1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the MemorySSA class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/FormattedStream.h"
49 #include "llvm/Support/raw_ostream.h"
59 #define DEBUG_TYPE "memoryssa"
61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
65 INITIALIZE_PASS_END(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass
, "print-memoryssa",
69 "Memory SSA Printer", false, false)
70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass
, "print-memoryssa",
72 "Memory SSA Printer", false, false)
74 static cl::opt
<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden
, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
79 // Always verify MemorySSA if expensive checking is enabled.
80 #ifdef EXPENSIVE_CHECKS
81 bool llvm::VerifyMemorySSA
= true;
83 bool llvm::VerifyMemorySSA
= false;
85 /// Enables memory ssa as a dependency for loop passes in legacy pass manager.
86 cl::opt
<bool> llvm::EnableMSSALoopDependency(
87 "enable-mssa-loop-dependency", cl::Hidden
, cl::init(true),
88 cl::desc("Enable MemorySSA dependency for loop pass manager"));
90 static cl::opt
<bool, true>
91 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA
),
92 cl::Hidden
, cl::desc("Enable verification of MemorySSA."));
96 /// An assembly annotator class to print Memory SSA information in
98 class MemorySSAAnnotatedWriter
: public AssemblyAnnotationWriter
{
99 friend class MemorySSA
;
101 const MemorySSA
*MSSA
;
104 MemorySSAAnnotatedWriter(const MemorySSA
*M
) : MSSA(M
) {}
106 void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
107 formatted_raw_ostream
&OS
) override
{
108 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(BB
))
109 OS
<< "; " << *MA
<< "\n";
112 void emitInstructionAnnot(const Instruction
*I
,
113 formatted_raw_ostream
&OS
) override
{
114 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(I
))
115 OS
<< "; " << *MA
<< "\n";
119 } // end namespace llvm
123 /// Our current alias analysis API differentiates heavily between calls and
124 /// non-calls, and functions called on one usually assert on the other.
125 /// This class encapsulates the distinction to simplify other code that wants
126 /// "Memory affecting instructions and related data" to use as a key.
127 /// For example, this class is used as a densemap key in the use optimizer.
128 class MemoryLocOrCall
{
132 MemoryLocOrCall(MemoryUseOrDef
*MUD
)
133 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
134 MemoryLocOrCall(const MemoryUseOrDef
*MUD
)
135 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
137 MemoryLocOrCall(Instruction
*Inst
) {
138 if (auto *C
= dyn_cast
<CallBase
>(Inst
)) {
143 // There is no such thing as a memorylocation for a fence inst, and it is
144 // unique in that regard.
145 if (!isa
<FenceInst
>(Inst
))
146 Loc
= MemoryLocation::get(Inst
);
150 explicit MemoryLocOrCall(const MemoryLocation
&Loc
) : Loc(Loc
) {}
152 const CallBase
*getCall() const {
157 MemoryLocation
getLoc() const {
162 bool operator==(const MemoryLocOrCall
&Other
) const {
163 if (IsCall
!= Other
.IsCall
)
167 return Loc
== Other
.Loc
;
169 if (Call
->getCalledValue() != Other
.Call
->getCalledValue())
172 return Call
->arg_size() == Other
.Call
->arg_size() &&
173 std::equal(Call
->arg_begin(), Call
->arg_end(),
174 Other
.Call
->arg_begin());
179 const CallBase
*Call
;
184 } // end anonymous namespace
188 template <> struct DenseMapInfo
<MemoryLocOrCall
> {
189 static inline MemoryLocOrCall
getEmptyKey() {
190 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getEmptyKey());
193 static inline MemoryLocOrCall
getTombstoneKey() {
194 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getTombstoneKey());
197 static unsigned getHashValue(const MemoryLocOrCall
&MLOC
) {
201 DenseMapInfo
<MemoryLocation
>::getHashValue(MLOC
.getLoc()));
204 hash_combine(MLOC
.IsCall
, DenseMapInfo
<const Value
*>::getHashValue(
205 MLOC
.getCall()->getCalledValue()));
207 for (const Value
*Arg
: MLOC
.getCall()->args())
208 hash
= hash_combine(hash
, DenseMapInfo
<const Value
*>::getHashValue(Arg
));
212 static bool isEqual(const MemoryLocOrCall
&LHS
, const MemoryLocOrCall
&RHS
) {
217 } // end namespace llvm
219 /// This does one-way checks to see if Use could theoretically be hoisted above
220 /// MayClobber. This will not check the other way around.
222 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
223 /// MayClobber, with no potentially clobbering operations in between them.
224 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
225 static bool areLoadsReorderable(const LoadInst
*Use
,
226 const LoadInst
*MayClobber
) {
227 bool VolatileUse
= Use
->isVolatile();
228 bool VolatileClobber
= MayClobber
->isVolatile();
229 // Volatile operations may never be reordered with other volatile operations.
230 if (VolatileUse
&& VolatileClobber
)
232 // Otherwise, volatile doesn't matter here. From the language reference:
233 // 'optimizers may change the order of volatile operations relative to
234 // non-volatile operations.'"
236 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
237 // is weaker, it can be moved above other loads. We just need to be sure that
238 // MayClobber isn't an acquire load, because loads can't be moved above
241 // Note that this explicitly *does* allow the free reordering of monotonic (or
242 // weaker) loads of the same address.
243 bool SeqCstUse
= Use
->getOrdering() == AtomicOrdering::SequentiallyConsistent
;
244 bool MayClobberIsAcquire
= isAtLeastOrStrongerThan(MayClobber
->getOrdering(),
245 AtomicOrdering::Acquire
);
246 return !(SeqCstUse
|| MayClobberIsAcquire
);
251 struct ClobberAlias
{
253 Optional
<AliasResult
> AR
;
256 } // end anonymous namespace
258 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
259 // ignored if IsClobber = false.
260 template <typename AliasAnalysisType
>
262 instructionClobbersQuery(const MemoryDef
*MD
, const MemoryLocation
&UseLoc
,
263 const Instruction
*UseInst
, AliasAnalysisType
&AA
) {
264 Instruction
*DefInst
= MD
->getMemoryInst();
265 assert(DefInst
&& "Defining instruction not actually an instruction");
266 const auto *UseCall
= dyn_cast
<CallBase
>(UseInst
);
267 Optional
<AliasResult
> AR
;
269 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(DefInst
)) {
270 // These intrinsics will show up as affecting memory, but they are just
273 // FIXME: We probably don't actually want MemorySSA to model these at all
274 // (including creating MemoryAccesses for them): we just end up inventing
275 // clobbers where they don't really exist at all. Please see D43269 for
277 switch (II
->getIntrinsicID()) {
278 case Intrinsic::lifetime_start
:
280 return {false, NoAlias
};
281 AR
= AA
.alias(MemoryLocation(II
->getArgOperand(1)), UseLoc
);
282 return {AR
!= NoAlias
, AR
};
283 case Intrinsic::lifetime_end
:
284 case Intrinsic::invariant_start
:
285 case Intrinsic::invariant_end
:
286 case Intrinsic::assume
:
287 return {false, NoAlias
};
288 case Intrinsic::dbg_addr
:
289 case Intrinsic::dbg_declare
:
290 case Intrinsic::dbg_label
:
291 case Intrinsic::dbg_value
:
292 llvm_unreachable("debuginfo shouldn't have associated defs!");
299 ModRefInfo I
= AA
.getModRefInfo(DefInst
, UseCall
);
300 AR
= isMustSet(I
) ? MustAlias
: MayAlias
;
301 return {isModOrRefSet(I
), AR
};
304 if (auto *DefLoad
= dyn_cast
<LoadInst
>(DefInst
))
305 if (auto *UseLoad
= dyn_cast
<LoadInst
>(UseInst
))
306 return {!areLoadsReorderable(UseLoad
, DefLoad
), MayAlias
};
308 ModRefInfo I
= AA
.getModRefInfo(DefInst
, UseLoc
);
309 AR
= isMustSet(I
) ? MustAlias
: MayAlias
;
310 return {isModSet(I
), AR
};
313 template <typename AliasAnalysisType
>
314 static ClobberAlias
instructionClobbersQuery(MemoryDef
*MD
,
315 const MemoryUseOrDef
*MU
,
316 const MemoryLocOrCall
&UseMLOC
,
317 AliasAnalysisType
&AA
) {
318 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
319 // to exist while MemoryLocOrCall is pushed through places.
321 return instructionClobbersQuery(MD
, MemoryLocation(), MU
->getMemoryInst(),
323 return instructionClobbersQuery(MD
, UseMLOC
.getLoc(), MU
->getMemoryInst(),
327 // Return true when MD may alias MU, return false otherwise.
328 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef
*MD
, const MemoryUseOrDef
*MU
,
330 return instructionClobbersQuery(MD
, MU
, MemoryLocOrCall(MU
), AA
).IsClobber
;
335 struct UpwardsMemoryQuery
{
336 // True if our original query started off as a call
338 // The pointer location we started the query with. This will be empty if
340 MemoryLocation StartingLoc
;
341 // This is the instruction we were querying about.
342 const Instruction
*Inst
= nullptr;
343 // The MemoryAccess we actually got called with, used to test local domination
344 const MemoryAccess
*OriginalAccess
= nullptr;
345 Optional
<AliasResult
> AR
= MayAlias
;
346 bool SkipSelfAccess
= false;
348 UpwardsMemoryQuery() = default;
350 UpwardsMemoryQuery(const Instruction
*Inst
, const MemoryAccess
*Access
)
351 : IsCall(isa
<CallBase
>(Inst
)), Inst(Inst
), OriginalAccess(Access
) {
353 StartingLoc
= MemoryLocation::get(Inst
);
357 } // end anonymous namespace
359 static bool lifetimeEndsAt(MemoryDef
*MD
, const MemoryLocation
&Loc
,
360 BatchAAResults
&AA
) {
361 Instruction
*Inst
= MD
->getMemoryInst();
362 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
363 switch (II
->getIntrinsicID()) {
364 case Intrinsic::lifetime_end
:
365 return AA
.alias(MemoryLocation(II
->getArgOperand(1)), Loc
) == MustAlias
;
373 template <typename AliasAnalysisType
>
374 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType
&AA
,
375 const Instruction
*I
) {
376 // If the memory can't be changed, then loads of the memory can't be
378 return isa
<LoadInst
>(I
) && (I
->hasMetadata(LLVMContext::MD_invariant_load
) ||
379 AA
.pointsToConstantMemory(MemoryLocation(
380 cast
<LoadInst
>(I
)->getPointerOperand())));
383 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
384 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
386 /// This is meant to be as simple and self-contained as possible. Because it
387 /// uses no cache, etc., it can be relatively expensive.
389 /// \param Start The MemoryAccess that we want to walk from.
390 /// \param ClobberAt A clobber for Start.
391 /// \param StartLoc The MemoryLocation for Start.
392 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
393 /// \param Query The UpwardsMemoryQuery we used for our search.
394 /// \param AA The AliasAnalysis we used for our search.
