1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
31 using namespace PatternMatch
;
33 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
34 /// reusing an existing cast if a suitable one exists, moving an existing
35 /// cast if a suitable one exists but isn't in the right place, or
36 /// creating a new one.
37 Value
*SCEVExpander::ReuseOrCreateCast(Value
*V
, Type
*Ty
,
38 Instruction::CastOps Op
,
39 BasicBlock::iterator IP
) {
40 // This function must be called with the builder having a valid insertion
41 // point. It doesn't need to be the actual IP where the uses of the returned
42 // cast will be added, but it must dominate such IP.
43 // We use this precondition to produce a cast that will dominate all its
44 // uses. In particular, this is crucial for the case where the builder's
45 // insertion point *is* the point where we were asked to put the cast.
46 // Since we don't know the builder's insertion point is actually
47 // where the uses will be added (only that it dominates it), we are
48 // not allowed to move it.
49 BasicBlock::iterator BIP
= Builder
.GetInsertPoint();
51 Instruction
*Ret
= nullptr;
53 // Check to see if there is already a cast!
54 for (User
*U
: V
->users())
55 if (U
->getType() == Ty
)
56 if (CastInst
*CI
= dyn_cast
<CastInst
>(U
))
57 if (CI
->getOpcode() == Op
) {
58 // If the cast isn't where we want it, create a new cast at IP.
59 // Likewise, do not reuse a cast at BIP because it must dominate
60 // instructions that might be inserted before BIP.
61 if (BasicBlock::iterator(CI
) != IP
|| BIP
== IP
) {
62 // Create a new cast, and leave the old cast in place in case
63 // it is being used as an insert point.
64 Ret
= CastInst::Create(Op
, V
, Ty
, "", &*IP
);
66 CI
->replaceAllUsesWith(Ret
);
75 Ret
= CastInst::Create(Op
, V
, Ty
, V
->getName(), &*IP
);
77 // We assert at the end of the function since IP might point to an
78 // instruction with different dominance properties than a cast
79 // (an invoke for example) and not dominate BIP (but the cast does).
80 assert(SE
.DT
.dominates(Ret
, &*BIP
));
82 rememberInstruction(Ret
);
86 static BasicBlock::iterator
findInsertPointAfter(Instruction
*I
,
87 BasicBlock
*MustDominate
) {
88 BasicBlock::iterator IP
= ++I
->getIterator();
89 if (auto *II
= dyn_cast
<InvokeInst
>(I
))
90 IP
= II
->getNormalDest()->begin();
92 while (isa
<PHINode
>(IP
))
95 if (isa
<FuncletPadInst
>(IP
) || isa
<LandingPadInst
>(IP
)) {
97 } else if (isa
<CatchSwitchInst
>(IP
)) {
98 IP
= MustDominate
->getFirstInsertionPt();
100 assert(!IP
->isEHPad() && "unexpected eh pad!");
106 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
107 /// which must be possible with a noop cast, doing what we can to share
109 Value
*SCEVExpander::InsertNoopCastOfTo(Value
*V
, Type
*Ty
) {
110 Instruction::CastOps Op
= CastInst::getCastOpcode(V
, false, Ty
, false);
111 assert((Op
== Instruction::BitCast
||
112 Op
== Instruction::PtrToInt
||
113 Op
== Instruction::IntToPtr
) &&
114 "InsertNoopCastOfTo cannot perform non-noop casts!");
115 assert(SE
.getTypeSizeInBits(V
->getType()) == SE
.getTypeSizeInBits(Ty
) &&
116 "InsertNoopCastOfTo cannot change sizes!");
118 // Short-circuit unnecessary bitcasts.
119 if (Op
== Instruction::BitCast
) {
120 if (V
->getType() == Ty
)
122 if (CastInst
*CI
= dyn_cast
<CastInst
>(V
)) {
123 if (CI
->getOperand(0)->getType() == Ty
)
124 return CI
->getOperand(0);
127 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
128 if ((Op
== Instruction::PtrToInt
|| Op
== Instruction::IntToPtr
) &&
129 SE
.getTypeSizeInBits(Ty
) == SE
.getTypeSizeInBits(V
->getType())) {
130 if (CastInst
*CI
= dyn_cast
<CastInst
>(V
))
131 if ((CI
->getOpcode() == Instruction::PtrToInt
||
132 CI
->getOpcode() == Instruction::IntToPtr
) &&
133 SE
.getTypeSizeInBits(CI
->getType()) ==
134 SE
.getTypeSizeInBits(CI
->getOperand(0)->getType()))
135 return CI
->getOperand(0);
136 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
137 if ((CE
->getOpcode() == Instruction::PtrToInt
||
138 CE
->getOpcode() == Instruction::IntToPtr
) &&
139 SE
.getTypeSizeInBits(CE
->getType()) ==
140 SE
.getTypeSizeInBits(CE
->getOperand(0)->getType()))
141 return CE
->getOperand(0);
144 // Fold a cast of a constant.
145 if (Constant
*C
= dyn_cast
<Constant
>(V
))
146 return ConstantExpr::getCast(Op
, C
, Ty
);
148 // Cast the argument at the beginning of the entry block, after
149 // any bitcasts of other arguments.
150 if (Argument
*A
= dyn_cast
<Argument
>(V
)) {
151 BasicBlock::iterator IP
= A
->getParent()->getEntryBlock().begin();
152 while ((isa
<BitCastInst
>(IP
) &&
153 isa
<Argument
>(cast
<BitCastInst
>(IP
)->getOperand(0)) &&
154 cast
<BitCastInst
>(IP
)->getOperand(0) != A
) ||
155 isa
<DbgInfoIntrinsic
>(IP
))
157 return ReuseOrCreateCast(A
, Ty
, Op
, IP
);
160 // Cast the instruction immediately after the instruction.
161 Instruction
*I
= cast
<Instruction
>(V
);
162 BasicBlock::iterator IP
= findInsertPointAfter(I
, Builder
.GetInsertBlock());
163 return ReuseOrCreateCast(I
, Ty
, Op
, IP
);
166 /// InsertBinop - Insert the specified binary operator, doing a small amount
167 /// of work to avoid inserting an obviously redundant operation, and hoisting
168 /// to an outer loop when the opportunity is there and it is safe.
169 Value
*SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode
,
170 Value
*LHS
, Value
*RHS
,
171 SCEV::NoWrapFlags Flags
, bool IsSafeToHoist
) {
172 // Fold a binop with constant operands.
173 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
))
174 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
175 return ConstantExpr::get(Opcode
, CLHS
, CRHS
);
177 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
178 unsigned ScanLimit
= 6;
179 BasicBlock::iterator BlockBegin
= Builder
.GetInsertBlock()->begin();
180 // Scanning starts from the last instruction before the insertion point.
181 BasicBlock::iterator IP
= Builder
.GetInsertPoint();
182 if (IP
!= BlockBegin
) {
184 for (; ScanLimit
; --IP
, --ScanLimit
) {
185 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
187 if (isa
<DbgInfoIntrinsic
>(IP
))
190 auto canGenerateIncompatiblePoison
= [&Flags
](Instruction
*I
) {
191 // Ensure that no-wrap flags match.
192 if (isa
<OverflowingBinaryOperator
>(I
)) {
193 if (I
->hasNoSignedWrap() != (Flags
& SCEV::FlagNSW
))
195 if (I
->hasNoUnsignedWrap() != (Flags
& SCEV::FlagNUW
))
198 // Conservatively, do not use any instruction which has any of exact
200 if (isa
<PossiblyExactOperator
>(I
) && I
->isExact())
204 if (IP
->getOpcode() == (unsigned)Opcode
&& IP
->getOperand(0) == LHS
&&
205 IP
->getOperand(1) == RHS
&& !canGenerateIncompatiblePoison(&*IP
))
207 if (IP
== BlockBegin
) break;
211 // Save the original insertion point so we can restore it when we're done.
212 DebugLoc Loc
= Builder
.GetInsertPoint()->getDebugLoc();
213 SCEVInsertPointGuard
Guard(Builder
, this);
216 // Move the insertion point out of as many loops as we can.
217 while (const Loop
*L
= SE
.LI
.getLoopFor(Builder
.GetInsertBlock())) {
218 if (!L
->isLoopInvariant(LHS
) || !L
->isLoopInvariant(RHS
)) break;
219 BasicBlock
*Preheader
= L
->getLoopPreheader();
220 if (!Preheader
) break;
222 // Ok, move up a level.
223 Builder
.SetInsertPoint(Preheader
->getTerminator());
227 // If we haven't found this binop, insert it.
228 Instruction
*BO
= cast
<Instruction
>(Builder
.CreateBinOp(Opcode
, LHS
, RHS
));
229 BO
->setDebugLoc(Loc
);
230 if (Flags
& SCEV::FlagNUW
)
231 BO
->setHasNoUnsignedWrap();
232 if (Flags
& SCEV::FlagNSW
)
233 BO
->setHasNoSignedWrap();
234 rememberInstruction(BO
);
239 /// FactorOutConstant - Test if S is divisible by Factor, using signed
240 /// division. If so, update S with Factor divided out and return true.
241 /// S need not be evenly divisible if a reasonable remainder can be
243 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
244 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
245 /// check to see if the divide was folded.
246 static bool FactorOutConstant(const SCEV
*&S
, const SCEV
*&Remainder
,
247 const SCEV
*Factor
, ScalarEvolution
&SE
,
248 const DataLayout
&DL
) {
249 // Everything is divisible by one.
255 S
= SE
.getConstant(S
->getType(), 1);
259 // For a Constant, check for a multiple of the given factor.
260 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
)) {
264 // Check for divisibility.
265 if (const SCEVConstant
*FC
= dyn_cast
<SCEVConstant
>(Factor
)) {
267 ConstantInt::get(SE
.getContext(), C
->getAPInt().sdiv(FC
->getAPInt()));
268 // If the quotient is zero and the remainder is non-zero, reject
269 // the value at this scale. It will be considered for subsequent
272 const SCEV
*Div
= SE
.getConstant(CI
);
274 Remainder
= SE
.getAddExpr(
275 Remainder
, SE
.getConstant(C
->getAPInt().srem(FC
->getAPInt())));
281 // In a Mul, check if there is a constant operand which is a multiple
282 // of the given factor.
283 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
284 // Size is known, check if there is a constant operand which is a multiple
285 // of the given factor. If so, we can factor it.
286 const SCEVConstant
*FC
= cast
<SCEVConstant
>(Factor
);
287 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(M
->getOperand(0)))
288 if (!C
->getAPInt().srem(FC
->getAPInt())) {
289 SmallVector
<const SCEV
*, 4> NewMulOps(M
->op_begin(), M
->op_end());
290 NewMulOps
[0] = SE
.getConstant(C
->getAPInt().sdiv(FC
->getAPInt()));
291 S
= SE
.getMulExpr(NewMulOps
);
296 // In an AddRec, check if both start and step are divisible.
297 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
298 const SCEV
*Step
= A
->getStepRecurrence(SE
);
299 const SCEV
*StepRem
= SE
.getConstant(Step
->getType(), 0);
300 if (!FactorOutConstant(Step
, StepRem
, Factor
, SE
, DL
))
302 if (!StepRem
->isZero())
304 const SCEV
*Start
= A
->getStart();
305 if (!FactorOutConstant(Start
, Remainder
, Factor
, SE
, DL
))
307 S
= SE
.getAddRecExpr(Start
, Step
, A
->getLoop(),
308 A
->getNoWrapFlags(SCEV::FlagNW
));
315 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
316 /// is the number of SCEVAddRecExprs present, which are kept at the end of
319 static void SimplifyAddOperands(SmallVectorImpl
<const SCEV
*> &Ops
,
321 ScalarEvolution
&SE
) {
322 unsigned NumAddRecs
= 0;
323 for (unsigned i
= Ops
.size(); i
> 0 && isa
<SCEVAddRecExpr
>(Ops
[i
-1]); --i
)
325 // Group Ops into non-addrecs and addrecs.
326 SmallVector
<const SCEV
*, 8> NoAddRecs(Ops
.begin(), Ops
.end() - NumAddRecs
);
327 SmallVector
<const SCEV
*, 8> AddRecs(Ops
.end() - NumAddRecs
, Ops
.end());
328 // Let ScalarEvolution sort and simplify the non-addrecs list.
329 const SCEV
*Sum
= NoAddRecs
.empty() ?
330 SE
.getConstant(Ty
, 0) :
331 SE
.getAddExpr(NoAddRecs
);
332 // If it returned an add, use the operands. Otherwise it simplified
333 // the sum into a single value, so just use that.
335 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Sum
))
336 Ops
.append(Add
->op_begin(), Add
->op_end());
337 else if (!Sum
->isZero())
339 // Then append the addrecs.
