1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file "describes" induction and recurrence variables.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/KnownBits.h"
39 using namespace llvm::PatternMatch
;
41 #define DEBUG_TYPE "iv-descriptors"
43 bool RecurrenceDescriptor::areAllUsesIn(Instruction
*I
,
44 SmallPtrSetImpl
<Instruction
*> &Set
) {
45 for (User::op_iterator Use
= I
->op_begin(), E
= I
->op_end(); Use
!= E
; ++Use
)
46 if (!Set
.count(dyn_cast
<Instruction
>(*Use
)))
51 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind
) {
60 case RK_IntegerMinMax
:
66 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind
) {
67 return (Kind
!= RK_NoRecurrence
) && !isIntegerRecurrenceKind(Kind
);
70 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind
) {
83 /// Determines if Phi may have been type-promoted. If Phi has a single user
84 /// that ANDs the Phi with a type mask, return the user. RT is updated to
85 /// account for the narrower bit width represented by the mask, and the AND
86 /// instruction is added to CI.
87 static Instruction
*lookThroughAnd(PHINode
*Phi
, Type
*&RT
,
88 SmallPtrSetImpl
<Instruction
*> &Visited
,
89 SmallPtrSetImpl
<Instruction
*> &CI
) {
90 if (!Phi
->hasOneUse())
93 const APInt
*M
= nullptr;
94 Instruction
*I
, *J
= cast
<Instruction
>(Phi
->use_begin()->getUser());
96 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
97 // with a new integer type of the corresponding bit width.
98 if (match(J
, m_c_And(m_Instruction(I
), m_APInt(M
)))) {
99 int32_t Bits
= (*M
+ 1).exactLogBase2();
101 RT
= IntegerType::get(Phi
->getContext(), Bits
);
110 /// Compute the minimal bit width needed to represent a reduction whose exit
111 /// instruction is given by Exit.
112 static std::pair
<Type
*, bool> computeRecurrenceType(Instruction
*Exit
,
116 bool IsSigned
= false;
117 const DataLayout
&DL
= Exit
->getModule()->getDataLayout();
118 uint64_t MaxBitWidth
= DL
.getTypeSizeInBits(Exit
->getType());
121 // Use the demanded bits analysis to determine the bits that are live out
122 // of the exit instruction, rounding up to the nearest power of two. If the
123 // use of demanded bits results in a smaller bit width, we know the value
124 // must be positive (i.e., IsSigned = false), because if this were not the
125 // case, the sign bit would have been demanded.
126 auto Mask
= DB
->getDemandedBits(Exit
);
127 MaxBitWidth
= Mask
.getBitWidth() - Mask
.countLeadingZeros();
130 if (MaxBitWidth
== DL
.getTypeSizeInBits(Exit
->getType()) && AC
&& DT
) {
131 // If demanded bits wasn't able to limit the bit width, we can try to use
132 // value tracking instead. This can be the case, for example, if the value
134 auto NumSignBits
= ComputeNumSignBits(Exit
, DL
, 0, AC
, nullptr, DT
);
135 auto NumTypeBits
= DL
.getTypeSizeInBits(Exit
->getType());
136 MaxBitWidth
= NumTypeBits
- NumSignBits
;
137 KnownBits Bits
= computeKnownBits(Exit
, DL
);
138 if (!Bits
.isNonNegative()) {
139 // If the value is not known to be non-negative, we set IsSigned to true,
140 // meaning that we will use sext instructions instead of zext
141 // instructions to restore the original type.
143 if (!Bits
.isNegative())
144 // If the value is not known to be negative, we don't known what the
145 // upper bit is, and therefore, we don't know what kind of extend we
146 // will need. In this case, just increase the bit width by one bit and
151 if (!isPowerOf2_64(MaxBitWidth
))
152 MaxBitWidth
= NextPowerOf2(MaxBitWidth
);
154 return std::make_pair(Type::getIntNTy(Exit
->getContext(), MaxBitWidth
),
158 /// Collect cast instructions that can be ignored in the vectorizer's cost
159 /// model, given a reduction exit value and the minimal type in which the
160 /// reduction can be represented.
161 static void collectCastsToIgnore(Loop
*TheLoop
, Instruction
*Exit
,
162 Type
*RecurrenceType
,
163 SmallPtrSetImpl
<Instruction
*> &Casts
) {
165 SmallVector
<Instruction
*, 8> Worklist
;
166 SmallPtrSet
<Instruction
*, 8> Visited
;
167 Worklist
.push_back(Exit
);
169 while (!Worklist
.empty()) {
170 Instruction
*Val
= Worklist
.pop_back_val();
172 if (auto *Cast
= dyn_cast
<CastInst
>(Val
))
173 if (Cast
->getSrcTy() == RecurrenceType
) {
174 // If the source type of a cast instruction is equal to the recurrence
175 // type, it will be eliminated, and should be ignored in the vectorizer
181 // Add all operands to the work list if they are loop-varying values that
182 // we haven't yet visited.