395 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
397 template <typename AliasAnalysisType
>
398 LLVM_ATTRIBUTE_UNUSED
static void
399 checkClobberSanity(const MemoryAccess
*Start
, MemoryAccess
*ClobberAt
,
400 const MemoryLocation
&StartLoc
, const MemorySSA
&MSSA
,
401 const UpwardsMemoryQuery
&Query
, AliasAnalysisType
&AA
,
402 bool AllowImpreciseClobber
= false) {
403 assert(MSSA
.dominates(ClobberAt
, Start
) && "Clobber doesn't dominate start?");
405 if (MSSA
.isLiveOnEntryDef(Start
)) {
406 assert(MSSA
.isLiveOnEntryDef(ClobberAt
) &&
407 "liveOnEntry must clobber itself");
411 bool FoundClobber
= false;
412 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
413 SmallVector
<ConstMemoryAccessPair
, 8> Worklist
;
414 Worklist
.emplace_back(Start
, StartLoc
);
415 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
416 // is found, complain.
417 while (!Worklist
.empty()) {
418 auto MAP
= Worklist
.pop_back_val();
419 // All we care about is that nothing from Start to ClobberAt clobbers Start.
420 // We learn nothing from revisiting nodes.
421 if (!VisitedPhis
.insert(MAP
).second
)
424 for (const auto *MA
: def_chain(MAP
.first
)) {
425 if (MA
== ClobberAt
) {
426 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
427 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
428 // since it won't let us short-circuit.
430 // Also, note that this can't be hoisted out of the `Worklist` loop,
431 // since MD may only act as a clobber for 1 of N MemoryLocations.
432 FoundClobber
= FoundClobber
|| MSSA
.isLiveOnEntryDef(MD
);
435 instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
);
445 // We should never hit liveOnEntry, unless it's the clobber.
446 assert(!MSSA
.isLiveOnEntryDef(MA
) && "Hit liveOnEntry before clobber?");
448 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
449 // If Start is a Def, skip self.
453 assert(!instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
)
455 "Found clobber before reaching ClobberAt!");
459 if (const auto *MU
= dyn_cast
<MemoryUse
>(MA
)) {
461 assert (MU
== Start
&&
462 "Can only find use in def chain if Start is a use");
466 assert(isa
<MemoryPhi
>(MA
));
468 upward_defs_begin({const_cast<MemoryAccess
*>(MA
), MAP
.second
}),
473 // If the verify is done following an optimization, it's possible that
474 // ClobberAt was a conservative clobbering, that we can now infer is not a
475 // true clobbering access. Don't fail the verify if that's the case.
476 // We do have accesses that claim they're optimized, but could be optimized
477 // further. Updating all these can be expensive, so allow it for now (FIXME).
478 if (AllowImpreciseClobber
)
481 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
482 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
483 assert((isa
<MemoryPhi
>(ClobberAt
) || FoundClobber
) &&
484 "ClobberAt never acted as a clobber");
489 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
491 template <class AliasAnalysisType
> class ClobberWalker
{
492 /// Save a few bytes by using unsigned instead of size_t.
493 using ListIndex
= unsigned;
495 /// Represents a span of contiguous MemoryDefs, potentially ending in a
499 // Note that, because we always walk in reverse, Last will always dominate
500 // First. Also note that First and Last are inclusive.
503 Optional
<ListIndex
> Previous
;
505 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*First
, MemoryAccess
*Last
,
506 Optional
<ListIndex
> Previous
)
507 : Loc(Loc
), First(First
), Last(Last
), Previous(Previous
) {}
509 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*Init
,
510 Optional
<ListIndex
> Previous
)
511 : DefPath(Loc
, Init
, Init
, Previous
) {}
514 const MemorySSA
&MSSA
;
515 AliasAnalysisType
&AA
;
517 UpwardsMemoryQuery
*Query
;
518 unsigned *UpwardWalkLimit
;
520 // Phi optimization bookkeeping
521 SmallVector
<DefPath
, 32> Paths
;
522 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
524 /// Find the nearest def or phi that `From` can legally be optimized to.
525 const MemoryAccess
*getWalkTarget(const MemoryPhi
*From
) const {
526 assert(From
->getNumOperands() && "Phi with no operands?");
528 BasicBlock
*BB
= From
->getBlock();
529 MemoryAccess
*Result
= MSSA
.getLiveOnEntryDef();
530 DomTreeNode
*Node
= DT
.getNode(BB
);
531 while ((Node
= Node
->getIDom())) {
532 auto *Defs
= MSSA
.getBlockDefs(Node
->getBlock());
534 return &*Defs
->rbegin();
539 /// Result of calling walkToPhiOrClobber.
540 struct UpwardsWalkResult
{
541 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
542 /// both. Include alias info when clobber found.
543 MemoryAccess
*Result
;
545 Optional
<AliasResult
> AR
;
548 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
549 /// This will update Desc.Last as it walks. It will (optionally) also stop at
552 /// This does not test for whether StopAt is a clobber
554 walkToPhiOrClobber(DefPath
&Desc
, const MemoryAccess
*StopAt
= nullptr,
555 const MemoryAccess
*SkipStopAt
= nullptr) const {
556 assert(!isa
<MemoryUse
>(Desc
.Last
) && "Uses don't exist in my world");
557 assert(UpwardWalkLimit
&& "Need a valid walk limit");
558 bool LimitAlreadyReached
= false;
559 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
560 // it to 1. This will not do any alias() calls. It either returns in the
561 // first iteration in the loop below, or is set back to 0 if all def chains
562 // are free of MemoryDefs.
563 if (!*UpwardWalkLimit
) {
564 *UpwardWalkLimit
= 1;
565 LimitAlreadyReached
= true;
568 for (MemoryAccess
*Current
: def_chain(Desc
.Last
)) {
570 if (Current
== StopAt
|| Current
== SkipStopAt
)
571 return {Current
, false, MayAlias
};
573 if (auto *MD
= dyn_cast
<MemoryDef
>(Current
)) {
574 if (MSSA
.isLiveOnEntryDef(MD
))
575 return {MD
, true, MustAlias
};
577 if (!--*UpwardWalkLimit
)
578 return {Current
, true, MayAlias
};
581 instructionClobbersQuery(MD
, Desc
.Loc
, Query
->Inst
, AA
);
583 return {MD
, true, CA
.AR
};
587 if (LimitAlreadyReached
)
588 *UpwardWalkLimit
= 0;
590 assert(isa
<MemoryPhi
>(Desc
.Last
) &&
591 "Ended at a non-clobber that's not a phi?");
592 return {Desc
.Last
, false, MayAlias
};
595 void addSearches(MemoryPhi
*Phi
, SmallVectorImpl
<ListIndex
> &PausedSearches
,
596 ListIndex PriorNode
) {
597 auto UpwardDefs
= make_range(upward_defs_begin({Phi
, Paths
[PriorNode
].Loc
}),
599 for (const MemoryAccessPair
&P
: UpwardDefs
) {
600 PausedSearches
.push_back(Paths
.size());
601 Paths
.emplace_back(P
.second
, P
.first
, PriorNode
);
605 /// Represents a search that terminated after finding a clobber. This clobber
606 /// may or may not be present in the path of defs from LastNode..SearchStart,
607 /// since it may have been retrieved from cache.
608 struct TerminatedPath
{
609 MemoryAccess
*Clobber
;
613 /// Get an access that keeps us from optimizing to the given phi.
615 /// PausedSearches is an array of indices into the Paths array. Its incoming
616 /// value is the indices of searches that stopped at the last phi optimization
617 /// target. It's left in an unspecified state.
619 /// If this returns None, NewPaused is a vector of searches that terminated
620 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
621 Optional
<TerminatedPath
>
622 getBlockingAccess(const MemoryAccess
*StopWhere
,
623 SmallVectorImpl
<ListIndex
> &PausedSearches
,
624 SmallVectorImpl
<ListIndex
> &NewPaused
,
625 SmallVectorImpl
<TerminatedPath
> &Terminated
) {
626 assert(!PausedSearches
.empty() && "No searches to continue?");
628 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
629 // PausedSearches as our stack.
630 while (!PausedSearches
.empty()) {
631 ListIndex PathIndex
= PausedSearches
.pop_back_val();
632 DefPath
&Node
= Paths
[PathIndex
];
634 // If we've already visited this path with this MemoryLocation, we don't
635 // need to do so again.
637 // NOTE: That we just drop these paths on the ground makes caching
638 // behavior sporadic. e.g. given a diamond:
643 // ...If we walk D, B, A, C, we'll only cache the result of phi
644 // optimization for A, B, and D; C will be skipped because it dies here.
645 // This arguably isn't the worst thing ever, since:
646 // - We generally query things in a top-down order, so if we got below D
647 // without needing cache entries for {C, MemLoc}, then chances are
648 // that those cache entries would end up ultimately unused.
649 // - We still cache things for A, so C only needs to walk up a bit.
650 // If this behavior becomes problematic, we can fix without a ton of extra
652 if (!VisitedPhis
.insert({Node
.Last
, Node
.Loc
}).second
)
655 const MemoryAccess
*SkipStopWhere
= nullptr;
656 if (Query
->SkipSelfAccess
&& Node
.Loc
== Query
->StartingLoc
) {
657 assert(isa
<MemoryDef
>(Query
->OriginalAccess
));
658 SkipStopWhere
= Query
->OriginalAccess
;
661 UpwardsWalkResult Res
= walkToPhiOrClobber(Node
,
662 /*StopAt=*/StopWhere
,
663 /*SkipStopAt=*/SkipStopWhere
);
664 if (Res
.IsKnownClobber
) {
665 assert(Res
.Result
!= StopWhere
&& Res
.Result
!= SkipStopWhere
);
667 // If this wasn't a cache hit, we hit a clobber when walking. That's a
669 TerminatedPath Term
{Res
.Result
, PathIndex
};
670 if (!MSSA
.dominates(Res
.Result
, StopWhere
))
673 // Otherwise, it's a valid thing to potentially optimize to.
674 Terminated
.push_back(Term
);
678 if (Res
.Result
== StopWhere
|| Res
.Result
== SkipStopWhere
) {
679 // We've hit our target. Save this path off for if we want to continue
680 // walking. If we are in the mode of skipping the OriginalAccess, and
681 // we've reached back to the OriginalAccess, do not save path, we've
682 // just looped back to self.
683 if (Res
.Result
!= SkipStopWhere
)
684 NewPaused
.push_back(PathIndex
);
688 assert(!MSSA
.isLiveOnEntryDef(Res
.Result
) && "liveOnEntry is a clobber");
689 addSearches(cast
<MemoryPhi
>(Res
.Result
), PausedSearches
, PathIndex
);
695 template <typename T
, typename Walker
>
696 struct generic_def_path_iterator
697 : public iterator_facade_base
<generic_def_path_iterator
<T
, Walker
>,
698 std::forward_iterator_tag
, T
*> {
699 generic_def_path_iterator() {}
700 generic_def_path_iterator(Walker
*W
, ListIndex N
) : W(W
), N(N
) {}
702 T
&operator*() const { return curNode(); }
704 generic_def_path_iterator
&operator++() {
705 N
= curNode().Previous
;
709 bool operator==(const generic_def_path_iterator
&O
) const {
710 if (N
.hasValue() != O
.N
.hasValue())
712 return !N
.hasValue() || *N
== *O
.N
;
716 T
&curNode() const { return W
->Paths
[*N
]; }
719 Optional
<ListIndex
> N
= None
;
722 using def_path_iterator
= generic_def_path_iterator
<DefPath
, ClobberWalker
>;
723 using const_def_path_iterator
=
724 generic_def_path_iterator
<const DefPath
, const ClobberWalker
>;
726 iterator_range
<def_path_iterator
> def_path(ListIndex From
) {
727 return make_range(def_path_iterator(this, From
), def_path_iterator());
730 iterator_range
<const_def_path_iterator
> const_def_path(ListIndex From
) const {
731 return make_range(const_def_path_iterator(this, From
),
732 const_def_path_iterator());
736 /// The path that contains our result.