340 Ops
.append(AddRecs
.begin(), AddRecs
.end());
343 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
344 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
345 /// This helps expose more opportunities for folding parts of the expressions
346 /// into GEP indices.
348 static void SplitAddRecs(SmallVectorImpl
<const SCEV
*> &Ops
,
350 ScalarEvolution
&SE
) {
352 SmallVector
<const SCEV
*, 8> AddRecs
;
353 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
354 while (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(Ops
[i
])) {
355 const SCEV
*Start
= A
->getStart();
356 if (Start
->isZero()) break;
357 const SCEV
*Zero
= SE
.getConstant(Ty
, 0);
358 AddRecs
.push_back(SE
.getAddRecExpr(Zero
,
359 A
->getStepRecurrence(SE
),
361 A
->getNoWrapFlags(SCEV::FlagNW
)));
362 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Start
)) {
364 Ops
.append(Add
->op_begin(), Add
->op_end());
365 e
+= Add
->getNumOperands();
370 if (!AddRecs
.empty()) {
371 // Add the addrecs onto the end of the list.
372 Ops
.append(AddRecs
.begin(), AddRecs
.end());
373 // Resort the operand list, moving any constants to the front.
374 SimplifyAddOperands(Ops
, Ty
, SE
);
378 /// expandAddToGEP - Expand an addition expression with a pointer type into
379 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
380 /// BasicAliasAnalysis and other passes analyze the result. See the rules
381 /// for getelementptr vs. inttoptr in
382 /// http://llvm.org/docs/LangRef.html#pointeraliasing
385 /// Design note: The correctness of using getelementptr here depends on
386 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
387 /// they may introduce pointer arithmetic which may not be safely converted
388 /// into getelementptr.
390 /// Design note: It might seem desirable for this function to be more
391 /// loop-aware. If some of the indices are loop-invariant while others
392 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
393 /// loop-invariant portions of the overall computation outside the loop.
394 /// However, there are a few reasons this is not done here. Hoisting simple
395 /// arithmetic is a low-level optimization that often isn't very
396 /// important until late in the optimization process. In fact, passes
397 /// like InstructionCombining will combine GEPs, even if it means
398 /// pushing loop-invariant computation down into loops, so even if the
399 /// GEPs were split here, the work would quickly be undone. The
400 /// LoopStrengthReduction pass, which is usually run quite late (and
401 /// after the last InstructionCombining pass), takes care of hoisting
402 /// loop-invariant portions of expressions, after considering what
403 /// can be folded using target addressing modes.
405 Value
*SCEVExpander::expandAddToGEP(const SCEV
*const *op_begin
,
406 const SCEV
*const *op_end
,
410 Type
*OriginalElTy
= PTy
->getElementType();
411 Type
*ElTy
= OriginalElTy
;
412 SmallVector
<Value
*, 4> GepIndices
;
413 SmallVector
<const SCEV
*, 8> Ops(op_begin
, op_end
);
414 bool AnyNonZeroIndices
= false;
416 // Split AddRecs up into parts as either of the parts may be usable
417 // without the other.
418 SplitAddRecs(Ops
, Ty
, SE
);
420 Type
*IntPtrTy
= DL
.getIntPtrType(PTy
);
422 // Descend down the pointer's type and attempt to convert the other
423 // operands into GEP indices, at each level. The first index in a GEP
424 // indexes into the array implied by the pointer operand; the rest of
425 // the indices index into the element or field type selected by the
428 // If the scale size is not 0, attempt to factor out a scale for
430 SmallVector
<const SCEV
*, 8> ScaledOps
;
431 if (ElTy
->isSized()) {
432 const SCEV
*ElSize
= SE
.getSizeOfExpr(IntPtrTy
, ElTy
);
433 if (!ElSize
->isZero()) {
434 SmallVector
<const SCEV
*, 8> NewOps
;
435 for (const SCEV
*Op
: Ops
) {
436 const SCEV
*Remainder
= SE
.getConstant(Ty
, 0);
437 if (FactorOutConstant(Op
, Remainder
, ElSize
, SE
, DL
)) {
438 // Op now has ElSize factored out.
439 ScaledOps
.push_back(Op
);
440 if (!Remainder
->isZero())
441 NewOps
.push_back(Remainder
);
442 AnyNonZeroIndices
= true;
444 // The operand was not divisible, so add it to the list of operands
445 // we'll scan next iteration.
446 NewOps
.push_back(Op
);
449 // If we made any changes, update Ops.
450 if (!ScaledOps
.empty()) {
452 SimplifyAddOperands(Ops
, Ty
, SE
);
457 // Record the scaled array index for this level of the type. If
458 // we didn't find any operands that could be factored, tentatively
459 // assume that element zero was selected (since the zero offset
460 // would obviously be folded away).
461 Value
*Scaled
= ScaledOps
.empty() ?
462 Constant::getNullValue(Ty
) :
463 expandCodeFor(SE
.getAddExpr(ScaledOps
), Ty
);
464 GepIndices
.push_back(Scaled
);
466 // Collect struct field index operands.
467 while (StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
468 bool FoundFieldNo
= false;
469 // An empty struct has no fields.
470 if (STy
->getNumElements() == 0) break;
471 // Field offsets are known. See if a constant offset falls within any of
472 // the struct fields.
475 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[0]))
476 if (SE
.getTypeSizeInBits(C
->getType()) <= 64) {
477 const StructLayout
&SL
= *DL
.getStructLayout(STy
);
478 uint64_t FullOffset
= C
->getValue()->getZExtValue();
479 if (FullOffset
< SL
.getSizeInBytes()) {
480 unsigned ElIdx
= SL
.getElementContainingOffset(FullOffset
);
481 GepIndices
.push_back(
482 ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), ElIdx
));
483 ElTy
= STy
->getTypeAtIndex(ElIdx
);
485 SE
.getConstant(Ty
, FullOffset
- SL
.getElementOffset(ElIdx
));
486 AnyNonZeroIndices
= true;
490 // If no struct field offsets were found, tentatively assume that
491 // field zero was selected (since the zero offset would obviously
494 ElTy
= STy
->getTypeAtIndex(0u);
495 GepIndices
.push_back(
496 Constant::getNullValue(Type::getInt32Ty(Ty
->getContext())));
500 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(ElTy
))
501 ElTy
= ATy
->getElementType();
506 // If none of the operands were convertible to proper GEP indices, cast
507 // the base to i8* and do an ugly getelementptr with that. It's still
508 // better than ptrtoint+arithmetic+inttoptr at least.
509 if (!AnyNonZeroIndices
) {
510 // Cast the base to i8*.
511 V
= InsertNoopCastOfTo(V
,
512 Type::getInt8PtrTy(Ty
->getContext(), PTy
->getAddressSpace()));
514 assert(!isa
<Instruction
>(V
) ||
515 SE
.DT
.dominates(cast
<Instruction
>(V
), &*Builder
.GetInsertPoint()));
517 // Expand the operands for a plain byte offset.
518 Value
*Idx
= expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
520 // Fold a GEP with constant operands.
521 if (Constant
*CLHS
= dyn_cast
<Constant
>(V
))
522 if (Constant
*CRHS
= dyn_cast
<Constant
>(Idx
))
523 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty
->getContext()),
526 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
527 unsigned ScanLimit
= 6;
528 BasicBlock::iterator BlockBegin
= Builder
.GetInsertBlock()->begin();
529 // Scanning starts from the last instruction before the insertion point.
530 BasicBlock::iterator IP
= Builder
.GetInsertPoint();
531 if (IP
!= BlockBegin
) {
533 for (; ScanLimit
; --IP
, --ScanLimit
) {
534 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
536 if (isa
<DbgInfoIntrinsic
>(IP
))
538 if (IP
->getOpcode() == Instruction::GetElementPtr
&&
539 IP
->getOperand(0) == V
&& IP
->getOperand(1) == Idx
)
541 if (IP
== BlockBegin
) break;
545 // Save the original insertion point so we can restore it when we're done.
546 SCEVInsertPointGuard
Guard(Builder
, this);
548 // Move the insertion point out of as many loops as we can.
549 while (const Loop
*L
= SE
.LI
.getLoopFor(Builder
.GetInsertBlock())) {
550 if (!L
->isLoopInvariant(V
) || !L
->isLoopInvariant(Idx
)) break;
551 BasicBlock
*Preheader
= L
->getLoopPreheader();
552 if (!Preheader
) break;
554 // Ok, move up a level.
555 Builder
.SetInsertPoint(Preheader
->getTerminator());
559 Value
*GEP
= Builder
.CreateGEP(Builder
.getInt8Ty(), V
, Idx
, "uglygep");
560 rememberInstruction(GEP
);
566 SCEVInsertPointGuard
Guard(Builder
, this);
568 // Move the insertion point out of as many loops as we can.
569 while (const Loop
*L
= SE
.LI
.getLoopFor(Builder
.GetInsertBlock())) {
570 if (!L
->isLoopInvariant(V
)) break;
572 bool AnyIndexNotLoopInvariant
= any_of(
573 GepIndices
, [L
](Value
*Op
) { return !L
->isLoopInvariant(Op
); });
575 if (AnyIndexNotLoopInvariant
)
578 BasicBlock
*Preheader
= L
->getLoopPreheader();
579 if (!Preheader
) break;
581 // Ok, move up a level.
582 Builder
.SetInsertPoint(Preheader
->getTerminator());
585 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
586 // because ScalarEvolution may have changed the address arithmetic to
587 // compute a value which is beyond the end of the allocated object.
589 if (V
->getType() != PTy
)
590 Casted
= InsertNoopCastOfTo(Casted
, PTy
);
591 Value
*GEP
= Builder
.CreateGEP(OriginalElTy
, Casted
, GepIndices
, "scevgep");
592 Ops
.push_back(SE
.getUnknown(GEP
));
593 rememberInstruction(GEP
);
596 return expand(SE
.getAddExpr(Ops
));
599 Value
*SCEVExpander::expandAddToGEP(const SCEV
*Op
, PointerType
*PTy
, Type
*Ty
,
601 const SCEV
*const Ops
[1] = {Op
};
602 return expandAddToGEP(Ops
, Ops
+ 1, PTy
, Ty
, V
);
605 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
606 /// SCEV expansion. If they are nested, this is the most nested. If they are
607 /// neighboring, pick the later.
608 static const Loop
*PickMostRelevantLoop(const Loop
*A
, const Loop
*B
,
612 if (A
->contains(B
)) return B
;
613 if (B
->contains(A
)) return A
;
614 if (DT
.dominates(A
->getHeader(), B
->getHeader())) return B
;
615 if (DT
.dominates(B
->getHeader(), A
->getHeader())) return A
;
616 return A
; // Arbitrarily break the tie.
619 /// getRelevantLoop - Get the most relevant loop associated with the given
620 /// expression, according to PickMostRelevantLoop.
621 const Loop
*SCEVExpander::getRelevantLoop(const SCEV
*S
) {
622 // Test whether we've already computed the most relevant loop for this SCEV.
623 auto Pair
= RelevantLoops
.insert(std::make_pair(S
, nullptr));
625 return Pair
.first
->second
;
627 if (isa
<SCEVConstant
>(S
))
628 // A constant has no relevant loops.
630 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
631 if (const Instruction
*I
= dyn_cast
<Instruction
>(U
->getValue()))
632 return Pair
.first
->second
= SE
.LI
.getLoopFor(I
->getParent());
633 // A non-instruction has no relevant loops.
636 if (const SCEVNAryExpr
*N
= dyn_cast
<SCEVNAryExpr
>(S
)) {
637 const Loop
*L
= nullptr;
638 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
640 for (const SCEV
*Op
: N
->operands())
641 L
= PickMostRelevantLoop(L
, getRelevantLoop(Op
), SE
.DT
);
642 return RelevantLoops
[N
] = L
;
644 if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
)) {
645 const Loop
*Result
= getRelevantLoop(C
->getOperand());
646 return RelevantLoops
[C
] = Result
;
648 if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
649 const Loop
*Result
= PickMostRelevantLoop(
650 getRelevantLoop(D
->getLHS()), getRelevantLoop(D
->getRHS()), SE
.DT
);
651 return RelevantLoops
[D
] = Result
;
653 llvm_unreachable("Unexpected SCEV type!");
658 /// LoopCompare - Compare loops by PickMostRelevantLoop.
662 explicit LoopCompare(DominatorTree
&dt
) : DT(dt
) {}
664 bool operator()(std::pair
<const Loop
*, const SCEV
*> LHS
,
665 std::pair
<const Loop
*, const SCEV
*> RHS
) const {
666 // Keep pointer operands sorted at the end.
667 if (LHS
.second
->getType()->isPointerTy() !=
668 RHS
.second
->getType()->isPointerTy())
669 return LHS
.second
->getType()->isPointerTy();
671 // Compare loops with PickMostRelevantLoop.
