1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/CodeGen/GlobalISel/Combiner.h"
10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
11 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
12 #include "llvm/CodeGen/GlobalISel/Utils.h"
13 #include "llvm/CodeGen/MachineFrameInfo.h"
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/Target/TargetMachine.h"
20 #define DEBUG_TYPE "gi-combiner"
24 CombinerHelper::CombinerHelper(GISelChangeObserver
&Observer
,
26 : Builder(B
), MRI(Builder
.getMF().getRegInfo()), Observer(Observer
) {}
28 void CombinerHelper::replaceRegWith(MachineRegisterInfo
&MRI
, Register FromReg
,
29 Register ToReg
) const {
30 Observer
.changingAllUsesOfReg(MRI
, FromReg
);
32 if (MRI
.constrainRegAttrs(ToReg
, FromReg
))
33 MRI
.replaceRegWith(FromReg
, ToReg
);
35 Builder
.buildCopy(ToReg
, FromReg
);
37 Observer
.finishedChangingAllUsesOfReg();
40 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo
&MRI
,
41 MachineOperand
&FromRegOp
,
42 Register ToReg
) const {
43 assert(FromRegOp
.getParent() && "Expected an operand in an MI");
44 Observer
.changingInstr(*FromRegOp
.getParent());
46 FromRegOp
.setReg(ToReg
);
48 Observer
.changedInstr(*FromRegOp
.getParent());
51 bool CombinerHelper::tryCombineCopy(MachineInstr
&MI
) {
52 if (matchCombineCopy(MI
)) {
58 bool CombinerHelper::matchCombineCopy(MachineInstr
&MI
) {
59 if (MI
.getOpcode() != TargetOpcode::COPY
)
61 unsigned DstReg
= MI
.getOperand(0).getReg();
62 unsigned SrcReg
= MI
.getOperand(1).getReg();
63 LLT DstTy
= MRI
.getType(DstReg
);
64 LLT SrcTy
= MRI
.getType(SrcReg
);
65 // Simple Copy Propagation.
66 // a(sx) = COPY b(sx) -> Replace all uses of a with b.
67 if (DstTy
.isValid() && SrcTy
.isValid() && DstTy
== SrcTy
)
71 void CombinerHelper::applyCombineCopy(MachineInstr
&MI
) {
72 unsigned DstReg
= MI
.getOperand(0).getReg();
73 unsigned SrcReg
= MI
.getOperand(1).getReg();
75 replaceRegWith(MRI
, DstReg
, SrcReg
);
80 /// Select a preference between two uses. CurrentUse is the current preference
81 /// while *ForCandidate is attributes of the candidate under consideration.
82 PreferredTuple
ChoosePreferredUse(PreferredTuple
&CurrentUse
,
83 const LLT
&TyForCandidate
,
84 unsigned OpcodeForCandidate
,
85 MachineInstr
*MIForCandidate
) {
86 if (!CurrentUse
.Ty
.isValid()) {
87 if (CurrentUse
.ExtendOpcode
== OpcodeForCandidate
||
88 CurrentUse
.ExtendOpcode
== TargetOpcode::G_ANYEXT
)
89 return {TyForCandidate
, OpcodeForCandidate
, MIForCandidate
};
93 // We permit the extend to hoist through basic blocks but this is only
94 // sensible if the target has extending loads. If you end up lowering back
95 // into a load and extend during the legalizer then the end result is
96 // hoisting the extend up to the load.
98 // Prefer defined extensions to undefined extensions as these are more
99 // likely to reduce the number of instructions.
100 if (OpcodeForCandidate
== TargetOpcode::G_ANYEXT
&&
101 CurrentUse
.ExtendOpcode
!= TargetOpcode::G_ANYEXT
)
103 else if (CurrentUse
.ExtendOpcode
== TargetOpcode::G_ANYEXT
&&
104 OpcodeForCandidate
!= TargetOpcode::G_ANYEXT
)
105 return {TyForCandidate
, OpcodeForCandidate
, MIForCandidate
};
107 // Prefer sign extensions to zero extensions as sign-extensions tend to be
109 if (CurrentUse
.Ty
== TyForCandidate
) {
110 if (CurrentUse
.ExtendOpcode
== TargetOpcode::G_SEXT
&&
111 OpcodeForCandidate
== TargetOpcode::G_ZEXT
)
113 else if (CurrentUse
.ExtendOpcode
== TargetOpcode::G_ZEXT
&&
114 OpcodeForCandidate
== TargetOpcode::G_SEXT
)
115 return {TyForCandidate
, OpcodeForCandidate
, MIForCandidate
};
118 // This is potentially target specific. We've chosen the largest type
119 // because G_TRUNC is usually free. One potential catch with this is that
120 // some targets have a reduced number of larger registers than smaller
121 // registers and this choice potentially increases the live-range for the
123 if (TyForCandidate
.getSizeInBits() > CurrentUse
.Ty
.getSizeInBits()) {
124 return {TyForCandidate
, OpcodeForCandidate
, MIForCandidate
};
129 /// Find a suitable place to insert some instructions and insert them. This
130 /// function accounts for special cases like inserting before a PHI node.
