2 * Double-precision log2(x) function.
4 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 * See https://llvm.org/LICENSE.txt for license information.
6 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
12 #include "math_config.h"
14 #define T __log2_data.tab
15 #define T2 __log2_data.tab2
16 #define B __log2_data.poly1
17 #define A __log2_data.poly
18 #define InvLn2hi __log2_data.invln2hi
19 #define InvLn2lo __log2_data.invln2lo
20 #define N (1 << LOG2_TABLE_BITS)
21 #define OFF 0x3fe6000000000000
23 /* Top 16 bits of a double. */
24 static inline uint32_t
27 return asuint64 (x
) >> 48;
33 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
34 double_t z
, r
, r2
, r4
, y
, invc
, logc
, kd
, hi
, lo
, t1
, t2
, t3
, p
;
42 #if LOG2_POLY1_ORDER == 11
43 # define LO asuint64 (1.0 - 0x1.5b51p-5)
44 # define HI asuint64 (1.0 + 0x1.6ab2p-5)
46 if (unlikely (ix
- LO
< HI
- LO
))
48 /* Handle close to 1.0 inputs separately. */
49 /* Fix sign of zero with downward rounding when x==1. */
50 if (WANT_ROUNDING
&& unlikely (ix
== asuint64 (1.0)))
55 lo
= r
* InvLn2lo
+ fma (r
, InvLn2hi
, -hi
);
58 rhi
= asdouble (asuint64 (r
) & -1ULL << 32);
61 lo
= rlo
* InvLn2hi
+ r
* InvLn2lo
;
63 r2
= r
* r
; /* rounding error: 0x1p-62. */
65 #if LOG2_POLY1_ORDER == 11
66 /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */
67 p
= r2
* (B
[0] + r
* B
[1]);
70 lo
+= r4
* (B
[2] + r
* B
[3] + r2
* (B
[4] + r
* B
[5])
71 + r4
* (B
[6] + r
* B
[7] + r2
* (B
[8] + r
* B
[9])));
74 return eval_as_double (y
);
76 if (unlikely (top
- 0x0010 >= 0x7ff0 - 0x0010))
78 /* x < 0x1p-1022 or inf or nan. */
80 return __math_divzero (1);
81 if (ix
== asuint64 (INFINITY
)) /* log(inf) == inf. */
83 if ((top
& 0x8000) || (top
& 0x7ff0) == 0x7ff0)
84 return __math_invalid (x
);
85 /* x is subnormal, normalize it. */
86 ix
= asuint64 (x
* 0x1p
52);
90 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
91 The range is split into N subintervals.
92 The ith subinterval contains z and c is near its center. */
94 i
= (tmp
>> (52 - LOG2_TABLE_BITS
)) % N
;
95 k
= (int64_t) tmp
>> 52; /* arithmetic shift */
96 iz
= ix
- (tmp
& 0xfffULL
<< 52);
102 /* log2(x) = log2(z/c) + log2(c) + k. */
103 /* r ~= z/c - 1, |r| < 1/(2*N). */
105 /* rounding error: 0x1p-55/N. */
106 r
= fma (z
, invc
, -1.0);
108 t2
= r
* InvLn2lo
+ fma (r
, InvLn2hi
, -t1
);
111 /* rounding error: 0x1p-55/N + 0x1p-65. */
112 r
= (z
- T2
[i
].chi
- T2
[i
].clo
) * invc
;
113 rhi
= asdouble (asuint64 (r
) & -1ULL << 32);
116 t2
= rlo
* InvLn2hi
+ r
* InvLn2lo
;
119 /* hi + lo = r/ln2 + log2(c) + k. */
122 lo
= t3
- hi
+ t1
+ t2
;
124 /* log2(r+1) = r/ln2 + r^2*poly(r). */
125 /* Evaluation is optimized assuming superscalar pipelined execution. */
126 r2
= r
* r
; /* rounding error: 0x1p-54/N^2. */
128 #if LOG2_POLY_ORDER == 7
129 /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
130 ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */
131 p
= A
[0] + r
* A
[1] + r2
* (A
[2] + r
* A
[3]) + r4
* (A
[4] + r
* A
[5]);
132 y
= lo
+ r2
* p
+ hi
;
134 return eval_as_double (y
);
137 strong_alias (log2
, __log2_finite
)
138 hidden_alias (log2
, __ieee754_log2
)
139 # if LDBL_MANT_DIG == 53
140 long double log2l (long double x
) { return log2 (x
); }