMIBuilder
.addRenderer
<ImmRenderer
>(ChildIntInit
->getValue());
3592 // Otherwise, we're looking for a bog-standard RegisterClass operand.
3593 if (auto *ChildDefInit
= dyn_cast
<DefInit
>(DstChild
->getLeafValue())) {
3594 auto *ChildRec
= ChildDefInit
->getDef();
3596 ArrayRef
<TypeSetByHwMode
> ChildTypes
= DstChild
->getExtTypes();
3597 if (ChildTypes
.size() != 1)
3598 return failedImport("Dst pattern child has multiple results");
3600 Optional
<LLTCodeGen
> OpTyOrNone
= None
;
3601 if (ChildTypes
.front().isMachineValueType())
3602 OpTyOrNone
= MVTToLLT(ChildTypes
.front().getMachineValueType().SimpleTy
);
3604 return failedImport("Dst operand has an unsupported type");
3606 if (ChildRec
->isSubClassOf("Register")) {
3607 DstMIBuilder
.addRenderer
<AddRegisterRenderer
>(ChildRec
);
3611 if (ChildRec
->isSubClassOf("RegisterClass") ||
3612 ChildRec
->isSubClassOf("RegisterOperand") ||
3613 ChildRec
->isSubClassOf("ValueType")) {
3614 if (ChildRec
->isSubClassOf("RegisterOperand") &&
3615 !ChildRec
->isValueUnset("GIZeroRegister")) {
3616 DstMIBuilder
.addRenderer
<CopyOrAddZeroRegRenderer
>(
3617 DstChild
->getName(), ChildRec
->getValueAsDef("GIZeroRegister"));
3621 DstMIBuilder
.addRenderer
<CopyRenderer
>(DstChild
->getName());
3625 if (ChildRec
->isSubClassOf("ComplexPattern")) {
3626 const auto &ComplexPattern
= ComplexPatternEquivs
.find(ChildRec
);
3627 if (ComplexPattern
== ComplexPatternEquivs
.end())
3628 return failedImport(
3629 "SelectionDAG ComplexPattern not mapped to GlobalISel");
3631 const OperandMatcher
&OM
= Rule
.getOperandMatcher(DstChild
->getName());
3632 DstMIBuilder
.addRenderer
<RenderComplexPatternOperand
>(
3633 *ComplexPattern
->second
, DstChild
->getName(),
3634 OM
.getAllocatedTemporariesBaseID());
3638 return failedImport(
3639 "Dst pattern child def is an unsupported tablegen class");
3642 return failedImport("Dst pattern child is an unsupported kind");
3645 Expected
<BuildMIAction
&> GlobalISelEmitter::createAndImportInstructionRenderer(
3646 RuleMatcher
&M
, const TreePatternNode
*Dst
) {
3647 auto InsertPtOrError
= createInstructionRenderer(M
.actions_end(), M
, Dst
);
3648 if (auto Error
= InsertPtOrError
.takeError())
3649 return std::move(Error
);
3651 action_iterator InsertPt
= InsertPtOrError
.get();
3652 BuildMIAction
&DstMIBuilder
= *static_cast<BuildMIAction
*>(InsertPt
->get());
3654 importExplicitDefRenderers(DstMIBuilder
);
3656 if (auto Error
= importExplicitUseRenderers(InsertPt
, M
, DstMIBuilder
, Dst
)
3658 return std::move(Error
);
3660 return DstMIBuilder
;
3663 Expected
<action_iterator
>
3664 GlobalISelEmitter::createAndImportSubInstructionRenderer(
3665 const action_iterator InsertPt
, RuleMatcher
&M
, const TreePatternNode
*Dst
,
3666 unsigned TempRegID
) {
3667 auto InsertPtOrError
= createInstructionRenderer(InsertPt
, M
, Dst
);
3669 // TODO: Assert there's exactly one result.
3671 if (auto Error
= InsertPtOrError
.takeError())
3672 return std::move(Error
);
3674 BuildMIAction
&DstMIBuilder
=
3675 *static_cast<BuildMIAction
*>(InsertPtOrError
.get()->get());
3677 // Assign the result to TempReg.
3678 DstMIBuilder
.addRenderer
<TempRegRenderer
>(TempRegID
, true);
3681 importExplicitUseRenderers(InsertPtOrError
.get(), M
, DstMIBuilder
, Dst
);
3682 if (auto Error
= InsertPtOrError
.takeError())
3683 return std::move(Error
);
3685 M
.insertAction
<ConstrainOperandsToDefinitionAction
>(InsertPt
,
3686 DstMIBuilder
.getInsnID());
3687 return InsertPtOrError
.get();
3690 Expected
<action_iterator
> GlobalISelEmitter::createInstructionRenderer(
3691 action_iterator InsertPt
, RuleMatcher
&M
, const TreePatternNode
*Dst
) {
3692 Record
*DstOp
= Dst
->getOperator();
3693 if (!DstOp
->isSubClassOf("Instruction")) {
3694 if (DstOp
->isSubClassOf("ValueType"))
3695 return failedImport(
3696 "Pattern operator isn't an instruction (it's a ValueType)");
3697 return failedImport("Pattern operator isn't an instruction");
3699 CodeGenInstruction
*DstI
= &Target
.getInstruction(DstOp
);
3701 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
3702 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
3703 if (DstI
->TheDef
->getName() == "COPY_TO_REGCLASS")
3704 DstI
= &Target
.getInstruction(RK
.getDef("COPY"));
3705 else if (DstI
->TheDef
->getName() == "EXTRACT_SUBREG")
3706 DstI
= &Target
.getInstruction(RK
.getDef("COPY"));
3707 else if (DstI
->TheDef
->getName() == "REG_SEQUENCE")
3708 return failedImport("Unable to emit REG_SEQUENCE");
3710 return M
.insertAction
<BuildMIAction
>(InsertPt
, M
.allocateOutputInsnID(),
3714 void GlobalISelEmitter::importExplicitDefRenderers(
3715 BuildMIAction
&DstMIBuilder
) {
3716 const CodeGenInstruction
*DstI
= DstMIBuilder
.getCGI();
3717 for (unsigned I
= 0; I
< DstI
->Operands
.NumDefs
; ++I
) {
3718 const CGIOperandList::OperandInfo
&DstIOperand
= DstI
->Operands
[I
];
3719 DstMIBuilder
.addRenderer
<CopyRenderer
>(DstIOperand
.Name
);
3723 Expected
<action_iterator
> GlobalISelEmitter::importExplicitUseRenderers(
3724 action_iterator InsertPt
, RuleMatcher
&M
, BuildMIAction
&DstMIBuilder
,
3725 const llvm::TreePatternNode
*Dst
) {
3726 const CodeGenInstruction
*DstI
= DstMIBuilder
.getCGI();
3727 CodeGenInstruction
*OrigDstI
= &Target
.getInstruction(Dst
->getOperator());
3729 // EXTRACT_SUBREG needs to use a subregister COPY.