131 /// The current strategy for inserting before PHI's is to duplicate the
132 /// instructions for each predecessor. However, while that's ok for G_TRUNC
133 /// on most targets since it generally requires no code, other targets/cases may
134 /// want to try harder to find a dominating block.
135 static void InsertInsnsWithoutSideEffectsBeforeUse(
136 MachineIRBuilder
&Builder
, MachineInstr
&DefMI
, MachineOperand
&UseMO
,
137 std::function
<void(MachineBasicBlock
*, MachineBasicBlock::iterator
,
138 MachineOperand
&UseMO
)>
140 MachineInstr
&UseMI
= *UseMO
.getParent();
142 MachineBasicBlock
*InsertBB
= UseMI
.getParent();
144 // If the use is a PHI then we want the predecessor block instead.
146 MachineOperand
*PredBB
= std::next(&UseMO
);
147 InsertBB
= PredBB
->getMBB();
150 // If the block is the same block as the def then we want to insert just after
151 // the def instead of at the start of the block.
152 if (InsertBB
== DefMI
.getParent()) {
153 MachineBasicBlock::iterator InsertPt
= &DefMI
;
154 Inserter(InsertBB
, std::next(InsertPt
), UseMO
);
158 // Otherwise we want the start of the BB
159 Inserter(InsertBB
, InsertBB
->getFirstNonPHI(), UseMO
);
161 } // end anonymous namespace
163 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr
&MI
) {
164 PreferredTuple Preferred
;
165 if (matchCombineExtendingLoads(MI
, Preferred
)) {
166 applyCombineExtendingLoads(MI
, Preferred
);
172 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr
&MI
,
173 PreferredTuple
&Preferred
) {
174 // We match the loads and follow the uses to the extend instead of matching
175 // the extends and following the def to the load. This is because the load
176 // must remain in the same position for correctness (unless we also add code
177 // to find a safe place to sink it) whereas the extend is freely movable.
178 // It also prevents us from duplicating the load for the volatile case or just
181 if (MI
.getOpcode() != TargetOpcode::G_LOAD
&&
182 MI
.getOpcode() != TargetOpcode::G_SEXTLOAD
&&
183 MI
.getOpcode() != TargetOpcode::G_ZEXTLOAD
)
186 auto &LoadValue
= MI
.getOperand(0);
187 assert(LoadValue
.isReg() && "Result wasn't a register?");
189 LLT LoadValueTy
= MRI
.getType(LoadValue
.getReg());
190 if (!LoadValueTy
.isScalar())
193 // Most architectures are going to legalize <s8 loads into at least a 1 byte
194 // load, and the MMOs can only describe memory accesses in multiples of bytes.
195 // If we try to perform extload combining on those, we can end up with
196 // %a(s8) = extload %ptr (load 1 byte from %ptr)
197 // ... which is an illegal extload instruction.
198 if (LoadValueTy
.getSizeInBits() < 8)
201 // For non power-of-2 types, they will very likely be legalized into multiple
202 // loads. Don't bother trying to match them into extending loads.
203 if (!isPowerOf2_32(LoadValueTy
.getSizeInBits()))
206 // Find the preferred type aside from the any-extends (unless it's the only
207 // one) and non-extending ops. We'll emit an extending load to that type and
208 // and emit a variant of (extend (trunc X)) for the others according to the
209 // relative type sizes. At the same time, pick an extend to use based on the
210 // extend involved in the chosen type.
211 unsigned PreferredOpcode
= MI
.getOpcode() == TargetOpcode::G_LOAD
212 ? TargetOpcode::G_ANYEXT
213 : MI
.getOpcode() == TargetOpcode::G_SEXTLOAD
214 ? TargetOpcode::G_SEXT
215 : TargetOpcode::G_ZEXT
;
216 Preferred
= {LLT(), PreferredOpcode
, nullptr};
217 for (auto &UseMI
: MRI
.use_instructions(LoadValue
.getReg())) {
218 if (UseMI
.getOpcode() == TargetOpcode::G_SEXT
||
219 UseMI
.getOpcode() == TargetOpcode::G_ZEXT
||
220 UseMI
.getOpcode() == TargetOpcode::G_ANYEXT
) {
221 Preferred
= ChoosePreferredUse(Preferred
,
222 MRI
.getType(UseMI
.getOperand(0).getReg()),
223 UseMI
.getOpcode(), &UseMI
);
227 // There were no extends
230 // It should be impossible to chose an extend without selecting a different
231 // type since by definition the result of an extend is larger.
232 assert(Preferred
.Ty
!= LoadValueTy
&& "Extending to same type?");
234 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred
.MI
);
238 void CombinerHelper::applyCombineExtendingLoads(MachineInstr
&MI
,
239 PreferredTuple
&Preferred
) {
240 // Rewrite the load to the chosen extending load.
