[PowerPC] Look through copies for compare elimination
[llvm-core.git] / utils / TableGen / IntrinsicEmitter.cpp
blob6461ab1c83ad21eaeaf793264645ef5d694f83c7
1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits information about intrinsic functions.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenIntrinsics.h"
14 #include "CodeGenTarget.h"
15 #include "SequenceToOffsetTable.h"
16 #include "TableGenBackends.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/TableGen/Error.h"
19 #include "llvm/TableGen/Record.h"
20 #include "llvm/TableGen/StringMatcher.h"
21 #include "llvm/TableGen/TableGenBackend.h"
22 #include "llvm/TableGen/StringToOffsetTable.h"
23 #include <algorithm>
24 using namespace llvm;
26 namespace {
27 class IntrinsicEmitter {
28 RecordKeeper &Records;
29 bool TargetOnly;
30 std::string TargetPrefix;
32 public:
33 IntrinsicEmitter(RecordKeeper &R, bool T)
34 : Records(R), TargetOnly(T) {}
36 void run(raw_ostream &OS, bool Enums);
38 void EmitPrefix(raw_ostream &OS);
40 void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
41 void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
42 void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
43 raw_ostream &OS);
44 void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
45 raw_ostream &OS);
46 void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
47 void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
48 void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
49 raw_ostream &OS);
50 void EmitSuffix(raw_ostream &OS);
52 } // End anonymous namespace
54 //===----------------------------------------------------------------------===//
55 // IntrinsicEmitter Implementation
56 //===----------------------------------------------------------------------===//
58 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
59 emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
61 CodeGenIntrinsicTable Ints(Records, TargetOnly);
63 if (TargetOnly && !Ints.empty())
64 TargetPrefix = Ints[0].TargetPrefix;
66 EmitPrefix(OS);
68 if (Enums) {
69 // Emit the enum information.
70 EmitEnumInfo(Ints, OS);
71 } else {
72 // Emit the target metadata.
73 EmitTargetInfo(Ints, OS);
75 // Emit the intrinsic ID -> name table.
76 EmitIntrinsicToNameTable(Ints, OS);
78 // Emit the intrinsic ID -> overload table.
79 EmitIntrinsicToOverloadTable(Ints, OS);
81 // Emit the intrinsic declaration generator.
82 EmitGenerator(Ints, OS);
84 // Emit the intrinsic parameter attributes.
85 EmitAttributes(Ints, OS);
87 // Emit code to translate GCC builtins into LLVM intrinsics.
88 EmitIntrinsicToBuiltinMap(Ints, true, OS);
90 // Emit code to translate MS builtins into LLVM intrinsics.
91 EmitIntrinsicToBuiltinMap(Ints, false, OS);
94 EmitSuffix(OS);
97 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
98 OS << "// VisualStudio defines setjmp as _setjmp\n"
99 "#if defined(_MSC_VER) && defined(setjmp) && \\\n"
100 " !defined(setjmp_undefined_for_msvc)\n"
101 "# pragma push_macro(\"setjmp\")\n"
102 "# undef setjmp\n"
103 "# define setjmp_undefined_for_msvc\n"
104 "#endif\n\n";
107 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
108 OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
109 "// let's return it to _setjmp state\n"
110 "# pragma pop_macro(\"setjmp\")\n"
111 "# undef setjmp_undefined_for_msvc\n"
112 "#endif\n\n";
115 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
116 raw_ostream &OS) {
117 OS << "// Enum values for Intrinsics.h\n";
118 OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
119 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
120 OS << " " << Ints[i].EnumName;
121 OS << ((i != e-1) ? ", " : " ");
122 if (Ints[i].EnumName.size() < 40)
123 OS << std::string(40-Ints[i].EnumName.size(), ' ');
124 OS << " // " << Ints[i].Name << "\n";
126 OS << "#endif\n\n";