672 if (LHS
.first
!= RHS
.first
)
673 return PickMostRelevantLoop(LHS
.first
, RHS
.first
, DT
) != LHS
.first
;
675 // If one operand is a non-constant negative and the other is not,
676 // put the non-constant negative on the right so that a sub can
677 // be used instead of a negate and add.
678 if (LHS
.second
->isNonConstantNegative()) {
679 if (!RHS
.second
->isNonConstantNegative())
681 } else if (RHS
.second
->isNonConstantNegative())
684 // Otherwise they are equivalent according to this comparison.
691 Value
*SCEVExpander::visitAddExpr(const SCEVAddExpr
*S
) {
692 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
694 // Collect all the add operands in a loop, along with their associated loops.
695 // Iterate in reverse so that constants are emitted last, all else equal, and
696 // so that pointer operands are inserted first, which the code below relies on
697 // to form more involved GEPs.
698 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 8> OpsAndLoops
;
699 for (std::reverse_iterator
<SCEVAddExpr::op_iterator
> I(S
->op_end()),
700 E(S
->op_begin()); I
!= E
; ++I
)
701 OpsAndLoops
.push_back(std::make_pair(getRelevantLoop(*I
), *I
));
703 // Sort by loop. Use a stable sort so that constants follow non-constants and
704 // pointer operands precede non-pointer operands.
705 llvm::stable_sort(OpsAndLoops
, LoopCompare(SE
.DT
));
707 // Emit instructions to add all the operands. Hoist as much as possible
708 // out of loops, and form meaningful getelementptrs where possible.
709 Value
*Sum
= nullptr;
710 for (auto I
= OpsAndLoops
.begin(), E
= OpsAndLoops
.end(); I
!= E
;) {
711 const Loop
*CurLoop
= I
->first
;
712 const SCEV
*Op
= I
->second
;
714 // This is the first operand. Just expand it.
717 } else if (PointerType
*PTy
= dyn_cast
<PointerType
>(Sum
->getType())) {
718 // The running sum expression is a pointer. Try to form a getelementptr
719 // at this level with that as the base.
720 SmallVector
<const SCEV
*, 4> NewOps
;
721 for (; I
!= E
&& I
->first
== CurLoop
; ++I
) {
722 // If the operand is SCEVUnknown and not instructions, peek through
723 // it, to enable more of it to be folded into the GEP.
724 const SCEV
*X
= I
->second
;
725 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(X
))
726 if (!isa
<Instruction
>(U
->getValue()))
727 X
= SE
.getSCEV(U
->getValue());
730 Sum
= expandAddToGEP(NewOps
.begin(), NewOps
.end(), PTy
, Ty
, Sum
);
731 } else if (PointerType
*PTy
= dyn_cast
<PointerType
>(Op
->getType())) {
732 // The running sum is an integer, and there's a pointer at this level.
733 // Try to form a getelementptr. If the running sum is instructions,
734 // use a SCEVUnknown to avoid re-analyzing them.
735 SmallVector
<const SCEV
*, 4> NewOps
;
736 NewOps
.push_back(isa
<Instruction
>(Sum
) ? SE
.getUnknown(Sum
) :
738 for (++I
; I
!= E
&& I
->first
== CurLoop
; ++I
)
739 NewOps
.push_back(I
->second
);
740 Sum
= expandAddToGEP(NewOps
.begin(), NewOps
.end(), PTy
, Ty
, expand(Op
));
741 } else if (Op
->isNonConstantNegative()) {
742 // Instead of doing a negate and add, just do a subtract.
743 Value
*W
= expandCodeFor(SE
.getNegativeSCEV(Op
), Ty
);
744 Sum
= InsertNoopCastOfTo(Sum
, Ty
);
745 Sum
= InsertBinop(Instruction::Sub
, Sum
, W
, SCEV::FlagAnyWrap
,
746 /*IsSafeToHoist*/ true);
750 Value
*W
= expandCodeFor(Op
, Ty
);
751 Sum
= InsertNoopCastOfTo(Sum
, Ty
);
752 // Canonicalize a constant to the RHS.
753 if (isa
<Constant
>(Sum
)) std::swap(Sum
, W
);
754 Sum
= InsertBinop(Instruction::Add
, Sum
, W
, S
->getNoWrapFlags(),
755 /*IsSafeToHoist*/ true);
763 Value
*SCEVExpander::visitMulExpr(const SCEVMulExpr
*S
) {
764 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
766 // Collect all the mul operands in a loop, along with their associated loops.
767 // Iterate in reverse so that constants are emitted last, all else equal.
768 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 8> OpsAndLoops
;
769 for (std::reverse_iterator
<SCEVMulExpr::op_iterator
> I(S
->op_end()),
770 E(S
->op_begin()); I
!= E
; ++I
)
771 OpsAndLoops
.push_back(std::make_pair(getRelevantLoop(*I
), *I
));
773 // Sort by loop. Use a stable sort so that constants follow non-constants.
774 llvm::stable_sort(OpsAndLoops
, LoopCompare(SE
.DT
));
776 // Emit instructions to mul all the operands. Hoist as much as possible
778 Value
*Prod
= nullptr;
779 auto I
= OpsAndLoops
.begin();
781 // Expand the calculation of X pow N in the following manner:
782 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
783 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
784 const auto ExpandOpBinPowN
= [this, &I
, &OpsAndLoops
, &Ty
]() {
786 // Calculate how many times the same operand from the same loop is included
788 uint64_t Exponent
= 0;
789 const uint64_t MaxExponent
= UINT64_MAX
>> 1;
790 // No one sane will ever try to calculate such huge exponents, but if we
791 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
792 // below when the power of 2 exceeds our Exponent, and we want it to be
793 // 1u << 31 at most to not deal with unsigned overflow.
794 while (E
!= OpsAndLoops
.end() && *I
== *E
&& Exponent
!= MaxExponent
) {
798 assert(Exponent
> 0 && "Trying to calculate a zeroth exponent of operand?");
800 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
801 // that are needed into the result.
802 Value
*P
= expandCodeFor(I
->second
, Ty
);
803 Value
*Result
= nullptr;
806 for (uint64_t BinExp
= 2; BinExp
<= Exponent
; BinExp
<<= 1) {
807 P
= InsertBinop(Instruction::Mul
, P
, P
, SCEV::FlagAnyWrap
,
808 /*IsSafeToHoist*/ true);
809 if (Exponent
& BinExp
)
810 Result
= Result
? InsertBinop(Instruction::Mul
, Result
, P
,
812 /*IsSafeToHoist*/ true)
817 assert(Result
&& "Nothing was expanded?");
821 while (I
!= OpsAndLoops
.end()) {
823 // This is the first operand. Just expand it.
824 Prod
= ExpandOpBinPowN();
825 } else if (I
->second
->isAllOnesValue()) {
826 // Instead of doing a multiply by negative one, just do a negate.
827 Prod
= InsertNoopCastOfTo(Prod
, Ty
);
828 Prod
= InsertBinop(Instruction::Sub
, Constant::getNullValue(Ty
), Prod
,
829 SCEV::FlagAnyWrap
, /*IsSafeToHoist*/ true);
833 Value
*W
= ExpandOpBinPowN();
834 Prod
= InsertNoopCastOfTo(Prod
, Ty
);
835 // Canonicalize a constant to the RHS.
836 if (isa
<Constant
>(Prod
)) std::swap(Prod
, W
);
838 if (match(W
, m_Power2(RHS
))) {
839 // Canonicalize Prod*(1<<C) to Prod<<C.
840 assert(!Ty
->isVectorTy() && "vector types are not SCEVable");
841 auto NWFlags
= S
->getNoWrapFlags();
842 // clear nsw flag if shl will produce poison value.
843 if (RHS
->logBase2() == RHS
->getBitWidth() - 1)
844 NWFlags
= ScalarEvolution::clearFlags(NWFlags
, SCEV::FlagNSW
);
845 Prod
= InsertBinop(Instruction::Shl
, Prod
,
846 ConstantInt::get(Ty
, RHS
->logBase2()), NWFlags
,
847 /*IsSafeToHoist*/ true);
849 Prod
= InsertBinop(Instruction::Mul
, Prod
, W
, S
->getNoWrapFlags(),
850 /*IsSafeToHoist*/ true);
858 Value
*SCEVExpander::visitUDivExpr(const SCEVUDivExpr
*S
) {
859 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
861 Value
*LHS
= expandCodeFor(S
->getLHS(), Ty
);
862 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(S
->getRHS())) {
863 const APInt
&RHS
= SC
->getAPInt();
864 if (RHS
.isPowerOf2())
865 return InsertBinop(Instruction::LShr
, LHS
,
866 ConstantInt::get(Ty
, RHS
.logBase2()),
867 SCEV::FlagAnyWrap
, /*IsSafeToHoist*/ true);
870 Value
*RHS
= expandCodeFor(S
->getRHS(), Ty
);
871 return InsertBinop(Instruction::UDiv
, LHS
, RHS
, SCEV::FlagAnyWrap
,
872 /*IsSafeToHoist*/ SE
.isKnownNonZero(S
->getRHS()));
875 /// Move parts of Base into Rest to leave Base with the minimal
876 /// expression that provides a pointer operand suitable for a
878 static void ExposePointerBase(const SCEV
*&Base
, const SCEV
*&Rest
,
879 ScalarEvolution
&SE
) {
880 while (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(Base
)) {
881 Base
= A
->getStart();
882 Rest
= SE
.getAddExpr(Rest
,
883 SE
.getAddRecExpr(SE
.getConstant(A
->getType(), 0),
884 A
->getStepRecurrence(SE
),
886 A
->getNoWrapFlags(SCEV::FlagNW
)));
888 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(Base
)) {
889 Base
= A
->getOperand(A
->getNumOperands()-1);
890 SmallVector
<const SCEV
*, 8> NewAddOps(A
->op_begin(), A
->op_end());
891 NewAddOps
.back() = Rest
;
892 Rest
= SE
.getAddExpr(NewAddOps
);
893 ExposePointerBase(Base
, Rest
, SE
);
897 /// Determine if this is a well-behaved chain of instructions leading back to
898 /// the PHI. If so, it may be reused by expanded expressions.
899 bool SCEVExpander::isNormalAddRecExprPHI(PHINode
*PN
, Instruction
*IncV
,
901 if (IncV
->getNumOperands() == 0 || isa
<PHINode
>(IncV
) ||
902 (isa
<CastInst
>(IncV
) && !isa
<BitCastInst
>(IncV
)))
904 // If any of the operands don't dominate the insert position, bail.
905 // Addrec operands are always loop-invariant, so this can only happen
906 // if there are instructions which haven't been hoisted.
907 if (L
== IVIncInsertLoop
) {
908 for (User::op_iterator OI
= IncV
->op_begin()+1,
909 OE
= IncV
->op_end(); OI
!= OE
; ++OI
)
910 if (Instruction
*OInst
= dyn_cast
<Instruction
>(OI
))
911 if (!SE
.DT
.dominates(OInst
, IVIncInsertPos
))
914 // Advance to the next instruction.
915 IncV
= dyn_cast
<Instruction
>(IncV
->getOperand(0));
919 if (IncV
->mayHaveSideEffects())
925 return isNormalAddRecExprPHI(PN
, IncV
, L
);
928 /// getIVIncOperand returns an induction variable increment's induction
929 /// variable operand.
931 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
932 /// operands dominate InsertPos.
934 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
935 /// simple patterns generated by getAddRecExprPHILiterally and
936 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
937 Instruction
*SCEVExpander::getIVIncOperand(Instruction
*IncV
,
938 Instruction
*InsertPos
,
940 if (IncV
== InsertPos
)
943 switch (IncV
->getOpcode()) {
946 // Check for a simple Add/Sub or GEP of a loop invariant step.
947 case Instruction::Add
:
948 case Instruction::Sub
: {
949 Instruction
*OInst
= dyn_cast
<Instruction
>(IncV
->getOperand(1));
950 if (!OInst
|| SE
.DT
.dominates(OInst
, InsertPos
))
951 return dyn_cast
<Instruction
>(IncV
->getOperand(0));
954 case Instruction::BitCast
:
955 return dyn_cast
<Instruction
>(IncV
->getOperand(0));
956 case Instruction::GetElementPtr
:
957 for (auto I
= IncV
->op_begin() + 1, E
= IncV
->op_end(); I
!= E
; ++I
) {
958 if (isa
<Constant
>(*I
))
960 if (Instruction
*OInst
= dyn_cast
<Instruction
>(*I
)) {
961 if (!SE
.DT
.dominates(OInst
, InsertPos
))
965 // allow any kind of GEP as long as it can be hoisted.