241 Register ChosenDstReg
= Preferred
.MI
->getOperand(0).getReg();
243 // Inserter to insert a truncate back to the original type at a given point
244 // with some basic CSE to limit truncate duplication to one per BB.
245 DenseMap
<MachineBasicBlock
*, MachineInstr
*> EmittedInsns
;
246 auto InsertTruncAt
= [&](MachineBasicBlock
*InsertIntoBB
,
247 MachineBasicBlock::iterator InsertBefore
,
248 MachineOperand
&UseMO
) {
249 MachineInstr
*PreviouslyEmitted
= EmittedInsns
.lookup(InsertIntoBB
);
250 if (PreviouslyEmitted
) {
251 Observer
.changingInstr(*UseMO
.getParent());
252 UseMO
.setReg(PreviouslyEmitted
->getOperand(0).getReg());
253 Observer
.changedInstr(*UseMO
.getParent());
257 Builder
.setInsertPt(*InsertIntoBB
, InsertBefore
);
258 Register NewDstReg
= MRI
.cloneVirtualRegister(MI
.getOperand(0).getReg());
259 MachineInstr
*NewMI
= Builder
.buildTrunc(NewDstReg
, ChosenDstReg
);
260 EmittedInsns
[InsertIntoBB
] = NewMI
;
261 replaceRegOpWith(MRI
, UseMO
, NewDstReg
);
264 Observer
.changingInstr(MI
);
266 Builder
.getTII().get(Preferred
.ExtendOpcode
== TargetOpcode::G_SEXT
267 ? TargetOpcode::G_SEXTLOAD
268 : Preferred
.ExtendOpcode
== TargetOpcode::G_ZEXT
269 ? TargetOpcode::G_ZEXTLOAD
270 : TargetOpcode::G_LOAD
));
272 // Rewrite all the uses to fix up the types.
273 auto &LoadValue
= MI
.getOperand(0);
274 SmallVector
<MachineOperand
*, 4> Uses
;
275 for (auto &UseMO
: MRI
.use_operands(LoadValue
.getReg()))
276 Uses
.push_back(&UseMO
);
278 for (auto *UseMO
: Uses
) {
279 MachineInstr
*UseMI
= UseMO
->getParent();
281 // If the extend is compatible with the preferred extend then we should fix
282 // up the type and extend so that it uses the preferred use.
283 if (UseMI
->getOpcode() == Preferred
.ExtendOpcode
||
284 UseMI
->getOpcode() == TargetOpcode::G_ANYEXT
) {
285 unsigned UseDstReg
= UseMI
->getOperand(0).getReg();
286 MachineOperand
&UseSrcMO
= UseMI
->getOperand(1);
287 const LLT
&UseDstTy
= MRI
.getType(UseDstReg
);
288 if (UseDstReg
!= ChosenDstReg
) {
289 if (Preferred
.Ty
== UseDstTy
) {
290 // If the use has the same type as the preferred use, then merge
291 // the vregs and erase the extend. For example:
292 // %1:_(s8) = G_LOAD ...
293 // %2:_(s32) = G_SEXT %1(s8)
294 // %3:_(s32) = G_ANYEXT %1(s8)
297 // %2:_(s32) = G_SEXTLOAD ...
299 replaceRegWith(MRI
, UseDstReg
, ChosenDstReg
);
300 Observer
.erasingInstr(*UseMO
->getParent());
301 UseMO
->getParent()->eraseFromParent();
302 } else if (Preferred
.Ty
.getSizeInBits() < UseDstTy
.getSizeInBits()) {
303 // If the preferred size is smaller, then keep the extend but extend
304 // from the result of the extending load. For example:
305 // %1:_(s8) = G_LOAD ...
306 // %2:_(s32) = G_SEXT %1(s8)
307 // %3:_(s64) = G_ANYEXT %1(s8)
310 // %2:_(s32) = G_SEXTLOAD ...
311 // %3:_(s64) = G_ANYEXT %2:_(s32)
313 replaceRegOpWith(MRI
, UseSrcMO
, ChosenDstReg
);
315 // If the preferred size is large, then insert a truncate. For
317 // %1:_(s8) = G_LOAD ...
318 // %2:_(s64) = G_SEXT %1(s8)
319 // %3:_(s32) = G_ZEXT %1(s8)
322 // %2:_(s64) = G_SEXTLOAD ...
323 // %4:_(s8) = G_TRUNC %2:_(s32)
324 // %3:_(s64) = G_ZEXT %2:_(s8)
326 InsertInsnsWithoutSideEffectsBeforeUse(Builder
, MI
, *UseMO
,
331 // The use is (one of) the uses of the preferred use we chose earlier.
332 // We're going to update the load to def this value later so just erase
334 Observer
.erasingInstr(*UseMO
->getParent());
335 UseMO
->getParent()->eraseFromParent();
339 // The use isn't an extend. Truncate back to the type we originally loaded.
340 // This is free on many targets.
