[Alignment][NFC] TargetCallingConv::setOrigAlign and TargetLowering::getABIAlignmentF...
[llvm-core.git] / lib / Analysis / CGSCCPassManager.cpp
bloba0b3f83cca6a68ed8f7d393a3672beedeac1062e
1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/InstIterator.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/Support/Casting.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <cassert>
28 #include <iterator>
30 #define DEBUG_TYPE "cgscc"
32 using namespace llvm;
34 // Explicit template instantiations and specialization definitions for core
35 // template typedefs.
36 namespace llvm {
38 // Explicit instantiations for the core proxy templates.
39 template class AllAnalysesOn<LazyCallGraph::SCC>;
40 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
41 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
42 LazyCallGraph &, CGSCCUpdateResult &>;
43 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
44 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
45 LazyCallGraph::SCC, LazyCallGraph &>;
46 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
48 /// Explicitly specialize the pass manager run method to handle call graph
49 /// updates.
50 template <>
51 PreservedAnalyses
52 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
53 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
54 CGSCCAnalysisManager &AM,
55 LazyCallGraph &G, CGSCCUpdateResult &UR) {
56 // Request PassInstrumentation from analysis manager, will use it to run
57 // instrumenting callbacks for the passes later.
58 PassInstrumentation PI =
59 AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
61 PreservedAnalyses PA = PreservedAnalyses::all();
63 if (DebugLogging)
64 dbgs() << "Starting CGSCC pass manager run.\n";
66 // The SCC may be refined while we are running passes over it, so set up
67 // a pointer that we can update.
68 LazyCallGraph::SCC *C = &InitialC;
70 for (auto &Pass : Passes) {
71 if (DebugLogging)
72 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
74 // Check the PassInstrumentation's BeforePass callbacks before running the
75 // pass, skip its execution completely if asked to (callback returns false).
76 if (!PI.runBeforePass(*Pass, *C))
77 continue;
79 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
81 if (UR.InvalidatedSCCs.count(C))
82 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass);
83 else
84 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C);
86 // Update the SCC if necessary.
87 C = UR.UpdatedC ? UR.UpdatedC : C;
89 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
90 // current SCC may simply need to be skipped if invalid.
91 if (UR.InvalidatedSCCs.count(C)) {
92 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
93 break;
95 // Check that we didn't miss any update scenario.
96 assert(C->begin() != C->end() && "Cannot have an empty SCC!");
98 // Update the analysis manager as each pass runs and potentially
99 // invalidates analyses.
100 AM.invalidate(*C, PassPA);
102 // Finally, we intersect the final preserved analyses to compute the
103 // aggregate preserved set for this pass manager.
104 PA.intersect(std::move(PassPA));
106 // FIXME: Historically, the pass managers all called the LLVM context's
107 // yield function here. We don't have a generic way to acquire the
108 // context and it isn't yet clear what the right pattern is for yielding
109 // in the new pass manager so it is currently omitted.
110 // ...getContext().yield();
113 // Before we mark all of *this* SCC's analyses as preserved below, intersect
114 // this with the cross-SCC preserved analysis set. This is used to allow
115 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
116 // for them.
117 UR.CrossSCCPA.intersect(PA);
119 // Invalidation was handled after each pass in the above loop for the current
120 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
121 // preserved. We mark this with a set so that we don't need to inspect each
122 // one individually.
123 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
125 if (DebugLogging)
126 dbgs() << "Finished CGSCC pass manager run.\n";
128 return PA;
131 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
132 Module &M, const PreservedAnalyses &PA,
133 ModuleAnalysisManager::Invalidator &Inv) {
134 // If literally everything is preserved, we're done.
135 if (PA.areAllPreserved())
136 return false; // This is still a valid proxy.
138 // If this proxy or the call graph is going to be invalidated, we also need
139 // to clear all the keys coming from that analysis.