129 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
130 raw_ostream &OS) {
131 OS << "// Target mapping\n";
132 OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
133 OS << "struct IntrinsicTargetInfo {\n"
134 << " llvm::StringLiteral Name;\n"
135 << " size_t Offset;\n"
136 << " size_t Count;\n"
137 << "};\n";
138 OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
139 for (auto Target : Ints.Targets)
140 OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
141 << ", " << Target.Count << "},\n";
142 OS << "};\n";
143 OS << "#endif\n\n";
146 void IntrinsicEmitter::EmitIntrinsicToNameTable(
147 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
148 OS << "// Intrinsic ID to name table\n";
149 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
150 OS << " // Note that entry #0 is the invalid intrinsic!\n";
151 for (unsigned i = 0, e = Ints.size(); i != e; ++i)
152 OS << " \"" << Ints[i].Name << "\",\n";
153 OS << "#endif\n\n";
156 void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
157 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
158 OS << "// Intrinsic ID to overload bitset\n";
159 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
160 OS << "static const uint8_t OTable[] = {\n";
161 OS << " 0";
162 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
163 // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
164 if ((i+1)%8 == 0)
165 OS << ",\n 0";
166 if (Ints[i].isOverloaded)
167 OS << " | (1<<" << (i+1)%8 << ')';
169 OS << "\n};\n\n";
170 // OTable contains a true bit at the position if the intrinsic is overloaded.
171 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
172 OS << "#endif\n\n";
176 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
177 enum IIT_Info {
178 // Common values should be encoded with 0-15.
179 IIT_Done = 0,
180 IIT_I1 = 1,
181 IIT_I8 = 2,
182 IIT_I16 = 3,
183 IIT_I32 = 4,
184 IIT_I64 = 5,
185 IIT_F16 = 6,
186 IIT_F32 = 7,
187 IIT_F64 = 8,
188 IIT_V2 = 9,
189 IIT_V4 = 10,
190 IIT_V8 = 11,
191 IIT_V16 = 12,
192 IIT_V32 = 13,
193 IIT_PTR = 14,
194 IIT_ARG = 15,
196 // Values from 16+ are only encodable with the inefficient encoding.
197 IIT_V64 = 16,
198 IIT_MMX = 17,
199 IIT_TOKEN = 18,
200 IIT_METADATA = 19,
201 IIT_EMPTYSTRUCT = 20,
202 IIT_STRUCT2 = 21,
203 IIT_STRUCT3 = 22,
204 IIT_STRUCT4 = 23,
205 IIT_STRUCT5 = 24,
206 IIT_EXTEND_ARG = 25,
207 IIT_TRUNC_ARG = 26,
208 IIT_ANYPTR = 27,
209 IIT_V1 = 28,
210 IIT_VARARG = 29,
211 IIT_HALF_VEC_ARG = 30,
212 IIT_SAME_VEC_WIDTH_ARG = 31,
213 IIT_PTR_TO_ARG = 32,
214 IIT_PTR_TO_ELT = 33,
215 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
216 IIT_I128 = 35,
217 IIT_V512 = 36,
218 IIT_V1024 = 37,
219 IIT_STRUCT6 = 38,
220 IIT_STRUCT7 = 39,
221 IIT_STRUCT8 = 40,
222 IIT_F128 = 41
225 static void EncodeFixedValueType(MVT::SimpleValueType VT,
226 std::vector<unsigned char> &Sig) {
227 if (MVT(VT).isInteger()) {
228 unsigned BitWidth = MVT(VT).getSizeInBits();
229 switch (BitWidth) {
230 default: PrintFatalError("unhandled integer type width in intrinsic!");
231 case 1: return Sig.push_back(IIT_I1);
232 case 8: return Sig.push_back(IIT_I8);
233 case 16: return Sig.push_back(IIT_I16);
234 case 32: return Sig.push_back(IIT_I32);
235 case 64: return Sig.push_back(IIT_I64);
236 case 128: return Sig.push_back(IIT_I128);
240 switch (VT) {
241 default: PrintFatalError("unhandled MVT in intrinsic!");
242 case MVT::f16: return Sig.push_back(IIT_F16);
243 case MVT::f32: return Sig.push_back(IIT_F32);
244 case MVT::f64: return Sig.push_back(IIT_F64);
245 case MVT::f128: return Sig.push_back(IIT_F128);
246 case MVT::token: return Sig.push_back(IIT_TOKEN);
247 case MVT::Metadata: return Sig.push_back(IIT_METADATA);
248 case MVT::x86mmx: return Sig.push_back(IIT_MMX);
249 // MVT::OtherVT is used to mean the empty struct type here.