183 for (Value
*O
: cast
<User
>(Val
)->operands())
184 if (auto *I
= dyn_cast
<Instruction
>(O
))
185 if (TheLoop
->contains(I
) && !Visited
.count(I
))
186 Worklist
.push_back(I
);
190 bool RecurrenceDescriptor::AddReductionVar(PHINode
*Phi
, RecurrenceKind Kind
,
191 Loop
*TheLoop
, bool HasFunNoNaNAttr
,
192 RecurrenceDescriptor
&RedDes
,
196 if (Phi
->getNumIncomingValues() != 2)
199 // Reduction variables are only found in the loop header block.
200 if (Phi
->getParent() != TheLoop
->getHeader())
203 // Obtain the reduction start value from the value that comes from the loop
205 Value
*RdxStart
= Phi
->getIncomingValueForBlock(TheLoop
->getLoopPreheader());
207 // ExitInstruction is the single value which is used outside the loop.
208 // We only allow for a single reduction value to be used outside the loop.
209 // This includes users of the reduction, variables (which form a cycle
210 // which ends in the phi node).
211 Instruction
*ExitInstruction
= nullptr;
212 // Indicates that we found a reduction operation in our scan.
213 bool FoundReduxOp
= false;
215 // We start with the PHI node and scan for all of the users of this
216 // instruction. All users must be instructions that can be used as reduction
217 // variables (such as ADD). We must have a single out-of-block user. The cycle
218 // must include the original PHI.
219 bool FoundStartPHI
= false;
221 // To recognize min/max patterns formed by a icmp select sequence, we store
222 // the number of instruction we saw from the recognized min/max pattern,
223 // to make sure we only see exactly the two instructions.
224 unsigned NumCmpSelectPatternInst
= 0;
225 InstDesc
ReduxDesc(false, nullptr);
227 // Data used for determining if the recurrence has been type-promoted.
228 Type
*RecurrenceType
= Phi
->getType();
229 SmallPtrSet
<Instruction
*, 4> CastInsts
;
230 Instruction
*Start
= Phi
;
231 bool IsSigned
= false;
233 SmallPtrSet
<Instruction
*, 8> VisitedInsts
;
234 SmallVector
<Instruction
*, 8> Worklist
;
236 // Return early if the recurrence kind does not match the type of Phi. If the
237 // recurrence kind is arithmetic, we attempt to look through AND operations
238 // resulting from the type promotion performed by InstCombine. Vector
239 // operations are not limited to the legal integer widths, so we may be able
240 // to evaluate the reduction in the narrower width.
241 if (RecurrenceType
->isFloatingPointTy()) {
242 if (!isFloatingPointRecurrenceKind(Kind
))
245 if (!isIntegerRecurrenceKind(Kind
))
247 if (isArithmeticRecurrenceKind(Kind
))
248 Start
= lookThroughAnd(Phi
, RecurrenceType
, VisitedInsts
, CastInsts
);
251 Worklist
.push_back(Start
);
252 VisitedInsts
.insert(Start
);
254 // Start with all flags set because we will intersect this with the reduction
255 // flags from all the reduction operations.
256 FastMathFlags FMF
= FastMathFlags::getFast();
258 // A value in the reduction can be used:
259 // - By the reduction:
260 // - Reduction operation:
261 // - One use of reduction value (safe).
262 // - Multiple use of reduction value (not safe).
264 // - All uses of the PHI must be the reduction (safe).
265 // - Otherwise, not safe.
266 // - By instructions outside of the loop (safe).
267 // * One value may have several outside users, but all outside
268 // uses must be of the same value.
269 // - By an instruction that is not part of the reduction (not safe).
271 // * An instruction type other than PHI or the reduction operation.
272 // * A PHI in the header other than the initial PHI.
273 while (!Worklist
.empty()) {
274 Instruction
*Cur
= Worklist
.back();
278 // If the instruction has no users then this is a broken chain and can't be
279 // a reduction variable.
280 if (Cur
->use_empty())
283 bool IsAPhi
= isa
<PHINode
>(Cur
);
285 // A header PHI use other than the original PHI.
286 if (Cur
!= Phi
&& IsAPhi
&& Cur
->getParent() == Phi
->getParent())
289 // Reductions of instructions such as Div, and Sub is only possible if the
290 // LHS is the reduction variable.
291 if (!Cur
->isCommutative() && !IsAPhi
&& !isa
<SelectInst
>(Cur
) &&
292 !isa
<ICmpInst
>(Cur
) && !isa
<FCmpInst
>(Cur
) &&
293 !VisitedInsts
.count(dyn_cast
<Instruction
>(Cur
->getOperand(0))))
296 // Any reduction instruction must be of one of the allowed kinds. We ignore
297 // the starting value (the Phi or an AND instruction if the Phi has been
300 ReduxDesc
= isRecurrenceInstr(Cur
, Kind
, ReduxDesc
, HasFunNoNaNAttr
);
301 if (!ReduxDesc
.isRecurrence())
303 // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
304 if (isa
<FPMathOperator
>(ReduxDesc
.getPatternInst()) && !IsAPhi
)
305 FMF
&= ReduxDesc
.getPatternInst()->getFastMathFlags();
308 bool IsASelect
= isa
<SelectInst
>(Cur
);
310 // A conditional reduction operation must only have 2 or less uses in
312 if (IsASelect
&& (Kind
== RK_FloatAdd
|| Kind
== RK_FloatMult
) &&
313 hasMultipleUsesOf(Cur
, VisitedInsts
, 2))
316 // A reduction operation must only have one use of the reduction value.