141 // We also directly invalidate the FAM's module proxy if necessary, and if
142 // that proxy isn't preserved we can't preserve this proxy either. We rely on
143 // it to handle module -> function analysis invalidation in the face of
144 // structural changes and so if it's unavailable we conservatively clear the
145 // entire SCC layer as well rather than trying to do invalidation ourselves.
146 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
147 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
148 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
149 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
150 InnerAM->clear();
152 // And the proxy itself should be marked as invalid so that we can observe
153 // the new call graph. This isn't strictly necessary because we cheat
154 // above, but is still useful.
155 return true;
158 // Directly check if the relevant set is preserved so we can short circuit
159 // invalidating SCCs below.
160 bool AreSCCAnalysesPreserved =
161 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
163 // Ok, we have a graph, so we can propagate the invalidation down into it.
164 G->buildRefSCCs();
165 for (auto &RC : G->postorder_ref_sccs())
166 for (auto &C : RC) {
167 Optional<PreservedAnalyses> InnerPA;
169 // Check to see whether the preserved set needs to be adjusted based on
170 // module-level analysis invalidation triggering deferred invalidation
171 // for this SCC.
172 if (auto *OuterProxy =
173 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
174 for (const auto &OuterInvalidationPair :
175 OuterProxy->getOuterInvalidations()) {
176 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
177 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
178 if (Inv.invalidate(OuterAnalysisID, M, PA)) {
179 if (!InnerPA)
180 InnerPA = PA;
181 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
182 InnerPA->abandon(InnerAnalysisID);
186 // Check if we needed a custom PA set. If so we'll need to run the inner
187 // invalidation.
188 if (InnerPA) {
189 InnerAM->invalidate(C, *InnerPA);
190 continue;
193 // Otherwise we only need to do invalidation if the original PA set didn't
194 // preserve all SCC analyses.
195 if (!AreSCCAnalysesPreserved)
196 InnerAM->invalidate(C, PA);
199 // Return false to indicate that this result is still a valid proxy.
200 return false;
203 template <>
204 CGSCCAnalysisManagerModuleProxy::Result
205 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
206 // Force the Function analysis manager to also be available so that it can
207 // be accessed in an SCC analysis and proxied onward to function passes.
208 // FIXME: It is pretty awkward to just drop the result here and assert that
209 // we can find it again later.
210 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
212 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
215 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
217 FunctionAnalysisManagerCGSCCProxy::Result
218 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
219 CGSCCAnalysisManager &AM,
220 LazyCallGraph &CG) {
221 // Collect the FunctionAnalysisManager from the Module layer and use that to
222 // build the proxy result.
224 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
225 // invalidate the function analyses.
226 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
227 Module &M = *C.begin()->getFunction().getParent();
228 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
229 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
230 "proxy is run on the module prior to entering the CGSCC "
231 "walk.");
233 // Note that we special-case invalidation handling of this proxy in the CGSCC
234 // analysis manager's Module proxy. This avoids the need to do anything
235 // special here to recompute all of this if ever the FAM's module proxy goes
236 // away.
237 return Result(FAMProxy->getManager());
240 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
241 LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
242 CGSCCAnalysisManager::Invalidator &Inv) {
243 // If literally everything is preserved, we're done.
244 if (PA.areAllPreserved())
245 return false; // This is still a valid proxy.
247 // If this proxy isn't marked as preserved, then even if the result remains
248 // valid, the key itself may no longer be valid, so we clear everything.
250 // Note that in order to preserve this proxy, a module pass must ensure that
251 // the FAM has been completely updated to handle the deletion of functions.
252 // Specifically, any FAM-cached results for those functions need to have been
253 // forcibly cleared. When preserved, this proxy will only invalidate results
254 // cached on functions *still in the module* at the end of the module pass.
255 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
256 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
257 for (LazyCallGraph::Node &N : C)
258 FAM->clear(N.getFunction(), N.getFunction().getName());
260 return true;
263 // Directly check if the relevant set is preserved.