737 TerminatedPath PrimaryClobber
;
738 /// The paths that we can legally cache back from, but that aren't
739 /// necessarily the result of the Phi optimization.
740 SmallVector
<TerminatedPath
, 4> OtherClobbers
;
743 ListIndex
defPathIndex(const DefPath
&N
) const {
744 // The assert looks nicer if we don't need to do &N
745 const DefPath
*NP
= &N
;
746 assert(!Paths
.empty() && NP
>= &Paths
.front() && NP
<= &Paths
.back() &&
747 "Out of bounds DefPath!");
748 return NP
- &Paths
.front();
751 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
752 /// that act as legal clobbers. Note that this won't return *all* clobbers.
754 /// Phi optimization algorithm tl;dr:
755 /// - Find the earliest def/phi, A, we can optimize to
756 /// - Find if all paths from the starting memory access ultimately reach A
757 /// - If not, optimization isn't possible.
758 /// - Otherwise, walk from A to another clobber or phi, A'.
759 /// - If A' is a def, we're done.
760 /// - If A' is a phi, try to optimize it.
762 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
763 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
764 OptznResult
tryOptimizePhi(MemoryPhi
*Phi
, MemoryAccess
*Start
,
765 const MemoryLocation
&Loc
) {
766 assert(Paths
.empty() && VisitedPhis
.empty() &&
767 "Reset the optimization state.");
769 Paths
.emplace_back(Loc
, Start
, Phi
, None
);
770 // Stores how many "valid" optimization nodes we had prior to calling
771 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
772 auto PriorPathsSize
= Paths
.size();
774 SmallVector
<ListIndex
, 16> PausedSearches
;
775 SmallVector
<ListIndex
, 8> NewPaused
;
776 SmallVector
<TerminatedPath
, 4> TerminatedPaths
;
778 addSearches(Phi
, PausedSearches
, 0);
780 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
782 auto MoveDominatedPathToEnd
= [&](SmallVectorImpl
<TerminatedPath
> &Paths
) {
783 assert(!Paths
.empty() && "Need a path to move");
784 auto Dom
= Paths
.begin();
785 for (auto I
= std::next(Dom
), E
= Paths
.end(); I
!= E
; ++I
)
786 if (!MSSA
.dominates(I
->Clobber
, Dom
->Clobber
))
788 auto Last
= Paths
.end() - 1;
790 std::iter_swap(Last
, Dom
);
793 MemoryPhi
*Current
= Phi
;
795 assert(!MSSA
.isLiveOnEntryDef(Current
) &&
796 "liveOnEntry wasn't treated as a clobber?");
798 const auto *Target
= getWalkTarget(Current
);
799 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
800 // optimization for the prior phi.
801 assert(all_of(TerminatedPaths
, [&](const TerminatedPath
&P
) {
802 return MSSA
.dominates(P
.Clobber
, Target
);
805 // FIXME: This is broken, because the Blocker may be reported to be
806 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
807 // For the moment, this is fine, since we do nothing with blocker info.
808 if (Optional
<TerminatedPath
> Blocker
= getBlockingAccess(
809 Target
, PausedSearches
, NewPaused
, TerminatedPaths
)) {
811 // Find the node we started at. We can't search based on N->Last, since
812 // we may have gone around a loop with a different MemoryLocation.
813 auto Iter
= find_if(def_path(Blocker
->LastNode
), [&](const DefPath
&N
) {
814 return defPathIndex(N
) < PriorPathsSize
;
816 assert(Iter
!= def_path_iterator());
818 DefPath
&CurNode
= *Iter
;
819 assert(CurNode
.Last
== Current
);
822 // A. We can't reliably cache all of NewPaused back. Consider a case
823 // where we have two paths in NewPaused; one of which can't optimize
824 // above this phi, whereas the other can. If we cache the second path
825 // back, we'll end up with suboptimal cache entries. We can handle
826 // cases like this a bit better when we either try to find all
827 // clobbers that block phi optimization, or when our cache starts
828 // supporting unfinished searches.
829 // B. We can't reliably cache TerminatedPaths back here without doing
830 // extra checks; consider a case like:
836 // Where T is our target, C is a node with a clobber on it, D is a
837 // diamond (with a clobber *only* on the left or right node, N), and
838 // S is our start. Say we walk to D, through the node opposite N
839 // (read: ignoring the clobber), and see a cache entry in the top
840 // node of D. That cache entry gets put into TerminatedPaths. We then
841 // walk up to C (N is later in our worklist), find the clobber, and
842 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
843 // the bottom part of D to the cached clobber, ignoring the clobber
844 // in N. Again, this problem goes away if we start tracking all
845 // blockers for a given phi optimization.
846 TerminatedPath Result
{CurNode
.Last
, defPathIndex(CurNode
)};
850 // If there's nothing left to search, then all paths led to valid clobbers
851 // that we got from our cache; pick the nearest to the start, and allow
852 // the rest to be cached back.
853 if (NewPaused
.empty()) {
854 MoveDominatedPathToEnd(TerminatedPaths
);
855 TerminatedPath Result
= TerminatedPaths
.pop_back_val();
856 return {Result
, std::move(TerminatedPaths
)};
859 MemoryAccess
*DefChainEnd
= nullptr;
860 SmallVector
<TerminatedPath
, 4> Clobbers
;
861 for (ListIndex Paused
: NewPaused
) {
862 UpwardsWalkResult WR
= walkToPhiOrClobber(Paths
[Paused
]);
863 if (WR
.IsKnownClobber
)
864 Clobbers
.push_back({WR
.Result
, Paused
});
866 // Micro-opt: If we hit the end of the chain, save it.
867 DefChainEnd
= WR
.Result
;
870 if (!TerminatedPaths
.empty()) {
871 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
874 for (auto *MA
: def_chain(const_cast<MemoryAccess
*>(Target
)))
876 assert(DefChainEnd
&& "Failed to find dominating phi/liveOnEntry");
878 // If any of the terminated paths don't dominate the phi we'll try to
879 // optimize, we need to figure out what they are and quit.
880 const BasicBlock
*ChainBB
= DefChainEnd
->getBlock();
881 for (const TerminatedPath
&TP
: TerminatedPaths
) {
882 // Because we know that DefChainEnd is as "high" as we can go, we
883 // don't need local dominance checks; BB dominance is sufficient.
884 if (DT
.dominates(ChainBB
, TP
.Clobber
->getBlock()))
885 Clobbers
.push_back(TP
);
889 // If we have clobbers in the def chain, find the one closest to Current
891 if (!Clobbers
.empty()) {
892 MoveDominatedPathToEnd(Clobbers
);
893 TerminatedPath Result
= Clobbers
.pop_back_val();
894 return {Result
, std::move(Clobbers
)};
897 assert(all_of(NewPaused
,
898 [&](ListIndex I
) { return Paths
[I
].Last
== DefChainEnd
; }));
900 // Because liveOnEntry is a clobber, this must be a phi.
901 auto *DefChainPhi
= cast
<MemoryPhi
>(DefChainEnd
);
903 PriorPathsSize
= Paths
.size();
904 PausedSearches
.clear();
905 for (ListIndex I
: NewPaused
)
906 addSearches(DefChainPhi
, PausedSearches
, I
);
909 Current
= DefChainPhi
;
913 void verifyOptResult(const OptznResult
&R
) const {
914 assert(all_of(R
.OtherClobbers
, [&](const TerminatedPath
&P
) {
915 return MSSA
.dominates(P
.Clobber
, R
.PrimaryClobber
.Clobber
);
919 void resetPhiOptznState() {
925 ClobberWalker(const MemorySSA
&MSSA
, AliasAnalysisType
&AA
, DominatorTree
&DT
)
926 : MSSA(MSSA
), AA(AA
), DT(DT
) {}
928 AliasAnalysisType
*getAA() { return &AA
; }
929 /// Finds the nearest clobber for the given query, optimizing phis if
931 MemoryAccess
*findClobber(MemoryAccess
*Start
, UpwardsMemoryQuery
&Q
,
932 unsigned &UpWalkLimit
) {
934 UpwardWalkLimit
= &UpWalkLimit
;
935 // Starting limit must be > 0.
939 MemoryAccess
*Current
= Start
;
940 // This walker pretends uses don't exist. If we're handed one, silently grab
941 // its def. (This has the nice side-effect of ensuring we never cache uses)
942 if (auto *MU
= dyn_cast
<MemoryUse
>(Start
))
943 Current
= MU
->getDefiningAccess();
945 DefPath
FirstDesc(Q
.StartingLoc
, Current
, Current
, None
);
946 // Fast path for the overly-common case (no crazy phi optimization
948 UpwardsWalkResult WalkResult
= walkToPhiOrClobber(FirstDesc
);
949 MemoryAccess
*Result
;
950 if (WalkResult
.IsKnownClobber
) {
951 Result
= WalkResult
.Result
;
952 Q
.AR
= WalkResult
.AR
;
954 OptznResult OptRes
= tryOptimizePhi(cast
<MemoryPhi
>(FirstDesc
.Last
),
955 Current
, Q
.StartingLoc
);
956 verifyOptResult(OptRes
);
957 resetPhiOptznState();
958 Result
= OptRes
.PrimaryClobber
.Clobber
;
961 #ifdef EXPENSIVE_CHECKS
962 if (!Q
.SkipSelfAccess
&& *UpwardWalkLimit
> 0)
963 checkClobberSanity(Current
, Result
, Q
.StartingLoc
, MSSA
, Q
, AA
);
969 struct RenamePassData
{
971 DomTreeNode::const_iterator ChildIt
;
972 MemoryAccess
*IncomingVal
;
974 RenamePassData(DomTreeNode
*D
, DomTreeNode::const_iterator It
,
976 : DTN(D
), ChildIt(It
), IncomingVal(M
) {}
978 void swap(RenamePassData
&RHS
) {
979 std::swap(DTN
, RHS
.DTN
);
980 std::swap(ChildIt
, RHS
.ChildIt
);
981 std::swap(IncomingVal
, RHS
.IncomingVal
);
985 } // end anonymous namespace
989 template <class AliasAnalysisType
> class MemorySSA::ClobberWalkerBase
{
990 ClobberWalker
<AliasAnalysisType
> Walker
;
994 ClobberWalkerBase(MemorySSA
*M
, AliasAnalysisType
*A
, DominatorTree
*D
)
995 : Walker(*M
, *A
, *D
), MSSA(M
) {}
997 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*,
998 const MemoryLocation
&,
1000 // Third argument (bool), defines whether the clobber search should skip the
1001 // original queried access. If true, there will be a follow-up query searching
1002 // for a clobber access past "self". Note that the Optimized access is not
1003 // updated if a new clobber is found by this SkipSelf search. If this
1004 // additional query becomes heavily used we may decide to cache the result.
1005 // Walker instantiations will decide how to set the SkipSelf bool.