250 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
251 // MVT::isVoid is used to represent varargs here.
252 case MVT::isVoid: return Sig.push_back(IIT_VARARG);
256 #if defined(_MSC_VER) && !defined(__clang__)
257 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
258 #endif
260 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
261 std::vector<unsigned char> &Sig) {
263 if (R->isSubClassOf("LLVMMatchType")) {
264 unsigned Number = R->getValueAsInt("Number");
265 assert(Number < ArgCodes.size() && "Invalid matching number!");
266 if (R->isSubClassOf("LLVMExtendedType"))
267 Sig.push_back(IIT_EXTEND_ARG);
268 else if (R->isSubClassOf("LLVMTruncatedType"))
269 Sig.push_back(IIT_TRUNC_ARG);
270 else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
271 Sig.push_back(IIT_HALF_VEC_ARG);
272 else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
273 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
274 Sig.push_back((Number << 3) | ArgCodes[Number]);
275 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
276 EncodeFixedValueType(VT, Sig);
277 return;
279 else if (R->isSubClassOf("LLVMPointerTo"))
280 Sig.push_back(IIT_PTR_TO_ARG);
281 else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
282 Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
283 unsigned ArgNo = ArgCodes.size();
284 ArgCodes.push_back(3 /*vAny*/);
285 // Encode overloaded ArgNo
286 Sig.push_back(ArgNo);
287 // Encode LLVMMatchType<Number> ArgNo
288 Sig.push_back(Number);
289 return;
290 } else if (R->isSubClassOf("LLVMPointerToElt"))
291 Sig.push_back(IIT_PTR_TO_ELT);
292 else
293 Sig.push_back(IIT_ARG);
294 return Sig.push_back((Number << 3) | ArgCodes[Number]);
297 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
299 unsigned Tmp = 0;
300 switch (VT) {
301 default: break;
302 case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
303 case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH;
304 case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH;
305 case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH;
306 case MVT::Any: {
307 // If this is an "any" valuetype, then the type is the type of the next
308 // type in the list specified to getIntrinsic().
309 Sig.push_back(IIT_ARG);
311 // Figure out what arg # this is consuming, and remember what kind it was.
312 unsigned ArgNo = ArgCodes.size();
313 ArgCodes.push_back(Tmp);
315 // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
316 return Sig.push_back((ArgNo << 3) | Tmp);
319 case MVT::iPTR: {
320 unsigned AddrSpace = 0;
321 if (R->isSubClassOf("LLVMQualPointerType")) {
322 AddrSpace = R->getValueAsInt("AddrSpace");
323 assert(AddrSpace < 256 && "Address space exceeds 255");
325 if (AddrSpace) {
326 Sig.push_back(IIT_ANYPTR);
327 Sig.push_back(AddrSpace);
328 } else {
329 Sig.push_back(IIT_PTR);
331 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig);
335 if (MVT(VT).isVector()) {
336 MVT VVT = VT;
337 switch (VVT.getVectorNumElements()) {
338 default: PrintFatalError("unhandled vector type width in intrinsic!");
339 case 1: Sig.push_back(IIT_V1); break;
340 case 2: Sig.push_back(IIT_V2); break;
341 case 4: Sig.push_back(IIT_V4); break;
342 case 8: Sig.push_back(IIT_V8); break;
343 case 16: Sig.push_back(IIT_V16); break;
344 case 32: Sig.push_back(IIT_V32); break;
345 case 64: Sig.push_back(IIT_V64); break;
346 case 512: Sig.push_back(IIT_V512); break;
347 case 1024: Sig.push_back(IIT_V1024); break;
350 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
353 EncodeFixedValueType(VT, Sig);
356 #if defined(_MSC_VER) && !defined(__clang__)
357 #pragma optimize("",on)
358 #endif
360 /// ComputeFixedEncoding - If we can encode the type signature for this
361 /// intrinsic into 32 bits, return it. If not, return ~0U.