3730 if (OrigDstI
->TheDef
->getName() == "EXTRACT_SUBREG") {
3731 if (!Dst
->getChild(0)->isLeaf())
3732 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
3734 if (DefInit
*SubRegInit
=
3735 dyn_cast
<DefInit
>(Dst
->getChild(1)->getLeafValue())) {
3736 Record
*RCDef
= getInitValueAsRegClass(Dst
->getChild(0)->getLeafValue());
3738 return failedImport("EXTRACT_SUBREG child #0 could not "
3739 "be coerced to a register class");
3741 CodeGenRegisterClass
*RC
= CGRegs
.getRegClass(RCDef
);
3742 CodeGenSubRegIndex
*SubIdx
= CGRegs
.getSubRegIdx(SubRegInit
->getDef());
3744 const auto &SrcRCDstRCPair
=
3745 RC
->getMatchingSubClassWithSubRegs(CGRegs
, SubIdx
);
3746 if (SrcRCDstRCPair
.hasValue()) {
3747 assert(SrcRCDstRCPair
->second
&& "Couldn't find a matching subclass");
3748 if (SrcRCDstRCPair
->first
!= RC
)
3749 return failedImport("EXTRACT_SUBREG requires an additional COPY");
3752 DstMIBuilder
.addRenderer
<CopySubRegRenderer
>(Dst
->getChild(0)->getName(),
3757 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
3760 // Render the explicit uses.
3761 unsigned DstINumUses
= OrigDstI
->Operands
.size() - OrigDstI
->Operands
.NumDefs
;
3762 unsigned ExpectedDstINumUses
= Dst
->getNumChildren();
3763 if (OrigDstI
->TheDef
->getName() == "COPY_TO_REGCLASS") {
3764 DstINumUses
--; // Ignore the class constraint.
3765 ExpectedDstINumUses
--;
3769 unsigned NumDefaultOps
= 0;
3770 for (unsigned I
= 0; I
!= DstINumUses
; ++I
) {
3771 const CGIOperandList::OperandInfo
&DstIOperand
=
3772 DstI
->Operands
[DstI
->Operands
.NumDefs
+ I
];
3774 // If the operand has default values, introduce them now.
3775 // FIXME: Until we have a decent test case that dictates we should do
3776 // otherwise, we're going to assume that operands with default values cannot
3777 // be specified in the patterns. Therefore, adding them will not cause us to
3778 // end up with too many rendered operands.
3779 if (DstIOperand
.Rec
->isSubClassOf("OperandWithDefaultOps")) {
3780 DagInit
*DefaultOps
= DstIOperand
.Rec
->getValueAsDag("DefaultOps");
3781 if (auto Error
= importDefaultOperandRenderers(
3782 InsertPt
, M
, DstMIBuilder
, DefaultOps
))
3783 return std::move(Error
);
3788 auto InsertPtOrError
= importExplicitUseRenderer(InsertPt
, M
, DstMIBuilder
,
3789 Dst
->getChild(Child
));
3790 if (auto Error
= InsertPtOrError
.takeError())
3791 return std::move(Error
);
3792 InsertPt
= InsertPtOrError
.get();
3796 if (NumDefaultOps
+ ExpectedDstINumUses
!= DstINumUses
)
3797 return failedImport("Expected " + llvm::to_string(DstINumUses
) +
3798 " used operands but found " +
3799 llvm::to_string(ExpectedDstINumUses
) +
3800 " explicit ones and " + llvm::to_string(NumDefaultOps
) +
3806 Error
GlobalISelEmitter::importDefaultOperandRenderers(
3807 action_iterator InsertPt
, RuleMatcher
&M
, BuildMIAction
&DstMIBuilder
,
3808 DagInit
*DefaultOps
) const {
3809 for (const auto *DefaultOp
: DefaultOps
->getArgs()) {
3810 Optional
<LLTCodeGen
> OpTyOrNone
= None
;
3812 // Look through ValueType operators.
3813 if (const DagInit
*DefaultDagOp
= dyn_cast
<DagInit
>(DefaultOp
)) {
3814 if (const DefInit
*DefaultDagOperator
=
3815 dyn_cast
<DefInit
>(DefaultDagOp
->getOperator())) {
3816 if (DefaultDagOperator
->getDef()->isSubClassOf("ValueType")) {
3817 OpTyOrNone
= MVTToLLT(getValueType(
3818 DefaultDagOperator
->getDef()));
3819 DefaultOp
= DefaultDagOp
->getArg(0);
3824 if (const DefInit
*DefaultDefOp
= dyn_cast
<DefInit
>(DefaultOp
)) {
3825 auto Def
= DefaultDefOp
->getDef();
3826 if (Def
->getName() == "undef_tied_input") {
3827 unsigned TempRegID
= M
.allocateTempRegID();
3828 M
.insertAction
<MakeTempRegisterAction
>(
3829 InsertPt
, OpTyOrNone
.getValue(), TempRegID
);
3830 InsertPt
= M
.insertAction
<BuildMIAction
>(
3831 InsertPt
, M
.allocateOutputInsnID(),
3832 &Target
.getInstruction(RK
.getDef("IMPLICIT_DEF")));
3833 BuildMIAction
&IDMIBuilder
= *static_cast<BuildMIAction
*>(
3835 IDMIBuilder
.addRenderer
<TempRegRenderer
>(TempRegID
);
3836 DstMIBuilder
.addRenderer
<TempRegRenderer
>(TempRegID
);
3838 DstMIBuilder
.addRenderer
<AddRegisterRenderer
>(Def
);
3843 if (const IntInit
*DefaultIntOp
= dyn_cast
<IntInit
>(DefaultOp
)) {
3844 DstMIBuilder
.addRenderer
<ImmRenderer
>(DefaultIntOp
->getValue());
3848 return failedImport("Could not add default op");
3851 return Error::success();
3854 Error
GlobalISelEmitter::importImplicitDefRenderers(
3855 BuildMIAction
&DstMIBuilder
,
3856 const std::vector
<Record
*> &ImplicitDefs
) const {
3857 if (!ImplicitDefs
.empty())
3858 return failedImport("Pattern defines a physical register");
3859 return Error::success();
3862 Expected
<RuleMatcher
> GlobalISelEmitter::runOnPattern(const PatternToMatch
&P
) {
3863 // Keep track of the matchers and actions to emit.
3864 int Score
= P
.getPatternComplexity(CGP
);
3865 RuleMatcher
M(P
.getSrcRecord()->getLoc());
3866 RuleMatcherScores
[M
.getRuleID()] = Score
;
3867 M
.addAction
<DebugCommentAction
>(llvm::to_string(*P
.getSrcPattern()) +
3869 llvm::to_string(*P
.getDstPattern()));
3871 if (auto Error
= importRulePredicates(M
, P
.getPredicates()))
3872 return std::move(Error
);
3874 // Next, analyze the pattern operators.