1006 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*, unsigned &, bool);
1009 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1010 /// longer does caching on its own, but the name has been retained for the
1012 template <class AliasAnalysisType
>
1013 class MemorySSA::CachingWalker final
: public MemorySSAWalker
{
1014 ClobberWalkerBase
<AliasAnalysisType
> *Walker
;
1017 CachingWalker(MemorySSA
*M
, ClobberWalkerBase
<AliasAnalysisType
> *W
)
1018 : MemorySSAWalker(M
), Walker(W
) {}
1019 ~CachingWalker() override
= default;
1021 using MemorySSAWalker::getClobberingMemoryAccess
;
1023 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
, unsigned &UWL
) {
1024 return Walker
->getClobberingMemoryAccessBase(MA
, UWL
, false);
1026 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1027 const MemoryLocation
&Loc
,
1029 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
, UWL
);
1032 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
) override
{
1033 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1034 return getClobberingMemoryAccess(MA
, UpwardWalkLimit
);
1036 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1037 const MemoryLocation
&Loc
) override
{
1038 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1039 return getClobberingMemoryAccess(MA
, Loc
, UpwardWalkLimit
);
1042 void invalidateInfo(MemoryAccess
*MA
) override
{
1043 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1044 MUD
->resetOptimized();
1048 template <class AliasAnalysisType
>
1049 class MemorySSA::SkipSelfWalker final
: public MemorySSAWalker
{
1050 ClobberWalkerBase
<AliasAnalysisType
> *Walker
;
1053 SkipSelfWalker(MemorySSA
*M
, ClobberWalkerBase
<AliasAnalysisType
> *W
)
1054 : MemorySSAWalker(M
), Walker(W
) {}
1055 ~SkipSelfWalker() override
= default;
1057 using MemorySSAWalker::getClobberingMemoryAccess
;
1059 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
, unsigned &UWL
) {
1060 return Walker
->getClobberingMemoryAccessBase(MA
, UWL
, true);
1062 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1063 const MemoryLocation
&Loc
,
1065 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
, UWL
);
1068 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
) override
{
1069 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1070 return getClobberingMemoryAccess(MA
, UpwardWalkLimit
);
1072 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1073 const MemoryLocation
&Loc
) override
{
1074 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1075 return getClobberingMemoryAccess(MA
, Loc
, UpwardWalkLimit
);
1078 void invalidateInfo(MemoryAccess
*MA
) override
{
1079 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1080 MUD
->resetOptimized();
1084 } // end namespace llvm
1086 void MemorySSA::renameSuccessorPhis(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1087 bool RenameAllUses
) {
1088 // Pass through values to our successors
1089 for (const BasicBlock
*S
: successors(BB
)) {
1090 auto It
= PerBlockAccesses
.find(S
);
1091 // Rename the phi nodes in our successor block
1092 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1094 AccessList
*Accesses
= It
->second
.get();
1095 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1096 if (RenameAllUses
) {
1097 bool ReplacementDone
= false;
1098 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
)
1099 if (Phi
->getIncomingBlock(I
) == BB
) {
1100 Phi
->setIncomingValue(I
, IncomingVal
);
1101 ReplacementDone
= true;
1103 (void) ReplacementDone
;
1104 assert(ReplacementDone
&& "Incomplete phi during partial rename");
1106 Phi
->addIncoming(IncomingVal
, BB
);
1110 /// Rename a single basic block into MemorySSA form.
1111 /// Uses the standard SSA renaming algorithm.
1112 /// \returns The new incoming value.
1113 MemoryAccess
*MemorySSA::renameBlock(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1114 bool RenameAllUses
) {
1115 auto It
= PerBlockAccesses
.find(BB
);
1116 // Skip most processing if the list is empty.
1117 if (It
!= PerBlockAccesses
.end()) {
1118 AccessList
*Accesses
= It
->second
.get();
1119 for (MemoryAccess
&L
: *Accesses
) {
1120 if (MemoryUseOrDef
*MUD
= dyn_cast
<MemoryUseOrDef
>(&L
)) {
1121 if (MUD
->getDefiningAccess() == nullptr || RenameAllUses
)
1122 MUD
->setDefiningAccess(IncomingVal
);
1123 if (isa
<MemoryDef
>(&L
))
1133 /// This is the standard SSA renaming algorithm.
1135 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1136 /// in phi nodes in our successors.
1137 void MemorySSA::renamePass(DomTreeNode
*Root
, MemoryAccess
*IncomingVal
,
1138 SmallPtrSetImpl
<BasicBlock
*> &Visited
,
1139 bool SkipVisited
, bool RenameAllUses
) {
1140 assert(Root
&& "Trying to rename accesses in an unreachable block");
1142 SmallVector
<RenamePassData
, 32> WorkStack
;
1143 // Skip everything if we already renamed this block and we are skipping.
1144 // Note: You can't sink this into the if, because we need it to occur
1145 // regardless of whether we skip blocks or not.
1146 bool AlreadyVisited
= !Visited
.insert(Root
->getBlock()).second
;
1147 if (SkipVisited
&& AlreadyVisited
)
1150 IncomingVal
= renameBlock(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1151 renameSuccessorPhis(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1152 WorkStack
.push_back({Root
, Root
->begin(), IncomingVal
});
1154 while (!WorkStack
.empty()) {
1155 DomTreeNode
*Node
= WorkStack
.back().DTN
;
1156 DomTreeNode::const_iterator ChildIt
= WorkStack
.back().ChildIt
;
1157 IncomingVal
= WorkStack
.back().IncomingVal
;
1159 if (ChildIt
== Node
->end()) {
1160 WorkStack
.pop_back();
1162 DomTreeNode
*Child
= *ChildIt
;
1163 ++WorkStack
.back().ChildIt
;
1164 BasicBlock
*BB
= Child
->getBlock();
1165 // Note: You can't sink this into the if, because we need it to occur
1166 // regardless of whether we skip blocks or not.
1167 AlreadyVisited
= !Visited
.insert(BB
).second
;
1168 if (SkipVisited
&& AlreadyVisited
) {
1169 // We already visited this during our renaming, which can happen when
1170 // being asked to rename multiple blocks. Figure out the incoming val,
1171 // which is the last def.
1172 // Incoming value can only change if there is a block def, and in that
1173 // case, it's the last block def in the list.
1174 if (auto *BlockDefs
= getWritableBlockDefs(BB
))
1175 IncomingVal
= &*BlockDefs
->rbegin();
1177 IncomingVal
= renameBlock(BB
, IncomingVal
, RenameAllUses
);
1178 renameSuccessorPhis(BB
, IncomingVal
, RenameAllUses
);
1179 WorkStack
.push_back({Child
, Child
->begin(), IncomingVal
});
1184 /// This handles unreachable block accesses by deleting phi nodes in
1185 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1186 /// being uses of the live on entry definition.
1187 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock
*BB
) {
1188 assert(!DT
->isReachableFromEntry(BB
) &&
1189 "Reachable block found while handling unreachable blocks");
1191 // Make sure phi nodes in our reachable successors end up with a
1192 // LiveOnEntryDef for our incoming edge, even though our block is forward
1193 // unreachable. We could just disconnect these blocks from the CFG fully,
1194 // but we do not right now.
1195 for (const BasicBlock
*S
: successors(BB
)) {
1196 if (!DT
->isReachableFromEntry(S
))
1198 auto It
= PerBlockAccesses
.find(S
);
1199 // Rename the phi nodes in our successor block
1200 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1202 AccessList
*Accesses
= It
->second
.get();
1203 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1204 Phi
->addIncoming(LiveOnEntryDef
.get(), BB
);
1207 auto It
= PerBlockAccesses
.find(BB
);
1208 if (It
== PerBlockAccesses
.end())
1211 auto &Accesses
= It
->second
;
1212 for (auto AI
= Accesses
->begin(), AE
= Accesses
->end(); AI
!= AE
;) {
1213 auto Next
= std::next(AI
);
1214 // If we have a phi, just remove it. We are going to replace all
1215 // users with live on entry.
1216 if (auto *UseOrDef
= dyn_cast
<MemoryUseOrDef
>(AI
))
1217 UseOrDef
->setDefiningAccess(LiveOnEntryDef
.get());
1219 Accesses
->erase(AI
);
1224 MemorySSA::MemorySSA(Function
&Func
, AliasAnalysis
*AA
, DominatorTree
*DT
)
1225 : AA(nullptr), DT(DT
), F(Func
), LiveOnEntryDef(nullptr), Walker(nullptr),
1226 SkipWalker(nullptr), NextID(0) {
1227 // Build MemorySSA using a batch alias analysis. This reuses the internal
1228 // state that AA collects during an alias()/getModRefInfo() call. This is
1229 // safe because there are no CFG changes while building MemorySSA and can
1230 // significantly reduce the time spent by the compiler in AA, because we will
1231 // make queries about all the instructions in the Function.
1232 BatchAAResults
BatchAA(*AA
);
1233 buildMemorySSA(BatchAA
);
1234 // Intentionally leave AA to nullptr while building so we don't accidently
1235 // use non-batch AliasAnalysis.
1237 // Also create the walker here.
1241 MemorySSA::~MemorySSA() {
1242 // Drop all our references
1243 for (const auto &Pair
: PerBlockAccesses
)
1244 for (MemoryAccess
&MA
: *Pair
.second
)
1245 MA
.dropAllReferences();
1248 MemorySSA::AccessList
*MemorySSA::getOrCreateAccessList(const BasicBlock
*BB
) {
1249 auto Res
= PerBlockAccesses
.insert(std::make_pair(BB
, nullptr));
1252 Res
.first
->second
= std::make_unique
<AccessList
>();
1253 return Res
.first
->second
.get();
1256 MemorySSA::DefsList
*MemorySSA::getOrCreateDefsList(const BasicBlock
*BB
) {
1257 auto Res
= PerBlockDefs
.insert(std::make_pair(BB
, nullptr));
1260 Res
.first
->second
= std::make_unique
<DefsList
>();
1261 return Res
.first
->second
.get();
1266 /// This class is a batch walker of all MemoryUse's in the program, and points
1267 /// their defining access at the thing that actually clobbers them. Because it
1268 /// is a batch walker that touches everything, it does not operate like the
1269 /// other walkers. This walker is basically performing a top-down SSA renaming
1270 /// pass, where the version stack is used as the cache. This enables it to be
1271 /// significantly more time and memory efficient than using the regular walker,
1272 /// which is walking bottom-up.
1273 class MemorySSA::OptimizeUses
{
1275 OptimizeUses(MemorySSA
*MSSA
, CachingWalker
<BatchAAResults
> *Walker
,
1276 BatchAAResults
*BAA
, DominatorTree
*DT
)
1277 : MSSA(MSSA
), Walker(Walker
), AA(BAA
), DT(DT
) {}
1279 void optimizeUses();
1282 /// This represents where a given memorylocation is in the stack.
1283 struct MemlocStackInfo
{
1284 // This essentially is keeping track of versions of the stack. Whenever
1285 // the stack changes due to pushes or pops, these versions increase.
1286 unsigned long StackEpoch
;
1287 unsigned long PopEpoch
;
1288 // This is the lower bound of places on the stack to check. It is equal to
1289 // the place the last stack walk ended.
1290 // Note: Correctness depends on this being initialized to 0, which densemap
1292 unsigned long LowerBound
;
1293 const BasicBlock
*LowerBoundBlock
;
1294 // This is where the last walk for this memory location ended.