317 if (!IsAPhi
&& !IsASelect
&& Kind
!= RK_IntegerMinMax
&&
318 Kind
!= RK_FloatMinMax
&& hasMultipleUsesOf(Cur
, VisitedInsts
, 1))
321 // All inputs to a PHI node must be a reduction value.
322 if (IsAPhi
&& Cur
!= Phi
&& !areAllUsesIn(Cur
, VisitedInsts
))
325 if (Kind
== RK_IntegerMinMax
&&
326 (isa
<ICmpInst
>(Cur
) || isa
<SelectInst
>(Cur
)))
327 ++NumCmpSelectPatternInst
;
328 if (Kind
== RK_FloatMinMax
&& (isa
<FCmpInst
>(Cur
) || isa
<SelectInst
>(Cur
)))
329 ++NumCmpSelectPatternInst
;
331 // Check whether we found a reduction operator.
332 FoundReduxOp
|= !IsAPhi
&& Cur
!= Start
;
334 // Process users of current instruction. Push non-PHI nodes after PHI nodes
335 // onto the stack. This way we are going to have seen all inputs to PHI
336 // nodes once we get to them.
337 SmallVector
<Instruction
*, 8> NonPHIs
;
338 SmallVector
<Instruction
*, 8> PHIs
;
339 for (User
*U
: Cur
->users()) {
340 Instruction
*UI
= cast
<Instruction
>(U
);
342 // Check if we found the exit user.
343 BasicBlock
*Parent
= UI
->getParent();
344 if (!TheLoop
->contains(Parent
)) {
345 // If we already know this instruction is used externally, move on to
347 if (ExitInstruction
== Cur
)
350 // Exit if you find multiple values used outside or if the header phi
351 // node is being used. In this case the user uses the value of the
352 // previous iteration, in which case we would loose "VF-1" iterations of
353 // the reduction operation if we vectorize.
354 if (ExitInstruction
!= nullptr || Cur
== Phi
)
357 // The instruction used by an outside user must be the last instruction
358 // before we feed back to the reduction phi. Otherwise, we loose VF-1
359 // operations on the value.
360 if (!is_contained(Phi
->operands(), Cur
))
363 ExitInstruction
= Cur
;
367 // Process instructions only once (termination). Each reduction cycle
368 // value must only be used once, except by phi nodes and min/max
369 // reductions which are represented as a cmp followed by a select.
370 InstDesc
IgnoredVal(false, nullptr);
371 if (VisitedInsts
.insert(UI
).second
) {
372 if (isa
<PHINode
>(UI
))
375 NonPHIs
.push_back(UI
);
376 } else if (!isa
<PHINode
>(UI
) &&
377 ((!isa
<FCmpInst
>(UI
) && !isa
<ICmpInst
>(UI
) &&
378 !isa
<SelectInst
>(UI
)) ||
379 (!isConditionalRdxPattern(Kind
, UI
).isRecurrence() &&
380 !isMinMaxSelectCmpPattern(UI
, IgnoredVal
).isRecurrence())))
383 // Remember that we completed the cycle.
385 FoundStartPHI
= true;
387 Worklist
.append(PHIs
.begin(), PHIs
.end());
388 Worklist
.append(NonPHIs
.begin(), NonPHIs
.end());
391 // This means we have seen one but not the other instruction of the
392 // pattern or more than just a select and cmp.
393 if ((Kind
== RK_IntegerMinMax
|| Kind
== RK_FloatMinMax
) &&
394 NumCmpSelectPatternInst
!= 2)
397 if (!FoundStartPHI
|| !FoundReduxOp
|| !ExitInstruction
)
401 // If the starting value is not the same as the phi node, we speculatively
402 // looked through an 'and' instruction when evaluating a potential
403 // arithmetic reduction to determine if it may have been type-promoted.
405 // We now compute the minimal bit width that is required to represent the
406 // reduction. If this is the same width that was indicated by the 'and', we
407 // can represent the reduction in the smaller type. The 'and' instruction
408 // will be eliminated since it will essentially be a cast instruction that
409 // can be ignore in the cost model. If we compute a different type than we
410 // did when evaluating the 'and', the 'and' will not be eliminated, and we
411 // will end up with different kinds of operations in the recurrence
412 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
415 // The vectorizer relies on InstCombine to perform the actual
416 // type-shrinking. It does this by inserting instructions to truncate the
417 // exit value of the reduction to the width indicated by RecurrenceType and
418 // then extend this value back to the original width. If IsSigned is false,
419 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
422 // TODO: We should not rely on InstCombine to rewrite the reduction in the
423 // smaller type. We should just generate a correctly typed expression
426 std::tie(ComputedType
, IsSigned
) =
427 computeRecurrenceType(ExitInstruction
, DB
, AC
, DT
);
428 if (ComputedType
!= RecurrenceType
)
431 // The recurrence expression will be represented in a narrower type. If
432 // there are any cast instructions that will be unnecessary, collect them
433 // in CastInsts. Note that the 'and' instruction was already included in
436 // TODO: A better way to represent this may be to tag in some way all the
437 // instructions that are a part of the reduction. The vectorizer cost
438 // model could then apply the recurrence type to these instructions,
439 // without needing a white list of instructions to ignore.