362 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
363 std::vector<unsigned char> &TypeSig) {
364 std::vector<unsigned char> ArgCodes;
366 if (Int.IS.RetVTs.empty())
367 TypeSig.push_back(IIT_Done);
368 else if (Int.IS.RetVTs.size() == 1 &&
369 Int.IS.RetVTs[0] == MVT::isVoid)
370 TypeSig.push_back(IIT_Done);
371 else {
372 switch (Int.IS.RetVTs.size()) {
373 case 1: break;
374 case 2: TypeSig.push_back(IIT_STRUCT2); break;
375 case 3: TypeSig.push_back(IIT_STRUCT3); break;
376 case 4: TypeSig.push_back(IIT_STRUCT4); break;
377 case 5: TypeSig.push_back(IIT_STRUCT5); break;
378 case 6: TypeSig.push_back(IIT_STRUCT6); break;
379 case 7: TypeSig.push_back(IIT_STRUCT7); break;
380 case 8: TypeSig.push_back(IIT_STRUCT8); break;
381 default: llvm_unreachable("Unhandled case in struct");
384 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
385 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig);
388 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
389 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig);
392 static void printIITEntry(raw_ostream &OS, unsigned char X) {
393 OS << (unsigned)X;
396 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
397 raw_ostream &OS) {
398 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
399 // capture it in this vector, otherwise store a ~0U.
400 std::vector<unsigned> FixedEncodings;
402 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
404 std::vector<unsigned char> TypeSig;
406 // Compute the unique argument type info.
407 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
408 // Get the signature for the intrinsic.
409 TypeSig.clear();
410 ComputeFixedEncoding(Ints[i], TypeSig);
412 // Check to see if we can encode it into a 32-bit word. We can only encode
413 // 8 nibbles into a 32-bit word.
414 if (TypeSig.size() <= 8) {
415 bool Failed = false;
416 unsigned Result = 0;
417 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
418 // If we had an unencodable argument, bail out.
419 if (TypeSig[i] > 15) {
420 Failed = true;
421 break;
423 Result = (Result << 4) | TypeSig[e-i-1];
426 // If this could be encoded into a 31-bit word, return it.
427 if (!Failed && (Result >> 31) == 0) {
428 FixedEncodings.push_back(Result);
429 continue;
433 // Otherwise, we're going to unique the sequence into the
434 // LongEncodingTable, and use its offset in the 32-bit table instead.
435 LongEncodingTable.add(TypeSig);
437 // This is a placehold that we'll replace after the table is laid out.
438 FixedEncodings.push_back(~0U);
441 LongEncodingTable.layout();
443 OS << "// Global intrinsic function declaration type table.\n";
444 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
446 OS << "static const unsigned IIT_Table[] = {\n ";
448 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
449 if ((i & 7) == 7)
450 OS << "\n ";
452 // If the entry fit in the table, just emit it.
453 if (FixedEncodings[i] != ~0U) {
454 OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
455 continue;
458 TypeSig.clear();
459 ComputeFixedEncoding(Ints[i], TypeSig);
462 // Otherwise, emit the offset into the long encoding table. We emit it this
463 // way so that it is easier to read the offset in the .def file.
464 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
467 OS << "0\n};\n\n";
469 // Emit the shared table of register lists.
470 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
471 if (!LongEncodingTable.empty())
472 LongEncodingTable.emit(OS, printIITEntry);
473 OS << " 255\n};\n\n";
475 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
478 namespace {
479 struct AttributeComparator {
480 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
481 // Sort throwing intrinsics after non-throwing intrinsics.