341 InsertInsnsWithoutSideEffectsBeforeUse(Builder
, MI
, *UseMO
, InsertTruncAt
);
344 MI
.getOperand(0).setReg(ChosenDstReg
);
345 Observer
.changedInstr(MI
);
348 bool CombinerHelper::matchCombineBr(MachineInstr
&MI
) {
349 assert(MI
.getOpcode() == TargetOpcode::G_BR
&& "Expected a G_BR");
350 // Try to match the following:
352 // %c(s32) = G_ICMP pred, %a, %b
353 // %c1(s1) = G_TRUNC %c(s32)
354 // G_BRCOND %c1, %bb2
360 // The above pattern does not have a fall through to the successor bb2, always
361 // resulting in a branch no matter which path is taken. Here we try to find
362 // and replace that pattern with conditional branch to bb3 and otherwise
363 // fallthrough to bb2.
365 MachineBasicBlock
*MBB
= MI
.getParent();
366 MachineBasicBlock::iterator
BrIt(MI
);
367 if (BrIt
== MBB
->begin())
369 assert(std::next(BrIt
) == MBB
->end() && "expected G_BR to be a terminator");
371 MachineInstr
*BrCond
= &*std::prev(BrIt
);
372 if (BrCond
->getOpcode() != TargetOpcode::G_BRCOND
)
375 // Check that the next block is the conditional branch target.
376 if (!MBB
->isLayoutSuccessor(BrCond
->getOperand(1).getMBB()))
379 MachineInstr
*CmpMI
= MRI
.getVRegDef(BrCond
->getOperand(0).getReg());
380 if (!CmpMI
|| CmpMI
->getOpcode() != TargetOpcode::G_ICMP
||
381 !MRI
.hasOneUse(CmpMI
->getOperand(0).getReg()))
386 bool CombinerHelper::tryCombineBr(MachineInstr
&MI
) {
387 if (!matchCombineBr(MI
))
389 MachineBasicBlock
*BrTarget
= MI
.getOperand(0).getMBB();
390 MachineBasicBlock::iterator
BrIt(MI
);
391 MachineInstr
*BrCond
= &*std::prev(BrIt
);
392 MachineInstr
*CmpMI
= MRI
.getVRegDef(BrCond
->getOperand(0).getReg());
394 CmpInst::Predicate InversePred
= CmpInst::getInversePredicate(
395 (CmpInst::Predicate
)CmpMI
->getOperand(1).getPredicate());
397 // Invert the G_ICMP condition.
398 Observer
.changingInstr(*CmpMI
);
399 CmpMI
->getOperand(1).setPredicate(InversePred
);
400 Observer
.changedInstr(*CmpMI
);
402 // Change the conditional branch target.
403 Observer
.changingInstr(*BrCond
);
404 BrCond
->getOperand(1).setMBB(BrTarget
);
405 Observer
.changedInstr(*BrCond
);
406 MI
.eraseFromParent();
410 static bool shouldLowerMemFuncForSize(const MachineFunction
&MF
) {
411 // On Darwin, -Os means optimize for size without hurting performance, so
412 // only really optimize for size when -Oz (MinSize) is used.
413 if (MF
.getTarget().getTargetTriple().isOSDarwin())
414 return MF
.getFunction().hasMinSize();
415 return MF
.getFunction().hasOptSize();
418 // Get a rough equivalent of an MVT for a given LLT.
419 static MVT
getMVTForLLT(LLT Ty
) {
421 return MVT::getIntegerVT(Ty
.getSizeInBits());
423 return MVT::getVectorVT(
424 MVT::getIntegerVT(Ty
.getElementType().getSizeInBits()),
425 Ty
.getNumElements());
428 // Returns a list of types to use for memory op lowering in MemOps. A partial
429 // port of findOptimalMemOpLowering in TargetLowering.
430 static bool findGISelOptimalMemOpLowering(
431 std::vector
<LLT
> &MemOps
, unsigned Limit
, uint64_t Size
, unsigned DstAlign
,
432 unsigned SrcAlign
, bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
433 bool AllowOverlap
, unsigned DstAS
, unsigned SrcAS
,
434 const AttributeList
&FuncAttributes
, const TargetLowering
&TLI
) {
435 // If 'SrcAlign' is zero, that means the memory operation does not need to
436 // load the value, i.e. memset or memcpy from constant string. Otherwise,
437 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
438 // is the specified alignment of the memory operation. If it is zero, that
439 // means it's possible to change the alignment of the destination.
440 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
441 // not need to be loaded.
442 if (SrcAlign
!= 0 && SrcAlign
< DstAlign
)
445 LLT Ty
= TLI
.getOptimalMemOpLLT(Size
, DstAlign
, SrcAlign
, IsMemset
,
446 ZeroMemset
, MemcpyStrSrc
, FuncAttributes
);
449 // Use the largest scalar type whose alignment constraints are satisfied.
450 // We only need to check DstAlign here as SrcAlign is always greater or
451 // equal to DstAlign (or zero).
