2 * Single-precision pow function.
4 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 * See https://llvm.org/LICENSE.txt for license information.
6 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 #include "math_config.h"
14 POWF_LOG2_POLY_ORDER = 5
17 ULP error: 0.82 (~ 0.5 + relerr*2^24)
18 relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
19 relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
20 relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
23 #define N (1 << POWF_LOG2_TABLE_BITS)
24 #define T __powf_log2_data.tab
25 #define A __powf_log2_data.poly
26 #define OFF 0x3f330000
28 /* Subnormal input is normalized so ix has negative biased exponent.
29 Output is multiplied by N (POWF_SCALE) if TOINT_INTRINSICS is set. */
30 static inline double_t
31 log2_inline (uint32_t ix
)
33 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
34 double_t z
, r
, r2
, r4
, p
, q
, y
, y0
, invc
, logc
;
35 uint32_t iz
, top
, tmp
;
38 /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
39 The range is split into N subintervals.
40 The ith subinterval contains z and c is near its center. */
42 i
= (tmp
>> (23 - POWF_LOG2_TABLE_BITS
)) % N
;
43 top
= tmp
& 0xff800000;
45 k
= (int32_t) top
>> (23 - POWF_SCALE_BITS
); /* arithmetic shift */
48 z
= (double_t
) asfloat (iz
);
50 /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
52 y0
= logc
+ (double_t
) k
;
54 /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
67 #define N (1 << EXP2F_TABLE_BITS)
68 #define T __exp2f_data.tab
69 #define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11))
71 /* The output of log2 and thus the input of exp2 is either scaled by N
72 (in case of fast toint intrinsics) or not. The unscaled xd must be
73 in [-1021,1023], sign_bias sets the sign of the result. */
75 exp2_inline (double_t xd
, uint32_t sign_bias
)
78 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
79 double_t kd
, z
, r
, r2
, y
, s
;
82 # define C __exp2f_data.poly_scaled
83 /* N*x = k + r with r in [-1/2, 1/2] */
84 kd
= roundtoint (xd
); /* k */
85 ki
= converttoint (xd
);
87 # define C __exp2f_data.poly
88 # define SHIFT __exp2f_data.shift_scaled
89 /* x = k/N + r with r in [-1/(2N), 1/(2N)] */
90 kd
= eval_as_double (xd
+ SHIFT
);
92 kd
-= SHIFT
; /* k/N */
96 /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
99 t
+= ski
<< (52 - EXP2F_TABLE_BITS
);
106 return eval_as_float (y
);
109 /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
110 the bit representation of a non-zero finite floating-point value. */
112 checkint (uint32_t iy
)
114 int e
= iy
>> 23 & 0xff;
119 if (iy
& ((1 << (0x7f + 23 - e
)) - 1))
121 if (iy
& (1 << (0x7f + 23 - e
)))
127 zeroinfnan (uint32_t ix
)
129 return 2 * ix
- 1 >= 2u * 0x7f800000 - 1;
133 powf (float x
, float y
)
135 uint32_t sign_bias
= 0;
140 if (unlikely (ix
- 0x00800000 >= 0x7f800000 - 0x00800000 || zeroinfnan (iy
)))
142 /* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */
143 if (unlikely (zeroinfnan (iy
)))
146 return issignalingf_inline (x
) ? x
+ y
: 1.0f
;
147 if (ix
== 0x3f800000)
148 return issignalingf_inline (y
) ? x
+ y
: 1.0f
;
149 if (2 * ix
> 2u * 0x7f800000 || 2 * iy
> 2u * 0x7f800000)
151 if (2 * ix
== 2 * 0x3f800000)
153 if ((2 * ix
< 2 * 0x3f800000) == !(iy
& 0x80000000))
154 return 0.0f
; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
157 if (unlikely (zeroinfnan (ix
)))
160 if (ix
& 0x80000000 && checkint (iy
) == 1)
166 if (2 * ix
== 0 && iy
& 0x80000000)
167 return __math_divzerof (sign_bias
);
169 /* Without the barrier some versions of clang hoist the 1/x2 and
170 thus division by zero exception can be signaled spuriously. */
171 return iy
& 0x80000000 ? opt_barrier_float (1 / x2
) : x2
;
173 /* x and y are non-zero finite. */
177 int yint
= checkint (iy
);
179 return __math_invalidf (x
);
181 sign_bias
= SIGN_BIAS
;
186 /* Normalize subnormal x so exponent becomes negative. */
187 ix
= asuint (x
* 0x1p
23f
);
192 double_t logx
= log2_inline (ix
);
193 double_t ylogx
= y
* logx
; /* Note: cannot overflow, y is single prec. */
194 if (unlikely ((asuint64 (ylogx
) >> 47 & 0xffff)
195 >= asuint64 (126.0 * POWF_SCALE
) >> 47))
197 /* |y*log(x)| >= 126. */
198 if (ylogx
> 0x1.fffffffd1d571p
+6 * POWF_SCALE
)
199 /* |x^y| > 0x1.ffffffp127. */
200 return __math_oflowf (sign_bias
);
201 if (WANT_ROUNDING
&& WANT_ERRNO
202 && ylogx
> 0x1.fffffffa3aae2p
+6 * POWF_SCALE
)
203 /* |x^y| > 0x1.fffffep127, check if we round away from 0. */
205 && eval_as_float (1.0f
+ opt_barrier_float (0x1p
-25f
)) != 1.0f
)
207 && eval_as_float (-1.0f
- opt_barrier_float (0x1p
-25f
))
209 return __math_oflowf (sign_bias
);
210 if (ylogx
<= -150.0 * POWF_SCALE
)
211 return __math_uflowf (sign_bias
);
213 if (ylogx
< -149.0 * POWF_SCALE
)
214 return __math_may_uflowf (sign_bias
);
217 return exp2_inline (ylogx
, sign_bias
);
220 strong_alias (powf
, __powf_finite
)
221 hidden_alias (powf
, __ieee754_powf
)