1295 unsigned long LastKill
;
1297 Optional
<AliasResult
> AR
;
1300 void optimizeUsesInBlock(const BasicBlock
*, unsigned long &, unsigned long &,
1301 SmallVectorImpl
<MemoryAccess
*> &,
1302 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &);
1305 CachingWalker
<BatchAAResults
> *Walker
;
1310 } // end namespace llvm
1312 /// Optimize the uses in a given block This is basically the SSA renaming
1313 /// algorithm, with one caveat: We are able to use a single stack for all
1314 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1315 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1316 /// going to be some position in that stack of possible ones.
1318 /// We track the stack positions that each MemoryLocation needs
1319 /// to check, and last ended at. This is because we only want to check the
1320 /// things that changed since last time. The same MemoryLocation should
1321 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1322 /// things like this, and if they start, we can modify MemoryLocOrCall to
1323 /// include relevant data)
1324 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1325 const BasicBlock
*BB
, unsigned long &StackEpoch
, unsigned long &PopEpoch
,
1326 SmallVectorImpl
<MemoryAccess
*> &VersionStack
,
1327 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &LocStackInfo
) {
1329 /// If no accesses, nothing to do.
1330 MemorySSA::AccessList
*Accesses
= MSSA
->getWritableBlockAccesses(BB
);
1331 if (Accesses
== nullptr)
1334 // Pop everything that doesn't dominate the current block off the stack,
1335 // increment the PopEpoch to account for this.
1338 !VersionStack
.empty() &&
1339 "Version stack should have liveOnEntry sentinel dominating everything");
1340 BasicBlock
*BackBlock
= VersionStack
.back()->getBlock();
1341 if (DT
->dominates(BackBlock
, BB
))
1343 while (VersionStack
.back()->getBlock() == BackBlock
)
1344 VersionStack
.pop_back();
1348 for (MemoryAccess
&MA
: *Accesses
) {
1349 auto *MU
= dyn_cast
<MemoryUse
>(&MA
);
1351 VersionStack
.push_back(&MA
);
1356 if (isUseTriviallyOptimizableToLiveOnEntry(*AA
, MU
->getMemoryInst())) {
1357 MU
->setDefiningAccess(MSSA
->getLiveOnEntryDef(), true, None
);
1361 MemoryLocOrCall
UseMLOC(MU
);
1362 auto &LocInfo
= LocStackInfo
[UseMLOC
];
1363 // If the pop epoch changed, it means we've removed stuff from top of
1364 // stack due to changing blocks. We may have to reset the lower bound or
1366 if (LocInfo
.PopEpoch
!= PopEpoch
) {
1367 LocInfo
.PopEpoch
= PopEpoch
;
1368 LocInfo
.StackEpoch
= StackEpoch
;
1369 // If the lower bound was in something that no longer dominates us, we
1370 // have to reset it.
1371 // We can't simply track stack size, because the stack may have had
1372 // pushes/pops in the meantime.
1373 // XXX: This is non-optimal, but only is slower cases with heavily
1374 // branching dominator trees. To get the optimal number of queries would
1375 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1376 // the top of that stack dominates us. This does not seem worth it ATM.
1377 // A much cheaper optimization would be to always explore the deepest
1378 // branch of the dominator tree first. This will guarantee this resets on
1379 // the smallest set of blocks.
1380 if (LocInfo
.LowerBoundBlock
&& LocInfo
.LowerBoundBlock
!= BB
&&
1381 !DT
->dominates(LocInfo
.LowerBoundBlock
, BB
)) {
1382 // Reset the lower bound of things to check.
1383 // TODO: Some day we should be able to reset to last kill, rather than
1385 LocInfo
.LowerBound
= 0;
1386 LocInfo
.LowerBoundBlock
= VersionStack
[0]->getBlock();
1387 LocInfo
.LastKillValid
= false;
1389 } else if (LocInfo
.StackEpoch
!= StackEpoch
) {
1390 // If all that has changed is the StackEpoch, we only have to check the
1391 // new things on the stack, because we've checked everything before. In
1392 // this case, the lower bound of things to check remains the same.
1393 LocInfo
.PopEpoch
= PopEpoch
;
1394 LocInfo
.StackEpoch
= StackEpoch
;
1396 if (!LocInfo
.LastKillValid
) {
1397 LocInfo
.LastKill
= VersionStack
.size() - 1;
1398 LocInfo
.LastKillValid
= true;
1399 LocInfo
.AR
= MayAlias
;
1402 // At this point, we should have corrected last kill and LowerBound to be
1404 assert(LocInfo
.LowerBound
< VersionStack
.size() &&
1405 "Lower bound out of range");
1406 assert(LocInfo
.LastKill
< VersionStack
.size() &&
1407 "Last kill info out of range");
1408 // In any case, the new upper bound is the top of the stack.
1409 unsigned long UpperBound
= VersionStack
.size() - 1;
1411 if (UpperBound
- LocInfo
.LowerBound
> MaxCheckLimit
) {
1412 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU
<< " ("
1413 << *(MU
->getMemoryInst()) << ")"
1414 << " because there are "
1415 << UpperBound
- LocInfo
.LowerBound
1416 << " stores to disambiguate\n");
1417 // Because we did not walk, LastKill is no longer valid, as this may
1418 // have been a kill.
1419 LocInfo
.LastKillValid
= false;
1422 bool FoundClobberResult
= false;
1423 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1424 while (UpperBound
> LocInfo
.LowerBound
) {
1425 if (isa
<MemoryPhi
>(VersionStack
[UpperBound
])) {
1426 // For phis, use the walker, see where we ended up, go there
1427 MemoryAccess
*Result
=
1428 Walker
->getClobberingMemoryAccess(MU
, UpwardWalkLimit
);
1429 // We are guaranteed to find it or something is wrong
1430 while (VersionStack
[UpperBound
] != Result
) {
1431 assert(UpperBound
!= 0);
1434 FoundClobberResult
= true;
1438 MemoryDef
*MD
= cast
<MemoryDef
>(VersionStack
[UpperBound
]);
1439 // If the lifetime of the pointer ends at this instruction, it's live on
1441 if (!UseMLOC
.IsCall
&& lifetimeEndsAt(MD
, UseMLOC
.getLoc(), *AA
)) {
1442 // Reset UpperBound to liveOnEntryDef's place in the stack
1444 FoundClobberResult
= true;
1445 LocInfo
.AR
= MustAlias
;
1448 ClobberAlias CA
= instructionClobbersQuery(MD
, MU
, UseMLOC
, *AA
);
1450 FoundClobberResult
= true;
1457 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1459 // At the end of this loop, UpperBound is either a clobber, or lower bound
1460 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1461 if (FoundClobberResult
|| UpperBound
< LocInfo
.LastKill
) {
1462 // We were last killed now by where we got to
1463 if (MSSA
->isLiveOnEntryDef(VersionStack
[UpperBound
]))
1465 MU
->setDefiningAccess(VersionStack
[UpperBound
], true, LocInfo
.AR
);
1466 LocInfo
.LastKill
= UpperBound
;
1468 // Otherwise, we checked all the new ones, and now we know we can get to
1470 MU
->setDefiningAccess(VersionStack
[LocInfo
.LastKill
], true, LocInfo
.AR
);
1472 LocInfo
.LowerBound
= VersionStack
.size() - 1;
1473 LocInfo
.LowerBoundBlock
= BB
;
1477 /// Optimize uses to point to their actual clobbering definitions.
1478 void MemorySSA::OptimizeUses::optimizeUses() {
1479 SmallVector
<MemoryAccess
*, 16> VersionStack
;
1480 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> LocStackInfo
;
1481 VersionStack
.push_back(MSSA
->getLiveOnEntryDef());
1483 unsigned long StackEpoch
= 1;
1484 unsigned long PopEpoch
= 1;
1485 // We perform a non-recursive top-down dominator tree walk.
1486 for (const auto *DomNode
: depth_first(DT
->getRootNode()))
1487 optimizeUsesInBlock(DomNode
->getBlock(), StackEpoch
, PopEpoch
, VersionStack
,
1491 void MemorySSA::placePHINodes(
1492 const SmallPtrSetImpl
<BasicBlock
*> &DefiningBlocks
) {
1493 // Determine where our MemoryPhi's should go
1494 ForwardIDFCalculator
IDFs(*DT
);
1495 IDFs
.setDefiningBlocks(DefiningBlocks
);
1496 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
1497 IDFs
.calculate(IDFBlocks
);
1499 // Now place MemoryPhi nodes.
1500 for (auto &BB
: IDFBlocks
)
1501 createMemoryPhi(BB
);
1504 void MemorySSA::buildMemorySSA(BatchAAResults
&BAA
) {
1505 // We create an access to represent "live on entry", for things like
1506 // arguments or users of globals, where the memory they use is defined before
1507 // the beginning of the function. We do not actually insert it into the IR.
1508 // We do not define a live on exit for the immediate uses, and thus our
1509 // semantics do *not* imply that something with no immediate uses can simply
1511 BasicBlock
&StartingPoint
= F
.getEntryBlock();
1512 LiveOnEntryDef
.reset(new MemoryDef(F
.getContext(), nullptr, nullptr,
1513 &StartingPoint
, NextID
++));
1515 // We maintain lists of memory accesses per-block, trading memory for time. We
1516 // could just look up the memory access for every possible instruction in the
1518 SmallPtrSet
<BasicBlock
*, 32> DefiningBlocks
;
1519 // Go through each block, figure out where defs occur, and chain together all
1521 for (BasicBlock
&B
: F
) {
1522 bool InsertIntoDef
= false;
1523 AccessList
*Accesses
= nullptr;
1524 DefsList
*Defs
= nullptr;
1525 for (Instruction
&I
: B
) {
1526 MemoryUseOrDef
*MUD
= createNewAccess(&I
, &BAA
);
1531 Accesses
= getOrCreateAccessList(&B
);
1532 Accesses
->push_back(MUD
);
1533 if (isa
<MemoryDef
>(MUD
)) {
1534 InsertIntoDef
= true;
1536 Defs
= getOrCreateDefsList(&B
);
1537 Defs
->push_back(*MUD
);
1541 DefiningBlocks
.insert(&B
);
1543 placePHINodes(DefiningBlocks
);
1545 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1546 // filled in with all blocks.