968 // This must be a pointer addition of constants (pretty), which is already
969 // handled, or some number of address-size elements (ugly). Ugly geps
970 // have 2 operands. i1* is used by the expander to represent an
971 // address-size element.
972 if (IncV
->getNumOperands() != 2)
974 unsigned AS
= cast
<PointerType
>(IncV
->getType())->getAddressSpace();
975 if (IncV
->getType() != Type::getInt1PtrTy(SE
.getContext(), AS
)
976 && IncV
->getType() != Type::getInt8PtrTy(SE
.getContext(), AS
))
980 return dyn_cast
<Instruction
>(IncV
->getOperand(0));
984 /// If the insert point of the current builder or any of the builders on the
985 /// stack of saved builders has 'I' as its insert point, update it to point to
986 /// the instruction after 'I'. This is intended to be used when the instruction
987 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a
988 /// different block, the inconsistent insert point (with a mismatched
989 /// Instruction and Block) can lead to an instruction being inserted in a block
990 /// other than its parent.
991 void SCEVExpander::fixupInsertPoints(Instruction
*I
) {
992 BasicBlock::iterator
It(*I
);
993 BasicBlock::iterator NewInsertPt
= std::next(It
);
994 if (Builder
.GetInsertPoint() == It
)
995 Builder
.SetInsertPoint(&*NewInsertPt
);
996 for (auto *InsertPtGuard
: InsertPointGuards
)
997 if (InsertPtGuard
->GetInsertPoint() == It
)
998 InsertPtGuard
->SetInsertPoint(NewInsertPt
);
1001 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1002 /// it available to other uses in this loop. Recursively hoist any operands,
1003 /// until we reach a value that dominates InsertPos.
1004 bool SCEVExpander::hoistIVInc(Instruction
*IncV
, Instruction
*InsertPos
) {
1005 if (SE
.DT
.dominates(IncV
, InsertPos
))
1008 // InsertPos must itself dominate IncV so that IncV's new position satisfies
1009 // its existing users.
1010 if (isa
<PHINode
>(InsertPos
) ||
1011 !SE
.DT
.dominates(InsertPos
->getParent(), IncV
->getParent()))
1014 if (!SE
.LI
.movementPreservesLCSSAForm(IncV
, InsertPos
))
1017 // Check that the chain of IV operands leading back to Phi can be hoisted.
1018 SmallVector
<Instruction
*, 4> IVIncs
;
1020 Instruction
*Oper
= getIVIncOperand(IncV
, InsertPos
, /*allowScale*/true);
1023 // IncV is safe to hoist.
1024 IVIncs
.push_back(IncV
);
1026 if (SE
.DT
.dominates(IncV
, InsertPos
))
1029 for (auto I
= IVIncs
.rbegin(), E
= IVIncs
.rend(); I
!= E
; ++I
) {
1030 fixupInsertPoints(*I
);
1031 (*I
)->moveBefore(InsertPos
);
1036 /// Determine if this cyclic phi is in a form that would have been generated by
1037 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1038 /// as it is in a low-cost form, for example, no implied multiplication. This
1039 /// should match any patterns generated by getAddRecExprPHILiterally and
1041 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode
*PN
, Instruction
*IncV
,
1043 for(Instruction
*IVOper
= IncV
;
1044 (IVOper
= getIVIncOperand(IVOper
, L
->getLoopPreheader()->getTerminator(),
1045 /*allowScale=*/false));) {
1052 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1053 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1054 /// need to materialize IV increments elsewhere to handle difficult situations.
1055 Value
*SCEVExpander::expandIVInc(PHINode
*PN
, Value
*StepV
, const Loop
*L
,
1056 Type
*ExpandTy
, Type
*IntTy
,
1059 // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1060 if (ExpandTy
->isPointerTy()) {
1061 PointerType
*GEPPtrTy
= cast
<PointerType
>(ExpandTy
);
1062 // If the step isn't constant, don't use an implicitly scaled GEP, because
1063 // that would require a multiply inside the loop.
1064 if (!isa
<ConstantInt
>(StepV
))
1065 GEPPtrTy
= PointerType::get(Type::getInt1Ty(SE
.getContext()),
1066 GEPPtrTy
->getAddressSpace());
1067 IncV
= expandAddToGEP(SE
.getSCEV(StepV
), GEPPtrTy
, IntTy
, PN
);
1068 if (IncV
->getType() != PN
->getType()) {
1069 IncV
= Builder
.CreateBitCast(IncV
, PN
->getType());
1070 rememberInstruction(IncV
);
1073 IncV
= useSubtract
?
1074 Builder
.CreateSub(PN
, StepV
, Twine(IVName
) + ".iv.next") :
1075 Builder
.CreateAdd(PN
, StepV
, Twine(IVName
) + ".iv.next");
1076 rememberInstruction(IncV
);
1081 /// Hoist the addrec instruction chain rooted in the loop phi above the
1082 /// position. This routine assumes that this is possible (has been checked).
1083 void SCEVExpander::hoistBeforePos(DominatorTree
*DT
, Instruction
*InstToHoist
,
1084 Instruction
*Pos
, PHINode
*LoopPhi
) {
1086 if (DT
->dominates(InstToHoist
, Pos
))
1088 // Make sure the increment is where we want it. But don't move it
1089 // down past a potential existing post-inc user.
1090 fixupInsertPoints(InstToHoist
);
1091 InstToHoist
->moveBefore(Pos
);
1093 InstToHoist
= cast
<Instruction
>(InstToHoist
->getOperand(0));
1094 } while (InstToHoist
!= LoopPhi
);
1097 /// Check whether we can cheaply express the requested SCEV in terms of
1098 /// the available PHI SCEV by truncation and/or inversion of the step.
1099 static bool canBeCheaplyTransformed(ScalarEvolution
&SE
,
1100 const SCEVAddRecExpr
*Phi
,
1101 const SCEVAddRecExpr
*Requested
,
1103 Type
*PhiTy
= SE
.getEffectiveSCEVType(Phi
->getType());
1104 Type
*RequestedTy
= SE
.getEffectiveSCEVType(Requested
->getType());
1106 if (RequestedTy
->getIntegerBitWidth() > PhiTy
->getIntegerBitWidth())
1109 // Try truncate it if necessary.
1110 Phi
= dyn_cast
<SCEVAddRecExpr
>(SE
.getTruncateOrNoop(Phi
, RequestedTy
));
1114 // Check whether truncation will help.
1115 if (Phi
== Requested
) {
1120 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1121 if (SE
.getAddExpr(Requested
->getStart(),
1122 SE
.getNegativeSCEV(Requested
)) == Phi
) {
1130 static bool IsIncrementNSW(ScalarEvolution
&SE
, const SCEVAddRecExpr
*AR
) {
1131 if (!isa
<IntegerType
>(AR
->getType()))
1134 unsigned BitWidth
= cast
<IntegerType
>(AR
->getType())->getBitWidth();
1135 Type
*WideTy
= IntegerType::get(AR
->getType()->getContext(), BitWidth
* 2);
1136 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
1137 const SCEV
*OpAfterExtend
= SE
.getAddExpr(SE
.getSignExtendExpr(Step
, WideTy
),
1138 SE
.getSignExtendExpr(AR
, WideTy
));
1139 const SCEV
*ExtendAfterOp
=
1140 SE
.getSignExtendExpr(SE
.getAddExpr(AR
, Step
), WideTy
);
1141 return ExtendAfterOp
== OpAfterExtend
;
1144 static bool IsIncrementNUW(ScalarEvolution
&SE
, const SCEVAddRecExpr
*AR
) {
1145 if (!isa
<IntegerType
>(AR
->getType()))
1148 unsigned BitWidth
= cast
<IntegerType
>(AR
->getType())->getBitWidth();
1149 Type
*WideTy
= IntegerType::get(AR
->getType()->getContext(), BitWidth
* 2);
1150 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
1151 const SCEV
*OpAfterExtend
= SE
.getAddExpr(SE
.getZeroExtendExpr(Step
, WideTy
),
1152 SE
.getZeroExtendExpr(AR
, WideTy
));
1153 const SCEV
*ExtendAfterOp
=
1154 SE
.getZeroExtendExpr(SE
.getAddExpr(AR
, Step
), WideTy
);
1155 return ExtendAfterOp
== OpAfterExtend
;
1158 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1159 /// the base addrec, which is the addrec without any non-loop-dominating
1160 /// values, and return the PHI.
1162 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr
*Normalized
,
1168 assert((!IVIncInsertLoop
||IVIncInsertPos
) && "Uninitialized insert position");
1170 // Reuse a previously-inserted PHI, if present.
1171 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1173 PHINode
*AddRecPhiMatch
= nullptr;
1174 Instruction
*IncV
= nullptr;
1178 // Only try partially matching scevs that need truncation and/or
1179 // step-inversion if we know this loop is outside the current loop.
1180 bool TryNonMatchingSCEV
=
1182 SE
.DT
.properlyDominates(LatchBlock
, IVIncInsertLoop
->getHeader());
1184 for (PHINode
&PN
: L
->getHeader()->phis()) {
1185 if (!SE
.isSCEVable(PN
.getType()))
1188 const SCEVAddRecExpr
*PhiSCEV
= dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(&PN
));
1192 bool IsMatchingSCEV
= PhiSCEV
== Normalized
;
1193 // We only handle truncation and inversion of phi recurrences for the
1194 // expanded expression if the expanded expression's loop dominates the
1195 // loop we insert to. Check now, so we can bail out early.
1196 if (!IsMatchingSCEV
&& !TryNonMatchingSCEV
)
1199 // TODO: this possibly can be reworked to avoid this cast at all.
1200 Instruction
*TempIncV
=
1201 dyn_cast
<Instruction
>(PN
.getIncomingValueForBlock(LatchBlock
));
1205 // Check whether we can reuse this PHI node.
1207 if (!isExpandedAddRecExprPHI(&PN
, TempIncV
, L
))
1209 if (L
== IVIncInsertLoop
&& !hoistIVInc(TempIncV
, IVIncInsertPos
))
1212 if (!isNormalAddRecExprPHI(&PN
, TempIncV
, L
))
1216 // Stop if we have found an exact match SCEV.
1217 if (IsMatchingSCEV
) {
1221 AddRecPhiMatch
= &PN
;
1225 // Try whether the phi can be translated into the requested form
1226 // (truncated and/or offset by a constant).
1227 if ((!TruncTy
|| InvertStep
) &&
1228 canBeCheaplyTransformed(SE
, PhiSCEV
, Normalized
, InvertStep
)) {
1229 // Record the phi node. But don't stop we might find an exact match
1231 AddRecPhiMatch
= &PN
;
1233 TruncTy
= SE
.getEffectiveSCEVType(Normalized
->getType());
1237 if (AddRecPhiMatch
) {
1238 // Potentially, move the increment. We have made sure in
1239 // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1240 if (L
== IVIncInsertLoop
)
1241 hoistBeforePos(&SE
.DT
, IncV
, IVIncInsertPos
, AddRecPhiMatch
);
1243 // Ok, the add recurrence looks usable.
1244 // Remember this PHI, even in post-inc mode.
1245 InsertedValues
.insert(AddRecPhiMatch
);
1246 // Remember the increment.
1247 rememberInstruction(IncV
);
1248 return AddRecPhiMatch
;
1252 // Save the original insertion point so we can restore it when we're done.
1253 SCEVInsertPointGuard
Guard(Builder
, this);
1255 // Another AddRec may need to be recursively expanded below. For example, if
1256 // this AddRec is quadratic, the StepV may itself be an AddRec in this
1257 // loop. Remove this loop from the PostIncLoops set before expanding such
1258 // AddRecs. Otherwise, we cannot find a valid position for the step
1259 // (i.e. StepV can never dominate its loop header). Ideally, we could do
1260 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1261 // so it's not worth implementing SmallPtrSet::swap.
1262 PostIncLoopSet SavedPostIncLoops
= PostIncLoops
;
1263 PostIncLoops
.clear();
1265 // Expand code for the start value into the loop preheader.
1266 assert(L
->getLoopPreheader() &&
1267 "Can't expand add recurrences without a loop preheader!");
1268 Value
*StartV
= expandCodeFor(Normalized
->getStart(), ExpandTy
,
1269 L
->getLoopPreheader()->getTerminator());
1271 // StartV must have been be inserted into L's preheader to dominate the new
1273 assert(!isa
<Instruction
>(StartV
) ||
1274 SE
.DT
.properlyDominates(cast
<Instruction
>(StartV
)->getParent(),
1277 // Expand code for the step value. Do this before creating the PHI so that PHI
1278 // reuse code doesn't see an incomplete PHI.
1279 const SCEV
*Step
= Normalized
->getStepRecurrence(SE
);
1280 // If the stride is negative, insert a sub instead of an add for the increment
1281 // (unless it's a constant, because subtracts of constants are canonicalized
1283 bool useSubtract
= !ExpandTy
->isPointerTy() && Step
->isNonConstantNegative();
1285 Step
= SE
.getNegativeSCEV(Step
);
1286 // Expand the step somewhere that dominates the loop header.
