[Alignment][NFC] TargetCallingConv::setOrigAlign and TargetLowering::getABIAlignmentF...
[llvm-core.git] / docs / tutorial / MyFirstLanguageFrontend / LangImpl04.rst
blobbf4e2398d28a4c9b7d9c7fe57166bbd0afe998be
1 :orphan:
3 ==============================================
4 Kaleidoscope: Adding JIT and Optimizer Support
5 ==============================================
7 .. contents::
8    :local:
10 Chapter 4 Introduction
11 ======================
13 Welcome to Chapter 4 of the "`Implementing a language with
14 LLVM <index.html>`_" tutorial. Chapters 1-3 described the implementation
15 of a simple language and added support for generating LLVM IR. This
16 chapter describes two new techniques: adding optimizer support to your
17 language, and adding JIT compiler support. These additions will
18 demonstrate how to get nice, efficient code for the Kaleidoscope
19 language.
21 Trivial Constant Folding
22 ========================
24 Our demonstration for Chapter 3 is elegant and easy to extend.
25 Unfortunately, it does not produce wonderful code. The IRBuilder,
26 however, does give us obvious optimizations when compiling simple code:
30     ready> def test(x) 1+2+x;
31     Read function definition:
32     define double @test(double %x) {
33     entry:
34             %addtmp = fadd double 3.000000e+00, %x
35             ret double %addtmp
36     }
38 This code is not a literal transcription of the AST built by parsing the
39 input. That would be:
43     ready> def test(x) 1+2+x;
44     Read function definition:
45     define double @test(double %x) {
46     entry:
47             %addtmp = fadd double 2.000000e+00, 1.000000e+00
48             %addtmp1 = fadd double %addtmp, %x
49             ret double %addtmp1
50     }
52 Constant folding, as seen above, in particular, is a very common and
53 very important optimization: so much so that many language implementors
54 implement constant folding support in their AST representation.
56 With LLVM, you don't need this support in the AST. Since all calls to
57 build LLVM IR go through the LLVM IR builder, the builder itself checked
58 to see if there was a constant folding opportunity when you call it. If
59 so, it just does the constant fold and return the constant instead of
60 creating an instruction.
62 Well, that was easy :). In practice, we recommend always using
63 ``IRBuilder`` when generating code like this. It has no "syntactic
64 overhead" for its use (you don't have to uglify your compiler with
65 constant checks everywhere) and it can dramatically reduce the amount of
66 LLVM IR that is generated in some cases (particular for languages with a
67 macro preprocessor or that use a lot of constants).
69 On the other hand, the ``IRBuilder`` is limited by the fact that it does
70 all of its analysis inline with the code as it is built. If you take a
71 slightly more complex example:
75     ready> def test(x) (1+2+x)*(x+(1+2));
76     ready> Read function definition:
77     define double @test(double %x) {
78     entry:
79             %addtmp = fadd double 3.000000e+00, %x
80             %addtmp1 = fadd double %x, 3.000000e+00
81             %multmp = fmul double %addtmp, %addtmp1
82             ret double %multmp
83     }
85 In this case, the LHS and RHS of the multiplication are the same value.
86 We'd really like to see this generate "``tmp = x+3; result = tmp*tmp;``"
87 instead of computing "``x+3``" twice.
89 Unfortunately, no amount of local analysis will be able to detect and
90 correct this. This requires two transformations: reassociation of
91 expressions (to make the add's lexically identical) and Common
92 Subexpression Elimination (CSE) to delete the redundant add instruction.
93 Fortunately, LLVM provides a broad range of optimizations that you can
94 use, in the form of "passes".
96 LLVM Optimization Passes
97 ========================
99 .. warning::
101    Due to the transition to the new PassManager infrastructure this tutorial
102    is based on ``llvm::legacy::FunctionPassManager`` which can be found in
103    `LegacyPassManager.h <http://llvm.org/doxygen/classllvm_1_1legacy_1_1FunctionPassManager.html>`_.