482 if (L->canThrow != R->canThrow)
483 return R->canThrow;
485 if (L->isNoDuplicate != R->isNoDuplicate)
486 return R->isNoDuplicate;
488 if (L->isNoReturn != R->isNoReturn)
489 return R->isNoReturn;
491 if (L->isCold != R->isCold)
492 return R->isCold;
494 if (L->isConvergent != R->isConvergent)
495 return R->isConvergent;
497 if (L->isSpeculatable != R->isSpeculatable)
498 return R->isSpeculatable;
500 if (L->hasSideEffects != R->hasSideEffects)
501 return R->hasSideEffects;
503 // Try to order by readonly/readnone attribute.
504 CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
505 CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
506 if (LK != RK) return (LK > RK);
507 // Order by argument attributes.
508 // This is reliable because each side is already sorted internally.
509 return (L->ArgumentAttributes < R->ArgumentAttributes);
512 } // End anonymous namespace
514 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
515 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
516 raw_ostream &OS) {
517 OS << "// Add parameter attributes that are not common to all intrinsics.\n";
518 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
519 if (TargetOnly)
520 OS << "static AttributeList getAttributes(LLVMContext &C, " << TargetPrefix
521 << "Intrinsic::ID id) {\n";
522 else
523 OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
525 // Compute the maximum number of attribute arguments and the map
526 typedef std::map<const CodeGenIntrinsic*, unsigned,
527 AttributeComparator> UniqAttrMapTy;
528 UniqAttrMapTy UniqAttributes;
529 unsigned maxArgAttrs = 0;
530 unsigned AttrNum = 0;
531 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
532 const CodeGenIntrinsic &intrinsic = Ints[i];
533 maxArgAttrs =
534 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
535 unsigned &N = UniqAttributes[&intrinsic];
536 if (N) continue;
537 assert(AttrNum < 256 && "Too many unique attributes for table!");
538 N = ++AttrNum;
541 // Emit an array of AttributeList. Most intrinsics will have at least one
542 // entry, for the function itself (index ~1), which is usually nounwind.
543 OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n";
545 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
546 const CodeGenIntrinsic &intrinsic = Ints[i];
548 OS << " " << UniqAttributes[&intrinsic] << ", // "
549 << intrinsic.Name << "\n";
551 OS << " };\n\n";
553 OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n";
554 OS << " unsigned NumAttrs = 0;\n";
555 OS << " if (id != 0) {\n";
556 OS << " switch(IntrinsicsToAttributesMap[id - ";
557 if (TargetOnly)
558 OS << "Intrinsic::num_intrinsics";
559 else
560 OS << "1";
561 OS << "]) {\n";
562 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
563 for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
564 E = UniqAttributes.end(); I != E; ++I) {
565 OS << " case " << I->second << ": {\n";
567 const CodeGenIntrinsic &intrinsic = *(I->first);
569 // Keep track of the number of attributes we're writing out.
570 unsigned numAttrs = 0;
572 // The argument attributes are alreadys sorted by argument index.