264 bool AreFunctionAnalysesPreserved =
265 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
267 // Now walk all the functions to see if any inner analysis invalidation is
268 // necessary.
269 for (LazyCallGraph::Node &N : C) {
270 Function &F = N.getFunction();
271 Optional<PreservedAnalyses> FunctionPA;
273 // Check to see whether the preserved set needs to be pruned based on
274 // SCC-level analysis invalidation that triggers deferred invalidation
275 // registered with the outer analysis manager proxy for this function.
276 if (auto *OuterProxy =
277 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
278 for (const auto &OuterInvalidationPair :
279 OuterProxy->getOuterInvalidations()) {
280 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
281 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
282 if (Inv.invalidate(OuterAnalysisID, C, PA)) {
283 if (!FunctionPA)
284 FunctionPA = PA;
285 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
286 FunctionPA->abandon(InnerAnalysisID);
290 // Check if we needed a custom PA set, and if so we'll need to run the
291 // inner invalidation.
292 if (FunctionPA) {
293 FAM->invalidate(F, *FunctionPA);
294 continue;
297 // Otherwise we only need to do invalidation if the original PA set didn't
298 // preserve all function analyses.
299 if (!AreFunctionAnalysesPreserved)
300 FAM->invalidate(F, PA);
303 // Return false to indicate that this result is still a valid proxy.
304 return false;
307 } // end namespace llvm
309 /// When a new SCC is created for the graph and there might be function
310 /// analysis results cached for the functions now in that SCC two forms of
311 /// updates are required.
313 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
314 /// created so that any subsequent invalidation events to the SCC are
315 /// propagated to the function analysis results cached for functions within it.
317 /// Second, if any of the functions within the SCC have analysis results with
318 /// outer analysis dependencies, then those dependencies would point to the
319 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
320 /// function analyses so that they don't retain stale handles.
321 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
322 LazyCallGraph &G,
323 CGSCCAnalysisManager &AM) {
324 // Get the relevant function analysis manager.
325 auto &FAM =
326 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();
328 // Now walk the functions in this SCC and invalidate any function analysis
329 // results that might have outer dependencies on an SCC analysis.
330 for (LazyCallGraph::Node &N : C) {
331 Function &F = N.getFunction();
333 auto *OuterProxy =
334 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
335 if (!OuterProxy)
336 // No outer analyses were queried, nothing to do.
337 continue;
339 // Forcibly abandon all the inner analyses with dependencies, but
340 // invalidate nothing else.
341 auto PA = PreservedAnalyses::all();
342 for (const auto &OuterInvalidationPair :
343 OuterProxy->getOuterInvalidations()) {
344 const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
345 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
346 PA.abandon(InnerAnalysisID);
349 // Now invalidate anything we found.
350 FAM.invalidate(F, PA);
354 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
355 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
356 /// added SCCs.
358 /// The range of new SCCs must be in postorder already. The SCC they were split
359 /// out of must be provided as \p C. The current node being mutated and
360 /// triggering updates must be passed as \p N.
362 /// This function returns the SCC containing \p N. This will be either \p C if
363 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
364 template <typename SCCRangeT>
365 static LazyCallGraph::SCC *
366 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
367 LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
368 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
369 using SCC = LazyCallGraph::SCC;
371 if (NewSCCRange.begin() == NewSCCRange.end())
372 return C;
374 // Add the current SCC to the worklist as its shape has changed.
375 UR.CWorklist.insert(C);
376 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
377 << "\n");
379 SCC *OldC = C;
381 // Update the current SCC. Note that if we have new SCCs, this must actually
382 // change the SCC.
383 assert(C != &*NewSCCRange.begin() &&
384 "Cannot insert new SCCs without changing current SCC!");
385 C = &*NewSCCRange.begin();
386 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
388 // If we had a cached FAM proxy originally, we will want to create more of
389 // them for each SCC that was split off.