3875 TreePatternNode
*Src
= P
.getSrcPattern();
3876 TreePatternNode
*Dst
= P
.getDstPattern();
3878 // If the root of either pattern isn't a simple operator, ignore it.
3879 if (auto Err
= isTrivialOperatorNode(Dst
))
3880 return failedImport("Dst pattern root isn't a trivial operator (" +
3881 toString(std::move(Err
)) + ")");
3882 if (auto Err
= isTrivialOperatorNode(Src
))
3883 return failedImport("Src pattern root isn't a trivial operator (" +
3884 toString(std::move(Err
)) + ")");
3886 // The different predicates and matchers created during
3887 // addInstructionMatcher use the RuleMatcher M to set up their
3888 // instruction ID (InsnVarID) that are going to be used when
3889 // M is going to be emitted.
3890 // However, the code doing the emission still relies on the IDs
3891 // returned during that process by the RuleMatcher when issuing
3892 // the recordInsn opcodes.
3894 // 1. The order in which we created the predicates
3895 // and such must be the same as the order in which we emit them,
3897 // 2. We need to reset the generation of the IDs in M somewhere between
3898 // addInstructionMatcher and emit
3900 // FIXME: Long term, we don't want to have to rely on this implicit
3901 // naming being the same. One possible solution would be to have
3902 // explicit operator for operation capture and reference those.
3903 // The plus side is that it would expose opportunities to share
3904 // the capture accross rules. The downside is that it would
3905 // introduce a dependency between predicates (captures must happen
3906 // before their first use.)
3907 InstructionMatcher
&InsnMatcherTemp
= M
.addInstructionMatcher(Src
->getName());
3908 unsigned TempOpIdx
= 0;
3909 auto InsnMatcherOrError
=
3910 createAndImportSelDAGMatcher(M
, InsnMatcherTemp
, Src
, TempOpIdx
);
3911 if (auto Error
= InsnMatcherOrError
.takeError())
3912 return std::move(Error
);
3913 InstructionMatcher
&InsnMatcher
= InsnMatcherOrError
.get();
3915 if (Dst
->isLeaf()) {
3916 Record
*RCDef
= getInitValueAsRegClass(Dst
->getLeafValue());
3918 const CodeGenRegisterClass
&RC
= Target
.getRegisterClass(RCDef
);
3920 // We need to replace the def and all its uses with the specified
3921 // operand. However, we must also insert COPY's wherever needed.
3922 // For now, emit a copy and let the register allocator clean up.
3923 auto &DstI
= Target
.getInstruction(RK
.getDef("COPY"));
3924 const auto &DstIOperand
= DstI
.Operands
[0];
3926 OperandMatcher
&OM0
= InsnMatcher
.getOperand(0);
3927 OM0
.setSymbolicName(DstIOperand
.Name
);
3928 M
.defineOperand(OM0
.getSymbolicName(), OM0
);
3929 OM0
.addPredicate
<RegisterBankOperandMatcher
>(RC
);
3931 auto &DstMIBuilder
=
3932 M
.addAction
<BuildMIAction
>(M
.allocateOutputInsnID(), &DstI
);
3933 DstMIBuilder
.addRenderer
<CopyRenderer
>(DstIOperand
.Name
);
3934 DstMIBuilder
.addRenderer
<CopyRenderer
>(Dst
->getName());
3935 M
.addAction
<ConstrainOperandToRegClassAction
>(0, 0, RC
);
3937 // We're done with this pattern! It's eligible for GISel emission; return
3939 ++NumPatternImported
;
3940 return std::move(M
);
3943 return failedImport("Dst pattern root isn't a known leaf");
3946 // Start with the defined operands (i.e., the results of the root operator).
3947 Record
*DstOp
= Dst
->getOperator();
3948 if (!DstOp
->isSubClassOf("Instruction"))
3949 return failedImport("Pattern operator isn't an instruction");
3951 auto &DstI
= Target
.getInstruction(DstOp
);
3952 if (DstI
.Operands
.NumDefs
!= Src
->getExtTypes().size())
3953 return failedImport("Src pattern results and dst MI defs are different (" +
3954 to_string(Src
->getExtTypes().size()) + " def(s) vs " +
3955 to_string(DstI
.Operands
.NumDefs
) + " def(s))");
3957 // The root of the match also has constraints on the register bank so that it
3958 // matches the result instruction.
3960 for (const TypeSetByHwMode
&VTy
: Src
->getExtTypes()) {
3963 const auto &DstIOperand
= DstI
.Operands
[OpIdx
];
3964 Record
*DstIOpRec
= DstIOperand
.Rec
;
3965 if (DstI
.TheDef
->getName() == "COPY_TO_REGCLASS") {
3966 DstIOpRec
= getInitValueAsRegClass(Dst
->getChild(1)->getLeafValue());
3968 if (DstIOpRec
== nullptr)
3969 return failedImport(
3970 "COPY_TO_REGCLASS operand #1 isn't a register class");
3971 } else if (DstI
.TheDef
->getName() == "EXTRACT_SUBREG") {
3972 if (!Dst
->getChild(0)->isLeaf())
3973 return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
3975 // We can assume that a subregister is in the same bank as it's super
3977 DstIOpRec
= getInitValueAsRegClass(Dst
->getChild(0)->getLeafValue());
3979 if (DstIOpRec
== nullptr)
3980 return failedImport(
3981 "EXTRACT_SUBREG operand #0 isn't a register class");
3982 } else if (DstIOpRec
->isSubClassOf("RegisterOperand"))
3983 DstIOpRec
= DstIOpRec
->getValueAsDef("RegClass");
3984 else if (!DstIOpRec
->isSubClassOf("RegisterClass"))
3985 return failedImport("Dst MI def isn't a register class" +
3988 OperandMatcher
&OM
= InsnMatcher
.getOperand(OpIdx
);
3989 OM
.setSymbolicName(DstIOperand
.Name
);
3990 M
.defineOperand(OM
.getSymbolicName(), OM
);
3991 OM
.addPredicate
<RegisterBankOperandMatcher
>(
3992 Target
.getRegisterClass(DstIOpRec
));
3996 auto DstMIBuilderOrError
= createAndImportInstructionRenderer(M
, Dst
);
3997 if (auto Error
= DstMIBuilderOrError
.takeError())
3998 return std::move(Error
);
3999 BuildMIAction
&DstMIBuilder
= DstMIBuilderOrError
.get();
4001 // Render the implicit defs.
4002 // These are only added to the root of the result.
4003 if (auto Error
= importImplicitDefRenderers(DstMIBuilder
, P
.getDstRegs()))
4004 return std::move(Error
);
4006 DstMIBuilder
.chooseInsnToMutate(M
);
4008 // Constrain the registers to classes. This is normally derived from the
4009 // emitted instruction but a few instructions require special handling.