1547 SmallPtrSet
<BasicBlock
*, 16> Visited
;
1548 renamePass(DT
->getRootNode(), LiveOnEntryDef
.get(), Visited
);
1550 ClobberWalkerBase
<BatchAAResults
> WalkerBase(this, &BAA
, DT
);
1551 CachingWalker
<BatchAAResults
> WalkerLocal(this, &WalkerBase
);
1552 OptimizeUses(this, &WalkerLocal
, &BAA
, DT
).optimizeUses();
1554 // Mark the uses in unreachable blocks as live on entry, so that they go
1557 if (!Visited
.count(&BB
))
1558 markUnreachableAsLiveOnEntry(&BB
);
1561 MemorySSAWalker
*MemorySSA::getWalker() { return getWalkerImpl(); }
1563 MemorySSA::CachingWalker
<AliasAnalysis
> *MemorySSA::getWalkerImpl() {
1565 return Walker
.get();
1569 std::make_unique
<ClobberWalkerBase
<AliasAnalysis
>>(this, AA
, DT
);
1572 std::make_unique
<CachingWalker
<AliasAnalysis
>>(this, WalkerBase
.get());
1573 return Walker
.get();
1576 MemorySSAWalker
*MemorySSA::getSkipSelfWalker() {
1578 return SkipWalker
.get();
1582 std::make_unique
<ClobberWalkerBase
<AliasAnalysis
>>(this, AA
, DT
);
1585 std::make_unique
<SkipSelfWalker
<AliasAnalysis
>>(this, WalkerBase
.get());
1586 return SkipWalker
.get();
1590 // This is a helper function used by the creation routines. It places NewAccess
1591 // into the access and defs lists for a given basic block, at the given
1593 void MemorySSA::insertIntoListsForBlock(MemoryAccess
*NewAccess
,
1594 const BasicBlock
*BB
,
1595 InsertionPlace Point
) {
1596 auto *Accesses
= getOrCreateAccessList(BB
);
1597 if (Point
== Beginning
) {
1598 // If it's a phi node, it goes first, otherwise, it goes after any phi
1600 if (isa
<MemoryPhi
>(NewAccess
)) {
1601 Accesses
->push_front(NewAccess
);
1602 auto *Defs
= getOrCreateDefsList(BB
);
1603 Defs
->push_front(*NewAccess
);
1605 auto AI
= find_if_not(
1606 *Accesses
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1607 Accesses
->insert(AI
, NewAccess
);
1608 if (!isa
<MemoryUse
>(NewAccess
)) {
1609 auto *Defs
= getOrCreateDefsList(BB
);
1610 auto DI
= find_if_not(
1611 *Defs
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1612 Defs
->insert(DI
, *NewAccess
);
1616 Accesses
->push_back(NewAccess
);
1617 if (!isa
<MemoryUse
>(NewAccess
)) {
1618 auto *Defs
= getOrCreateDefsList(BB
);
1619 Defs
->push_back(*NewAccess
);
1622 BlockNumberingValid
.erase(BB
);
1625 void MemorySSA::insertIntoListsBefore(MemoryAccess
*What
, const BasicBlock
*BB
,
1626 AccessList::iterator InsertPt
) {
1627 auto *Accesses
= getWritableBlockAccesses(BB
);
1628 bool WasEnd
= InsertPt
== Accesses
->end();
1629 Accesses
->insert(AccessList::iterator(InsertPt
), What
);
1630 if (!isa
<MemoryUse
>(What
)) {
1631 auto *Defs
= getOrCreateDefsList(BB
);
1632 // If we got asked to insert at the end, we have an easy job, just shove it
1633 // at the end. If we got asked to insert before an existing def, we also get
1634 // an iterator. If we got asked to insert before a use, we have to hunt for
1637 Defs
->push_back(*What
);
1638 } else if (isa
<MemoryDef
>(InsertPt
)) {
1639 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1641 while (InsertPt
!= Accesses
->end() && !isa
<MemoryDef
>(InsertPt
))
1643 // Either we found a def, or we are inserting at the end
1644 if (InsertPt
== Accesses
->end())
1645 Defs
->push_back(*What
);
1647 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1650 BlockNumberingValid
.erase(BB
);
1653 void MemorySSA::prepareForMoveTo(MemoryAccess
*What
, BasicBlock
*BB
) {
1654 // Keep it in the lookup tables, remove from the lists
1655 removeFromLists(What
, false);
1657 // Note that moving should implicitly invalidate the optimized state of a
1658 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1660 if (auto *MD
= dyn_cast
<MemoryDef
>(What
))
1661 MD
->resetOptimized();
1665 // Move What before Where in the IR. The end result is that What will belong to
1666 // the right lists and have the right Block set, but will not otherwise be
1667 // correct. It will not have the right defining access, and if it is a def,
1668 // things below it will not properly be updated.
1669 void MemorySSA::moveTo(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1670 AccessList::iterator Where
) {
1671 prepareForMoveTo(What
, BB
);
1672 insertIntoListsBefore(What
, BB
, Where
);
1675 void MemorySSA::moveTo(MemoryAccess
*What
, BasicBlock
*BB
,
1676 InsertionPlace Point
) {
1677 if (isa
<MemoryPhi
>(What
)) {
1678 assert(Point
== Beginning
&&
1679 "Can only move a Phi at the beginning of the block");
1680 // Update lookup table entry
1681 ValueToMemoryAccess
.erase(What
->getBlock());
1682 bool Inserted
= ValueToMemoryAccess
.insert({BB
, What
}).second
;
1684 assert(Inserted
&& "Cannot move a Phi to a block that already has one");
1687 prepareForMoveTo(What
, BB
);
1688 insertIntoListsForBlock(What
, BB
, Point
);
1691 MemoryPhi
*MemorySSA::createMemoryPhi(BasicBlock
*BB
) {
1692 assert(!getMemoryAccess(BB
) && "MemoryPhi already exists for this BB");
1693 MemoryPhi
*Phi
= new MemoryPhi(BB
->getContext(), BB
, NextID
++);
1694 // Phi's always are placed at the front of the block.
1695 insertIntoListsForBlock(Phi
, BB
, Beginning
);
1696 ValueToMemoryAccess
[BB
] = Phi
;
1700 MemoryUseOrDef
*MemorySSA::createDefinedAccess(Instruction
*I
,
1701 MemoryAccess
*Definition
,
1702 const MemoryUseOrDef
*Template
,
1703 bool CreationMustSucceed
) {
1704 assert(!isa
<PHINode
>(I
) && "Cannot create a defined access for a PHI");
1705 MemoryUseOrDef
*NewAccess
= createNewAccess(I
, AA
, Template
);
1706 if (CreationMustSucceed
)
1707 assert(NewAccess
!= nullptr && "Tried to create a memory access for a "
1708 "non-memory touching instruction");
1710 NewAccess
->setDefiningAccess(Definition
);
1714 // Return true if the instruction has ordering constraints.
1715 // Note specifically that this only considers stores and loads
1716 // because others are still considered ModRef by getModRefInfo.
1717 static inline bool isOrdered(const Instruction
*I
) {
1718 if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
1719 if (!SI
->isUnordered())
1721 } else if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
1722 if (!LI
->isUnordered())
1728 /// Helper function to create new memory accesses
1729 template <typename AliasAnalysisType
>
1730 MemoryUseOrDef
*MemorySSA::createNewAccess(Instruction
*I
,
1731 AliasAnalysisType
*AAP
,
1732 const MemoryUseOrDef
*Template
) {
1733 // The assume intrinsic has a control dependency which we model by claiming
1734 // that it writes arbitrarily. Debuginfo intrinsics may be considered
1735 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1736 // dependencies here.
1737 // FIXME: Replace this special casing with a more accurate modelling of
1738 // assume's control dependency.
1739 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
1740 if (II
->getIntrinsicID() == Intrinsic::assume
)
1743 // Using a nonstandard AA pipelines might leave us with unexpected modref
1744 // results for I, so add a check to not model instructions that may not read
1745 // from or write to memory. This is necessary for correctness.
1746 if (!I
->mayReadFromMemory() && !I
->mayWriteToMemory())
1751 Def
= dyn_cast_or_null
<MemoryDef
>(Template
) != nullptr;
1752 Use
= dyn_cast_or_null
<MemoryUse
>(Template
) != nullptr;
1753 #if !defined(NDEBUG)
1754 ModRefInfo ModRef
= AAP
->getModRefInfo(I
, None
);
1755 bool DefCheck
, UseCheck
;
1756 DefCheck
= isModSet(ModRef
) || isOrdered(I
);
1757 UseCheck
= isRefSet(ModRef
);
1758 assert(Def
== DefCheck
&& (Def
|| Use
== UseCheck
) && "Invalid template");
1761 // Find out what affect this instruction has on memory.
1762 ModRefInfo ModRef
= AAP
->getModRefInfo(I
, None
);
1763 // The isOrdered check is used to ensure that volatiles end up as defs
1764 // (atomics end up as ModRef right now anyway). Until we separate the
1765 // ordering chain from the memory chain, this enables people to see at least
1766 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1767 // will still give an answer that bypasses other volatile loads. TODO:
1768 // Separate memory aliasing and ordering into two different chains so that
1769 // we can precisely represent both "what memory will this read/write/is
1770 // clobbered by" and "what instructions can I move this past".
1771 Def
= isModSet(ModRef
) || isOrdered(I
);
1772 Use
= isRefSet(ModRef
);
1775 // It's possible for an instruction to not modify memory at all. During
1776 // construction, we ignore them.
1780 MemoryUseOrDef
*MUD
;
1782 MUD
= new MemoryDef(I
->getContext(), nullptr, I
, I
->getParent(), NextID
++);
1784 MUD
= new MemoryUse(I
->getContext(), nullptr, I
, I
->getParent());
1785 ValueToMemoryAccess
[I
] = MUD
;
1789 /// Returns true if \p Replacer dominates \p Replacee .
1790 bool MemorySSA::dominatesUse(const MemoryAccess
*Replacer
,
1791 const MemoryAccess
*Replacee
) const {
1792 if (isa
<MemoryUseOrDef
>(Replacee
))
1793 return DT
->dominates(Replacer
->getBlock(), Replacee
->getBlock());
1794 const auto *MP
= cast
<MemoryPhi
>(Replacee
);
1795 // For a phi node, the use occurs in the predecessor block of the phi node.
1796 // Since we may occur multiple times in the phi node, we have to check each
1797 // operand to ensure Replacer dominates each operand where Replacee occurs.
1798 for (const Use
&Arg
: MP
->operands()) {
1799 if (Arg
.get() != Replacee
&&
1800 !DT
->dominates(Replacer
->getBlock(), MP
->getIncomingBlock(Arg
)))
1806 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1807 void MemorySSA::removeFromLookups(MemoryAccess
*MA
) {
1808 assert(MA
->use_empty() &&
1809 "Trying to remove memory access that still has uses");
1810 BlockNumbering
.erase(MA
);
1811 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1812 MUD
->setDefiningAccess(nullptr);
1813 // Invalidate our walker's cache if necessary
1814 if (!isa
<MemoryUse
>(MA
))
1815 getWalker()->invalidateInfo(MA
);
1818 if (const auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1819 MemoryInst
= MUD
->getMemoryInst();
1821 MemoryInst
= MA
->getBlock();
1823 auto VMA
= ValueToMemoryAccess
.find(MemoryInst
);
1824 if (VMA
->second
== MA
)
1825 ValueToMemoryAccess
.erase(VMA
);
1828 /// Properly remove \p MA from all of MemorySSA's lists.
1830 /// Because of the way the intrusive list and use lists work, it is important to
1831 /// do removal in the right order.
1832 /// ShouldDelete defaults to true, and will cause the memory access to also be
1833 /// deleted, not just removed.