390 bool NeedFAMProxy =
391 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;
393 // We need to propagate an invalidation call to all but the newly current SCC
394 // because the outer pass manager won't do that for us after splitting them.
395 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
396 // there are preserved analysis we can avoid invalidating them here for
397 // split-off SCCs.
398 // We know however that this will preserve any FAM proxy so go ahead and mark
399 // that.
400 PreservedAnalyses PA;
401 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
402 AM.invalidate(*OldC, PA);
404 // Ensure the now-current SCC's function analyses are updated.
405 if (NeedFAMProxy)
406 updateNewSCCFunctionAnalyses(*C, G, AM);
408 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
409 NewSCCRange.end()))) {
410 assert(C != &NewC && "No need to re-visit the current SCC!");
411 assert(OldC != &NewC && "Already handled the original SCC!");
412 UR.CWorklist.insert(&NewC);
413 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
415 // Ensure new SCCs' function analyses are updated.
416 if (NeedFAMProxy)
417 updateNewSCCFunctionAnalyses(NewC, G, AM);
419 // Also propagate a normal invalidation to the new SCC as only the current
420 // will get one from the pass manager infrastructure.
421 AM.invalidate(NewC, PA);
423 return C;
426 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
427 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
428 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
429 using Node = LazyCallGraph::Node;
430 using Edge = LazyCallGraph::Edge;
431 using SCC = LazyCallGraph::SCC;
432 using RefSCC = LazyCallGraph::RefSCC;
434 RefSCC &InitialRC = InitialC.getOuterRefSCC();
435 SCC *C = &InitialC;
436 RefSCC *RC = &InitialRC;
437 Function &F = N.getFunction();
439 // Walk the function body and build up the set of retained, promoted, and
440 // demoted edges.
441 SmallVector<Constant *, 16> Worklist;
442 SmallPtrSet<Constant *, 16> Visited;
443 SmallPtrSet<Node *, 16> RetainedEdges;
444 SmallSetVector<Node *, 4> PromotedRefTargets;
445 SmallSetVector<Node *, 4> DemotedCallTargets;
447 // First walk the function and handle all called functions. We do this first
448 // because if there is a single call edge, whether there are ref edges is
449 // irrelevant.
450 for (Instruction &I : instructions(F))
451 if (auto CS = CallSite(&I))
452 if (Function *Callee = CS.getCalledFunction())
453 if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
454 Node &CalleeN = *G.lookup(*Callee);
455 Edge *E = N->lookup(CalleeN);
456 // FIXME: We should really handle adding new calls. While it will
457 // make downstream usage more complex, there is no fundamental
458 // limitation and it will allow passes within the CGSCC to be a bit
459 // more flexible in what transforms they can do. Until then, we
460 // verify that new calls haven't been introduced.
461 assert(E && "No function transformations should introduce *new* "
462 "call edges! Any new calls should be modeled as "
463 "promoted existing ref edges!");
464 bool Inserted = RetainedEdges.insert(&CalleeN).second;
465 (void)Inserted;
466 assert(Inserted && "We should never visit a function twice.");
467 if (!E->isCall())
468 PromotedRefTargets.insert(&CalleeN);
471 // Now walk all references.
472 for (Instruction &I : instructions(F))
473 for (Value *Op : I.operand_values())
474 if (auto *C = dyn_cast<Constant>(Op))
475 if (Visited.insert(C).second)
476 Worklist.push_back(C);
478 auto VisitRef = [&](Function &Referee) {
479 Node &RefereeN = *G.lookup(Referee);
480 Edge *E = N->lookup(RefereeN);
481 // FIXME: Similarly to new calls, we also currently preclude
482 // introducing new references. See above for details.
483 assert(E && "No function transformations should introduce *new* ref "
484 "edges! Any new ref edges would require IPO which "
485 "function passes aren't allowed to do!");
486 bool Inserted = RetainedEdges.insert(&RefereeN).second;
487 (void)Inserted;
488 assert(Inserted && "We should never visit a function twice.");
489 if (E->isCall())
490 DemotedCallTargets.insert(&RefereeN);
492 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
494 // Include synthetic reference edges to known, defined lib functions.