1287 Value
*StepV
= expandCodeFor(Step
, IntTy
, &L
->getHeader()->front());
1289 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1290 // we actually do emit an addition. It does not apply if we emit a
1292 bool IncrementIsNUW
= !useSubtract
&& IsIncrementNUW(SE
, Normalized
);
1293 bool IncrementIsNSW
= !useSubtract
&& IsIncrementNSW(SE
, Normalized
);
1296 BasicBlock
*Header
= L
->getHeader();
1297 Builder
.SetInsertPoint(Header
, Header
->begin());
1298 pred_iterator HPB
= pred_begin(Header
), HPE
= pred_end(Header
);
1299 PHINode
*PN
= Builder
.CreatePHI(ExpandTy
, std::distance(HPB
, HPE
),
1300 Twine(IVName
) + ".iv");
1301 rememberInstruction(PN
);
1303 // Create the step instructions and populate the PHI.
1304 for (pred_iterator HPI
= HPB
; HPI
!= HPE
; ++HPI
) {
1305 BasicBlock
*Pred
= *HPI
;
1307 // Add a start value.
1308 if (!L
->contains(Pred
)) {
1309 PN
->addIncoming(StartV
, Pred
);
1313 // Create a step value and add it to the PHI.
1314 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1315 // instructions at IVIncInsertPos.
1316 Instruction
*InsertPos
= L
== IVIncInsertLoop
?
1317 IVIncInsertPos
: Pred
->getTerminator();
1318 Builder
.SetInsertPoint(InsertPos
);
1319 Value
*IncV
= expandIVInc(PN
, StepV
, L
, ExpandTy
, IntTy
, useSubtract
);
1321 if (isa
<OverflowingBinaryOperator
>(IncV
)) {
1323 cast
<BinaryOperator
>(IncV
)->setHasNoUnsignedWrap();
1325 cast
<BinaryOperator
>(IncV
)->setHasNoSignedWrap();
1327 PN
->addIncoming(IncV
, Pred
);
1330 // After expanding subexpressions, restore the PostIncLoops set so the caller
1331 // can ensure that IVIncrement dominates the current uses.
1332 PostIncLoops
= SavedPostIncLoops
;
1334 // Remember this PHI, even in post-inc mode.
1335 InsertedValues
.insert(PN
);
1340 Value
*SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr
*S
) {
1341 Type
*STy
= S
->getType();
1342 Type
*IntTy
= SE
.getEffectiveSCEVType(STy
);
1343 const Loop
*L
= S
->getLoop();
1345 // Determine a normalized form of this expression, which is the expression
1346 // before any post-inc adjustment is made.
1347 const SCEVAddRecExpr
*Normalized
= S
;
1348 if (PostIncLoops
.count(L
)) {
1349 PostIncLoopSet Loops
;
1351 Normalized
= cast
<SCEVAddRecExpr
>(normalizeForPostIncUse(S
, Loops
, SE
));
1354 // Strip off any non-loop-dominating component from the addrec start.
1355 const SCEV
*Start
= Normalized
->getStart();
1356 const SCEV
*PostLoopOffset
= nullptr;
1357 if (!SE
.properlyDominates(Start
, L
->getHeader())) {
1358 PostLoopOffset
= Start
;
1359 Start
= SE
.getConstant(Normalized
->getType(), 0);
1360 Normalized
= cast
<SCEVAddRecExpr
>(
1361 SE
.getAddRecExpr(Start
, Normalized
->getStepRecurrence(SE
),
1362 Normalized
->getLoop(),
1363 Normalized
->getNoWrapFlags(SCEV::FlagNW
)));
1366 // Strip off any non-loop-dominating component from the addrec step.
1367 const SCEV
*Step
= Normalized
->getStepRecurrence(SE
);
1368 const SCEV
*PostLoopScale
= nullptr;
1369 if (!SE
.dominates(Step
, L
->getHeader())) {
1370 PostLoopScale
= Step
;
1371 Step
= SE
.getConstant(Normalized
->getType(), 1);
1372 if (!Start
->isZero()) {
1373 // The normalization below assumes that Start is constant zero, so if
1374 // it isn't re-associate Start to PostLoopOffset.
1375 assert(!PostLoopOffset
&& "Start not-null but PostLoopOffset set?");
1376 PostLoopOffset
= Start
;
1377 Start
= SE
.getConstant(Normalized
->getType(), 0);
1380 cast
<SCEVAddRecExpr
>(SE
.getAddRecExpr(
1381 Start
, Step
, Normalized
->getLoop(),
1382 Normalized
->getNoWrapFlags(SCEV::FlagNW
)));
1385 // Expand the core addrec. If we need post-loop scaling, force it to
1386 // expand to an integer type to avoid the need for additional casting.
1387 Type
*ExpandTy
= PostLoopScale
? IntTy
: STy
;
1388 // We can't use a pointer type for the addrec if the pointer type is
1390 Type
*AddRecPHIExpandTy
=
1391 DL
.isNonIntegralPointerType(STy
) ? Normalized
->getType() : ExpandTy
;
1393 // In some cases, we decide to reuse an existing phi node but need to truncate
1394 // it and/or invert the step.
1395 Type
*TruncTy
= nullptr;
1396 bool InvertStep
= false;
1397 PHINode
*PN
= getAddRecExprPHILiterally(Normalized
, L
, AddRecPHIExpandTy
,
1398 IntTy
, TruncTy
, InvertStep
);
1400 // Accommodate post-inc mode, if necessary.
1402 if (!PostIncLoops
.count(L
))
1405 // In PostInc mode, use the post-incremented value.
1406 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1407 assert(LatchBlock
&& "PostInc mode requires a unique loop latch!");
1408 Result
= PN
->getIncomingValueForBlock(LatchBlock
);
1410 // For an expansion to use the postinc form, the client must call
1411 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1412 // or dominated by IVIncInsertPos.
1413 if (isa
<Instruction
>(Result
) &&
1414 !SE
.DT
.dominates(cast
<Instruction
>(Result
),
1415 &*Builder
.GetInsertPoint())) {
1416 // The induction variable's postinc expansion does not dominate this use.
1417 // IVUsers tries to prevent this case, so it is rare. However, it can
1418 // happen when an IVUser outside the loop is not dominated by the latch
1419 // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1420 // all cases. Consider a phi outside whose operand is replaced during
1421 // expansion with the value of the postinc user. Without fundamentally
1422 // changing the way postinc users are tracked, the only remedy is
1423 // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1424 // but hopefully expandCodeFor handles that.
1426 !ExpandTy
->isPointerTy() && Step
->isNonConstantNegative();
1428 Step
= SE
.getNegativeSCEV(Step
);
1431 // Expand the step somewhere that dominates the loop header.
1432 SCEVInsertPointGuard
Guard(Builder
, this);
1433 StepV
= expandCodeFor(Step
, IntTy
, &L
->getHeader()->front());
1435 Result
= expandIVInc(PN
, StepV
, L
, ExpandTy
, IntTy
, useSubtract
);
1439 // We have decided to reuse an induction variable of a dominating loop. Apply
1440 // truncation and/or inversion of the step.
1442 Type
*ResTy
= Result
->getType();
1443 // Normalize the result type.
1444 if (ResTy
!= SE
.getEffectiveSCEVType(ResTy
))
1445 Result
= InsertNoopCastOfTo(Result
, SE
.getEffectiveSCEVType(ResTy
));
1446 // Truncate the result.
1447 if (TruncTy
!= Result
->getType()) {
1448 Result
= Builder
.CreateTrunc(Result
, TruncTy
);
1449 rememberInstruction(Result
);
1451 // Invert the result.
1453 Result
= Builder
.CreateSub(expandCodeFor(Normalized
->getStart(), TruncTy
),
1455 rememberInstruction(Result
);
1459 // Re-apply any non-loop-dominating scale.
1460 if (PostLoopScale
) {
1461 assert(S
->isAffine() && "Can't linearly scale non-affine recurrences.");
1462 Result
= InsertNoopCastOfTo(Result
, IntTy
);
1463 Result
= Builder
.CreateMul(Result
,
1464 expandCodeFor(PostLoopScale
, IntTy
));
1465 rememberInstruction(Result
);
1468 // Re-apply any non-loop-dominating offset.
1469 if (PostLoopOffset
) {
1470 if (PointerType
*PTy
= dyn_cast
<PointerType
>(ExpandTy
)) {
1471 if (Result
->getType()->isIntegerTy()) {
1472 Value
*Base
= expandCodeFor(PostLoopOffset
, ExpandTy
);
1473 Result
= expandAddToGEP(SE
.getUnknown(Result
), PTy
, IntTy
, Base
);
1475 Result
= expandAddToGEP(PostLoopOffset
, PTy
, IntTy
, Result
);
1478 Result
= InsertNoopCastOfTo(Result
, IntTy
);
1479 Result
= Builder
.CreateAdd(Result
,
1480 expandCodeFor(PostLoopOffset
, IntTy
));
1481 rememberInstruction(Result
);
1488 Value
*SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr
*S
) {
1489 // In canonical mode we compute the addrec as an expression of a canonical IV
1490 // using evaluateAtIteration and expand the resulting SCEV expression. This
1491 // way we avoid introducing new IVs to carry on the comutation of the addrec
1492 // throughout the loop.
1494 // For nested addrecs evaluateAtIteration might need a canonical IV of a
1495 // type wider than the addrec itself. Emitting a canonical IV of the
1496 // proper type might produce non-legal types, for example expanding an i64
1497 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1498 // back to non-canonical mode for nested addrecs.
1499 if (!CanonicalMode
|| (S
->getNumOperands() > 2))
1500 return expandAddRecExprLiterally(S
);
1502 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1503 const Loop
*L
= S
->getLoop();
1505 // First check for an existing canonical IV in a suitable type.
1506 PHINode
*CanonicalIV
= nullptr;
1507 if (PHINode
*PN
= L
->getCanonicalInductionVariable())
1508 if (SE
.getTypeSizeInBits(PN
->getType()) >= SE
.getTypeSizeInBits(Ty
))
1511 // Rewrite an AddRec in terms of the canonical induction variable, if
1512 // its type is more narrow.
1514 SE
.getTypeSizeInBits(CanonicalIV
->getType()) >
1515 SE
.getTypeSizeInBits(Ty
)) {
1516 SmallVector
<const SCEV
*, 4> NewOps(S
->getNumOperands());
1517 for (unsigned i
= 0, e
= S
->getNumOperands(); i
!= e
; ++i
)
1518 NewOps
[i
] = SE
.getAnyExtendExpr(S
->op_begin()[i
], CanonicalIV
->getType());
1519 Value
*V
= expand(SE
.getAddRecExpr(NewOps
, S
->getLoop(),
1520 S
->getNoWrapFlags(SCEV::FlagNW
)));
1521 BasicBlock::iterator NewInsertPt
=
1522 findInsertPointAfter(cast
<Instruction
>(V
), Builder
.GetInsertBlock());
1523 V
= expandCodeFor(SE
.getTruncateExpr(SE
.getUnknown(V
), Ty
), nullptr,
1528 // {X,+,F} --> X + {0,+,F}
1529 if (!S
->getStart()->isZero()) {
1530 SmallVector
<const SCEV
*, 4> NewOps(S
->op_begin(), S
->op_end());
1531 NewOps
[0] = SE
.getConstant(Ty
, 0);
1532 const SCEV
*Rest
= SE
.getAddRecExpr(NewOps
, L
,
1533 S
->getNoWrapFlags(SCEV::FlagNW
));
1535 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1536 // comments on expandAddToGEP for details.
1537 const SCEV
*Base
= S
->getStart();
1538 // Dig into the expression to find the pointer base for a GEP.
1539 const SCEV
*ExposedRest
= Rest
;
1540 ExposePointerBase(Base
, ExposedRest
, SE
);
1541 // If we found a pointer, expand the AddRec with a GEP.
1542 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Base
->getType())) {
1543 // Make sure the Base isn't something exotic, such as a multiplied
1544 // or divided pointer value. In those cases, the result type isn't
1545 // actually a pointer type.
1546 if (!isa
<SCEVMulExpr
>(Base
) && !isa
<SCEVUDivExpr
>(Base
)) {
1547 Value
*StartV
= expand(Base
);
1548 assert(StartV
->getType() == PTy
&& "Pointer type mismatch for GEP!");
1549 return expandAddToGEP(ExposedRest
, PTy
, Ty
, StartV
);
1553 // Just do a normal add. Pre-expand the operands to suppress folding.
1555 // The LHS and RHS values are factored out of the expand call to make the
1556 // output independent of the argument evaluation order.