4010 if (DstI
.TheDef
->getName() == "COPY_TO_REGCLASS") {
4011 // COPY_TO_REGCLASS does not provide operand constraints itself but the
4012 // result is constrained to the class given by the second child.
4014 getInitValueAsRegClass(Dst
->getChild(1)->getLeafValue());
4016 if (DstIOpRec
== nullptr)
4017 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
4019 M
.addAction
<ConstrainOperandToRegClassAction
>(
4020 0, 0, Target
.getRegisterClass(DstIOpRec
));
4022 // We're done with this pattern! It's eligible for GISel emission; return
4024 ++NumPatternImported
;
4025 return std::move(M
);
4028 if (DstI
.TheDef
->getName() == "EXTRACT_SUBREG") {
4029 // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4030 // instructions, the result register class is controlled by the
4031 // subregisters of the operand. As a result, we must constrain the result
4032 // class rather than check that it's already the right one.
4033 if (!Dst
->getChild(0)->isLeaf())
4034 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4036 DefInit
*SubRegInit
= dyn_cast
<DefInit
>(Dst
->getChild(1)->getLeafValue());
4038 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4040 // Constrain the result to the same register bank as the operand.
4042 getInitValueAsRegClass(Dst
->getChild(0)->getLeafValue());
4044 if (DstIOpRec
== nullptr)
4045 return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
4047 CodeGenSubRegIndex
*SubIdx
= CGRegs
.getSubRegIdx(SubRegInit
->getDef());
4048 CodeGenRegisterClass
*SrcRC
= CGRegs
.getRegClass(DstIOpRec
);
4050 // It would be nice to leave this constraint implicit but we're required
4051 // to pick a register class so constrain the result to a register class
4052 // that can hold the correct MVT.
4054 // FIXME: This may introduce an extra copy if the chosen class doesn't
4055 // actually contain the subregisters.
4056 assert(Src
->getExtTypes().size() == 1 &&
4057 "Expected Src of EXTRACT_SUBREG to have one result type");
4059 const auto &SrcRCDstRCPair
=
4060 SrcRC
->getMatchingSubClassWithSubRegs(CGRegs
, SubIdx
);
4061 assert(SrcRCDstRCPair
->second
&& "Couldn't find a matching subclass");
4062 M
.addAction
<ConstrainOperandToRegClassAction
>(0, 0, *SrcRCDstRCPair
->second
);
4063 M
.addAction
<ConstrainOperandToRegClassAction
>(0, 1, *SrcRCDstRCPair
->first
);
4065 // We're done with this pattern! It's eligible for GISel emission; return
4067 ++NumPatternImported
;
4068 return std::move(M
);
4071 M
.addAction
<ConstrainOperandsToDefinitionAction
>(0);
4073 // We're done with this pattern! It's eligible for GISel emission; return it.
4074 ++NumPatternImported
;
4075 return std::move(M
);
4078 // Emit imm predicate table and an enum to reference them with.
4079 // The 'Predicate_' part of the name is redundant but eliminating it is more
4080 // trouble than it's worth.
4081 void GlobalISelEmitter::emitCxxPredicateFns(
4082 raw_ostream
&OS
, StringRef CodeFieldName
, StringRef TypeIdentifier
,
4083 StringRef ArgType
, StringRef ArgName
, StringRef AdditionalDeclarations
,
4084 std::function
<bool(const Record
*R
)> Filter
) {
4085 std::vector
<const Record
*> MatchedRecords
;
4086 const auto &Defs
= RK
.getAllDerivedDefinitions("PatFrag");
4087 std::copy_if(Defs
.begin(), Defs
.end(), std::back_inserter(MatchedRecords
),
4088 [&](Record
*Record
) {
4089 return !Record
->getValueAsString(CodeFieldName
).empty() &&
4093 if (!MatchedRecords
.empty()) {
4094 OS
<< "// PatFrag predicates.\n"
4096 std::string EnumeratorSeparator
=
4097 (" = GIPFP_" + TypeIdentifier
+ "_Invalid + 1,\n").str();
4098 for (const auto *Record
: MatchedRecords
) {
4099 OS
<< " GIPFP_" << TypeIdentifier
<< "_Predicate_" << Record
->getName()
4100 << EnumeratorSeparator
;
4101 EnumeratorSeparator
= ",\n";
4106 OS
<< "bool " << Target
.getName() << "InstructionSelector::test" << ArgName
4107 << "Predicate_" << TypeIdentifier
<< "(unsigned PredicateID, " << ArgType
<< " "
4108 << ArgName
<< ") const {\n"
4109 << AdditionalDeclarations
;
4110 if (!AdditionalDeclarations
.empty())
4112 if (!MatchedRecords
.empty())
4113 OS
<< " switch (PredicateID) {\n";
4114 for (const auto *Record
: MatchedRecords
) {
4115 OS
<< " case GIPFP_" << TypeIdentifier
<< "_Predicate_"
4116 << Record
->getName() << ": {\n"
4117 << " " << Record
->getValueAsString(CodeFieldName
) << "\n"
4118 << " llvm_unreachable(\"" << CodeFieldName
4119 << " should have returned\");\n"
4120 << " return false;\n"
4123 if (!MatchedRecords
.empty())
4125 OS
<< " llvm_unreachable(\"Unknown predicate\");\n"
4126 << " return false;\n"
4130 void GlobalISelEmitter::emitImmPredicateFns(
4131 raw_ostream
&OS
, StringRef TypeIdentifier
, StringRef ArgType
,
4132 std::function
<bool(const Record
*R
)> Filter
) {
4133 return emitCxxPredicateFns(OS
, "ImmediateCode", TypeIdentifier
, ArgType
,
4137 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream
&OS
) {
4138 return emitCxxPredicateFns(
4139 OS
, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
4140 " const MachineFunction &MF = *MI.getParent()->getParent();\n"
4141 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4143 [](const Record
*R
) { return true; });
4146 template <class GroupT
>
4147 std::vector
<Matcher
*> GlobalISelEmitter::optimizeRules(
4148 ArrayRef
<Matcher
*> Rules
,
4149 std::vector
<std::unique_ptr
<Matcher
>> &MatcherStorage
) {
4151 std::vector
<Matcher
*> OptRules
;