495 for (auto *F : G.getLibFunctions())
496 // While the list of lib functions doesn't have repeats, don't re-visit
497 // anything handled above.
498 if (!Visited.count(F))
499 VisitRef(*F);
501 // First remove all of the edges that are no longer present in this function.
502 // The first step makes these edges uniformly ref edges and accumulates them
503 // into a separate data structure so removal doesn't invalidate anything.
504 SmallVector<Node *, 4> DeadTargets;
505 for (Edge &E : *N) {
506 if (RetainedEdges.count(&E.getNode()))
507 continue;
509 SCC &TargetC = *G.lookupSCC(E.getNode());
510 RefSCC &TargetRC = TargetC.getOuterRefSCC();
511 if (&TargetRC == RC && E.isCall()) {
512 if (C != &TargetC) {
513 // For separate SCCs this is trivial.
514 RC->switchTrivialInternalEdgeToRef(N, E.getNode());
515 } else {
516 // Now update the call graph.
517 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
518 G, N, C, AM, UR);
522 // Now that this is ready for actual removal, put it into our list.
523 DeadTargets.push_back(&E.getNode());
525 // Remove the easy cases quickly and actually pull them out of our list.
526 DeadTargets.erase(
527 llvm::remove_if(DeadTargets,
528 [&](Node *TargetN) {
529 SCC &TargetC = *G.lookupSCC(*TargetN);
530 RefSCC &TargetRC = TargetC.getOuterRefSCC();
532 // We can't trivially remove internal targets, so skip
533 // those.
534 if (&TargetRC == RC)
535 return false;
537 RC->removeOutgoingEdge(N, *TargetN);
538 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
539 << N << "' to '" << TargetN << "'\n");
540 return true;
542 DeadTargets.end());
544 // Now do a batch removal of the internal ref edges left.
545 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
546 if (!NewRefSCCs.empty()) {
547 // The old RefSCC is dead, mark it as such.
548 UR.InvalidatedRefSCCs.insert(RC);
550 // Note that we don't bother to invalidate analyses as ref-edge
551 // connectivity is not really observable in any way and is intended
552 // exclusively to be used for ordering of transforms rather than for
553 // analysis conclusions.
555 // Update RC to the "bottom".
556 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
557 RC = &C->getOuterRefSCC();
558 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
560 // The RC worklist is in reverse postorder, so we enqueue the new ones in
561 // RPO except for the one which contains the source node as that is the
562 // "bottom" we will continue processing in the bottom-up walk.
563 assert(NewRefSCCs.front() == RC &&
564 "New current RefSCC not first in the returned list!");
565 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
566 NewRefSCCs.end()))) {
567 assert(NewRC != RC && "Should not encounter the current RefSCC further "
568 "in the postorder list of new RefSCCs.");
569 UR.RCWorklist.insert(NewRC);
570 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
571 << *NewRC << "\n");
575 // Next demote all the call edges that are now ref edges. This helps make
576 // the SCCs small which should minimize the work below as we don't want to
577 // form cycles that this would break.
578 for (Node *RefTarget : DemotedCallTargets) {
579 SCC &TargetC = *G.lookupSCC(*RefTarget);
580 RefSCC &TargetRC = TargetC.getOuterRefSCC();
582 // The easy case is when the target RefSCC is not this RefSCC. This is
583 // only supported when the target RefSCC is a child of this RefSCC.
584 if (&TargetRC != RC) {
585 assert(RC->isAncestorOf(TargetRC) &&
586 "Cannot potentially form RefSCC cycles here!");
587 RC->switchOutgoingEdgeToRef(N, *RefTarget);
588 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
589 << "' to '" << *RefTarget << "'\n");
590 continue;
593 // We are switching an internal call edge to a ref edge. This may split up
594 // some SCCs.