104    For the purpose of the this tutorial the above should be used until
105    the pass manager transition is complete.
107 LLVM provides many optimization passes, which do many different sorts of
108 things and have different tradeoffs. Unlike other systems, LLVM doesn't
109 hold to the mistaken notion that one set of optimizations is right for
110 all languages and for all situations. LLVM allows a compiler implementor
111 to make complete decisions about what optimizations to use, in which
112 order, and in what situation.
114 As a concrete example, LLVM supports both "whole module" passes, which
115 look across as large of body of code as they can (often a whole file,
116 but if run at link time, this can be a substantial portion of the whole
117 program). It also supports and includes "per-function" passes which just
118 operate on a single function at a time, without looking at other
119 functions. For more information on passes and how they are run, see the
120 `How to Write a Pass <../WritingAnLLVMPass.html>`_ document and the
121 `List of LLVM Passes <../Passes.html>`_.
123 For Kaleidoscope, we are currently generating functions on the fly, one
124 at a time, as the user types them in. We aren't shooting for the
125 ultimate optimization experience in this setting, but we also want to
126 catch the easy and quick stuff where possible. As such, we will choose
127 to run a few per-function optimizations as the user types the function
128 in. If we wanted to make a "static Kaleidoscope compiler", we would use
129 exactly the code we have now, except that we would defer running the
130 optimizer until the entire file has been parsed.
132 In order to get per-function optimizations going, we need to set up a
133 `FunctionPassManager <../WritingAnLLVMPass.html#what-passmanager-doesr>`_ to hold
134 and organize the LLVM optimizations that we want to run. Once we have
135 that, we can add a set of optimizations to run. We'll need a new
136 FunctionPassManager for each module that we want to optimize, so we'll
137 write a function to create and initialize both the module and pass manager
138 for us:
140 .. code-block:: c++
142     void InitializeModuleAndPassManager(void) {
143       // Open a new module.
144       TheModule = std::make_unique<Module>("my cool jit", TheContext);
146       // Create a new pass manager attached to it.
147       TheFPM = std::make_unique<FunctionPassManager>(TheModule.get());
149       // Do simple "peephole" optimizations and bit-twiddling optzns.
150       TheFPM->add(createInstructionCombiningPass());
151       // Reassociate expressions.
152       TheFPM->add(createReassociatePass());
153       // Eliminate Common SubExpressions.
154       TheFPM->add(createGVNPass());
155       // Simplify the control flow graph (deleting unreachable blocks, etc).
156       TheFPM->add(createCFGSimplificationPass());
158       TheFPM->doInitialization();
159     }
161 This code initializes the global module ``TheModule``, and the function pass
162 manager ``TheFPM``, which is attached to ``TheModule``. Once the pass manager is
163 set up, we use a series of "add" calls to add a bunch of LLVM passes.
165 In this case, we choose to add four optimization passes.
166 The passes we choose here are a pretty standard set
167 of "cleanup" optimizations that are useful for a wide variety of code. I won't
168 delve into what they do but, believe me, they are a good starting place :).
170 Once the PassManager is set up, we need to make use of it. We do this by
171 running it after our newly created function is constructed (in
172 ``FunctionAST::codegen()``), but before it is returned to the client:
174 .. code-block:: c++
176       if (Value *RetVal = Body->codegen()) {
177         // Finish off the function.
178         Builder.CreateRet(RetVal);
180         // Validate the generated code, checking for consistency.
181         verifyFunction(*TheFunction);
183         // Optimize the function.
184         TheFPM->run(*TheFunction);
186         return TheFunction;
187       }
189 As you can see, this is pretty straightforward. The
190 ``FunctionPassManager`` optimizes and updates the LLVM Function\* in
191 place, improving (hopefully) its body. With this in place, we can try
192 our test above again:
196     ready> def test(x) (1+2+x)*(x+(1+2));
197     ready> Read function definition:
198     define double @test(double %x) {
199     entry:
200             %addtmp = fadd double %x, 3.000000e+00
201             %multmp = fmul double %addtmp, %addtmp
202             ret double %multmp
203     }
205 As expected, we now get our nicely optimized code, saving a floating
206 point add instruction from every execution of this function.