1557 const SCEV
*AddExprLHS
= SE
.getUnknown(expand(S
->getStart()));
1558 const SCEV
*AddExprRHS
= SE
.getUnknown(expand(Rest
));
1559 return expand(SE
.getAddExpr(AddExprLHS
, AddExprRHS
));
1562 // If we don't yet have a canonical IV, create one.
1564 // Create and insert the PHI node for the induction variable in the
1566 BasicBlock
*Header
= L
->getHeader();
1567 pred_iterator HPB
= pred_begin(Header
), HPE
= pred_end(Header
);
1568 CanonicalIV
= PHINode::Create(Ty
, std::distance(HPB
, HPE
), "indvar",
1570 rememberInstruction(CanonicalIV
);
1572 SmallSet
<BasicBlock
*, 4> PredSeen
;
1573 Constant
*One
= ConstantInt::get(Ty
, 1);
1574 for (pred_iterator HPI
= HPB
; HPI
!= HPE
; ++HPI
) {
1575 BasicBlock
*HP
= *HPI
;
1576 if (!PredSeen
.insert(HP
).second
) {
1577 // There must be an incoming value for each predecessor, even the
1579 CanonicalIV
->addIncoming(CanonicalIV
->getIncomingValueForBlock(HP
), HP
);
1583 if (L
->contains(HP
)) {
1584 // Insert a unit add instruction right before the terminator
1585 // corresponding to the back-edge.
1586 Instruction
*Add
= BinaryOperator::CreateAdd(CanonicalIV
, One
,
1588 HP
->getTerminator());
1589 Add
->setDebugLoc(HP
->getTerminator()->getDebugLoc());
1590 rememberInstruction(Add
);
1591 CanonicalIV
->addIncoming(Add
, HP
);
1593 CanonicalIV
->addIncoming(Constant::getNullValue(Ty
), HP
);
1598 // {0,+,1} --> Insert a canonical induction variable into the loop!
1599 if (S
->isAffine() && S
->getOperand(1)->isOne()) {
1600 assert(Ty
== SE
.getEffectiveSCEVType(CanonicalIV
->getType()) &&
1601 "IVs with types different from the canonical IV should "
1602 "already have been handled!");
1606 // {0,+,F} --> {0,+,1} * F
1608 // If this is a simple linear addrec, emit it now as a special case.
1609 if (S
->isAffine()) // {0,+,F} --> i*F
1611 expand(SE
.getTruncateOrNoop(
1612 SE
.getMulExpr(SE
.getUnknown(CanonicalIV
),
1613 SE
.getNoopOrAnyExtend(S
->getOperand(1),
1614 CanonicalIV
->getType())),
1617 // If this is a chain of recurrences, turn it into a closed form, using the
1618 // folders, then expandCodeFor the closed form. This allows the folders to
1619 // simplify the expression without having to build a bunch of special code
1620 // into this folder.
1621 const SCEV
*IH
= SE
.getUnknown(CanonicalIV
); // Get I as a "symbolic" SCEV.
1623 // Promote S up to the canonical IV type, if the cast is foldable.
1624 const SCEV
*NewS
= S
;
1625 const SCEV
*Ext
= SE
.getNoopOrAnyExtend(S
, CanonicalIV
->getType());
1626 if (isa
<SCEVAddRecExpr
>(Ext
))
1629 const SCEV
*V
= cast
<SCEVAddRecExpr
>(NewS
)->evaluateAtIteration(IH
, SE
);
1630 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1632 // Truncate the result down to the original type, if needed.
1633 const SCEV
*T
= SE
.getTruncateOrNoop(V
, Ty
);
1637 Value
*SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr
*S
) {
1638 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1639 Value
*V
= expandCodeFor(S
->getOperand(),
1640 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1641 Value
*I
= Builder
.CreateTrunc(V
, Ty
);
1642 rememberInstruction(I
);
1646 Value
*SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr
*S
) {
1647 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1648 Value
*V
= expandCodeFor(S
->getOperand(),
1649 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1650 Value
*I
= Builder
.CreateZExt(V
, Ty
);
1651 rememberInstruction(I
);
1655 Value
*SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr
*S
) {
1656 Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1657 Value
*V
= expandCodeFor(S
->getOperand(),
1658 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1659 Value
*I
= Builder
.CreateSExt(V
, Ty
);
1660 rememberInstruction(I
);
1664 Value
*SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr
*S
) {
1665 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands()-1));
1666 Type
*Ty
= LHS
->getType();
1667 for (int i
= S
->getNumOperands()-2; i
>= 0; --i
) {
1668 // In the case of mixed integer and pointer types, do the
1669 // rest of the comparisons as integer.
1670 Type
*OpTy
= S
->getOperand(i
)->getType();
1671 if (OpTy
->isIntegerTy() != Ty
->isIntegerTy()) {
1672 Ty
= SE
.getEffectiveSCEVType(Ty
);
1673 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1675 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1676 Value
*ICmp
= Builder
.CreateICmpSGT(LHS
, RHS
);
1677 rememberInstruction(ICmp
);
1678 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "smax");
1679 rememberInstruction(Sel
);
1682 // In the case of mixed integer and pointer types, cast the
1683 // final result back to the pointer type.
1684 if (LHS
->getType() != S
->getType())
1685 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1689 Value
*SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr
*S
) {
1690 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands()-1));
1691 Type
*Ty
= LHS
->getType();
1692 for (int i
= S
->getNumOperands()-2; i
>= 0; --i
) {
1693 // In the case of mixed integer and pointer types, do the
1694 // rest of the comparisons as integer.
1695 Type
*OpTy
= S
->getOperand(i
)->getType();
1696 if (OpTy
->isIntegerTy() != Ty
->isIntegerTy()) {
1697 Ty
= SE
.getEffectiveSCEVType(Ty
);
1698 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1700 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1701 Value
*ICmp
= Builder
.CreateICmpUGT(LHS
, RHS
);
1702 rememberInstruction(ICmp
);
1703 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "umax");
1704 rememberInstruction(Sel
);
1707 // In the case of mixed integer and pointer types, cast the
1708 // final result back to the pointer type.
1709 if (LHS
->getType() != S
->getType())
1710 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1714 Value
*SCEVExpander::visitSMinExpr(const SCEVSMinExpr
*S
) {
1715 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands() - 1));
1716 Type
*Ty
= LHS
->getType();
1717 for (int i
= S
->getNumOperands() - 2; i
>= 0; --i
) {
1718 // In the case of mixed integer and pointer types, do the
1719 // rest of the comparisons as integer.
1720 Type
*OpTy
= S
->getOperand(i
)->getType();
1721 if (OpTy
->isIntegerTy() != Ty
->isIntegerTy()) {
1722 Ty
= SE
.getEffectiveSCEVType(Ty
);
1723 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1725 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1726 Value
*ICmp
= Builder
.CreateICmpSLT(LHS
, RHS
);
1727 rememberInstruction(ICmp
);
1728 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "smin");
1729 rememberInstruction(Sel
);
1732 // In the case of mixed integer and pointer types, cast the
1733 // final result back to the pointer type.
1734 if (LHS
->getType() != S
->getType())
1735 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1739 Value
*SCEVExpander::visitUMinExpr(const SCEVUMinExpr
*S
) {
1740 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands() - 1));
1741 Type
*Ty
= LHS
->getType();
1742 for (int i
= S
->getNumOperands() - 2; i
>= 0; --i
) {
1743 // In the case of mixed integer and pointer types, do the
1744 // rest of the comparisons as integer.
1745 Type
*OpTy
= S
->getOperand(i
)->getType();
1746 if (OpTy
->isIntegerTy() != Ty
->isIntegerTy()) {
1747 Ty
= SE
.getEffectiveSCEVType(Ty
);
1748 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1750 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1751 Value
*ICmp
= Builder
.CreateICmpULT(LHS
, RHS
);
1752 rememberInstruction(ICmp
);
1753 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "umin");
1754 rememberInstruction(Sel
);
1757 // In the case of mixed integer and pointer types, cast the
1758 // final result back to the pointer type.
1759 if (LHS
->getType() != S
->getType())
1760 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1764 Value
*SCEVExpander::expandCodeFor(const SCEV
*SH
, Type
*Ty
,
1767 return expandCodeFor(SH
, Ty
);
1770 Value
*SCEVExpander::expandCodeFor(const SCEV
*SH
, Type
*Ty
) {
1771 // Expand the code for this SCEV.
1772 Value
*V
= expand(SH
);
1774 assert(SE
.getTypeSizeInBits(Ty
) == SE
.getTypeSizeInBits(SH
->getType()) &&
1775 "non-trivial casts should be done with the SCEVs directly!");
1776 V
= InsertNoopCastOfTo(V
, Ty
);
1781 ScalarEvolution::ValueOffsetPair
1782 SCEVExpander::FindValueInExprValueMap(const SCEV
*S
,
1783 const Instruction
*InsertPt
) {
1784 SetVector
<ScalarEvolution::ValueOffsetPair
> *Set
= SE
.getSCEVValues(S
);
1785 // If the expansion is not in CanonicalMode, and the SCEV contains any
1786 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1787 if (CanonicalMode
|| !SE
.containsAddRecurrence(S
)) {
1788 // If S is scConstant, it may be worse to reuse an existing Value.
1789 if (S
->getSCEVType() != scConstant
&& Set
) {
1790 // Choose a Value from the set which dominates the insertPt.
1791 // insertPt should be inside the Value's parent loop so as not to break
1793 for (auto const &VOPair
: *Set
) {
1794 Value
*V
= VOPair
.first
;
1795 ConstantInt
*Offset
= VOPair
.second
;
1796 Instruction
*EntInst
= nullptr;
1797 if (V
&& isa
<Instruction
>(V
) && (EntInst
= cast
<Instruction
>(V
)) &&
1798 S
->getType() == V
->getType() &&
1799 EntInst
->getFunction() == InsertPt
->getFunction() &&
1800 SE
.DT
.dominates(EntInst
, InsertPt
) &&
1801 (SE
.LI
.getLoopFor(EntInst
->getParent()) == nullptr ||
1802 SE
.LI
.getLoopFor(EntInst
->getParent())->contains(InsertPt
)))
1807 return {nullptr, nullptr};
1810 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1811 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1812 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1813 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1814 // the expansion will try to reuse Value from ExprValueMap, and only when it
1815 // fails, expand the SCEV literally.
1816 Value
*SCEVExpander::expand(const SCEV
*S
) {
1817 // Compute an insertion point for this SCEV object. Hoist the instructions
1818 // as far out in the loop nest as possible.
1819 Instruction
*InsertPt
= &*Builder
.GetInsertPoint();
1821 // We can move insertion point only if there is no div or rem operations
1822 // otherwise we are risky to move it over the check for zero denominator.
1823 auto SafeToHoist
= [](const SCEV
*S
) {
1824 return !SCEVExprContains(S
, [](const SCEV
*S
) {
1825 if (const auto *D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
1826 if (const auto *SC
= dyn_cast
<SCEVConstant
>(D
->getRHS()))
1827 // Division by non-zero constants can be hoisted.
1828 return SC
->getValue()->isZero();
1829 // All other divisions should not be moved as they may be
1830 // divisions by zero and should be kept within the
1831 // conditions of the surrounding loops that guard their
1832 // execution (see PR35406).
1838 if (SafeToHoist(S
)) {
1839 for (Loop
*L
= SE
.LI
.getLoopFor(Builder
.GetInsertBlock());;
1840 L
= L
->getParentLoop()) {
1841 if (SE
.isLoopInvariant(S
, L
)) {
1843 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
1844 InsertPt
= Preheader
->getTerminator();
1846 // LSR sets the insertion point for AddRec start/step values to the
1847 // block start to simplify value reuse, even though it's an invalid
1848 // position. SCEVExpander must correct for this in all cases.
1849 InsertPt
= &*L
->getHeader()->getFirstInsertionPt();
1851 // If the SCEV is computable at this level, insert it into the header
1852 // after the PHIs (and after any other instructions that we've inserted
1853 // there) so that it is guaranteed to dominate any user inside the loop.
1854 if (L
&& SE
.hasComputableLoopEvolution(S
, L
) && !PostIncLoops
.count(L
))
1855 InsertPt
= &*L
->getHeader()->getFirstInsertionPt();
1856 while (InsertPt
->getIterator() != Builder
.GetInsertPoint() &&
1857 (isInsertedInstruction(InsertPt
) ||
1858 isa
<DbgInfoIntrinsic
>(InsertPt
)))
1859 InsertPt
= &*std::next(InsertPt
->getIterator());
1865 // IndVarSimplify sometimes sets the insertion point at the block start, even
1866 // when there are PHIs at that point. We must correct for this.