452 Ty
= LLT::scalar(64);
453 while (DstAlign
&& DstAlign
< Ty
.getSizeInBytes() &&
454 !TLI
.allowsMisalignedMemoryAccesses(Ty
, DstAS
, DstAlign
))
455 Ty
= LLT::scalar(Ty
.getSizeInBytes());
456 assert(Ty
.getSizeInBits() > 0 && "Could not find valid type");
457 // FIXME: check for the largest legal type we can load/store to.
460 unsigned NumMemOps
= 0;
462 unsigned TySize
= Ty
.getSizeInBytes();
463 while (TySize
> Size
) {
464 // For now, only use non-vector load / store's for the left-over pieces.
466 // FIXME: check for mem op safety and legality of the types. Not all of
467 // SDAGisms map cleanly to GISel concepts.
468 if (NewTy
.isVector())
469 NewTy
= NewTy
.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
470 unsigned NewTySize
= NewTy
.getSizeInBytes();
472 NewTy
= LLT::scalar(PowerOf2Floor(NewTy
.getSizeInBits()-1));
473 NewTySize
= NewTy
.getSizeInBytes();
474 assert(NewTySize
> 0 && "Could not find appropriate type");
476 // If the new LLT cannot cover all of the remaining bits, then consider
477 // issuing a (or a pair of) unaligned and overlapping load / store.
479 // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
480 MVT VT
= getMVTForLLT(Ty
);
481 if (NumMemOps
&& AllowOverlap
&& NewTySize
< Size
&&
482 TLI
.allowsMisalignedMemoryAccesses(
483 VT
, DstAS
, DstAlign
, MachineMemOperand::MONone
, &Fast
) &&
492 if (++NumMemOps
> Limit
)
495 MemOps
.push_back(Ty
);
502 static Type
*getTypeForLLT(LLT Ty
, LLVMContext
&C
) {
504 return VectorType::get(IntegerType::get(C
, Ty
.getScalarSizeInBits()),
505 Ty
.getNumElements());
506 return IntegerType::get(C
, Ty
.getSizeInBits());
509 // Get a vectorized representation of the memset value operand, GISel edition.
510 static Register
getMemsetValue(Register Val
, LLT Ty
, MachineIRBuilder
&MIB
) {
511 MachineRegisterInfo
&MRI
= *MIB
.getMRI();
512 unsigned NumBits
= Ty
.getScalarSizeInBits();
513 auto ValVRegAndVal
= getConstantVRegValWithLookThrough(Val
, MRI
);
514 if (!Ty
.isVector() && ValVRegAndVal
) {
515 unsigned KnownVal
= ValVRegAndVal
->Value
;
516 APInt Scalar
= APInt(8, KnownVal
);
517 APInt SplatVal
= APInt::getSplat(NumBits
, Scalar
);
518 return MIB
.buildConstant(Ty
, SplatVal
).getReg(0);
520 // FIXME: for vector types create a G_BUILD_VECTOR.
524 // Extend the byte value to the larger type, and then multiply by a magic
525 // value 0x010101... in order to replicate it across every byte.
526 LLT ExtType
= Ty
.getScalarType();
527 auto ZExt
= MIB
.buildZExtOrTrunc(ExtType
, Val
);
529 APInt Magic
= APInt::getSplat(NumBits
, APInt(8, 0x01));
530 auto MagicMI
= MIB
.buildConstant(ExtType
, Magic
);
531 Val
= MIB
.buildMul(ExtType
, ZExt
, MagicMI
).getReg(0);
534 assert(ExtType
== Ty
&& "Vector memset value type not supported yet");
538 bool CombinerHelper::optimizeMemset(MachineInstr
&MI
, Register Dst
, Register Val
,
539 unsigned KnownLen
, unsigned Align
,
541 auto &MF
= *MI
.getParent()->getParent();
542 const auto &TLI
= *MF
.getSubtarget().getTargetLowering();
543 auto &DL
= MF
.getDataLayout();
544 LLVMContext
&C
= MF
.getFunction().getContext();
546 assert(KnownLen
!= 0 && "Have a zero length memset length!");
548 bool DstAlignCanChange
= false;
549 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
550 bool OptSize
= shouldLowerMemFuncForSize(MF
);
552 MachineInstr
*FIDef
= getOpcodeDef(TargetOpcode::G_FRAME_INDEX
, Dst
, MRI
);
553 if (FIDef
&& !MFI
.isFixedObjectIndex(FIDef
->getOperand(1).getIndex()))
554 DstAlignCanChange
= true;
556 unsigned Limit
= TLI
.getMaxStoresPerMemset(OptSize
);
557 std::vector
<LLT
> MemOps
;
559 const auto &DstMMO
= **MI
.memoperands_begin();
560 MachinePointerInfo DstPtrInfo
= DstMMO
.getPointerInfo();
562 auto ValVRegAndVal
= getConstantVRegValWithLookThrough(Val
, MRI
);
563 bool IsZeroVal
= ValVRegAndVal
&& ValVRegAndVal
->Value
== 0;
565 if (!findGISelOptimalMemOpLowering(
566 MemOps
, Limit
, KnownLen
, (DstAlignCanChange
? 0 : Align
), 0,
568 /*ZeroMemset=*/IsZeroVal
, /*MemcpyStrSrc=*/false,
569 /*AllowOverlap=*/!IsVolatile
, DstPtrInfo
.getAddrSpace(), ~0u,
570 MF
.getFunction().getAttributes(), TLI
))
573 if (DstAlignCanChange
) {
574 // Get an estimate of the type from the LLT.