440 collectCastsToIgnore(TheLoop
, ExitInstruction
, RecurrenceType
, CastInsts
);
443 // We found a reduction var if we have reached the original phi node and we
444 // only have a single instruction with out-of-loop users.
446 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
447 // is saved as part of the RecurrenceDescriptor.
449 // Save the description of this reduction variable.
450 RecurrenceDescriptor
RD(
451 RdxStart
, ExitInstruction
, Kind
, FMF
, ReduxDesc
.getMinMaxKind(),
452 ReduxDesc
.getUnsafeAlgebraInst(), RecurrenceType
, IsSigned
, CastInsts
);
458 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
459 /// pattern corresponding to a min(X, Y) or max(X, Y).
460 RecurrenceDescriptor::InstDesc
461 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction
*I
, InstDesc
&Prev
) {
463 assert((isa
<ICmpInst
>(I
) || isa
<FCmpInst
>(I
) || isa
<SelectInst
>(I
)) &&
464 "Expect a select instruction");
465 Instruction
*Cmp
= nullptr;
466 SelectInst
*Select
= nullptr;
468 // We must handle the select(cmp()) as a single instruction. Advance to the
470 if ((Cmp
= dyn_cast
<ICmpInst
>(I
)) || (Cmp
= dyn_cast
<FCmpInst
>(I
))) {
471 if (!Cmp
->hasOneUse() || !(Select
= dyn_cast
<SelectInst
>(*I
->user_begin())))
472 return InstDesc(false, I
);
473 return InstDesc(Select
, Prev
.getMinMaxKind());
476 // Only handle single use cases for now.
477 if (!(Select
= dyn_cast
<SelectInst
>(I
)))
478 return InstDesc(false, I
);
479 if (!(Cmp
= dyn_cast
<ICmpInst
>(I
->getOperand(0))) &&
480 !(Cmp
= dyn_cast
<FCmpInst
>(I
->getOperand(0))))
481 return InstDesc(false, I
);
482 if (!Cmp
->hasOneUse())
483 return InstDesc(false, I
);
488 // Look for a min/max pattern.
489 if (m_UMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
490 return InstDesc(Select
, MRK_UIntMin
);
491 else if (m_UMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
492 return InstDesc(Select
, MRK_UIntMax
);
493 else if (m_SMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
494 return InstDesc(Select
, MRK_SIntMax
);
495 else if (m_SMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
496 return InstDesc(Select
, MRK_SIntMin
);
497 else if (m_OrdFMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
498 return InstDesc(Select
, MRK_FloatMin
);
499 else if (m_OrdFMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
500 return InstDesc(Select
, MRK_FloatMax
);
501 else if (m_UnordFMin(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
502 return InstDesc(Select
, MRK_FloatMin
);
503 else if (m_UnordFMax(m_Value(CmpLeft
), m_Value(CmpRight
)).match(Select
))
504 return InstDesc(Select
, MRK_FloatMax
);
506 return InstDesc(false, I
);
509 /// Returns true if the select instruction has users in the compare-and-add
510 /// reduction pattern below. The select instruction argument is the last one
515 /// %cmp = fcmp pred %0, %CFP
516 /// %add = fadd %0, %sum.1
517 /// %sum.2 = select %cmp, %add, %sum.1
518 RecurrenceDescriptor::InstDesc
519 RecurrenceDescriptor::isConditionalRdxPattern(
520 RecurrenceKind Kind
, Instruction
*I
) {
521 SelectInst
*SI
= dyn_cast
<SelectInst
>(I
);
523 return InstDesc(false, I
);
525 CmpInst
*CI
= dyn_cast
<CmpInst
>(SI
->getCondition());
526 // Only handle single use cases for now.
527 if (!CI
|| !CI
->hasOneUse())
528 return InstDesc(false, I
);
530 Value
*TrueVal
= SI
->getTrueValue();
531 Value
*FalseVal
= SI
->getFalseValue();
532 // Handle only when either of operands of select instruction is a PHI
534 if ((isa
<PHINode
>(*TrueVal
) && isa
<PHINode
>(*FalseVal
)) ||
535 (!isa
<PHINode
>(*TrueVal
) && !isa
<PHINode
>(*FalseVal
)))
536 return InstDesc(false, I
);
539 isa
<PHINode
>(*TrueVal
) ? dyn_cast
<Instruction
>(FalseVal
)
540 : dyn_cast
<Instruction
>(TrueVal
);
541 if (!I1
|| !I1
->isBinaryOp())
542 return InstDesc(false, I
);
545 if ((m_FAdd(m_Value(Op1
), m_Value(Op2
)).match(I1
) ||
546 m_FSub(m_Value(Op1
), m_Value(Op2
)).match(I1
)) &&
548 return InstDesc(Kind
== RK_FloatAdd
, SI
);
550 if (m_FMul(m_Value(Op1
), m_Value(Op2
)).match(I1
) && (I1
->isFast()))
551 return InstDesc(Kind
== RK_FloatMult
, SI
);
553 return InstDesc(false, I
);
556 RecurrenceDescriptor::InstDesc
557 RecurrenceDescriptor::isRecurrenceInstr(Instruction
*I
, RecurrenceKind Kind
,
558 InstDesc
&Prev
, bool HasFunNoNaNAttr
) {
559 Instruction
*UAI
= Prev
.getUnsafeAlgebraInst();
560 if (!UAI
&& isa
<FPMathOperator
>(I
) && !I
->hasAllowReassoc())
561 UAI
= I
; // Found an unsafe (unvectorizable) algebra instruction.