573 unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
574 if (ae) {
575 while (ai != ae) {
576 unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
577 unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex
579 OS << " const Attribute::AttrKind AttrParam" << attrIdx << "[]= {";
580 bool addComma = false;
582 do {
583 switch (intrinsic.ArgumentAttributes[ai].second) {
584 case CodeGenIntrinsic::NoCapture:
585 if (addComma)
586 OS << ",";
587 OS << "Attribute::NoCapture";
588 addComma = true;
589 break;
590 case CodeGenIntrinsic::Returned:
591 if (addComma)
592 OS << ",";
593 OS << "Attribute::Returned";
594 addComma = true;
595 break;
596 case CodeGenIntrinsic::ReadOnly:
597 if (addComma)
598 OS << ",";
599 OS << "Attribute::ReadOnly";
600 addComma = true;
601 break;
602 case CodeGenIntrinsic::WriteOnly:
603 if (addComma)
604 OS << ",";
605 OS << "Attribute::WriteOnly";
606 addComma = true;
607 break;
608 case CodeGenIntrinsic::ReadNone:
609 if (addComma)
610 OS << ",";
611 OS << "Attribute::ReadNone";
612 addComma = true;
613 break;
614 case CodeGenIntrinsic::ImmArg:
615 if (addComma)
616 OS << ',';
617 OS << "Attribute::ImmArg";
618 addComma = true;
619 break;
622 ++ai;
623 } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
624 OS << "};\n";
625 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
626 << attrIdx << ", AttrParam" << attrIdx << ");\n";
630 if (!intrinsic.canThrow ||
631 intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem ||
632 intrinsic.isNoReturn || intrinsic.isCold || intrinsic.isNoDuplicate ||
633 intrinsic.isConvergent || intrinsic.isSpeculatable) {
634 OS << " const Attribute::AttrKind Atts[] = {";
635 bool addComma = false;
636 if (!intrinsic.canThrow) {
637 OS << "Attribute::NoUnwind";
638 addComma = true;
640 if (intrinsic.isNoReturn) {
641 if (addComma)
642 OS << ",";
643 OS << "Attribute::NoReturn";
644 addComma = true;
646 if (intrinsic.isCold) {
647 if (addComma)
648 OS << ",";
649 OS << "Attribute::Cold";
650 addComma = true;
652 if (intrinsic.isNoDuplicate) {
653 if (addComma)
654 OS << ",";
655 OS << "Attribute::NoDuplicate";
656 addComma = true;
658 if (intrinsic.isConvergent) {
659 if (addComma)
660 OS << ",";
661 OS << "Attribute::Convergent";
662 addComma = true;
664 if (intrinsic.isSpeculatable) {
665 if (addComma)
666 OS << ",";
667 OS << "Attribute::Speculatable";
668 addComma = true;
671 switch (intrinsic.ModRef) {
672 case CodeGenIntrinsic::NoMem:
673 if (addComma)
674 OS << ",";
675 OS << "Attribute::ReadNone";
676 break;
677 case CodeGenIntrinsic::ReadArgMem:
678 if (addComma)
679 OS << ",";
680 OS << "Attribute::ReadOnly,";
681 OS << "Attribute::ArgMemOnly";
682 break;
683 case CodeGenIntrinsic::ReadMem:
684 if (addComma)
685 OS << ",";
686 OS << "Attribute::ReadOnly";
687 break;
688 case CodeGenIntrinsic::ReadInaccessibleMem:
689 if (addComma)
690 OS << ",";
691 OS << "Attribute::ReadOnly,";
692 OS << "Attribute::InaccessibleMemOnly";
693 break;
694 case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
695 if (addComma)
696 OS << ",";
697 OS << "Attribute::ReadOnly,";
698 OS << "Attribute::InaccessibleMemOrArgMemOnly";
699 break;
700 case CodeGenIntrinsic::WriteArgMem:
701 if (addComma)
702 OS << ",";
703 OS << "Attribute::WriteOnly,";
704 OS << "Attribute::ArgMemOnly";
705 break;
706 case CodeGenIntrinsic::WriteMem:
707 if (addComma)
708 OS << ",";
709 OS << "Attribute::WriteOnly";
710 break;
711 case CodeGenIntrinsic::WriteInaccessibleMem:
712 if (addComma)
713 OS << ",";
714 OS << "Attribute::WriteOnly,";
715 OS << "Attribute::InaccessibleMemOnly";
716 break;
717 case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
718 if (addComma)
719 OS << ",";
720 OS << "Attribute::WriteOnly,";
721 OS << "Attribute::InaccessibleMemOrArgMemOnly";
722 break;
723 case CodeGenIntrinsic::ReadWriteArgMem:
724 if (addComma)
725 OS << ",";
726 OS << "Attribute::ArgMemOnly";
727 break;
728 case CodeGenIntrinsic::ReadWriteInaccessibleMem:
729 if (addComma)
730 OS << ",";
731 OS << "Attribute::InaccessibleMemOnly";
732 break;
733 case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
734 if (addComma)
735 OS << ",";
736 OS << "Attribute::InaccessibleMemOrArgMemOnly";
737 break;
738 case CodeGenIntrinsic::ReadWriteMem:
739 break;
741 OS << "};\n";
742 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
743 << "AttributeList::FunctionIndex, Atts);\n";
746 if (numAttrs) {
747 OS << " NumAttrs = " << numAttrs << ";\n";
748 OS << " break;\n";
749 OS << " }\n";
750 } else {
751 OS << " return AttributeList();\n";
752 OS << " }\n";
756 OS << " }\n";
757 OS << " }\n";
758 OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
759 OS << "}\n";
760 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
763 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
764 const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
765 StringRef CompilerName = (IsGCC ? "GCC" : "MS");
766 typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
767 BIMTy BuiltinMap;
768 StringToOffsetTable Table;
769 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
770 const std::string &BuiltinName =
771 IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
772 if (!BuiltinName.empty()) {
773 // Get the map for this target prefix.