575 Type
*IRTy
= getTypeForLLT(MemOps
[0], C
);
576 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(IRTy
);
577 if (NewAlign
> Align
) {
578 unsigned FI
= FIDef
->getOperand(1).getIndex();
579 // Give the stack frame object a larger alignment if needed.
580 if (MFI
.getObjectAlignment(FI
) < NewAlign
)
581 MFI
.setObjectAlignment(FI
, NewAlign
);
586 MachineIRBuilder
MIB(MI
);
587 // Find the largest store and generate the bit pattern for it.
588 LLT LargestTy
= MemOps
[0];
589 for (unsigned i
= 1; i
< MemOps
.size(); i
++)
590 if (MemOps
[i
].getSizeInBits() > LargestTy
.getSizeInBits())
591 LargestTy
= MemOps
[i
];
593 // The memset stored value is always defined as an s8, so in order to make it
594 // work with larger store types we need to repeat the bit pattern across the
596 Register MemSetValue
= getMemsetValue(Val
, LargestTy
, MIB
);
601 // Generate the stores. For each store type in the list, we generate the
602 // matching store of that type to the destination address.
603 LLT PtrTy
= MRI
.getType(Dst
);
605 unsigned Size
= KnownLen
;
606 for (unsigned I
= 0; I
< MemOps
.size(); I
++) {
608 unsigned TySize
= Ty
.getSizeInBytes();
610 // Issuing an unaligned load / store pair that overlaps with the previous
611 // pair. Adjust the offset accordingly.
612 assert(I
== MemOps
.size() - 1 && I
!= 0);
613 DstOff
-= TySize
- Size
;
616 // If this store is smaller than the largest store see whether we can get
617 // the smaller value for free with a truncate.
618 Register Value
= MemSetValue
;
619 if (Ty
.getSizeInBits() < LargestTy
.getSizeInBits()) {
620 MVT VT
= getMVTForLLT(Ty
);
621 MVT LargestVT
= getMVTForLLT(LargestTy
);
622 if (!LargestTy
.isVector() && !Ty
.isVector() &&
623 TLI
.isTruncateFree(LargestVT
, VT
))
624 Value
= MIB
.buildTrunc(Ty
, MemSetValue
).getReg(0);
626 Value
= getMemsetValue(Val
, Ty
, MIB
);
632 MF
.getMachineMemOperand(&DstMMO
, DstOff
, Ty
.getSizeInBytes());
637 MIB
.buildConstant(LLT::scalar(PtrTy
.getSizeInBits()), DstOff
);
638 Ptr
= MIB
.buildGEP(PtrTy
, Dst
, Offset
).getReg(0);
641 MIB
.buildStore(Value
, Ptr
, *StoreMMO
);
642 DstOff
+= Ty
.getSizeInBytes();
646 MI
.eraseFromParent();
651 bool CombinerHelper::optimizeMemcpy(MachineInstr
&MI
, Register Dst
,
652 Register Src
, unsigned KnownLen
,
653 unsigned DstAlign
, unsigned SrcAlign
,
655 auto &MF
= *MI
.getParent()->getParent();
656 const auto &TLI
= *MF
.getSubtarget().getTargetLowering();
657 auto &DL
= MF
.getDataLayout();
658 LLVMContext
&C
= MF
.getFunction().getContext();
660 assert(KnownLen
!= 0 && "Have a zero length memcpy length!");
662 bool DstAlignCanChange
= false;
663 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
664 bool OptSize
= shouldLowerMemFuncForSize(MF
);
665 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
667 MachineInstr
*FIDef
= getOpcodeDef(TargetOpcode::G_FRAME_INDEX
, Dst
, MRI
);
668 if (FIDef
&& !MFI
.isFixedObjectIndex(FIDef
->getOperand(1).getIndex()))
669 DstAlignCanChange
= true;
671 // FIXME: infer better src pointer alignment like SelectionDAG does here.
672 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
673 // if the memcpy is in a tail call position.
675 unsigned Limit
= TLI
.getMaxStoresPerMemcpy(OptSize
);
676 std::vector
<LLT
> MemOps
;
678 const auto &DstMMO
= **MI
.memoperands_begin();
679 const auto &SrcMMO
= **std::next(MI
.memoperands_begin());
680 MachinePointerInfo DstPtrInfo
= DstMMO
.getPointerInfo();
681 MachinePointerInfo SrcPtrInfo
= SrcMMO
.getPointerInfo();
683 if (!findGISelOptimalMemOpLowering(
684 MemOps
, Limit
, KnownLen
, (DstAlignCanChange
? 0 : Align
), SrcAlign
,
686 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
687 /*AllowOverlap=*/!IsVolatile
, DstPtrInfo
.getAddrSpace(),
688 SrcPtrInfo
.getAddrSpace(), MF
.getFunction().getAttributes(), TLI
))
691 if (DstAlignCanChange
) {
692 // Get an estimate of the type from the LLT.
