[AMDGPU][AsmParser][NFC] Get rid of custom default operand handlers.
[llvm-project.git] / clang / lib / CodeGen / CGCUDANV.cpp
blobc30a08a5722dcc24bf9da24d91d9047e018d48db
1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
10 // runtime library.
12 //===----------------------------------------------------------------------===//
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/Basic/Cuda.h"
20 #include "clang/CodeGen/CodeGenABITypes.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/ReplaceConstant.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/VirtualFileSystem.h"
29 using namespace clang;
30 using namespace CodeGen;
32 namespace {
33 constexpr unsigned CudaFatMagic = 0x466243b1;
34 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
36 class CGNVCUDARuntime : public CGCUDARuntime {
38 private:
39 llvm::IntegerType *IntTy, *SizeTy;
40 llvm::Type *VoidTy;
41 llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
43 /// Convenience reference to LLVM Context
44 llvm::LLVMContext &Context;
45 /// Convenience reference to the current module
46 llvm::Module &TheModule;
47 /// Keeps track of kernel launch stubs and handles emitted in this module
48 struct KernelInfo {
49 llvm::Function *Kernel; // stub function to help launch kernel
50 const Decl *D;
52 llvm::SmallVector<KernelInfo, 16> EmittedKernels;
53 // Map a kernel mangled name to a symbol for identifying kernel in host code
54 // For CUDA, the symbol for identifying the kernel is the same as the device
55 // stub function. For HIP, they are different.
56 llvm::DenseMap<StringRef, llvm::GlobalValue *> KernelHandles;
57 // Map a kernel handle to the kernel stub.
58 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
59 struct VarInfo {
60 llvm::GlobalVariable *Var;
61 const VarDecl *D;
62 DeviceVarFlags Flags;
64 llvm::SmallVector<VarInfo, 16> DeviceVars;
65 /// Keeps track of variable containing handle of GPU binary. Populated by
66 /// ModuleCtorFunction() and used to create corresponding cleanup calls in
67 /// ModuleDtorFunction()
68 llvm::GlobalVariable *GpuBinaryHandle = nullptr;
69 /// Whether we generate relocatable device code.
70 bool RelocatableDeviceCode;
71 /// Mangle context for device.
72 std::unique_ptr<MangleContext> DeviceMC;
73 /// Some zeros used for GEPs.
74 llvm::Constant *Zeros[2];
76 llvm::FunctionCallee getSetupArgumentFn() const;
77 llvm::FunctionCallee getLaunchFn() const;
79 llvm::FunctionType *getRegisterGlobalsFnTy() const;
80 llvm::FunctionType *getCallbackFnTy() const;
81 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
82 std::string addPrefixToName(StringRef FuncName) const;
83 std::string addUnderscoredPrefixToName(StringRef FuncName) const;
85 /// Creates a function to register all kernel stubs generated in this module.
86 llvm::Function *makeRegisterGlobalsFn();
88 /// Helper function that generates a constant string and returns a pointer to
89 /// the start of the string. The result of this function can be used anywhere
90 /// where the C code specifies const char*.
91 llvm::Constant *makeConstantString(const std::string &Str,
92 const std::string &Name = "") {
93 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
94 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
95 ConstStr.getPointer(), Zeros);
98 /// Helper function which generates an initialized constant array from Str,
99 /// and optionally sets section name and alignment. AddNull specifies whether
100 /// the array should nave NUL termination.
101 llvm::Constant *makeConstantArray(StringRef Str,
102 StringRef Name = "",
103 StringRef SectionName = "",
104 unsigned Alignment = 0,
105 bool AddNull = false) {
106 llvm::Constant *Value =
107 llvm::ConstantDataArray::getString(Context, Str, AddNull);
108 auto *GV = new llvm::GlobalVariable(
109 TheModule, Value->getType(), /*isConstant=*/true,
110 llvm::GlobalValue::PrivateLinkage, Value, Name);
111 if (!SectionName.empty()) {
112 GV->setSection(SectionName);
113 // Mark the address as used which make sure that this section isn't
114 // merged and we will really have it in the object file.
115 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
117 if (Alignment)
118 GV->setAlignment(llvm::Align(Alignment));
119 return llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
122 /// Helper function that generates an empty dummy function returning void.