208 LLVM provides a wide variety of optimizations that can be used in
209 certain circumstances. Some `documentation about the various
210 passes <../Passes.html>`_ is available, but it isn't very complete.
211 Another good source of ideas can come from looking at the passes that
212 ``Clang`` runs to get started. The "``opt``" tool allows you to
213 experiment with passes from the command line, so you can see if they do
214 anything.
216 Now that we have reasonable code coming out of our front-end, let's talk
217 about executing it!
219 Adding a JIT Compiler
220 =====================
222 Code that is available in LLVM IR can have a wide variety of tools
223 applied to it. For example, you can run optimizations on it (as we did
224 above), you can dump it out in textual or binary forms, you can compile
225 the code to an assembly file (.s) for some target, or you can JIT
226 compile it. The nice thing about the LLVM IR representation is that it
227 is the "common currency" between many different parts of the compiler.
229 In this section, we'll add JIT compiler support to our interpreter. The
230 basic idea that we want for Kaleidoscope is to have the user enter
231 function bodies as they do now, but immediately evaluate the top-level
232 expressions they type in. For example, if they type in "1 + 2;", we
233 should evaluate and print out 3. If they define a function, they should
234 be able to call it from the command line.
236 In order to do this, we first prepare the environment to create code for
237 the current native target and declare and initialize the JIT. This is
238 done by calling some ``InitializeNativeTarget\*`` functions and
239 adding a global variable ``TheJIT``, and initializing it in
240 ``main``:
242 .. code-block:: c++
244     static std::unique_ptr<KaleidoscopeJIT> TheJIT;
245     ...
246     int main() {
247       InitializeNativeTarget();
248       InitializeNativeTargetAsmPrinter();
249       InitializeNativeTargetAsmParser();
251       // Install standard binary operators.
252       // 1 is lowest precedence.
253       BinopPrecedence['<'] = 10;
254       BinopPrecedence['+'] = 20;
255       BinopPrecedence['-'] = 20;
256       BinopPrecedence['*'] = 40; // highest.
258       // Prime the first token.
259       fprintf(stderr, "ready> ");
260       getNextToken();
262       TheJIT = std::make_unique<KaleidoscopeJIT>();
264       // Run the main "interpreter loop" now.
265       MainLoop();
267       return 0;
268     }
270 We also need to setup the data layout for the JIT:
272 .. code-block:: c++
274     void InitializeModuleAndPassManager(void) {
275       // Open a new module.
276       TheModule = std::make_unique<Module>("my cool jit", TheContext);
277       TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
279       // Create a new pass manager attached to it.
280       TheFPM = std::make_unique<FunctionPassManager>(TheModule.get());
281       ...
283 The KaleidoscopeJIT class is a simple JIT built specifically for these
284 tutorials, available inside the LLVM source code
285 at llvm-src/examples/Kaleidoscope/include/KaleidoscopeJIT.h.
286 In later chapters we will look at how it works and extend it with
287 new features, but for now we will take it as given. Its API is very simple:
288 ``addModule`` adds an LLVM IR module to the JIT, making its functions
289 available for execution; ``removeModule`` removes a module, freeing any
290 memory associated with the code in that module; and ``findSymbol`` allows us
291 to look up pointers to the compiled code.
293 We can take this simple API and change our code that parses top-level expressions to
294 look like this:
296 .. code-block:: c++
298     static void HandleTopLevelExpression() {
299       // Evaluate a top-level expression into an anonymous function.
300       if (auto FnAST = ParseTopLevelExpr()) {
301         if (FnAST->codegen()) {
303           // JIT the module containing the anonymous expression, keeping a handle so
304           // we can free it later.
305           auto H = TheJIT->addModule(std::move(TheModule));
306           InitializeModuleAndPassManager();
308           // Search the JIT for the __anon_expr symbol.