693 Type
*IRTy
= getTypeForLLT(MemOps
[0], C
);
694 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(IRTy
);
696 // Don't promote to an alignment that would require dynamic stack
698 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
699 if (!TRI
->needsStackRealignment(MF
))
700 while (NewAlign
> Align
&&
701 DL
.exceedsNaturalStackAlignment(llvm::Align(NewAlign
)))
704 if (NewAlign
> Align
) {
705 unsigned FI
= FIDef
->getOperand(1).getIndex();
706 // Give the stack frame object a larger alignment if needed.
707 if (MFI
.getObjectAlignment(FI
) < NewAlign
)
708 MFI
.setObjectAlignment(FI
, NewAlign
);
713 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI
<< " into loads & stores\n");
715 MachineIRBuilder
MIB(MI
);
716 // Now we need to emit a pair of load and stores for each of the types we've
717 // collected. I.e. for each type, generate a load from the source pointer of
718 // that type width, and then generate a corresponding store to the dest buffer
719 // of that value loaded. This can result in a sequence of loads and stores
720 // mixed types, depending on what the target specifies as good types to use.
721 unsigned CurrOffset
= 0;
722 LLT PtrTy
= MRI
.getType(Src
);
723 unsigned Size
= KnownLen
;
724 for (auto CopyTy
: MemOps
) {
725 // Issuing an unaligned load / store pair that overlaps with the previous
726 // pair. Adjust the offset accordingly.
727 if (CopyTy
.getSizeInBytes() > Size
)
728 CurrOffset
-= CopyTy
.getSizeInBytes() - Size
;
730 // Construct MMOs for the accesses.
732 MF
.getMachineMemOperand(&SrcMMO
, CurrOffset
, CopyTy
.getSizeInBytes());
734 MF
.getMachineMemOperand(&DstMMO
, CurrOffset
, CopyTy
.getSizeInBytes());
737 Register LoadPtr
= Src
;
739 if (CurrOffset
!= 0) {
740 Offset
= MIB
.buildConstant(LLT::scalar(PtrTy
.getSizeInBits()), CurrOffset
)
742 LoadPtr
= MIB
.buildGEP(PtrTy
, Src
, Offset
).getReg(0);
744 auto LdVal
= MIB
.buildLoad(CopyTy
, LoadPtr
, *LoadMMO
);
748 CurrOffset
== 0 ? Dst
: MIB
.buildGEP(PtrTy
, Dst
, Offset
).getReg(0);
749 MIB
.buildStore(LdVal
, StorePtr
, *StoreMMO
);
750 CurrOffset
+= CopyTy
.getSizeInBytes();
751 Size
-= CopyTy
.getSizeInBytes();
754 MI
.eraseFromParent();
758 bool CombinerHelper::optimizeMemmove(MachineInstr
&MI
, Register Dst
,
759 Register Src
, unsigned KnownLen
,
760 unsigned DstAlign
, unsigned SrcAlign
,
762 auto &MF
= *MI
.getParent()->getParent();
763 const auto &TLI
= *MF
.getSubtarget().getTargetLowering();
764 auto &DL
= MF
.getDataLayout();
765 LLVMContext
&C
= MF
.getFunction().getContext();
767 assert(KnownLen
!= 0 && "Have a zero length memmove length!");
769 bool DstAlignCanChange
= false;
770 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
771 bool OptSize
= shouldLowerMemFuncForSize(MF
);
772 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
774 MachineInstr
*FIDef
= getOpcodeDef(TargetOpcode::G_FRAME_INDEX
, Dst
, MRI
);
775 if (FIDef
&& !MFI
.isFixedObjectIndex(FIDef
->getOperand(1).getIndex()))
776 DstAlignCanChange
= true;
778 unsigned Limit
= TLI
.getMaxStoresPerMemmove(OptSize
);
779 std::vector
<LLT
> MemOps
;
781 const auto &DstMMO
= **MI
.memoperands_begin();
782 const auto &SrcMMO
= **std::next(MI
.memoperands_begin());
783 MachinePointerInfo DstPtrInfo
= DstMMO
.getPointerInfo();
784 MachinePointerInfo SrcPtrInfo
= SrcMMO
.getPointerInfo();
786 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
787 // to a bug in it's findOptimalMemOpLowering implementation. For now do the
789 if (!findGISelOptimalMemOpLowering(
790 MemOps
, Limit
, KnownLen
, (DstAlignCanChange
? 0 : Align
), SrcAlign
,
792 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
793 /*AllowOverlap=*/false, DstPtrInfo
.getAddrSpace(),
794 SrcPtrInfo
.getAddrSpace(), MF
.getFunction().getAttributes(), TLI
))
797 if (DstAlignCanChange
) {
798 // Get an estimate of the type from the LLT.