595 if (C != &TargetC) {
596 // For separate SCCs this is trivial.
597 RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
598 continue;
601 // Now update the call graph.
602 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
603 C, AM, UR);
606 // Now promote ref edges into call edges.
607 for (Node *CallTarget : PromotedRefTargets) {
608 SCC &TargetC = *G.lookupSCC(*CallTarget);
609 RefSCC &TargetRC = TargetC.getOuterRefSCC();
611 // The easy case is when the target RefSCC is not this RefSCC. This is
612 // only supported when the target RefSCC is a child of this RefSCC.
613 if (&TargetRC != RC) {
614 assert(RC->isAncestorOf(TargetRC) &&
615 "Cannot potentially form RefSCC cycles here!");
616 RC->switchOutgoingEdgeToCall(N, *CallTarget);
617 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
618 << "' to '" << *CallTarget << "'\n");
619 continue;
621 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
622 << N << "' to '" << *CallTarget << "'\n");
624 // Otherwise we are switching an internal ref edge to a call edge. This
625 // may merge away some SCCs, and we add those to the UpdateResult. We also
626 // need to make sure to update the worklist in the event SCCs have moved
627 // before the current one in the post-order sequence
628 bool HasFunctionAnalysisProxy = false;
629 auto InitialSCCIndex = RC->find(*C) - RC->begin();
630 bool FormedCycle = RC->switchInternalEdgeToCall(
631 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
632 for (SCC *MergedC : MergedSCCs) {
633 assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
635 HasFunctionAnalysisProxy |=
636 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
637 *MergedC) != nullptr;
639 // Mark that this SCC will no longer be valid.
640 UR.InvalidatedSCCs.insert(MergedC);
642 // FIXME: We should really do a 'clear' here to forcibly release
643 // memory, but we don't have a good way of doing that and
644 // preserving the function analyses.
645 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
646 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
647 AM.invalidate(*MergedC, PA);
651 // If we formed a cycle by creating this call, we need to update more data
652 // structures.
653 if (FormedCycle) {
654 C = &TargetC;
655 assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
657 // If one of the invalidated SCCs had a cached proxy to a function
658 // analysis manager, we need to create a proxy in the new current SCC as
659 // the invalidated SCCs had their functions moved.
660 if (HasFunctionAnalysisProxy)
661 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
663 // Any analyses cached for this SCC are no longer precise as the shape
664 // has changed by introducing this cycle. However, we have taken care to
665 // update the proxies so it remains valide.
666 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
667 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
668 AM.invalidate(*C, PA);
670 auto NewSCCIndex = RC->find(*C) - RC->begin();
671 // If we have actually moved an SCC to be topologically "below" the current
672 // one due to merging, we will need to revisit the current SCC after
673 // visiting those moved SCCs.
675 // It is critical that we *do not* revisit the current SCC unless we
676 // actually move SCCs in the process of merging because otherwise we may
677 // form a cycle where an SCC is split apart, merged, split, merged and so
678 // on infinitely.
679 if (InitialSCCIndex < NewSCCIndex) {
680 // Put our current SCC back onto the worklist as we'll visit other SCCs
681 // that are now definitively ordered prior to the current one in the
682 // post-order sequence, and may end up observing more precise context to
683 // optimize the current SCC.
684 UR.CWorklist.insert(C);
685 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
686 << "\n");
687 // Enqueue in reverse order as we pop off the back of the worklist.
688 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
689 RC->begin() + NewSCCIndex))) {
690 UR.CWorklist.insert(&MovedC);
691 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
692 << MovedC << "\n");
697 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
698 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
699 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
701 // Record the current RefSCC and SCC for higher layers of the CGSCC pass
702 // manager now that all the updates have been applied.
703 if (RC != &InitialRC)
704 UR.UpdatedRC = RC;
705 if (C != &InitialC)
706 UR.UpdatedC = C;
708 return *C;