563 switch (I
->getOpcode()) {
565 return InstDesc(false, I
);
566 case Instruction::PHI
:
567 return InstDesc(I
, Prev
.getMinMaxKind(), Prev
.getUnsafeAlgebraInst());
568 case Instruction::Sub
:
569 case Instruction::Add
:
570 return InstDesc(Kind
== RK_IntegerAdd
, I
);
571 case Instruction::Mul
:
572 return InstDesc(Kind
== RK_IntegerMult
, I
);
573 case Instruction::And
:
574 return InstDesc(Kind
== RK_IntegerAnd
, I
);
575 case Instruction::Or
:
576 return InstDesc(Kind
== RK_IntegerOr
, I
);
577 case Instruction::Xor
:
578 return InstDesc(Kind
== RK_IntegerXor
, I
);
579 case Instruction::FMul
:
580 return InstDesc(Kind
== RK_FloatMult
, I
, UAI
);
581 case Instruction::FSub
:
582 case Instruction::FAdd
:
583 return InstDesc(Kind
== RK_FloatAdd
, I
, UAI
);
584 case Instruction::Select
:
585 if (Kind
== RK_FloatAdd
|| Kind
== RK_FloatMult
)
586 return isConditionalRdxPattern(Kind
, I
);
588 case Instruction::FCmp
:
589 case Instruction::ICmp
:
590 if (Kind
!= RK_IntegerMinMax
&&
591 (!HasFunNoNaNAttr
|| Kind
!= RK_FloatMinMax
))
592 return InstDesc(false, I
);
593 return isMinMaxSelectCmpPattern(I
, Prev
);
597 bool RecurrenceDescriptor::hasMultipleUsesOf(
598 Instruction
*I
, SmallPtrSetImpl
<Instruction
*> &Insts
,
599 unsigned MaxNumUses
) {
600 unsigned NumUses
= 0;
601 for (User::op_iterator Use
= I
->op_begin(), E
= I
->op_end(); Use
!= E
;
603 if (Insts
.count(dyn_cast
<Instruction
>(*Use
)))
605 if (NumUses
> MaxNumUses
)
611 bool RecurrenceDescriptor::isReductionPHI(PHINode
*Phi
, Loop
*TheLoop
,
612 RecurrenceDescriptor
&RedDes
,
613 DemandedBits
*DB
, AssumptionCache
*AC
,
616 BasicBlock
*Header
= TheLoop
->getHeader();
617 Function
&F
= *Header
->getParent();
618 bool HasFunNoNaNAttr
=
619 F
.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
621 if (AddReductionVar(Phi
, RK_IntegerAdd
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
623 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi
<< "\n");
626 if (AddReductionVar(Phi
, RK_IntegerMult
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
628 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi
<< "\n");
631 if (AddReductionVar(Phi
, RK_IntegerOr
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
633 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi
<< "\n");
636 if (AddReductionVar(Phi
, RK_IntegerAnd
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
638 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi
<< "\n");
641 if (AddReductionVar(Phi
, RK_IntegerXor
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
643 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi
<< "\n");
646 if (AddReductionVar(Phi
, RK_IntegerMinMax
, TheLoop
, HasFunNoNaNAttr
, RedDes
,
648 LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi
<< "\n");
651 if (AddReductionVar(Phi
, RK_FloatMult
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
653 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi
<< "\n");
656 if (AddReductionVar(Phi
, RK_FloatAdd
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
658 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi
<< "\n");
661 if (AddReductionVar(Phi
, RK_FloatMinMax
, TheLoop
, HasFunNoNaNAttr
, RedDes
, DB
,
663 LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
667 // Not a reduction of known type.
671 bool RecurrenceDescriptor::isFirstOrderRecurrence(
672 PHINode
*Phi
, Loop
*TheLoop
,
673 DenseMap
<Instruction
*, Instruction
*> &SinkAfter
, DominatorTree
*DT
) {
675 // Ensure the phi node is in the loop header and has two incoming values.
676 if (Phi
->getParent() != TheLoop
->getHeader() ||
677 Phi
->getNumIncomingValues() != 2)
680 // Ensure the loop has a preheader and a single latch block. The loop
681 // vectorizer will need the latch to set up the next iteration of the loop.