1834 void MemorySSA::removeFromLists(MemoryAccess
*MA
, bool ShouldDelete
) {
1835 BasicBlock
*BB
= MA
->getBlock();
1836 // The access list owns the reference, so we erase it from the non-owning list
1838 if (!isa
<MemoryUse
>(MA
)) {
1839 auto DefsIt
= PerBlockDefs
.find(BB
);
1840 std::unique_ptr
<DefsList
> &Defs
= DefsIt
->second
;
1843 PerBlockDefs
.erase(DefsIt
);
1846 // The erase call here will delete it. If we don't want it deleted, we call
1848 auto AccessIt
= PerBlockAccesses
.find(BB
);
1849 std::unique_ptr
<AccessList
> &Accesses
= AccessIt
->second
;
1851 Accesses
->erase(MA
);
1853 Accesses
->remove(MA
);
1855 if (Accesses
->empty()) {
1856 PerBlockAccesses
.erase(AccessIt
);
1857 BlockNumberingValid
.erase(BB
);
1861 void MemorySSA::print(raw_ostream
&OS
) const {
1862 MemorySSAAnnotatedWriter
Writer(this);
1863 F
.print(OS
, &Writer
);
1866 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1867 LLVM_DUMP_METHOD
void MemorySSA::dump() const { print(dbgs()); }
1870 void MemorySSA::verifyMemorySSA() const {
1872 verifyDomination(F
);
1874 verifyDominationNumbers(F
);
1875 verifyPrevDefInPhis(F
);
1876 // Previously, the verification used to also verify that the clobberingAccess
1877 // cached by MemorySSA is the same as the clobberingAccess found at a later
1878 // query to AA. This does not hold true in general due to the current fragility
1879 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1880 // up. As a result, transformations that are correct, will lead to BasicAA
1881 // returning different Alias answers before and after that transformation.
1882 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1883 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1884 // every transformation, which defeats the purpose of using it. For such an
1885 // example, see test4 added in D51960.
1888 void MemorySSA::verifyPrevDefInPhis(Function
&F
) const {
1889 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1890 for (const BasicBlock
&BB
: F
) {
1891 if (MemoryPhi
*Phi
= getMemoryAccess(&BB
)) {
1892 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
) {
1893 auto *Pred
= Phi
->getIncomingBlock(I
);
1894 auto *IncAcc
= Phi
->getIncomingValue(I
);
1895 // If Pred has no unreachable predecessors, get last def looking at
1896 // IDoms. If, while walkings IDoms, any of these has an unreachable
1897 // predecessor, then the incoming def can be any access.
1898 if (auto *DTNode
= DT
->getNode(Pred
)) {
1900 if (auto *DefList
= getBlockDefs(DTNode
->getBlock())) {
1901 auto *LastAcc
= &*(--DefList
->end());
1902 assert(LastAcc
== IncAcc
&&
1903 "Incorrect incoming access into phi.");
1906 DTNode
= DTNode
->getIDom();
1909 // If Pred has unreachable predecessors, but has at least a Def, the
1910 // incoming access can be the last Def in Pred, or it could have been
1911 // optimized to LoE. After an update, though, the LoE may have been
1912 // replaced by another access, so IncAcc may be any access.
1913 // If Pred has unreachable predecessors and no Defs, incoming access
1914 // should be LoE; However, after an update, it may be any access.
1922 /// Verify that all of the blocks we believe to have valid domination numbers
1923 /// actually have valid domination numbers.
1924 void MemorySSA::verifyDominationNumbers(const Function
&F
) const {
1926 if (BlockNumberingValid
.empty())
1929 SmallPtrSet
<const BasicBlock
*, 16> ValidBlocks
= BlockNumberingValid
;
1930 for (const BasicBlock
&BB
: F
) {
1931 if (!ValidBlocks
.count(&BB
))
1934 ValidBlocks
.erase(&BB
);
1936 const AccessList
*Accesses
= getBlockAccesses(&BB
);
1937 // It's correct to say an empty block has valid numbering.
1941 // Block numbering starts at 1.
1942 unsigned long LastNumber
= 0;
1943 for (const MemoryAccess
&MA
: *Accesses
) {
1944 auto ThisNumberIter
= BlockNumbering
.find(&MA
);
1945 assert(ThisNumberIter
!= BlockNumbering
.end() &&
1946 "MemoryAccess has no domination number in a valid block!");
1948 unsigned long ThisNumber
= ThisNumberIter
->second
;
1949 assert(ThisNumber
> LastNumber
&&
1950 "Domination numbers should be strictly increasing!");
1951 LastNumber
= ThisNumber
;
1955 assert(ValidBlocks
.empty() &&
1956 "All valid BasicBlocks should exist in F -- dangling pointers?");
1960 /// Verify that the order and existence of MemoryAccesses matches the
1961 /// order and existence of memory affecting instructions.
1962 void MemorySSA::verifyOrdering(Function
&F
) const {
1964 // Walk all the blocks, comparing what the lookups think and what the access
1965 // lists think, as well as the order in the blocks vs the order in the access
1967 SmallVector
<MemoryAccess
*, 32> ActualAccesses
;
1968 SmallVector
<MemoryAccess
*, 32> ActualDefs
;
1969 for (BasicBlock
&B
: F
) {
1970 const AccessList
*AL
= getBlockAccesses(&B
);
1971 const auto *DL
= getBlockDefs(&B
);
1972 MemoryAccess
*Phi
= getMemoryAccess(&B
);
1974 ActualAccesses
.push_back(Phi
);
1975 ActualDefs
.push_back(Phi
);
1978 for (Instruction
&I
: B
) {
1979 MemoryAccess
*MA
= getMemoryAccess(&I
);
1980 assert((!MA
|| (AL
&& (isa
<MemoryUse
>(MA
) || DL
))) &&
1981 "We have memory affecting instructions "
1982 "in this block but they are not in the "
1983 "access list or defs list");
1985 ActualAccesses
.push_back(MA
);
1986 if (isa
<MemoryDef
>(MA
))
1987 ActualDefs
.push_back(MA
);
1990 // Either we hit the assert, really have no accesses, or we have both
1991 // accesses and an access list.
1995 assert(AL
->size() == ActualAccesses
.size() &&
1996 "We don't have the same number of accesses in the block as on the "
1998 assert((DL
|| ActualDefs
.size() == 0) &&
1999 "Either we should have a defs list, or we should have no defs");
2000 assert((!DL
|| DL
->size() == ActualDefs
.size()) &&
2001 "We don't have the same number of defs in the block as on the "
2003 auto ALI
= AL
->begin();
2004 auto AAI
= ActualAccesses
.begin();
2005 while (ALI
!= AL
->end() && AAI
!= ActualAccesses
.end()) {
2006 assert(&*ALI
== *AAI
&& "Not the same accesses in the same order");
2010 ActualAccesses
.clear();
2012 auto DLI
= DL
->begin();
2013 auto ADI
= ActualDefs
.begin();
2014 while (DLI
!= DL
->end() && ADI
!= ActualDefs
.end()) {
2015 assert(&*DLI
== *ADI
&& "Not the same defs in the same order");
2025 /// Verify the domination properties of MemorySSA by checking that each
2026 /// definition dominates all of its uses.
2027 void MemorySSA::verifyDomination(Function
&F
) const {
2029 for (BasicBlock
&B
: F
) {
2030 // Phi nodes are attached to basic blocks
2031 if (MemoryPhi
*MP
= getMemoryAccess(&B
))
2032 for (const Use
&U
: MP
->uses())
2033 assert(dominates(MP
, U
) && "Memory PHI does not dominate it's uses");
2035 for (Instruction
&I
: B
) {
2036 MemoryAccess
*MD
= dyn_cast_or_null
<MemoryDef
>(getMemoryAccess(&I
));
2040 for (const Use
&U
: MD
->uses())
2041 assert(dominates(MD
, U
) && "Memory Def does not dominate it's uses");
2047 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2048 /// appears in the use list of \p Def.
2049 void MemorySSA::verifyUseInDefs(MemoryAccess
*Def
, MemoryAccess
*Use
) const {
2051 // The live on entry use may cause us to get a NULL def here
2053 assert(isLiveOnEntryDef(Use
) &&
2054 "Null def but use not point to live on entry def");
2056 assert(is_contained(Def
->users(), Use
) &&
2057 "Did not find use in def's use list");
2061 /// Verify the immediate use information, by walking all the memory
2062 /// accesses and verifying that, for each use, it appears in the
2063 /// appropriate def's use list
2064 void MemorySSA::verifyDefUses(Function
&F
) const {
2065 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
2066 for (BasicBlock
&B
: F
) {
2067 // Phi nodes are attached to basic blocks
2068 if (MemoryPhi
*Phi
= getMemoryAccess(&B
)) {
2069 assert(Phi
->getNumOperands() == static_cast<unsigned>(std::distance(
2070 pred_begin(&B
), pred_end(&B
))) &&
2071 "Incomplete MemoryPhi Node");
2072 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
) {
2073 verifyUseInDefs(Phi
->getIncomingValue(I
), Phi
);
2074 assert(find(predecessors(&B
), Phi
->getIncomingBlock(I
)) !=
2076 "Incoming phi block not a block predecessor");
2080 for (Instruction
&I
: B
) {
2081 if (MemoryUseOrDef
*MA
= getMemoryAccess(&I
)) {
2082 verifyUseInDefs(MA
->getDefiningAccess(), MA
);
2089 /// Perform a local numbering on blocks so that instruction ordering can be
2090 /// determined in constant time.
2091 /// TODO: We currently just number in order. If we numbered by N, we could
2092 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2093 /// log2(N) sequences of mixed before and after) without needing to invalidate
2095 void MemorySSA::renumberBlock(const BasicBlock
*B
) const {
2096 // The pre-increment ensures the numbers really start at 1.
2097 unsigned long CurrentNumber
= 0;
2098 const AccessList
*AL
= getBlockAccesses(B
);
2099 assert(AL
!= nullptr && "Asking to renumber an empty block");
2100 for (const auto &I
: *AL
)
2101 BlockNumbering
[&I
] = ++CurrentNumber
;
2102 BlockNumberingValid
.insert(B
);
2105 /// Determine, for two memory accesses in the same block,
2106 /// whether \p Dominator dominates \p Dominatee.
2107 /// \returns True if \p Dominator dominates \p Dominatee.
2108 bool MemorySSA::locallyDominates(const MemoryAccess
*Dominator
,
2109 const MemoryAccess
*Dominatee
) const {
2110 const BasicBlock
*DominatorBlock
= Dominator
->getBlock();
2112 assert((DominatorBlock
== Dominatee
->getBlock()) &&
2113 "Asking for local domination when accesses are in different blocks!");
2114 // A node dominates itself.
2115 if (Dominatee
== Dominator
)
2118 // When Dominatee is defined on function entry, it is not dominated by another
2120 if (isLiveOnEntryDef(Dominatee
))
2123 // When Dominator is defined on function entry, it dominates the other memory
2125 if (isLiveOnEntryDef(Dominator
))
2128 if (!BlockNumberingValid
.count(DominatorBlock
))
2129 renumberBlock(DominatorBlock
);
2131 unsigned long DominatorNum
= BlockNumbering
.lookup(Dominator
);
2132 // All numbers start with 1
2133 assert(DominatorNum
!= 0 && "Block was not numbered properly");
2134 unsigned long DominateeNum
= BlockNumbering
.lookup(Dominatee
);
2135 assert(DominateeNum
!= 0 && "Block was not numbered properly");
2136 return DominatorNum
< DominateeNum
;
2139 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2140 const MemoryAccess
*Dominatee
) const {
2141 if (Dominator
== Dominatee
)
2144 if (isLiveOnEntryDef(Dominatee
))
2147 if (Dominator
->getBlock() != Dominatee
->getBlock())
2148 return DT
->dominates(Dominator
->getBlock(), Dominatee
->getBlock());
2149 return locallyDominates(Dominator
, Dominatee
);
2152 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2153 const Use
&Dominatee
) const {
2154 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(Dominatee
.getUser())) {
2155 BasicBlock
*UseBB
= MP
->getIncomingBlock(Dominatee
);
2156 // The def must dominate the incoming block of the phi.