1867 if (isa
<PHINode
>(*InsertPt
))
1868 InsertPt
= &*InsertPt
->getParent()->getFirstInsertionPt();
1870 // Check to see if we already expanded this here.
1871 auto I
= InsertedExpressions
.find(std::make_pair(S
, InsertPt
));
1872 if (I
!= InsertedExpressions
.end())
1875 SCEVInsertPointGuard
Guard(Builder
, this);
1876 Builder
.SetInsertPoint(InsertPt
);
1878 // Expand the expression into instructions.
1879 ScalarEvolution::ValueOffsetPair VO
= FindValueInExprValueMap(S
, InsertPt
);
1880 Value
*V
= VO
.first
;
1884 else if (VO
.second
) {
1885 if (PointerType
*Vty
= dyn_cast
<PointerType
>(V
->getType())) {
1886 Type
*Ety
= Vty
->getPointerElementType();
1887 int64_t Offset
= VO
.second
->getSExtValue();
1888 int64_t ESize
= SE
.getTypeSizeInBits(Ety
);
1889 if ((Offset
* 8) % ESize
== 0) {
1891 ConstantInt::getSigned(VO
.second
->getType(), -(Offset
* 8) / ESize
);
1892 V
= Builder
.CreateGEP(Ety
, V
, Idx
, "scevgep");
1895 ConstantInt::getSigned(VO
.second
->getType(), -Offset
);
1896 unsigned AS
= Vty
->getAddressSpace();
1897 V
= Builder
.CreateBitCast(V
, Type::getInt8PtrTy(SE
.getContext(), AS
));
1898 V
= Builder
.CreateGEP(Type::getInt8Ty(SE
.getContext()), V
, Idx
,
1900 V
= Builder
.CreateBitCast(V
, Vty
);
1903 V
= Builder
.CreateSub(V
, VO
.second
);
1906 // Remember the expanded value for this SCEV at this location.
1908 // This is independent of PostIncLoops. The mapped value simply materializes
1909 // the expression at this insertion point. If the mapped value happened to be
1910 // a postinc expansion, it could be reused by a non-postinc user, but only if
1911 // its insertion point was already at the head of the loop.
1912 InsertedExpressions
[std::make_pair(S
, InsertPt
)] = V
;
1916 void SCEVExpander::rememberInstruction(Value
*I
) {
1917 if (!PostIncLoops
.empty())
1918 InsertedPostIncValues
.insert(I
);
1920 InsertedValues
.insert(I
);
1923 /// getOrInsertCanonicalInductionVariable - This method returns the
1924 /// canonical induction variable of the specified type for the specified
1925 /// loop (inserting one if there is none). A canonical induction variable
1926 /// starts at zero and steps by one on each iteration.
1928 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop
*L
,
1930 assert(Ty
->isIntegerTy() && "Can only insert integer induction variables!");
1932 // Build a SCEV for {0,+,1}<L>.
1933 // Conservatively use FlagAnyWrap for now.
1934 const SCEV
*H
= SE
.getAddRecExpr(SE
.getConstant(Ty
, 0),
1935 SE
.getConstant(Ty
, 1), L
, SCEV::FlagAnyWrap
);
1937 // Emit code for it.
1938 SCEVInsertPointGuard
Guard(Builder
, this);
1940 cast
<PHINode
>(expandCodeFor(H
, nullptr, &L
->getHeader()->front()));
1945 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1946 /// replace them with their most canonical representative. Return the number of
1947 /// phis eliminated.
1949 /// This does not depend on any SCEVExpander state but should be used in
1950 /// the same context that SCEVExpander is used.
1952 SCEVExpander::replaceCongruentIVs(Loop
*L
, const DominatorTree
*DT
,
1953 SmallVectorImpl
<WeakTrackingVH
> &DeadInsts
,
1954 const TargetTransformInfo
*TTI
) {
1955 // Find integer phis in order of increasing width.
1956 SmallVector
<PHINode
*, 8> Phis
;
1957 for (PHINode
&PN
: L
->getHeader()->phis())
1958 Phis
.push_back(&PN
);
1961 llvm::sort(Phis
, [](Value
*LHS
, Value
*RHS
) {
1962 // Put pointers at the back and make sure pointer < pointer = false.
1963 if (!LHS
->getType()->isIntegerTy() || !RHS
->getType()->isIntegerTy())
1964 return RHS
->getType()->isIntegerTy() && !LHS
->getType()->isIntegerTy();
1965 return RHS
->getType()->getPrimitiveSizeInBits() <
1966 LHS
->getType()->getPrimitiveSizeInBits();
1969 unsigned NumElim
= 0;
1970 DenseMap
<const SCEV
*, PHINode
*> ExprToIVMap
;
1971 // Process phis from wide to narrow. Map wide phis to their truncation
1972 // so narrow phis can reuse them.
1973 for (PHINode
*Phi
: Phis
) {
1974 auto SimplifyPHINode
= [&](PHINode
*PN
) -> Value
* {
1975 if (Value
*V
= SimplifyInstruction(PN
, {DL
, &SE
.TLI
, &SE
.DT
, &SE
.AC
}))
1977 if (!SE
.isSCEVable(PN
->getType()))
1979 auto *Const
= dyn_cast
<SCEVConstant
>(SE
.getSCEV(PN
));
1982 return Const
->getValue();
1985 // Fold constant phis. They may be congruent to other constant phis and
1986 // would confuse the logic below that expects proper IVs.
1987 if (Value
*V
= SimplifyPHINode(Phi
)) {
1988 if (V
->getType() != Phi
->getType())
1990 Phi
->replaceAllUsesWith(V
);
1991 DeadInsts
.emplace_back(Phi
);
1993 DEBUG_WITH_TYPE(DebugType
, dbgs()
1994 << "INDVARS: Eliminated constant iv: " << *Phi
<< '\n');
1998 if (!SE
.isSCEVable(Phi
->getType()))
2001 PHINode
*&OrigPhiRef
= ExprToIVMap
[SE
.getSCEV(Phi
)];
2004 if (Phi
->getType()->isIntegerTy() && TTI
&&
2005 TTI
->isTruncateFree(Phi
->getType(), Phis
.back()->getType())) {
2006 // This phi can be freely truncated to the narrowest phi type. Map the
2007 // truncated expression to it so it will be reused for narrow types.
2008 const SCEV
*TruncExpr
=
2009 SE
.getTruncateExpr(SE
.getSCEV(Phi
), Phis
.back()->getType());
2010 ExprToIVMap
[TruncExpr
] = Phi
;
2015 // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2017 if (OrigPhiRef
->getType()->isPointerTy() != Phi
->getType()->isPointerTy())
2020 if (BasicBlock
*LatchBlock
= L
->getLoopLatch()) {
2021 Instruction
*OrigInc
= dyn_cast
<Instruction
>(
2022 OrigPhiRef
->getIncomingValueForBlock(LatchBlock
));
2023 Instruction
*IsomorphicInc
=
2024 dyn_cast
<Instruction
>(Phi
->getIncomingValueForBlock(LatchBlock
));
2026 if (OrigInc
&& IsomorphicInc
) {
2027 // If this phi has the same width but is more canonical, replace the
2028 // original with it. As part of the "more canonical" determination,
2029 // respect a prior decision to use an IV chain.
2030 if (OrigPhiRef
->getType() == Phi
->getType() &&
2031 !(ChainedPhis
.count(Phi
) ||
2032 isExpandedAddRecExprPHI(OrigPhiRef
, OrigInc
, L
)) &&
2033 (ChainedPhis
.count(Phi
) ||
2034 isExpandedAddRecExprPHI(Phi
, IsomorphicInc
, L
))) {
2035 std::swap(OrigPhiRef
, Phi
);
2036 std::swap(OrigInc
, IsomorphicInc
);
2038 // Replacing the congruent phi is sufficient because acyclic
2039 // redundancy elimination, CSE/GVN, should handle the
2040 // rest. However, once SCEV proves that a phi is congruent,
2041 // it's often the head of an IV user cycle that is isomorphic
2042 // with the original phi. It's worth eagerly cleaning up the
2043 // common case of a single IV increment so that DeleteDeadPHIs
2044 // can remove cycles that had postinc uses.
2045 const SCEV
*TruncExpr
=
2046 SE
.getTruncateOrNoop(SE
.getSCEV(OrigInc
), IsomorphicInc
->getType());
2047 if (OrigInc
!= IsomorphicInc
&&
2048 TruncExpr
== SE
.getSCEV(IsomorphicInc
) &&
2049 SE
.LI
.replacementPreservesLCSSAForm(IsomorphicInc
, OrigInc
) &&
2050 hoistIVInc(OrigInc
, IsomorphicInc
)) {
2051 DEBUG_WITH_TYPE(DebugType
,
2052 dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2053 << *IsomorphicInc
<< '\n');
2054 Value
*NewInc
= OrigInc
;
2055 if (OrigInc
->getType() != IsomorphicInc
->getType()) {
2056 Instruction
*IP
= nullptr;
2057 if (PHINode
*PN
= dyn_cast
<PHINode
>(OrigInc
))
2058 IP
= &*PN
->getParent()->getFirstInsertionPt();
2060 IP
= OrigInc
->getNextNode();
2062 IRBuilder
<> Builder(IP
);
2063 Builder
.SetCurrentDebugLocation(IsomorphicInc
->getDebugLoc());
2064 NewInc
= Builder
.CreateTruncOrBitCast(
2065 OrigInc
, IsomorphicInc
->getType(), IVName
);
2067 IsomorphicInc
->replaceAllUsesWith(NewInc
);
2068 DeadInsts
.emplace_back(IsomorphicInc
);
2072 DEBUG_WITH_TYPE(DebugType
, dbgs() << "INDVARS: Eliminated congruent iv: "
2075 Value
*NewIV
= OrigPhiRef
;
2076 if (OrigPhiRef
->getType() != Phi
->getType()) {
2077 IRBuilder
<> Builder(&*L
->getHeader()->getFirstInsertionPt());
2078 Builder
.SetCurrentDebugLocation(Phi
->getDebugLoc());
2079 NewIV
= Builder
.CreateTruncOrBitCast(OrigPhiRef
, Phi
->getType(), IVName
);
2081 Phi
->replaceAllUsesWith(NewIV
);
2082 DeadInsts
.emplace_back(Phi
);
2087 Value
*SCEVExpander::getExactExistingExpansion(const SCEV
*S
,
2088 const Instruction
*At
, Loop
*L
) {
2089 Optional
<ScalarEvolution::ValueOffsetPair
> VO
=
2090 getRelatedExistingExpansion(S
, At
, L
);
2091 if (VO
&& VO
.getValue().second
== nullptr)
2092 return VO
.getValue().first
;
2096 Optional
<ScalarEvolution::ValueOffsetPair
>
2097 SCEVExpander::getRelatedExistingExpansion(const SCEV
*S
, const Instruction
*At
,
2099 using namespace llvm::PatternMatch
;
2101 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
2102 L
->getExitingBlocks(ExitingBlocks
);
2104 // Look for suitable value in simple conditions at the loop exits.
2105 for (BasicBlock
*BB
: ExitingBlocks
) {
2106 ICmpInst::Predicate Pred
;
2107 Instruction
*LHS
, *RHS
;
2109 if (!match(BB
->getTerminator(),
2110 m_Br(m_ICmp(Pred
, m_Instruction(LHS
), m_Instruction(RHS
)),
2111 m_BasicBlock(), m_BasicBlock())))
2114 if (SE
.getSCEV(LHS
) == S
&& SE
.DT
.dominates(LHS
, At
))
2115 return ScalarEvolution::ValueOffsetPair(LHS
, nullptr);
2117 if (SE
.getSCEV(RHS
) == S
&& SE
.DT
.dominates(RHS
, At
))
2118 return ScalarEvolution::ValueOffsetPair(RHS
, nullptr);
2121 // Use expand's logic which is used for reusing a previous Value in
2123 ScalarEvolution::ValueOffsetPair VO
= FindValueInExprValueMap(S
, At
);
2127 // There is potential to make this significantly smarter, but this simple
2128 // heuristic already gets some interesting cases.
2130 // Can not find suitable value.
2134 bool SCEVExpander::isHighCostExpansionHelper(
2135 const SCEV
*S
, Loop
*L
, const Instruction
*At
,
2136 SmallPtrSetImpl
<const SCEV
*> &Processed
) {
2138 // If we can find an existing value for this scev available at the point "At"
2139 // then consider the expression cheap.