682 auto *Preheader
= TheLoop
->getLoopPreheader();
683 auto *Latch
= TheLoop
->getLoopLatch();
684 if (!Preheader
|| !Latch
)
687 // Ensure the phi node's incoming blocks are the loop preheader and latch.
688 if (Phi
->getBasicBlockIndex(Preheader
) < 0 ||
689 Phi
->getBasicBlockIndex(Latch
) < 0)
692 // Get the previous value. The previous value comes from the latch edge while
693 // the initial value comes form the preheader edge.
694 auto *Previous
= dyn_cast
<Instruction
>(Phi
->getIncomingValueForBlock(Latch
));
695 if (!Previous
|| !TheLoop
->contains(Previous
) || isa
<PHINode
>(Previous
) ||
696 SinkAfter
.count(Previous
)) // Cannot rely on dominance due to motion.
699 // Ensure every user of the phi node is dominated by the previous value.
700 // The dominance requirement ensures the loop vectorizer will not need to
701 // vectorize the initial value prior to the first iteration of the loop.
702 // TODO: Consider extending this sinking to handle other kinds of instructions
703 // and expressions, beyond sinking a single cast past Previous.
704 if (Phi
->hasOneUse()) {
705 auto *I
= Phi
->user_back();
706 if (I
->isCast() && (I
->getParent() == Phi
->getParent()) && I
->hasOneUse() &&
707 DT
->dominates(Previous
, I
->user_back())) {
708 if (!DT
->dominates(Previous
, I
)) // Otherwise we're good w/o sinking.
709 SinkAfter
[I
] = Previous
;
714 for (User
*U
: Phi
->users())
715 if (auto *I
= dyn_cast
<Instruction
>(U
)) {
716 if (!DT
->dominates(Previous
, I
))
723 /// This function returns the identity element (or neutral element) for
725 Constant
*RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K
,
731 // Adding, Xoring, Oring zero to a number does not change it.
732 return ConstantInt::get(Tp
, 0);
734 // Multiplying a number by 1 does not change it.
735 return ConstantInt::get(Tp
, 1);
737 // AND-ing a number with an all-1 value does not change it.
738 return ConstantInt::get(Tp
, -1, true);
740 // Multiplying a number by 1 does not change it.
741 return ConstantFP::get(Tp
, 1.0L);
743 // Adding zero to a number does not change it.
744 return ConstantFP::get(Tp
, 0.0L);
746 llvm_unreachable("Unknown recurrence kind");
750 /// This function translates the recurrence kind to an LLVM binary operator.
751 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind
) {
754 return Instruction::Add
;
756 return Instruction::Mul
;
758 return Instruction::Or
;
760 return Instruction::And
;
762 return Instruction::Xor
;
764 return Instruction::FMul
;
766 return Instruction::FAdd
;
767 case RK_IntegerMinMax
:
768 return Instruction::ICmp
;
770 return Instruction::FCmp
;
772 llvm_unreachable("Unknown recurrence operation");
776 InductionDescriptor::InductionDescriptor(Value
*Start
, InductionKind K
,
777 const SCEV
*Step
, BinaryOperator
*BOp
,
778 SmallVectorImpl
<Instruction
*> *Casts
)
779 : StartValue(Start
), IK(K
), Step(Step
), InductionBinOp(BOp
) {
780 assert(IK
!= IK_NoInduction
&& "Not an induction");
782 // Start value type should match the induction kind and the value
783 // itself should not be null.
784 assert(StartValue
&& "StartValue is null");
785 assert((IK
!= IK_PtrInduction
|| StartValue
->getType()->isPointerTy()) &&
786 "StartValue is not a pointer for pointer induction");
787 assert((IK
!= IK_IntInduction
|| StartValue
->getType()->isIntegerTy()) &&
788 "StartValue is not an integer for integer induction");
790 // Check the Step Value. It should be non-zero integer value.
791 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
792 "Step value is zero");
794 assert((IK
!= IK_PtrInduction
|| getConstIntStepValue()) &&
795 "Step value should be constant for pointer induction");
796 assert((IK
== IK_FpInduction
|| Step
->getType()->isIntegerTy()) &&
797 "StepValue is not an integer");
799 assert((IK
!= IK_FpInduction
|| Step
->getType()->isFloatingPointTy()) &&
800 "StepValue is not FP for FpInduction");
801 assert((IK
!= IK_FpInduction
||
803 (InductionBinOp
->getOpcode() == Instruction::FAdd
||
804 InductionBinOp
->getOpcode() == Instruction::FSub
))) &&
805 "Binary opcode should be specified for FP induction");
808 for (auto &Inst
: *Casts
) {
809 RedundantCasts
.push_back(Inst
);
814 int InductionDescriptor::getConsecutiveDirection() const {
815 ConstantInt
*ConstStep
= getConstIntStepValue();
816 if (ConstStep
&& (ConstStep
->isOne() || ConstStep
->isMinusOne()))
817 return ConstStep
->getSExtValue();
821 ConstantInt
*InductionDescriptor::getConstIntStepValue() const {
822 if (isa
<SCEVConstant
>(Step
))
823 return dyn_cast
<ConstantInt
>(cast
<SCEVConstant
>(Step
)->getValue());
827 bool InductionDescriptor::isFPInductionPHI(PHINode
*Phi
, const Loop
*TheLoop
,
829 InductionDescriptor
&D
) {
831 // Here we only handle FP induction variables.