774 std::map<std::string, std::string> &BIM =
775 BuiltinMap[Ints[i].TargetPrefix];
777 if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
778 PrintFatalError(Ints[i].TheDef->getLoc(),
779 "Intrinsic '" + Ints[i].TheDef->getName() +
780 "': duplicate " + CompilerName + " builtin name!");
781 Table.GetOrAddStringOffset(BuiltinName);
785 OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
786 OS << "// This is used by the C front-end. The builtin name is passed\n";
787 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
788 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
789 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
791 if (TargetOnly) {
792 OS << "static " << TargetPrefix << "Intrinsic::ID "
793 << "getIntrinsicFor" << CompilerName << "Builtin(const char "
794 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
795 } else {
796 OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
797 << "Builtin(const char "
798 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
801 if (Table.Empty()) {
802 OS << " return ";
803 if (!TargetPrefix.empty())
804 OS << "(" << TargetPrefix << "Intrinsic::ID)";
805 OS << "Intrinsic::not_intrinsic;\n";
806 OS << "}\n";
807 OS << "#endif\n\n";
808 return;
811 OS << " static const char BuiltinNames[] = {\n";
812 Table.EmitCharArray(OS);
813 OS << " };\n\n";
815 OS << " struct BuiltinEntry {\n";
816 OS << " Intrinsic::ID IntrinID;\n";
817 OS << " unsigned StrTabOffset;\n";
818 OS << " const char *getName() const {\n";
819 OS << " return &BuiltinNames[StrTabOffset];\n";
820 OS << " }\n";
821 OS << " bool operator<(StringRef RHS) const {\n";
822 OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
823 OS << " }\n";
824 OS << " };\n";
826 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
828 // Note: this could emit significantly better code if we cared.
829 for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
830 OS << " ";
831 if (!I->first.empty())
832 OS << "if (TargetPrefix == \"" << I->first << "\") ";
833 else
834 OS << "/* Target Independent Builtins */ ";
835 OS << "{\n";
837 // Emit the comparisons for this target prefix.
838 OS << " static const BuiltinEntry " << I->first << "Names[] = {\n";
839 for (const auto &P : I->second) {
840 OS << " {Intrinsic::" << P.second << ", "
841 << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
843 OS << " };\n";
844 OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
845 OS << " std::end(" << I->first << "Names),\n";
846 OS << " BuiltinNameStr);\n";
847 OS << " if (I != std::end(" << I->first << "Names) &&\n";
848 OS << " I->getName() == BuiltinNameStr)\n";
849 OS << " return I->IntrinID;\n";
850 OS << " }\n";
852 OS << " return ";
853 if (!TargetPrefix.empty())
854 OS << "(" << TargetPrefix << "Intrinsic::ID)";
855 OS << "Intrinsic::not_intrinsic;\n";
856 OS << "}\n";
857 OS << "#endif\n\n";
860 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS,
861 bool TargetOnly) {
862 IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/true);
865 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS,
866 bool TargetOnly) {
867 IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/false);