2140 if (At
&& getRelatedExistingExpansion(S
, At
, L
))
2143 // Zero/One operand expressions
2144 switch (S
->getSCEVType()) {
2149 return isHighCostExpansionHelper(cast
<SCEVTruncateExpr
>(S
)->getOperand(),
2152 return isHighCostExpansionHelper(cast
<SCEVZeroExtendExpr
>(S
)->getOperand(),
2155 return isHighCostExpansionHelper(cast
<SCEVSignExtendExpr
>(S
)->getOperand(),
2159 if (!Processed
.insert(S
).second
)
2162 if (auto *UDivExpr
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2163 // If the divisor is a power of two and the SCEV type fits in a native
2164 // integer (and the LHS not expensive), consider the division cheap
2165 // irrespective of whether it occurs in the user code since it can be
2166 // lowered into a right shift.
2167 if (auto *SC
= dyn_cast
<SCEVConstant
>(UDivExpr
->getRHS()))
2168 if (SC
->getAPInt().isPowerOf2()) {
2169 if (isHighCostExpansionHelper(UDivExpr
->getLHS(), L
, At
, Processed
))
2171 const DataLayout
&DL
=
2172 L
->getHeader()->getParent()->getParent()->getDataLayout();
2173 unsigned Width
= cast
<IntegerType
>(UDivExpr
->getType())->getBitWidth();
2174 return DL
.isIllegalInteger(Width
);
2177 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2178 // HowManyLessThans produced to compute a precise expression, rather than a
2179 // UDiv from the user's code. If we can't find a UDiv in the code with some
2180 // simple searching, assume the former consider UDivExpr expensive to
2182 BasicBlock
*ExitingBB
= L
->getExitingBlock();
2186 // At the beginning of this function we already tried to find existing value
2187 // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
2188 // involving division. This is just a simple search heuristic.
2190 At
= &ExitingBB
->back();
2191 if (!getRelatedExistingExpansion(
2192 SE
.getAddExpr(S
, SE
.getConstant(S
->getType(), 1)), At
, L
))
2196 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
2197 // the exit condition.
2198 if (isa
<SCEVMinMaxExpr
>(S
))
2201 // Recurse past nary expressions, which commonly occur in the
2202 // BackedgeTakenCount. They may already exist in program code, and if not,
2203 // they are not too expensive rematerialize.
2204 if (const SCEVNAryExpr
*NAry
= dyn_cast
<SCEVNAryExpr
>(S
)) {
2205 for (auto *Op
: NAry
->operands())
2206 if (isHighCostExpansionHelper(Op
, L
, At
, Processed
))
2210 // If we haven't recognized an expensive SCEV pattern, assume it's an
2211 // expression produced by program code.
2215 Value
*SCEVExpander::expandCodeForPredicate(const SCEVPredicate
*Pred
,
2218 switch (Pred
->getKind()) {
2219 case SCEVPredicate::P_Union
:
2220 return expandUnionPredicate(cast
<SCEVUnionPredicate
>(Pred
), IP
);
2221 case SCEVPredicate::P_Equal
:
2222 return expandEqualPredicate(cast
<SCEVEqualPredicate
>(Pred
), IP
);
2223 case SCEVPredicate::P_Wrap
: {
2224 auto *AddRecPred
= cast
<SCEVWrapPredicate
>(Pred
);
2225 return expandWrapPredicate(AddRecPred
, IP
);
2228 llvm_unreachable("Unknown SCEV predicate type");
2231 Value
*SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate
*Pred
,
2233 Value
*Expr0
= expandCodeFor(Pred
->getLHS(), Pred
->getLHS()->getType(), IP
);
2234 Value
*Expr1
= expandCodeFor(Pred
->getRHS(), Pred
->getRHS()->getType(), IP
);
2236 Builder
.SetInsertPoint(IP
);
2237 auto *I
= Builder
.CreateICmpNE(Expr0
, Expr1
, "ident.check");
2241 Value
*SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr
*AR
,
2242 Instruction
*Loc
, bool Signed
) {
2243 assert(AR
->isAffine() && "Cannot generate RT check for "
2244 "non-affine expression");
2246 SCEVUnionPredicate Pred
;
2247 const SCEV
*ExitCount
=
2248 SE
.getPredicatedBackedgeTakenCount(AR
->getLoop(), Pred
);
2250 assert(ExitCount
!= SE
.getCouldNotCompute() && "Invalid loop count");
2252 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
2253 const SCEV
*Start
= AR
->getStart();
2255 Type
*ARTy
= AR
->getType();
2256 unsigned SrcBits
= SE
.getTypeSizeInBits(ExitCount
->getType());
2257 unsigned DstBits
= SE
.getTypeSizeInBits(ARTy
);
2259 // The expression {Start,+,Step} has nusw/nssw if
2260 // Step < 0, Start - |Step| * Backedge <= Start
2261 // Step >= 0, Start + |Step| * Backedge > Start
2262 // and |Step| * Backedge doesn't unsigned overflow.
2264 IntegerType
*CountTy
= IntegerType::get(Loc
->getContext(), SrcBits
);
2265 Builder
.SetInsertPoint(Loc
);
2266 Value
*TripCountVal
= expandCodeFor(ExitCount
, CountTy
, Loc
);
2269 IntegerType::get(Loc
->getContext(), SE
.getTypeSizeInBits(ARTy
));
2270 Type
*ARExpandTy
= DL
.isNonIntegralPointerType(ARTy
) ? ARTy
: Ty
;
2272 Value
*StepValue
= expandCodeFor(Step
, Ty
, Loc
);
2273 Value
*NegStepValue
= expandCodeFor(SE
.getNegativeSCEV(Step
), Ty
, Loc
);
2274 Value
*StartValue
= expandCodeFor(Start
, ARExpandTy
, Loc
);
2277 ConstantInt::get(Loc
->getContext(), APInt::getNullValue(DstBits
));
2279 Builder
.SetInsertPoint(Loc
);
2281 Value
*StepCompare
= Builder
.CreateICmp(ICmpInst::ICMP_SLT
, StepValue
, Zero
);
2282 Value
*AbsStep
= Builder
.CreateSelect(StepCompare
, NegStepValue
, StepValue
);
2284 // Get the backedge taken count and truncate or extended to the AR type.
2285 Value
*TruncTripCount
= Builder
.CreateZExtOrTrunc(TripCountVal
, Ty
);
2286 auto *MulF
= Intrinsic::getDeclaration(Loc
->getModule(),
2287 Intrinsic::umul_with_overflow
, Ty
);
2289 // Compute |Step| * Backedge
2290 CallInst
*Mul
= Builder
.CreateCall(MulF
, {AbsStep
, TruncTripCount
}, "mul");
2291 Value
*MulV
= Builder
.CreateExtractValue(Mul
, 0, "mul.result");
2292 Value
*OfMul
= Builder
.CreateExtractValue(Mul
, 1, "mul.overflow");
2295 // Start + |Step| * Backedge < Start
2296 // Start - |Step| * Backedge > Start
2297 Value
*Add
= nullptr, *Sub
= nullptr;
2298 if (PointerType
*ARPtrTy
= dyn_cast
<PointerType
>(ARExpandTy
)) {
2299 const SCEV
*MulS
= SE
.getSCEV(MulV
);
2300 const SCEV
*NegMulS
= SE
.getNegativeSCEV(MulS
);
2301 Add
= Builder
.CreateBitCast(expandAddToGEP(MulS
, ARPtrTy
, Ty
, StartValue
),
2303 Sub
= Builder
.CreateBitCast(
2304 expandAddToGEP(NegMulS
, ARPtrTy
, Ty
, StartValue
), ARPtrTy
);
2306 Add
= Builder
.CreateAdd(StartValue
, MulV
);
2307 Sub
= Builder
.CreateSub(StartValue
, MulV
);
2310 Value
*EndCompareGT
= Builder
.CreateICmp(
2311 Signed
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
, Sub
, StartValue
);
2313 Value
*EndCompareLT
= Builder
.CreateICmp(
2314 Signed
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
, Add
, StartValue
);
2316 // Select the answer based on the sign of Step.
2318 Builder
.CreateSelect(StepCompare
, EndCompareGT
, EndCompareLT
);
2320 // If the backedge taken count type is larger than the AR type,
2321 // check that we don't drop any bits by truncating it. If we are
2322 // dropping bits, then we have overflow (unless the step is zero).
2323 if (SE
.getTypeSizeInBits(CountTy
) > SE
.getTypeSizeInBits(Ty
)) {
2324 auto MaxVal
= APInt::getMaxValue(DstBits
).zext(SrcBits
);
2325 auto *BackedgeCheck
=
2326 Builder
.CreateICmp(ICmpInst::ICMP_UGT
, TripCountVal
,
2327 ConstantInt::get(Loc
->getContext(), MaxVal
));
2328 BackedgeCheck
= Builder
.CreateAnd(
2329 BackedgeCheck
, Builder
.CreateICmp(ICmpInst::ICMP_NE
, StepValue
, Zero
));
2331 EndCheck
= Builder
.CreateOr(EndCheck
, BackedgeCheck
);
2334 EndCheck
= Builder
.CreateOr(EndCheck
, OfMul
);
2338 Value
*SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate
*Pred
,
2340 const auto *A
= cast
<SCEVAddRecExpr
>(Pred
->getExpr());
2341 Value
*NSSWCheck
= nullptr, *NUSWCheck
= nullptr;
2343 // Add a check for NUSW
2344 if (Pred
->getFlags() & SCEVWrapPredicate::IncrementNUSW
)
2345 NUSWCheck
= generateOverflowCheck(A
, IP
, false);
2347 // Add a check for NSSW
2348 if (Pred
->getFlags() & SCEVWrapPredicate::IncrementNSSW
)
2349 NSSWCheck
= generateOverflowCheck(A
, IP
, true);
2351 if (NUSWCheck
&& NSSWCheck
)
2352 return Builder
.CreateOr(NUSWCheck
, NSSWCheck
);
2360 return ConstantInt::getFalse(IP
->getContext());
2363 Value
*SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate
*Union
,
2365 auto *BoolType
= IntegerType::get(IP
->getContext(), 1);
2366 Value
*Check
= ConstantInt::getNullValue(BoolType
);
2368 // Loop over all checks in this set.
2369 for (auto Pred
: Union
->getPredicates()) {
2370 auto *NextCheck
= expandCodeForPredicate(Pred
, IP
);
2371 Builder
.SetInsertPoint(IP
);
2372 Check
= Builder
.CreateOr(Check
, NextCheck
);
2379 // Search for a SCEV subexpression that is not safe to expand. Any expression
2380 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2381 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2382 // instruction, but the important thing is that we prove the denominator is
2383 // nonzero before expansion.
2385 // IVUsers already checks that IV-derived expressions are safe. So this check is
2386 // only needed when the expression includes some subexpression that is not IV
2389 // Currently, we only allow division by a nonzero constant here. If this is
2390 // inadequate, we could easily allow division by SCEVUnknown by using
2391 // ValueTracking to check isKnownNonZero().
2393 // We cannot generally expand recurrences unless the step dominates the loop
2394 // header. The expander handles the special case of affine recurrences by
2395 // scaling the recurrence outside the loop, but this technique isn't generally
2396 // applicable. Expanding a nested recurrence outside a loop requires computing
2397 // binomial coefficients. This could be done, but the recurrence has to be in a
2398 // perfectly reduced form, which can't be guaranteed.
2399 struct SCEVFindUnsafe
{
2400 ScalarEvolution
&SE
;
2403 SCEVFindUnsafe(ScalarEvolution
&se
): SE(se
), IsUnsafe(false) {}
2405 bool follow(const SCEV
*S
) {
2406 if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2407 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(D
->getRHS());
2408 if (!SC
|| SC
->getValue()->isZero()) {
2413 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2414 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
2415 if (!AR
->isAffine() && !SE
.dominates(Step
, AR
->getLoop()->getHeader())) {
2422 bool isDone() const { return IsUnsafe
; }
2427 bool isSafeToExpand(const SCEV
*S
, ScalarEvolution
&SE
) {
2428 SCEVFindUnsafe
Search(SE
);
2429 visitAll(S
, Search
);
2430 return !Search
.IsUnsafe
;
2433 bool isSafeToExpandAt(const SCEV
*S
, const Instruction
*InsertionPoint
,
2434 ScalarEvolution
&SE
) {
2435 if (!isSafeToExpand(S
, SE
))
2437 // We have to prove that the expanded site of S dominates InsertionPoint.
2438 // This is easy when not in the same block, but hard when S is an instruction
2439 // to be expanded somewhere inside the same block as our insertion point.
2440 // What we really need here is something analogous to an OrderedBasicBlock,
2441 // but for the moment, we paper over the problem by handling two common and
2442 // cheap to check cases.
2443 if (SE
.properlyDominates(S
, InsertionPoint
->getParent()))
2445 if (SE
.dominates(S
, InsertionPoint
->getParent())) {
2446 if (InsertionPoint
->getParent()->getTerminator() == InsertionPoint
)
2448 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
))
2449 for (const Value
*V
: InsertionPoint
->operand_values())
2450 if (V
== U
->getValue())