832 assert(Phi
->getType()->isFloatingPointTy() && "Unexpected Phi type");
834 if (TheLoop
->getHeader() != Phi
->getParent())
837 // The loop may have multiple entrances or multiple exits; we can analyze
838 // this phi if it has a unique entry value and a unique backedge value.
839 if (Phi
->getNumIncomingValues() != 2)
841 Value
*BEValue
= nullptr, *StartValue
= nullptr;
842 if (TheLoop
->contains(Phi
->getIncomingBlock(0))) {
843 BEValue
= Phi
->getIncomingValue(0);
844 StartValue
= Phi
->getIncomingValue(1);
846 assert(TheLoop
->contains(Phi
->getIncomingBlock(1)) &&
847 "Unexpected Phi node in the loop");
848 BEValue
= Phi
->getIncomingValue(1);
849 StartValue
= Phi
->getIncomingValue(0);
852 BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(BEValue
);
856 Value
*Addend
= nullptr;
857 if (BOp
->getOpcode() == Instruction::FAdd
) {
858 if (BOp
->getOperand(0) == Phi
)
859 Addend
= BOp
->getOperand(1);
860 else if (BOp
->getOperand(1) == Phi
)
861 Addend
= BOp
->getOperand(0);
862 } else if (BOp
->getOpcode() == Instruction::FSub
)
863 if (BOp
->getOperand(0) == Phi
)
864 Addend
= BOp
->getOperand(1);
869 // The addend should be loop invariant
870 if (auto *I
= dyn_cast
<Instruction
>(Addend
))
871 if (TheLoop
->contains(I
))
874 // FP Step has unknown SCEV
875 const SCEV
*Step
= SE
->getUnknown(Addend
);
876 D
= InductionDescriptor(StartValue
, IK_FpInduction
, Step
, BOp
);
880 /// This function is called when we suspect that the update-chain of a phi node
881 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
882 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
883 /// predicate P under which the SCEV expression for the phi can be the
884 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
885 /// cast instructions that are involved in the update-chain of this induction.
886 /// A caller that adds the required runtime predicate can be free to drop these
887 /// cast instructions, and compute the phi using \p AR (instead of some scev
888 /// expression with casts).
890 /// For example, without a predicate the scev expression can take the following
892 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
894 /// It corresponds to the following IR sequence:
896 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
897 /// %casted_phi = "ExtTrunc i64 %x"
898 /// %add = add i64 %casted_phi, %step
900 /// where %x is given in \p PN,
901 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
902 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
903 /// several forms, for example, such as:
904 /// ExtTrunc1: %casted_phi = and %x, 2^n-1
906 /// ExtTrunc2: %t = shl %x, m
907 /// %casted_phi = ashr %t, m
909 /// If we are able to find such sequence, we return the instructions
910 /// we found, namely %casted_phi and the instructions on its use-def chain up
911 /// to the phi (not including the phi).
912 static bool getCastsForInductionPHI(PredicatedScalarEvolution
&PSE
,
913 const SCEVUnknown
*PhiScev
,
914 const SCEVAddRecExpr
*AR
,
915 SmallVectorImpl
<Instruction
*> &CastInsts
) {
917 assert(CastInsts
.empty() && "CastInsts is expected to be empty.");
918 auto *PN
= cast
<PHINode
>(PhiScev
->getValue());
919 assert(PSE
.getSCEV(PN
) == AR
&& "Unexpected phi node SCEV expression");
920 const Loop
*L
= AR
->getLoop();
922 // Find any cast instructions that participate in the def-use chain of
923 // PhiScev in the loop.
924 // FORNOW/TODO: We currently expect the def-use chain to include only
925 // two-operand instructions, where one of the operands is an invariant.
926 // createAddRecFromPHIWithCasts() currently does not support anything more
927 // involved than that, so we keep the search simple. This can be
928 // extended/generalized as needed.
930 auto getDef
= [&](const Value
*Val
) -> Value
* {
931 const BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(Val
);
934 Value
*Op0
= BinOp
->getOperand(0);
935 Value
*Op1
= BinOp
->getOperand(1);
936 Value
*Def
= nullptr;
937 if (L
->isLoopInvariant(Op0
))
939 else if (L
->isLoopInvariant(Op1
))
944 // Look for the instruction that defines the induction via the
946 BasicBlock
*Latch
= L
->getLoopLatch();
949 Value
*Val
= PN
->getIncomingValueForBlock(Latch
);
953 // Follow the def-use chain until the induction phi is reached.
954 // If on the way we encounter a Value that has the same SCEV Expr as the
955 // phi node, we can consider the instructions we visit from that point
956 // as part of the cast-sequence that can be ignored.