123 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
124 assert(FnTy->getReturnType()->isVoidTy() &&
125 "Can only generate dummy functions returning void!");
126 llvm::Function *DummyFunc = llvm::Function::Create(
127 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
129 llvm::BasicBlock *DummyBlock =
130 llvm::BasicBlock::Create(Context, "", DummyFunc);
131 CGBuilderTy FuncBuilder(CGM, Context);
132 FuncBuilder.SetInsertPoint(DummyBlock);
133 FuncBuilder.CreateRetVoid();
135 return DummyFunc;
138 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
139 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
140 std::string getDeviceSideName(const NamedDecl *ND) override;
142 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
143 bool Extern, bool Constant) {
144 DeviceVars.push_back({&Var,
146 {DeviceVarFlags::Variable, Extern, Constant,
147 VD->hasAttr<HIPManagedAttr>(),
148 /*Normalized*/ false, 0}});
150 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
151 bool Extern, int Type) {
152 DeviceVars.push_back({&Var,
154 {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
155 /*Managed*/ false,
156 /*Normalized*/ false, Type}});
158 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
159 bool Extern, int Type, bool Normalized) {
160 DeviceVars.push_back({&Var,
162 {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
163 /*Managed*/ false, Normalized, Type}});
166 /// Creates module constructor function
167 llvm::Function *makeModuleCtorFunction();
168 /// Creates module destructor function
169 llvm::Function *makeModuleDtorFunction();
170 /// Transform managed variables for device compilation.
171 void transformManagedVars();
172 /// Create offloading entries to register globals in RDC mode.
173 void createOffloadingEntries();
175 public:
176 CGNVCUDARuntime(CodeGenModule &CGM);
178 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
179 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
180 auto Loc = KernelStubs.find(Handle);
181 assert(Loc != KernelStubs.end());
182 return Loc->second;
184 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
185 void handleVarRegistration(const VarDecl *VD,
186 llvm::GlobalVariable &Var) override;
187 void
188 internalizeDeviceSideVar(const VarDecl *D,
189 llvm::GlobalValue::LinkageTypes &Linkage) override;
191 llvm::Function *finalizeModule() override;
194 } // end anonymous namespace
196 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
197 if (CGM.getLangOpts().HIP)
198 return ((Twine("hip") + Twine(FuncName)).str());
199 return ((Twine("cuda") + Twine(FuncName)).str());
201 std::string
202 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
203 if (CGM.getLangOpts().HIP)
204 return ((Twine("__hip") + Twine(FuncName)).str());
205 return ((Twine("__cuda") + Twine(FuncName)).str());
208 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
209 // If the host and device have different C++ ABIs, mark it as the device
210 // mangle context so that the mangling needs to retrieve the additional
211 // device lambda mangling number instead of the regular host one.
212 if (CGM.getContext().getAuxTargetInfo() &&
213 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
214 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
215 return std::unique_ptr<MangleContext>(
216 CGM.getContext().createDeviceMangleContext(
217 *CGM.getContext().getAuxTargetInfo()));
220 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
221 CGM.getContext().getAuxTargetInfo()));
224 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
225 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
226 TheModule(CGM.getModule()),
227 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
228 DeviceMC(InitDeviceMC(CGM)) {
229 CodeGen::CodeGenTypes &Types = CGM.getTypes();
230 ASTContext &Ctx = CGM.getContext();
232 IntTy = CGM.IntTy;
233 SizeTy = CGM.SizeTy;
234 VoidTy = CGM.VoidTy;
235 Zeros[0] = llvm::ConstantInt::get(SizeTy, 0);
236 Zeros[1] = Zeros[0];
238 CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
239 VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
240 VoidPtrPtrTy = VoidPtrTy->getPointerTo();
243 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
244 // cudaError_t cudaSetupArgument(void *, size_t, size_t)
245 llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
246 return CGM.CreateRuntimeFunction(
247 llvm::FunctionType::get(IntTy, Params, false),
248 addPrefixToName("SetupArgument"));
251 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
252 if (CGM.getLangOpts().HIP) {
253 // hipError_t hipLaunchByPtr(char *);
254 return CGM.CreateRuntimeFunction(
255 llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
257 // cudaError_t cudaLaunch(char *);
258 return CGM.CreateRuntimeFunction(
259 llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
262 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
263 return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
266 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
267 return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
270 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
271 auto *CallbackFnTy = getCallbackFnTy();
272 auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
273 llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
274 VoidPtrTy, CallbackFnTy->getPointerTo()};
275 return llvm::FunctionType::get(VoidTy, Params, false);
278 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
279 GlobalDecl GD;
280 // D could be either a kernel or a variable.