2157 if (UseBB
!= Dominator
->getBlock())
2158 return DT
->dominates(Dominator
->getBlock(), UseBB
);
2159 // If the UseBB and the DefBB are the same, compare locally.
2160 return locallyDominates(Dominator
, cast
<MemoryAccess
>(Dominatee
));
2162 // If it's not a PHI node use, the normal dominates can already handle it.
2163 return dominates(Dominator
, cast
<MemoryAccess
>(Dominatee
.getUser()));
2166 const static char LiveOnEntryStr
[] = "liveOnEntry";
2168 void MemoryAccess::print(raw_ostream
&OS
) const {
2169 switch (getValueID()) {
2170 case MemoryPhiVal
: return static_cast<const MemoryPhi
*>(this)->print(OS
);
2171 case MemoryDefVal
: return static_cast<const MemoryDef
*>(this)->print(OS
);
2172 case MemoryUseVal
: return static_cast<const MemoryUse
*>(this)->print(OS
);
2174 llvm_unreachable("invalid value id");
2177 void MemoryDef::print(raw_ostream
&OS
) const {
2178 MemoryAccess
*UO
= getDefiningAccess();
2180 auto printID
= [&OS
](MemoryAccess
*A
) {
2181 if (A
&& A
->getID())
2184 OS
<< LiveOnEntryStr
;
2187 OS
<< getID() << " = MemoryDef(";
2191 if (isOptimized()) {
2193 printID(getOptimized());
2195 if (Optional
<AliasResult
> AR
= getOptimizedAccessType())
2200 void MemoryPhi::print(raw_ostream
&OS
) const {
2202 OS
<< getID() << " = MemoryPhi(";
2203 for (const auto &Op
: operands()) {
2204 BasicBlock
*BB
= getIncomingBlock(Op
);
2205 MemoryAccess
*MA
= cast
<MemoryAccess
>(Op
);
2213 OS
<< BB
->getName();
2215 BB
->printAsOperand(OS
, false);
2217 if (unsigned ID
= MA
->getID())
2220 OS
<< LiveOnEntryStr
;
2226 void MemoryUse::print(raw_ostream
&OS
) const {
2227 MemoryAccess
*UO
= getDefiningAccess();
2229 if (UO
&& UO
->getID())
2232 OS
<< LiveOnEntryStr
;
2235 if (Optional
<AliasResult
> AR
= getOptimizedAccessType())
2239 void MemoryAccess::dump() const {
2240 // Cannot completely remove virtual function even in release mode.
2241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2247 char MemorySSAPrinterLegacyPass::ID
= 0;
2249 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID
) {
2250 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2253 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2254 AU
.setPreservesAll();
2255 AU
.addRequired
<MemorySSAWrapperPass
>();
2258 bool MemorySSAPrinterLegacyPass::runOnFunction(Function
&F
) {
2259 auto &MSSA
= getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
2261 if (VerifyMemorySSA
)
2262 MSSA
.verifyMemorySSA();
2266 AnalysisKey
MemorySSAAnalysis::Key
;
2268 MemorySSAAnalysis::Result
MemorySSAAnalysis::run(Function
&F
,
2269 FunctionAnalysisManager
&AM
) {
2270 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
2271 auto &AA
= AM
.getResult
<AAManager
>(F
);
2272 return MemorySSAAnalysis::Result(std::make_unique
<MemorySSA
>(F
, &AA
, &DT
));
2275 bool MemorySSAAnalysis::Result::invalidate(
2276 Function
&F
, const PreservedAnalyses
&PA
,
2277 FunctionAnalysisManager::Invalidator
&Inv
) {
2278 auto PAC
= PA
.getChecker
<MemorySSAAnalysis
>();
2279 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
2280 Inv
.invalidate
<AAManager
>(F
, PA
) ||
2281 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
);
2284 PreservedAnalyses
MemorySSAPrinterPass::run(Function
&F
,
2285 FunctionAnalysisManager
&AM
) {
2286 OS
<< "MemorySSA for function: " << F
.getName() << "\n";
2287 AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA().print(OS
);
2289 return PreservedAnalyses::all();
2292 PreservedAnalyses
MemorySSAVerifierPass::run(Function
&F
,
2293 FunctionAnalysisManager
&AM
) {
2294 AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA().verifyMemorySSA();
2296 return PreservedAnalyses::all();
2299 char MemorySSAWrapperPass::ID
= 0;
2301 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID
) {
2302 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2305 void MemorySSAWrapperPass::releaseMemory() { MSSA
.reset(); }
2307 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2308 AU
.setPreservesAll();
2309 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
2310 AU
.addRequiredTransitive
<AAResultsWrapperPass
>();
2313 bool MemorySSAWrapperPass::runOnFunction(Function
&F
) {
2314 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2315 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
2316 MSSA
.reset(new MemorySSA(F
, &AA
, &DT
));
2320 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA
->verifyMemorySSA(); }
2322 void MemorySSAWrapperPass::print(raw_ostream
&OS
, const Module
*M
) const {
2326 MemorySSAWalker::MemorySSAWalker(MemorySSA
*M
) : MSSA(M
) {}
2328 /// Walk the use-def chains starting at \p StartingAccess and find
2329 /// the MemoryAccess that actually clobbers Loc.
2331 /// \returns our clobbering memory access
2332 template <typename AliasAnalysisType
>
2334 MemorySSA::ClobberWalkerBase
<AliasAnalysisType
>::getClobberingMemoryAccessBase(
2335 MemoryAccess
*StartingAccess
, const MemoryLocation
&Loc
,
2336 unsigned &UpwardWalkLimit
) {
2337 if (isa
<MemoryPhi
>(StartingAccess
))
2338 return StartingAccess
;
2340 auto *StartingUseOrDef
= cast
<MemoryUseOrDef
>(StartingAccess
);
2341 if (MSSA
->isLiveOnEntryDef(StartingUseOrDef
))
2342 return StartingUseOrDef
;
2344 Instruction
*I
= StartingUseOrDef
->getMemoryInst();
2346 // Conservatively, fences are always clobbers, so don't perform the walk if we
2348 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2349 return StartingUseOrDef
;
2351 UpwardsMemoryQuery Q
;
2352 Q
.OriginalAccess
= StartingUseOrDef
;
2353 Q
.StartingLoc
= Loc
;
2357 // Unlike the other function, do not walk to the def of a def, because we are
2358 // handed something we already believe is the clobbering access.
2359 // We never set SkipSelf to true in Q in this method.
2360 MemoryAccess
*DefiningAccess
= isa
<MemoryUse
>(StartingUseOrDef
)
2361 ? StartingUseOrDef
->getDefiningAccess()
2364 MemoryAccess
*Clobber
=
2365 Walker
.findClobber(DefiningAccess
, Q
, UpwardWalkLimit
);
2366 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I
<< " is ");
2367 LLVM_DEBUG(dbgs() << *StartingUseOrDef
<< "\n");
2368 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I
<< " is ");
2369 LLVM_DEBUG(dbgs() << *Clobber
<< "\n");
2373 template <typename AliasAnalysisType
>
2375 MemorySSA::ClobberWalkerBase
<AliasAnalysisType
>::getClobberingMemoryAccessBase(
2376 MemoryAccess
*MA
, unsigned &UpwardWalkLimit
, bool SkipSelf
) {
2377 auto *StartingAccess
= dyn_cast
<MemoryUseOrDef
>(MA
);
2378 // If this is a MemoryPhi, we can't do anything.
2379 if (!StartingAccess
)
2382 bool IsOptimized
= false;
2384 // If this is an already optimized use or def, return the optimized result.
2385 // Note: Currently, we store the optimized def result in a separate field,
2386 // since we can't use the defining access.
2387 if (StartingAccess
->isOptimized()) {
2388 if (!SkipSelf
|| !isa
<MemoryDef
>(StartingAccess
))
2389 return StartingAccess
->getOptimized();
2393 const Instruction
*I
= StartingAccess
->getMemoryInst();
2394 // We can't sanely do anything with a fence, since they conservatively clobber
2395 // all memory, and have no locations to get pointers from to try to
2397 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2398 return StartingAccess
;
2400 UpwardsMemoryQuery
Q(I
, StartingAccess
);
2402 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker
.getAA(), I
)) {
2403 MemoryAccess
*LiveOnEntry
= MSSA
->getLiveOnEntryDef();
2404 StartingAccess
->setOptimized(LiveOnEntry
);
2405 StartingAccess
->setOptimizedAccessType(None
);
2409 MemoryAccess
*OptimizedAccess
;
2411 // Start with the thing we already think clobbers this location
2412 MemoryAccess
*DefiningAccess
= StartingAccess
->getDefiningAccess();
2414 // At this point, DefiningAccess may be the live on entry def.
2415 // If it is, we will not get a better result.
2416 if (MSSA
->isLiveOnEntryDef(DefiningAccess
)) {
2417 StartingAccess
->setOptimized(DefiningAccess
);
2418 StartingAccess
->setOptimizedAccessType(None
);
2419 return DefiningAccess
;
2422 OptimizedAccess
= Walker
.findClobber(DefiningAccess
, Q
, UpwardWalkLimit
);
2423 StartingAccess
->setOptimized(OptimizedAccess
);
2424 if (MSSA
->isLiveOnEntryDef(OptimizedAccess
))
2425 StartingAccess
->setOptimizedAccessType(None
);
2426 else if (Q
.AR
== MustAlias
)
2427 StartingAccess
->setOptimizedAccessType(MustAlias
);
2429 OptimizedAccess
= StartingAccess
->getOptimized();
2431 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I
<< " is ");
2432 LLVM_DEBUG(dbgs() << *StartingAccess
<< "\n");
2433 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I
<< " is ");
2434 LLVM_DEBUG(dbgs() << *OptimizedAccess
<< "\n");
2436 MemoryAccess
*Result
;
2437 if (SkipSelf
&& isa
<MemoryPhi
>(OptimizedAccess
) &&
2438 isa
<MemoryDef
>(StartingAccess
) && UpwardWalkLimit
) {
2439 assert(isa
<MemoryDef
>(Q
.OriginalAccess
));
2440 Q
.SkipSelfAccess
= true;
2441 Result
= Walker
.findClobber(OptimizedAccess
, Q
, UpwardWalkLimit
);
2443 Result
= OptimizedAccess
;
2445 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf
);
2446 LLVM_DEBUG(dbgs() << "] for " << *I
<< " is " << *Result
<< "\n");
2452 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess
*MA
) {
2453 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(MA
))
2454 return Use
->getDefiningAccess();
2458 MemoryAccess
*DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2459 MemoryAccess
*StartingAccess
, const MemoryLocation
&) {
2460 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(StartingAccess
))
2461 return Use
->getDefiningAccess();
2462 return StartingAccess
;
2465 void MemoryPhi::deleteMe(DerivedUser
*Self
) {
2466 delete static_cast<MemoryPhi
*>(Self
);
2469 void MemoryDef::deleteMe(DerivedUser
*Self
) {
2470 delete static_cast<MemoryDef
*>(Self
);
2473 void MemoryUse::deleteMe(DerivedUser
*Self
) {
2474 delete static_cast<MemoryUse
*>(Self
);