4152 std::unique_ptr
<GroupT
> CurrentGroup
= make_unique
<GroupT
>();
4153 assert(CurrentGroup
->empty() && "Newly created group isn't empty!");
4154 unsigned NumGroups
= 0;
4156 auto ProcessCurrentGroup
= [&]() {
4157 if (CurrentGroup
->empty())
4158 // An empty group is good to be reused:
4161 // If the group isn't large enough to provide any benefit, move all the
4162 // added rules out of it and make sure to re-create the group to properly
4163 // re-initialize it:
4164 if (CurrentGroup
->size() < 2)
4165 for (Matcher
*M
: CurrentGroup
->matchers())
4166 OptRules
.push_back(M
);
4168 CurrentGroup
->finalize();
4169 OptRules
.push_back(CurrentGroup
.get());
4170 MatcherStorage
.emplace_back(std::move(CurrentGroup
));
4173 CurrentGroup
= make_unique
<GroupT
>();
4175 for (Matcher
*Rule
: Rules
) {
4176 // Greedily add as many matchers as possible to the current group:
4177 if (CurrentGroup
->addMatcher(*Rule
))
4180 ProcessCurrentGroup();
4181 assert(CurrentGroup
->empty() && "A group wasn't properly re-initialized");
4183 // Try to add the pending matcher to a newly created empty group:
4184 if (!CurrentGroup
->addMatcher(*Rule
))
4185 // If we couldn't add the matcher to an empty group, that group type
4186 // doesn't support that kind of matchers at all, so just skip it:
4187 OptRules
.push_back(Rule
);
4189 ProcessCurrentGroup();
4191 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups
<< "\n");
4192 assert(CurrentGroup
->empty() && "The last group wasn't properly processed");
4197 GlobalISelEmitter::buildMatchTable(MutableArrayRef
<RuleMatcher
> Rules
,
4198 bool Optimize
, bool WithCoverage
) {
4199 std::vector
<Matcher
*> InputRules
;
4200 for (Matcher
&Rule
: Rules
)
4201 InputRules
.push_back(&Rule
);
4204 return MatchTable::buildTable(InputRules
, WithCoverage
);
4206 unsigned CurrentOrdering
= 0;
4207 StringMap
<unsigned> OpcodeOrder
;
4208 for (RuleMatcher
&Rule
: Rules
) {
4209 const StringRef Opcode
= Rule
.getOpcode();
4210 assert(!Opcode
.empty() && "Didn't expect an undefined opcode");
4211 if (OpcodeOrder
.count(Opcode
) == 0)
4212 OpcodeOrder
[Opcode
] = CurrentOrdering
++;
4215 std::stable_sort(InputRules
.begin(), InputRules
.end(),
4216 [&OpcodeOrder
](const Matcher
*A
, const Matcher
*B
) {
4217 auto *L
= static_cast<const RuleMatcher
*>(A
);
4218 auto *R
= static_cast<const RuleMatcher
*>(B
);
4219 return std::make_tuple(OpcodeOrder
[L
->getOpcode()],
4220 L
->getNumOperands()) <
4221 std::make_tuple(OpcodeOrder
[R
->getOpcode()],
4222 R
->getNumOperands());
4225 for (Matcher
*Rule
: InputRules
)
4228 std::vector
<std::unique_ptr
<Matcher
>> MatcherStorage
;
4229 std::vector
<Matcher
*> OptRules
=
4230 optimizeRules
<GroupMatcher
>(InputRules
, MatcherStorage
);
4232 for (Matcher
*Rule
: OptRules
)
4235 OptRules
= optimizeRules
<SwitchMatcher
>(OptRules
, MatcherStorage
);
4237 return MatchTable::buildTable(OptRules
, WithCoverage
);
4240 void GroupMatcher::optimize() {
4241 // Make sure we only sort by a specific predicate within a range of rules that
4242 // all have that predicate checked against a specific value (not a wildcard):
4243 auto F
= Matchers
.begin();
4245 auto E
= Matchers
.end();
4248 auto *R
= static_cast<RuleMatcher
*>(*T
);
4249 if (!R
->getFirstConditionAsRootType().get().isValid())
4253 std::stable_sort(F
, T
, [](Matcher
*A
, Matcher
*B
) {
4254 auto *L
= static_cast<RuleMatcher
*>(A
);
4255 auto *R
= static_cast<RuleMatcher
*>(B
);
4256 return L
->getFirstConditionAsRootType() <
4257 R
->getFirstConditionAsRootType();
4262 GlobalISelEmitter::optimizeRules
<GroupMatcher
>(Matchers
, MatcherStorage
)
4264 GlobalISelEmitter::optimizeRules
<SwitchMatcher
>(Matchers
, MatcherStorage
)
4268 void GlobalISelEmitter::run(raw_ostream
&OS
) {
4269 if (!UseCoverageFile
.empty()) {
4270 RuleCoverage
= CodeGenCoverage();
4271 auto RuleCoverageBufOrErr
= MemoryBuffer::getFile(UseCoverageFile
);
4272 if (!RuleCoverageBufOrErr
) {
4273 PrintWarning(SMLoc(), "Missing rule coverage data");
4274 RuleCoverage
= None
;
4276 if (!RuleCoverage
->parse(*RuleCoverageBufOrErr
.get(), Target
.getName())) {
4277 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
4278 RuleCoverage
= None
;
4283 // Track the run-time opcode values
4284 gatherOpcodeValues();
4285 // Track the run-time LLT ID values
4286 gatherTypeIDValues();
4288 // Track the GINodeEquiv definitions.
4291 emitSourceFileHeader(("Global Instruction Selector for the " +
4292 Target
.getName() + " target").str(), OS
);
4293 std::vector
<RuleMatcher
> Rules
;
4294 // Look through the SelectionDAG patterns we found, possibly emitting some.
4295 for (const PatternToMatch
&Pat
: CGP
.ptms()) {
4298 auto MatcherOrErr
= runOnPattern(Pat
);
4300 // The pattern analysis can fail, indicating an unsupported pattern.
4301 // Report that if we've been asked to do so.
4302 if (auto Err
= MatcherOrErr
.takeError()) {
4303 if (WarnOnSkippedPatterns
) {
4304 PrintWarning(Pat
.getSrcRecord()->getLoc(),
4305 "Skipped pattern: " + toString(std::move(Err
)));
4307 consumeError(std::move(Err
));
4309 ++NumPatternImportsSkipped
;
4314 if (RuleCoverage
->isCovered(MatcherOrErr
->getRuleID()))
4315 ++NumPatternsTested
;
4317 PrintWarning(Pat
.getSrcRecord()->getLoc(),
4318 "Pattern is not covered by a test");
4320 Rules
.push_back(std::move(MatcherOrErr
.get()));
4323 // Comparison function to order records by name.