281 if (auto *FD = dyn_cast<FunctionDecl>(ND))
282 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
283 else
284 GD = GlobalDecl(ND);
285 std::string DeviceSideName;
286 MangleContext *MC;
287 if (CGM.getLangOpts().CUDAIsDevice)
288 MC = &CGM.getCXXABI().getMangleContext();
289 else
290 MC = DeviceMC.get();
291 if (MC->shouldMangleDeclName(ND)) {
292 SmallString<256> Buffer;
293 llvm::raw_svector_ostream Out(Buffer);
294 MC->mangleName(GD, Out);
295 DeviceSideName = std::string(Out.str());
296 } else
297 DeviceSideName = std::string(ND->getIdentifier()->getName());
299 // Make unique name for device side static file-scope variable for HIP.
300 if (CGM.getContext().shouldExternalize(ND) &&
301 CGM.getLangOpts().GPURelocatableDeviceCode) {
302 SmallString<256> Buffer;
303 llvm::raw_svector_ostream Out(Buffer);
304 Out << DeviceSideName;
305 CGM.printPostfixForExternalizedDecl(Out, ND);
306 DeviceSideName = std::string(Out.str());
308 return DeviceSideName;
311 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
312 FunctionArgList &Args) {
313 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
314 if (auto *GV =
315 dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn->getName()])) {
316 GV->setLinkage(CGF.CurFn->getLinkage());
317 GV->setInitializer(CGF.CurFn);
319 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
320 CudaFeature::CUDA_USES_NEW_LAUNCH) ||
321 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
322 emitDeviceStubBodyNew(CGF, Args);
323 else
324 emitDeviceStubBodyLegacy(CGF, Args);
327 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
328 // array and kernels are launched using cudaLaunchKernel().
329 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
330 FunctionArgList &Args) {
331 // Build the shadow stack entry at the very start of the function.
333 // Calculate amount of space we will need for all arguments. If we have no
334 // args, allocate a single pointer so we still have a valid pointer to the
335 // argument array that we can pass to runtime, even if it will be unused.
336 Address KernelArgs = CGF.CreateTempAlloca(
337 VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
338 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
339 // Store pointers to the arguments in a locally allocated launch_args.
340 for (unsigned i = 0; i < Args.size(); ++i) {
341 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
342 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
343 CGF.Builder.CreateDefaultAlignedStore(
344 VoidVarPtr,
345 CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i));
348 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
350 // Lookup cudaLaunchKernel/hipLaunchKernel function.
351 // HIP kernel launching API name depends on -fgpu-default-stream option. For
352 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
353 // it is hipLaunchKernel_spt.
354 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
355 // void **args, size_t sharedMem,
356 // cudaStream_t stream);
357 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
358 // dim3 blockDim, void **args,
359 // size_t sharedMem, hipStream_t stream);
360 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
361 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
362 std::string KernelLaunchAPI = "LaunchKernel";
363 if (CGF.getLangOpts().HIP && CGF.getLangOpts().GPUDefaultStream ==
364 LangOptions::GPUDefaultStreamKind::PerThread)
365 KernelLaunchAPI = KernelLaunchAPI + "_spt";
366 auto LaunchKernelName = addPrefixToName(KernelLaunchAPI);
367 IdentifierInfo &cudaLaunchKernelII =
368 CGM.getContext().Idents.get(LaunchKernelName);
369 FunctionDecl *cudaLaunchKernelFD = nullptr;
370 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
371 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
372 cudaLaunchKernelFD = FD;
375 if (cudaLaunchKernelFD == nullptr) {
376 CGM.Error(CGF.CurFuncDecl->getLocation(),
377 "Can't find declaration for " + LaunchKernelName);
378 return;
380 // Create temporary dim3 grid_dim, block_dim.