309           auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
310           assert(ExprSymbol && "Function not found");
312           // Get the symbol's address and cast it to the right type (takes no
313           // arguments, returns a double) so we can call it as a native function.
314           double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
315           fprintf(stderr, "Evaluated to %f\n", FP());
317           // Delete the anonymous expression module from the JIT.
318           TheJIT->removeModule(H);
319         }
321 If parsing and codegen succeed, the next step is to add the module containing
322 the top-level expression to the JIT. We do this by calling addModule, which
323 triggers code generation for all the functions in the module, and returns a
324 handle that can be used to remove the module from the JIT later. Once the module
325 has been added to the JIT it can no longer be modified, so we also open a new
326 module to hold subsequent code by calling ``InitializeModuleAndPassManager()``.
328 Once we've added the module to the JIT we need to get a pointer to the final
329 generated code. We do this by calling the JIT's findSymbol method, and passing
330 the name of the top-level expression function: ``__anon_expr``. Since we just
331 added this function, we assert that findSymbol returned a result.
333 Next, we get the in-memory address of the ``__anon_expr`` function by calling
334 ``getAddress()`` on the symbol. Recall that we compile top-level expressions
335 into a self-contained LLVM function that takes no arguments and returns the
336 computed double. Because the LLVM JIT compiler matches the native platform ABI,
337 this means that you can just cast the result pointer to a function pointer of
338 that type and call it directly. This means, there is no difference between JIT
339 compiled code and native machine code that is statically linked into your
340 application.
342 Finally, since we don't support re-evaluation of top-level expressions, we
343 remove the module from the JIT when we're done to free the associated memory.
344 Recall, however, that the module we created a few lines earlier (via
345 ``InitializeModuleAndPassManager``) is still open and waiting for new code to be
346 added.
348 With just these two changes, let's see how Kaleidoscope works now!
352     ready> 4+5;
353     Read top-level expression:
354     define double @0() {
355     entry:
356       ret double 9.000000e+00
357     }
359     Evaluated to 9.000000
361 Well this looks like it is basically working. The dump of the function
362 shows the "no argument function that always returns double" that we
363 synthesize for each top-level expression that is typed in. This
364 demonstrates very basic functionality, but can we do more?
368     ready> def testfunc(x y) x + y*2;
369     Read function definition:
370     define double @testfunc(double %x, double %y) {
371     entry:
372       %multmp = fmul double %y, 2.000000e+00
373       %addtmp = fadd double %multmp, %x
374       ret double %addtmp
375     }
377     ready> testfunc(4, 10);
378     Read top-level expression:
379     define double @1() {
380     entry:
381       %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
382       ret double %calltmp
383     }
385     Evaluated to 24.000000
387     ready> testfunc(5, 10);
388     ready> LLVM ERROR: Program used external function 'testfunc' which could not be resolved!
391 Function definitions and calls also work, but something went very wrong on that
392 last line. The call looks valid, so what happened? As you may have guessed from
393 the API a Module is a unit of allocation for the JIT, and testfunc was part
394 of the same module that contained anonymous expression. When we removed that
395 module from the JIT to free the memory for the anonymous expression, we deleted
396 the definition of ``testfunc`` along with it. Then, when we tried to call
397 testfunc a second time, the JIT could no longer find it.
399 The easiest way to fix this is to put the anonymous expression in a separate
400 module from the rest of the function definitions. The JIT will happily resolve
401 function calls across module boundaries, as long as each of the functions called
402 has a prototype, and is added to the JIT before it is called. By putting the
403 anonymous expression in a different module we can delete it without affecting
404 the rest of the functions.