4324 auto orderByName
= [](const Record
*A
, const Record
*B
) {
4325 return A
->getName() < B
->getName();
4328 std::vector
<Record
*> ComplexPredicates
=
4329 RK
.getAllDerivedDefinitions("GIComplexOperandMatcher");
4330 llvm::sort(ComplexPredicates
, orderByName
);
4332 std::vector
<Record
*> CustomRendererFns
=
4333 RK
.getAllDerivedDefinitions("GICustomOperandRenderer");
4334 llvm::sort(CustomRendererFns
, orderByName
);
4336 unsigned MaxTemporaries
= 0;
4337 for (const auto &Rule
: Rules
)
4338 MaxTemporaries
= std::max(MaxTemporaries
, Rule
.countRendererFns());
4340 OS
<< "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
4341 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures
.size()
4343 << "using PredicateBitset = "
4344 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
4345 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
4347 OS
<< "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
4348 << " mutable MatcherState State;\n"
4350 "ComplexRendererFns("
4352 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
4354 << " typedef void(" << Target
.getName()
4355 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
4358 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
4359 "CustomRendererFn> "
4361 OS
<< " static " << Target
.getName()
4362 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
4363 << " static " << Target
.getName()
4364 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
4365 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
4367 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
4369 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
4370 "&Imm) const override;\n"
4371 << " const int64_t *getMatchTable() const override;\n"
4372 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
4374 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
4376 OS
<< "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
4377 << ", State(" << MaxTemporaries
<< "),\n"
4378 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
4379 << ", ComplexPredicateFns, CustomRenderers)\n"
4380 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
4382 OS
<< "#ifdef GET_GLOBALISEL_IMPL\n";
4383 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures
,
4386 // Separate subtarget features by how often they must be recomputed.
4387 SubtargetFeatureInfoMap ModuleFeatures
;
4388 std::copy_if(SubtargetFeatures
.begin(), SubtargetFeatures
.end(),
4389 std::inserter(ModuleFeatures
, ModuleFeatures
.end()),
4390 [](const SubtargetFeatureInfoMap::value_type
&X
) {
4391 return !X
.second
.mustRecomputePerFunction();
4393 SubtargetFeatureInfoMap FunctionFeatures
;
4394 std::copy_if(SubtargetFeatures
.begin(), SubtargetFeatures
.end(),
4395 std::inserter(FunctionFeatures
, FunctionFeatures
.end()),
4396 [](const SubtargetFeatureInfoMap::value_type
&X
) {
4397 return X
.second
.mustRecomputePerFunction();
4400 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4401 Target
.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
4402 ModuleFeatures
, OS
);
4403 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4404 Target
.getName(), "InstructionSelector",
4405 "computeAvailableFunctionFeatures", FunctionFeatures
, OS
,
4406 "const MachineFunction *MF");
4408 // Emit a table containing the LLT objects needed by the matcher and an enum
4409 // for the matcher to reference them with.
4410 std::vector
<LLTCodeGen
> TypeObjects
;
4411 for (const auto &Ty
: KnownTypes
)
4412 TypeObjects
.push_back(Ty
);
4413 llvm::sort(TypeObjects
);
4414 OS
<< "// LLT Objects.\n"
4416 for (const auto &TypeObject
: TypeObjects
) {
4418 TypeObject
.emitCxxEnumValue(OS
);
4422 OS
<< "const static size_t NumTypeObjects = " << TypeObjects
.size() << ";\n"
4423 << "const static LLT TypeObjects[] = {\n";
4424 for (const auto &TypeObject
: TypeObjects
) {
4426 TypeObject
.emitCxxConstructorCall(OS
);
4431 // Emit a table containing the PredicateBitsets objects needed by the matcher
4432 // and an enum for the matcher to reference them with.
4433 std::vector
<std::vector
<Record
*>> FeatureBitsets
;
4434 for (auto &Rule
: Rules
)
4435 FeatureBitsets
.push_back(Rule
.getRequiredFeatures());
4436 llvm::sort(FeatureBitsets
, [&](const std::vector
<Record
*> &A
,
4437 const std::vector
<Record
*> &B
) {
4438 if (A
.size() < B
.size())
4440 if (A
.size() > B
.size())
4442 for (const auto &Pair
: zip(A
, B
)) {
4443 if (std::get
<0>(Pair
)->getName() < std::get
<1>(Pair
)->getName())
4445 if (std::get
<0>(Pair
)->getName() > std::get
<1>(Pair
)->getName())
4450 FeatureBitsets
.erase(
4451 std::unique(FeatureBitsets
.begin(), FeatureBitsets
.end()),
4452 FeatureBitsets
.end());
4453 OS
<< "// Feature bitsets.\n"
4455 << " GIFBS_Invalid,\n";
4456 for (const auto &FeatureBitset
: FeatureBitsets
) {
4457 if (FeatureBitset
.empty())
4459 OS
<< " " << getNameForFeatureBitset(FeatureBitset
) << ",\n";
4462 << "const static PredicateBitset FeatureBitsets[] {\n"
4463 << " {}, // GIFBS_Invalid\n";
4464 for (const auto &FeatureBitset
: FeatureBitsets
) {
4465 if (FeatureBitset
.empty())
4468 for (const auto &Feature
: FeatureBitset
) {
4469 const auto &I
= SubtargetFeatures
.find(Feature
);
4470 assert(I
!= SubtargetFeatures
.end() && "Didn't import predicate?");
4471 OS
<< I
->second
.getEnumBitName() << ", ";
4477 // Emit complex predicate table and an enum to reference them with.
4478 OS
<< "// ComplexPattern predicates.\n"
4480 << " GICP_Invalid,\n";
4481 for (const auto &Record
: ComplexPredicates
)
4482 OS
<< " GICP_" << Record
->getName() << ",\n";
4484 << "// See constructor for table contents\n\n";
4486 emitImmPredicateFns(OS
, "I64", "int64_t", [](const Record
*R
) {
4488 return !R
->getValueAsBitOrUnset("IsAPFloat", Unset
) &&
4489 !R
->getValueAsBit("IsAPInt");
4491 emitImmPredicateFns(OS
, "APFloat", "const APFloat &", [](const Record
*R
) {
4493 return R
->getValueAsBitOrUnset("IsAPFloat", Unset
);
4495 emitImmPredicateFns(OS
, "APInt", "const APInt &", [](const Record
*R
) {
4496 return R
->getValueAsBit("IsAPInt");
4498 emitMIPredicateFns(OS
);
4501 OS
<< Target
.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
4502 << Target
.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
4503 << " nullptr, // GICP_Invalid\n";
4504 for (const auto &Record
: ComplexPredicates
)
4505 OS
<< " &" << Target
.getName()
4506 << "InstructionSelector::" << Record
->getValueAsString("MatcherFn")
4507 << ", // " << Record
->getName() << "\n";
4510 OS
<< "// Custom renderers.\n"