799 Type
*IRTy
= getTypeForLLT(MemOps
[0], C
);
800 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(IRTy
);
802 // Don't promote to an alignment that would require dynamic stack
804 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
805 if (!TRI
->needsStackRealignment(MF
))
806 while (NewAlign
> Align
&&
807 DL
.exceedsNaturalStackAlignment(llvm::Align(NewAlign
)))
810 if (NewAlign
> Align
) {
811 unsigned FI
= FIDef
->getOperand(1).getIndex();
812 // Give the stack frame object a larger alignment if needed.
813 if (MFI
.getObjectAlignment(FI
) < NewAlign
)
814 MFI
.setObjectAlignment(FI
, NewAlign
);
819 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI
<< " into loads & stores\n");
821 MachineIRBuilder
MIB(MI
);
822 // Memmove requires that we perform the loads first before issuing the stores.
823 // Apart from that, this loop is pretty much doing the same thing as the
824 // memcpy codegen function.
825 unsigned CurrOffset
= 0;
826 LLT PtrTy
= MRI
.getType(Src
);
827 SmallVector
<Register
, 16> LoadVals
;
828 for (auto CopyTy
: MemOps
) {
829 // Construct MMO for the load.
831 MF
.getMachineMemOperand(&SrcMMO
, CurrOffset
, CopyTy
.getSizeInBytes());
834 Register LoadPtr
= Src
;
835 if (CurrOffset
!= 0) {
837 MIB
.buildConstant(LLT::scalar(PtrTy
.getSizeInBits()), CurrOffset
);
838 LoadPtr
= MIB
.buildGEP(PtrTy
, Src
, Offset
).getReg(0);
840 LoadVals
.push_back(MIB
.buildLoad(CopyTy
, LoadPtr
, *LoadMMO
).getReg(0));
841 CurrOffset
+= CopyTy
.getSizeInBytes();
845 for (unsigned I
= 0; I
< MemOps
.size(); ++I
) {
846 LLT CopyTy
= MemOps
[I
];
847 // Now store the values loaded.
849 MF
.getMachineMemOperand(&DstMMO
, CurrOffset
, CopyTy
.getSizeInBytes());
851 Register StorePtr
= Dst
;
852 if (CurrOffset
!= 0) {
854 MIB
.buildConstant(LLT::scalar(PtrTy
.getSizeInBits()), CurrOffset
);
855 StorePtr
= MIB
.buildGEP(PtrTy
, Dst
, Offset
).getReg(0);
857 MIB
.buildStore(LoadVals
[I
], StorePtr
, *StoreMMO
);
858 CurrOffset
+= CopyTy
.getSizeInBytes();
860 MI
.eraseFromParent();
864 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr
&MI
) {
865 // This combine is fairly complex so it's not written with a separate
867 assert(MI
.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
);
868 Intrinsic::ID ID
= (Intrinsic::ID
)MI
.getIntrinsicID();
869 assert((ID
== Intrinsic::memcpy
|| ID
== Intrinsic::memmove
||
870 ID
== Intrinsic::memset
) &&
871 "Expected a memcpy like intrinsic");
873 auto MMOIt
= MI
.memoperands_begin();
874 const MachineMemOperand
*MemOp
= *MMOIt
;
875 bool IsVolatile
= MemOp
->isVolatile();
876 // Don't try to optimize volatile.
880 unsigned DstAlign
= MemOp
->getBaseAlignment();
881 unsigned SrcAlign
= 0;
882 unsigned Dst
= MI
.getOperand(1).getReg();
883 unsigned Src
= MI
.getOperand(2).getReg();
884 Register Len
= MI
.getOperand(3).getReg();
886 if (ID
!= Intrinsic::memset
) {
887 assert(MMOIt
!= MI
.memoperands_end() && "Expected a second MMO on MI");
889 SrcAlign
= MemOp
->getBaseAlignment();
892 // See if this is a constant length copy
893 auto LenVRegAndVal
= getConstantVRegValWithLookThrough(Len
, MRI
);
895 return false; // Leave it to the legalizer to lower it to a libcall.
896 unsigned KnownLen
= LenVRegAndVal
->Value
;
899 MI
.eraseFromParent();
903 if (ID
== Intrinsic::memcpy
)
904 return optimizeMemcpy(MI
, Dst
, Src
, KnownLen
, DstAlign
, SrcAlign
, IsVolatile
);
905 if (ID
== Intrinsic::memmove
)
906 return optimizeMemmove(MI
, Dst
, Src
, KnownLen
, DstAlign
, SrcAlign
, IsVolatile
);
907 if (ID
== Intrinsic::memset
)
908 return optimizeMemset(MI
, Dst
, Src
, KnownLen
, DstAlign
, IsVolatile
);
912 bool CombinerHelper::tryCombine(MachineInstr
&MI
) {
913 if (tryCombineCopy(MI
))
915 return tryCombineExtendingLoads(MI
);