406 In fact, we're going to go a step further and put every function in its own
407 module. Doing so allows us to exploit a useful property of the KaleidoscopeJIT
408 that will make our environment more REPL-like: Functions can be added to the
409 JIT more than once (unlike a module where every function must have a unique
410 definition). When you look up a symbol in KaleidoscopeJIT it will always return
411 the most recent definition:
415     ready> def foo(x) x + 1;
416     Read function definition:
417     define double @foo(double %x) {
418     entry:
419       %addtmp = fadd double %x, 1.000000e+00
420       ret double %addtmp
421     }
423     ready> foo(2);
424     Evaluated to 3.000000
426     ready> def foo(x) x + 2;
427     define double @foo(double %x) {
428     entry:
429       %addtmp = fadd double %x, 2.000000e+00
430       ret double %addtmp
431     }
433     ready> foo(2);
434     Evaluated to 4.000000
437 To allow each function to live in its own module we'll need a way to
438 re-generate previous function declarations into each new module we open:
440 .. code-block:: c++
442     static std::unique_ptr<KaleidoscopeJIT> TheJIT;
444     ...
446     Function *getFunction(std::string Name) {
447       // First, see if the function has already been added to the current module.
448       if (auto *F = TheModule->getFunction(Name))
449         return F;
451       // If not, check whether we can codegen the declaration from some existing
452       // prototype.
453       auto FI = FunctionProtos.find(Name);
454       if (FI != FunctionProtos.end())
455         return FI->second->codegen();
457       // If no existing prototype exists, return null.
458       return nullptr;
459     }
461     ...
463     Value *CallExprAST::codegen() {
464       // Look up the name in the global module table.
465       Function *CalleeF = getFunction(Callee);
467     ...
469     Function *FunctionAST::codegen() {
470       // Transfer ownership of the prototype to the FunctionProtos map, but keep a
471       // reference to it for use below.
472       auto &P = *Proto;
473       FunctionProtos[Proto->getName()] = std::move(Proto);
474       Function *TheFunction = getFunction(P.getName());
475       if (!TheFunction)
476         return nullptr;
479 To enable this, we'll start by adding a new global, ``FunctionProtos``, that
480 holds the most recent prototype for each function. We'll also add a convenience
481 method, ``getFunction()``, to replace calls to ``TheModule->getFunction()``.
482 Our convenience method searches ``TheModule`` for an existing function
483 declaration, falling back to generating a new declaration from FunctionProtos if
484 it doesn't find one. In ``CallExprAST::codegen()`` we just need to replace the
485 call to ``TheModule->getFunction()``. In ``FunctionAST::codegen()`` we need to
486 update the FunctionProtos map first, then call ``getFunction()``. With this
487 done, we can always obtain a function declaration in the current module for any
488 previously declared function.
490 We also need to update HandleDefinition and HandleExtern:
492 .. code-block:: c++
494     static void HandleDefinition() {
495       if (auto FnAST = ParseDefinition()) {
496         if (auto *FnIR = FnAST->codegen()) {
497           fprintf(stderr, "Read function definition:");
498           FnIR->print(errs());
499           fprintf(stderr, "\n");
500           TheJIT->addModule(std::move(TheModule));
501           InitializeModuleAndPassManager();
502         }
503       } else {
504         // Skip token for error recovery.
505          getNextToken();
506       }
507     }
509     static void HandleExtern() {
510       if (auto ProtoAST = ParseExtern()) {
511         if (auto *FnIR = ProtoAST->codegen()) {
512           fprintf(stderr, "Read extern: ");
513           FnIR->print(errs());
514           fprintf(stderr, "\n");
515           FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
516         }
517       } else {
518         // Skip token for error recovery.
519         getNextToken();
520       }
521     }
523 In HandleDefinition, we add two lines to transfer the newly defined function to
524 the JIT and open a new module. In HandleExtern, we just need to add one line to
525 add the prototype to FunctionProtos.