4512 << " GICR_Invalid,\n";
4513 for (const auto &Record
: CustomRendererFns
)
4514 OS
<< " GICR_" << Record
->getValueAsString("RendererFn") << ", \n";
4517 OS
<< Target
.getName() << "InstructionSelector::CustomRendererFn\n"
4518 << Target
.getName() << "InstructionSelector::CustomRenderers[] = {\n"
4519 << " nullptr, // GICP_Invalid\n";
4520 for (const auto &Record
: CustomRendererFns
)
4521 OS
<< " &" << Target
.getName()
4522 << "InstructionSelector::" << Record
->getValueAsString("RendererFn")
4523 << ", // " << Record
->getName() << "\n";
4526 llvm::stable_sort(Rules
, [&](const RuleMatcher
&A
, const RuleMatcher
&B
) {
4527 int ScoreA
= RuleMatcherScores
[A
.getRuleID()];
4528 int ScoreB
= RuleMatcherScores
[B
.getRuleID()];
4529 if (ScoreA
> ScoreB
)
4531 if (ScoreB
> ScoreA
)
4533 if (A
.isHigherPriorityThan(B
)) {
4534 assert(!B
.isHigherPriorityThan(A
) && "Cannot be more important "
4535 "and less important at "
4542 OS
<< "bool " << Target
.getName()
4543 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
4544 "&CoverageInfo) const {\n"
4545 << " MachineFunction &MF = *I.getParent()->getParent();\n"
4546 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4547 << " // FIXME: This should be computed on a per-function basis rather "
4549 << " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
4551 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
4552 << " NewMIVector OutMIs;\n"
4553 << " State.MIs.clear();\n"
4554 << " State.MIs.push_back(&I);\n\n"
4555 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
4556 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
4557 << ", CoverageInfo)) {\n"
4558 << " return true;\n"
4560 << " return false;\n"
4563 const MatchTable Table
=
4564 buildMatchTable(Rules
, OptimizeMatchTable
, GenerateCoverage
);
4565 OS
<< "const int64_t *" << Target
.getName()
4566 << "InstructionSelector::getMatchTable() const {\n";
4567 Table
.emitDeclaration(OS
);
4571 OS
<< "#endif // ifdef GET_GLOBALISEL_IMPL\n";
4573 OS
<< "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
4574 << "PredicateBitset AvailableModuleFeatures;\n"
4575 << "mutable PredicateBitset AvailableFunctionFeatures;\n"
4576 << "PredicateBitset getAvailableFeatures() const {\n"
4577 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
4579 << "PredicateBitset\n"
4580 << "computeAvailableModuleFeatures(const " << Target
.getName()
4581 << "Subtarget *Subtarget) const;\n"
4582 << "PredicateBitset\n"
4583 << "computeAvailableFunctionFeatures(const " << Target
.getName()
4584 << "Subtarget *Subtarget,\n"
4585 << " const MachineFunction *MF) const;\n"
4586 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
4588 OS
<< "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
4589 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
4590 << "AvailableFunctionFeatures()\n"
4591 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
4594 void GlobalISelEmitter::declareSubtargetFeature(Record
*Predicate
) {
4595 if (SubtargetFeatures
.count(Predicate
) == 0)
4596 SubtargetFeatures
.emplace(
4597 Predicate
, SubtargetFeatureInfo(Predicate
, SubtargetFeatures
.size()));
4600 void RuleMatcher::optimize() {
4601 for (auto &Item
: InsnVariableIDs
) {
4602 InstructionMatcher
&InsnMatcher
= *Item
.first
;
4603 for (auto &OM
: InsnMatcher
.operands()) {
4604 // Complex Patterns are usually expensive and they relatively rarely fail
4605 // on their own: more often we end up throwing away all the work done by a
4606 // matching part of a complex pattern because some other part of the
4607 // enclosing pattern didn't match. All of this makes it beneficial to
4608 // delay complex patterns until the very end of the rule matching,
4609 // especially for targets having lots of complex patterns.
4610 for (auto &OP
: OM
->predicates())
4611 if (isa
<ComplexPatternOperandMatcher
>(OP
))
4612 EpilogueMatchers
.emplace_back(std::move(OP
));
4613 OM
->eraseNullPredicates();
4615 InsnMatcher
.optimize();
4617 llvm::sort(EpilogueMatchers
, [](const std::unique_ptr
<PredicateMatcher
> &L
,
4618 const std::unique_ptr
<PredicateMatcher
> &R
) {
4619 return std::make_tuple(L
->getKind(), L
->getInsnVarID(), L
->getOpIdx()) <
4620 std::make_tuple(R
->getKind(), R
->getInsnVarID(), R
->getOpIdx());
4624 bool RuleMatcher::hasFirstCondition() const {
4625 if (insnmatchers_empty())
4627 InstructionMatcher
&Matcher
= insnmatchers_front();
4628 if (!Matcher
.predicates_empty())
4630 for (auto &OM
: Matcher
.operands())
4631 for (auto &OP
: OM
->predicates())
4632 if (!isa
<InstructionOperandMatcher
>(OP
))
4637 const PredicateMatcher
&RuleMatcher::getFirstCondition() const {
4638 assert(!insnmatchers_empty() &&
4639 "Trying to get a condition from an empty RuleMatcher");
4641 InstructionMatcher
&Matcher
= insnmatchers_front();
4642 if (!Matcher
.predicates_empty())
4643 return **Matcher
.predicates_begin();
4644 // If there is no more predicate on the instruction itself, look at its
4646 for (auto &OM
: Matcher
.operands())
4647 for (auto &OP
: OM
->predicates())
4648 if (!isa
<InstructionOperandMatcher
>(OP
))
4651 llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
4655 std::unique_ptr
<PredicateMatcher
> RuleMatcher::popFirstCondition() {
4656 assert(!insnmatchers_empty() &&
4657 "Trying to pop a condition from an empty RuleMatcher");
4659 InstructionMatcher
&Matcher
= insnmatchers_front();
4660 if (!Matcher
.predicates_empty())
4661 return Matcher
.predicates_pop_front();
4662 // If there is no more predicate on the instruction itself, look at its
4664 for (auto &OM
: Matcher
.operands())
4665 for (auto &OP
: OM
->predicates())
4666 if (!isa
<InstructionOperandMatcher
>(OP
)) {
4667 std::unique_ptr
<PredicateMatcher
> Result
= std::move(OP
);
4668 OM
->eraseNullPredicates();
4672 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
4676 bool GroupMatcher::candidateConditionMatches(
4677 const PredicateMatcher
&Predicate
) const {
4680 // Sharing predicates for nested instructions is not supported yet as we
4681 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
4682 // only work on the original root instruction (InsnVarID == 0):
4683 if (Predicate
.getInsnVarID() != 0)
4685 // ... otherwise an empty group can handle any predicate with no specific
4690 const Matcher
&Representative
= **Matchers
.begin();
4691 const auto &RepresentativeCondition
= Representative
.getFirstCondition();
4692 // ... if not empty, the group can only accomodate matchers with the exact