957 bool InCastSequence
= false;
958 auto *Inst
= dyn_cast
<Instruction
>(Val
);
960 // If we encountered a phi node other than PN, or if we left the loop,
962 if (!Inst
|| !L
->contains(Inst
)) {
965 auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(PSE
.getSCEV(Val
));
966 if (AddRec
&& PSE
.areAddRecsEqualWithPreds(AddRec
, AR
))
967 InCastSequence
= true;
968 if (InCastSequence
) {
969 // Only the last instruction in the cast sequence is expected to have
970 // uses outside the induction def-use chain.
971 if (!CastInsts
.empty())
972 if (!Inst
->hasOneUse())
974 CastInsts
.push_back(Inst
);
979 Inst
= dyn_cast
<Instruction
>(Val
);
982 return InCastSequence
;
985 bool InductionDescriptor::isInductionPHI(PHINode
*Phi
, const Loop
*TheLoop
,
986 PredicatedScalarEvolution
&PSE
,
987 InductionDescriptor
&D
, bool Assume
) {
988 Type
*PhiTy
= Phi
->getType();
990 // Handle integer and pointer inductions variables.
991 // Now we handle also FP induction but not trying to make a
992 // recurrent expression from the PHI node in-place.
994 if (!PhiTy
->isIntegerTy() && !PhiTy
->isPointerTy() && !PhiTy
->isFloatTy() &&
995 !PhiTy
->isDoubleTy() && !PhiTy
->isHalfTy())
998 if (PhiTy
->isFloatingPointTy())
999 return isFPInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
);
1001 const SCEV
*PhiScev
= PSE
.getSCEV(Phi
);
1002 const auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PhiScev
);
1004 // We need this expression to be an AddRecExpr.
1006 AR
= PSE
.getAsAddRec(Phi
);
1009 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1013 // Record any Cast instructions that participate in the induction update
1014 const auto *SymbolicPhi
= dyn_cast
<SCEVUnknown
>(PhiScev
);
1015 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1016 // only after enabling Assume with PSCEV, this means we may have encountered
1017 // cast instructions that required adding a runtime check in order to
1018 // guarantee the correctness of the AddRecurrence respresentation of the
1020 if (PhiScev
!= AR
&& SymbolicPhi
) {
1021 SmallVector
<Instruction
*, 2> Casts
;
1022 if (getCastsForInductionPHI(PSE
, SymbolicPhi
, AR
, Casts
))
1023 return isInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
, AR
, &Casts
);
1026 return isInductionPHI(Phi
, TheLoop
, PSE
.getSE(), D
, AR
);
1029 bool InductionDescriptor::isInductionPHI(
1030 PHINode
*Phi
, const Loop
*TheLoop
, ScalarEvolution
*SE
,
1031 InductionDescriptor
&D
, const SCEV
*Expr
,
1032 SmallVectorImpl
<Instruction
*> *CastsToIgnore
) {
1033 Type
*PhiTy
= Phi
->getType();
1034 // We only handle integer and pointer inductions variables.
1035 if (!PhiTy
->isIntegerTy() && !PhiTy
->isPointerTy())
1038 // Check that the PHI is consecutive.
1039 const SCEV
*PhiScev
= Expr
? Expr
: SE
->getSCEV(Phi
);
1040 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(PhiScev
);
1043 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1047 if (AR
->getLoop() != TheLoop
) {
1048 // FIXME: We should treat this as a uniform. Unfortunately, we
1049 // don't currently know how to handled uniform PHIs.
1051 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1056 Phi
->getIncomingValueForBlock(AR
->getLoop()->getLoopPreheader());
1058 BasicBlock
*Latch
= AR
->getLoop()->getLoopLatch();
1061 BinaryOperator
*BOp
=
1062 dyn_cast
<BinaryOperator
>(Phi
->getIncomingValueForBlock(Latch
));
1064 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
1065 // Calculate the pointer stride and check if it is consecutive.
1066 // The stride may be a constant or a loop invariant integer value.
1067 const SCEVConstant
*ConstStep
= dyn_cast
<SCEVConstant
>(Step
);
1068 if (!ConstStep
&& !SE
->isLoopInvariant(Step
, TheLoop
))
1071 if (PhiTy
->isIntegerTy()) {
1072 D
= InductionDescriptor(StartValue
, IK_IntInduction
, Step
, BOp
,
1077 assert(PhiTy
->isPointerTy() && "The PHI must be a pointer");
1078 // Pointer induction should be a constant.
1082 ConstantInt
*CV
= ConstStep
->getValue();
1083 Type
*PointerElementType
= PhiTy
->getPointerElementType();
1084 // The pointer stride cannot be determined if the pointer element type is not
1086 if (!PointerElementType
->isSized())
1089 const DataLayout
&DL
= Phi
->getModule()->getDataLayout();
1090 int64_t Size
= static_cast<int64_t>(DL
.getTypeAllocSize(PointerElementType
));
1094 int64_t CVSize
= CV
->getSExtValue();
1098 SE
->getConstant(CV
->getType(), CVSize
/ Size
, true /* signed */);
1099 D
= InductionDescriptor(StartValue
, IK_PtrInduction
, StepValue
, BOp
);