527 With these changes made, let's try our REPL again (I removed the dump of the
528 anonymous functions this time, you should get the idea by now :) :
532     ready> def foo(x) x + 1;
533     ready> foo(2);
534     Evaluated to 3.000000
536     ready> def foo(x) x + 2;
537     ready> foo(2);
538     Evaluated to 4.000000
540 It works!
542 Even with this simple code, we get some surprisingly powerful capabilities -
543 check this out:
547     ready> extern sin(x);
548     Read extern:
549     declare double @sin(double)
551     ready> extern cos(x);
552     Read extern:
553     declare double @cos(double)
555     ready> sin(1.0);
556     Read top-level expression:
557     define double @2() {
558     entry:
559       ret double 0x3FEAED548F090CEE
560     }
562     Evaluated to 0.841471
564     ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
565     Read function definition:
566     define double @foo(double %x) {
567     entry:
568       %calltmp = call double @sin(double %x)
569       %multmp = fmul double %calltmp, %calltmp
570       %calltmp2 = call double @cos(double %x)
571       %multmp4 = fmul double %calltmp2, %calltmp2
572       %addtmp = fadd double %multmp, %multmp4
573       ret double %addtmp
574     }
576     ready> foo(4.0);
577     Read top-level expression:
578     define double @3() {
579     entry:
580       %calltmp = call double @foo(double 4.000000e+00)
581       ret double %calltmp
582     }
584     Evaluated to 1.000000
586 Whoa, how does the JIT know about sin and cos? The answer is surprisingly
587 simple: The KaleidoscopeJIT has a straightforward symbol resolution rule that
588 it uses to find symbols that aren't available in any given module: First
589 it searches all the modules that have already been added to the JIT, from the
590 most recent to the oldest, to find the newest definition. If no definition is
591 found inside the JIT, it falls back to calling "``dlsym("sin")``" on the
592 Kaleidoscope process itself. Since "``sin``" is defined within the JIT's
593 address space, it simply patches up calls in the module to call the libm
594 version of ``sin`` directly. But in some cases this even goes further:
595 as sin and cos are names of standard math functions, the constant folder
596 will directly evaluate the function calls to the correct result when called
597 with constants like in the "``sin(1.0)``" above.
599 In the future we'll see how tweaking this symbol resolution rule can be used to
600 enable all sorts of useful features, from security (restricting the set of
601 symbols available to JIT'd code), to dynamic code generation based on symbol
602 names, and even lazy compilation.
604 One immediate benefit of the symbol resolution rule is that we can now extend
605 the language by writing arbitrary C++ code to implement operations. For example,
606 if we add:
608 .. code-block:: c++
610     #ifdef _WIN32
611     #define DLLEXPORT __declspec(dllexport)
612     #else
613     #define DLLEXPORT
614     #endif
616     /// putchard - putchar that takes a double and returns 0.
617     extern "C" DLLEXPORT double putchard(double X) {
618       fputc((char)X, stderr);
619       return 0;
620     }
622 Note, that for Windows we need to actually export the functions because
623 the dynamic symbol loader will use GetProcAddress to find the symbols.
625 Now we can produce simple output to the console by using things like:
626 "``extern putchard(x); putchard(120);``", which prints a lowercase 'x'
627 on the console (120 is the ASCII code for 'x'). Similar code could be
628 used to implement file I/O, console input, and many other capabilities
629 in Kaleidoscope.
631 This completes the JIT and optimizer chapter of the Kaleidoscope
632 tutorial. At this point, we can compile a non-Turing-complete
633 programming language, optimize and JIT compile it in a user-driven way.
634 Next up we'll look into `extending the language with control flow
635 constructs <LangImpl05.html>`_, tackling some interesting LLVM IR issues
636 along the way.
638 Full Code Listing
639 =================
641 Here is the complete code listing for our running example, enhanced with
642 the LLVM JIT and optimizer. To build this example, use:
644 .. code-block:: bash
646     # Compile
647     clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy
648     # Run
649     ./toy
651 If you are compiling this on Linux, make sure to add the "-rdynamic"
652 option as well. This makes sure that the external functions are resolved
653 properly at runtime.
655 Here is the code:
657 .. literalinclude:: ../../../examples/Kaleidoscope/Chapter4/toy.cpp
658    :language: c++
660 `Next: Extending the language: control flow <LangImpl05.html>`_