4693 // same first condition:
4694 return Predicate
.isIdentical(RepresentativeCondition
);
4697 bool GroupMatcher::addMatcher(Matcher
&Candidate
) {
4698 if (!Candidate
.hasFirstCondition())
4701 const PredicateMatcher
&Predicate
= Candidate
.getFirstCondition();
4702 if (!candidateConditionMatches(Predicate
))
4705 Matchers
.push_back(&Candidate
);
4709 void GroupMatcher::finalize() {
4710 assert(Conditions
.empty() && "Already finalized?");
4714 Matcher
&FirstRule
= **Matchers
.begin();
4716 // All the checks are expected to succeed during the first iteration:
4717 for (const auto &Rule
: Matchers
)
4718 if (!Rule
->hasFirstCondition())
4720 const auto &FirstCondition
= FirstRule
.getFirstCondition();
4721 for (unsigned I
= 1, E
= Matchers
.size(); I
< E
; ++I
)
4722 if (!Matchers
[I
]->getFirstCondition().isIdentical(FirstCondition
))
4725 Conditions
.push_back(FirstRule
.popFirstCondition());
4726 for (unsigned I
= 1, E
= Matchers
.size(); I
< E
; ++I
)
4727 Matchers
[I
]->popFirstCondition();
4731 void GroupMatcher::emit(MatchTable
&Table
) {
4732 unsigned LabelID
= ~0U;
4733 if (!Conditions
.empty()) {
4734 LabelID
= Table
.allocateLabelID();
4735 Table
<< MatchTable::Opcode("GIM_Try", +1)
4736 << MatchTable::Comment("On fail goto")
4737 << MatchTable::JumpTarget(LabelID
) << MatchTable::LineBreak
;
4739 for (auto &Condition
: Conditions
)
4740 Condition
->emitPredicateOpcodes(
4741 Table
, *static_cast<RuleMatcher
*>(*Matchers
.begin()));
4743 for (const auto &M
: Matchers
)
4747 if (!Conditions
.empty())
4748 Table
<< MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
4749 << MatchTable::Label(LabelID
);
4752 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher
&P
) {
4753 return isa
<InstructionOpcodeMatcher
>(P
) || isa
<LLTOperandMatcher
>(P
);
4756 bool SwitchMatcher::candidateConditionMatches(
4757 const PredicateMatcher
&Predicate
) const {
4760 // Sharing predicates for nested instructions is not supported yet as we
4761 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
4762 // only work on the original root instruction (InsnVarID == 0):
4763 if (Predicate
.getInsnVarID() != 0)
4765 // ... while an attempt to add even a root matcher to an empty SwitchMatcher
4766 // could fail as not all the types of conditions are supported:
4767 if (!isSupportedPredicateType(Predicate
))
4769 // ... or the condition might not have a proper implementation of
4770 // getValue() / isIdenticalDownToValue() yet:
4771 if (!Predicate
.hasValue())
4773 // ... otherwise an empty Switch can accomodate the condition with no
4774 // further requirements:
4778 const Matcher
&CaseRepresentative
= **Matchers
.begin();
4779 const auto &RepresentativeCondition
= CaseRepresentative
.getFirstCondition();
4780 // Switch-cases must share the same kind of condition and path to the value it
4782 if (!Predicate
.isIdenticalDownToValue(RepresentativeCondition
))
4785 const auto Value
= Predicate
.getValue();
4786 // ... but be unique with respect to the actual value they check:
4787 return Values
.count(Value
) == 0;
4790 bool SwitchMatcher::addMatcher(Matcher
&Candidate
) {
4791 if (!Candidate
.hasFirstCondition())
4794 const PredicateMatcher
&Predicate
= Candidate
.getFirstCondition();
4795 if (!candidateConditionMatches(Predicate
))
4797 const auto Value
= Predicate
.getValue();
4798 Values
.insert(Value
);
4800 Matchers
.push_back(&Candidate
);
4804 void SwitchMatcher::finalize() {
4805 assert(Condition
== nullptr && "Already finalized");
4806 assert(Values
.size() == Matchers
.size() && "Broken SwitchMatcher");
4810 std::stable_sort(Matchers
.begin(), Matchers
.end(),
4811 [](const Matcher
*L
, const Matcher
*R
) {
4812 return L
->getFirstCondition().getValue() <
4813 R
->getFirstCondition().getValue();
4815 Condition
= Matchers
[0]->popFirstCondition();
4816 for (unsigned I
= 1, E
= Values
.size(); I
< E
; ++I
)
4817 Matchers
[I
]->popFirstCondition();
4820 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher
&P
,
4821 MatchTable
&Table
) {
4822 assert(isSupportedPredicateType(P
) && "Predicate type is not supported");
4824 if (const auto *Condition
= dyn_cast
<InstructionOpcodeMatcher
>(&P
)) {
4825 Table
<< MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
4826 << MatchTable::IntValue(Condition
->getInsnVarID());
4829 if (const auto *Condition
= dyn_cast
<LLTOperandMatcher
>(&P
)) {
4830 Table
<< MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
4831 << MatchTable::IntValue(Condition
->getInsnVarID())
4832 << MatchTable::Comment("Op")
4833 << MatchTable::IntValue(Condition
->getOpIdx());
4837 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
4838 "predicate type that is claimed to be supported");
4841 void SwitchMatcher::emit(MatchTable
&Table
) {
4842 assert(Values
.size() == Matchers
.size() && "Broken SwitchMatcher");
4845 assert(Condition
!= nullptr &&
4846 "Broken SwitchMatcher, hasn't been finalized?");
4848 std::vector
<unsigned> LabelIDs(Values
.size());
4849 std::generate(LabelIDs
.begin(), LabelIDs
.end(),
4850 [&Table
]() { return Table
.allocateLabelID(); });
4851 const unsigned Default
= Table
.allocateLabelID();
4853 const int64_t LowerBound
= Values
.begin()->getRawValue();
4854 const int64_t UpperBound
= Values
.rbegin()->getRawValue() + 1;
4856 emitPredicateSpecificOpcodes(*Condition
, Table
);
4858 Table
<< MatchTable::Comment("[") << MatchTable::IntValue(LowerBound
)
4859 << MatchTable::IntValue(UpperBound
) << MatchTable::Comment(")")
4860 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default
);
4862 int64_t J
= LowerBound
;
4863 auto VI
= Values
.begin();
4864 for (unsigned I
= 0, E
= Values
.size(); I
< E
; ++I
) {
4866 while (J
++ < V
.getRawValue())
4867 Table
<< MatchTable::IntValue(0);
4868 V
.turnIntoComment();
4869 Table
<< MatchTable::LineBreak
<< V
<< MatchTable::JumpTarget(LabelIDs
[I
]);
4871 Table
<< MatchTable::LineBreak
;
4873 for (unsigned I
= 0, E
= Values
.size(); I
< E
; ++I
) {
4874 Table
<< MatchTable::Label(LabelIDs
[I
]);
4875 Matchers
[I
]->emit(Table
);
4876 Table
<< MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak
;
4878 Table
<< MatchTable::Label(Default
);
4881 unsigned OperandMatcher::getInsnVarID() const { return Insn
.getInsnVarID(); }
4883 } // end anonymous namespace
4885 //===----------------------------------------------------------------------===//
4888 void EmitGlobalISel(RecordKeeper
&RK
, raw_ostream
&OS
) {
4889 GlobalISelEmitter(RK
).run(OS
);
4891 } // End llvm namespace