381 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
382 QualType Dim3Ty = GridDimParam->getType();
383 Address GridDim =
384 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
385 Address BlockDim =
386 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
387 Address ShmemSize =
388 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
389 Address Stream =
390 CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
391 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
392 llvm::FunctionType::get(IntTy,
393 {/*gridDim=*/GridDim.getType(),
394 /*blockDim=*/BlockDim.getType(),
395 /*ShmemSize=*/ShmemSize.getType(),
396 /*Stream=*/Stream.getType()},
397 /*isVarArg=*/false),
398 addUnderscoredPrefixToName("PopCallConfiguration"));
400 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
401 {GridDim.getPointer(), BlockDim.getPointer(),
402 ShmemSize.getPointer(), Stream.getPointer()});
404 // Emit the call to cudaLaunch
405 llvm::Value *Kernel = CGF.Builder.CreatePointerCast(
406 KernelHandles[CGF.CurFn->getName()], VoidPtrTy);
407 CallArgList LaunchKernelArgs;
408 LaunchKernelArgs.add(RValue::get(Kernel),
409 cudaLaunchKernelFD->getParamDecl(0)->getType());
410 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
411 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
412 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
413 cudaLaunchKernelFD->getParamDecl(3)->getType());
414 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
415 cudaLaunchKernelFD->getParamDecl(4)->getType());
416 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
417 cudaLaunchKernelFD->getParamDecl(5)->getType());
419 QualType QT = cudaLaunchKernelFD->getType();
420 QualType CQT = QT.getCanonicalType();
421 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
422 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
424 const CGFunctionInfo &FI =
425 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
426 llvm::FunctionCallee cudaLaunchKernelFn =
427 CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
428 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
429 LaunchKernelArgs);
430 CGF.EmitBranch(EndBlock);
432 CGF.EmitBlock(EndBlock);
435 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
436 FunctionArgList &Args) {
437 // Emit a call to cudaSetupArgument for each arg in Args.
438 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
439 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
440 CharUnits Offset = CharUnits::Zero();
441 for (const VarDecl *A : Args) {
442 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
443 Offset = Offset.alignTo(TInfo.Align);
444 llvm::Value *Args[] = {
445 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
446 VoidPtrTy),
447 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
448 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
450 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
451 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
452 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
453 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
454 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
455 CGF.EmitBlock(NextBlock);
456 Offset += TInfo.Width;
459 // Emit the call to cudaLaunch
460 llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
461 llvm::Value *Arg = CGF.Builder.CreatePointerCast(
462 KernelHandles[CGF.CurFn->getName()], CharPtrTy);
463 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
464 CGF.EmitBranch(EndBlock);
466 CGF.EmitBlock(EndBlock);
469 // Replace the original variable Var with the address loaded from variable
470 // ManagedVar populated by HIP runtime.
471 static void replaceManagedVar(llvm::GlobalVariable *Var,
472 llvm::GlobalVariable *ManagedVar) {
473 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
474 for (auto &&VarUse : Var->uses()) {
475 WorkList.push_back({VarUse.getUser()});
477 while (!WorkList.empty()) {
478 auto &&WorkItem = WorkList.pop_back_val();
479 auto *U = WorkItem.back();
480 if (isa<llvm::ConstantExpr>(U)) {
481 for (auto &&UU : U->uses()) {
482 WorkItem.push_back(UU.getUser());
483 WorkList.push_back(WorkItem);
484 WorkItem.pop_back();
486 continue;
488 if (auto *I = dyn_cast<llvm::Instruction>(U)) {
489 llvm::Value *OldV = Var;
490 llvm::Instruction *NewV =
491 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
492 llvm::Align(Var->getAlignment()), I);
493 WorkItem.pop_back();
494 // Replace constant expressions directly or indirectly using the managed
495 // variable with instructions.
496 for (auto &&Op : WorkItem) {
497 auto *CE = cast<llvm::ConstantExpr>(Op);
498 auto *NewInst = CE->getAsInstruction(I);
499 NewInst->replaceUsesOfWith(OldV, NewV);
500 OldV = CE;
501 NewV = NewInst;
503 I->replaceUsesOfWith(OldV, NewV);
504 } else {
505 llvm_unreachable("Invalid use of managed variable");
510 /// Creates a function that sets up state on the host side for CUDA objects that
511 /// have a presence on both the host and device sides. Specifically, registers
512 /// the host side of kernel functions and device global variables with the CUDA
513 /// runtime.
514 /// \code
515 /// void __cuda_register_globals(void** GpuBinaryHandle) {
516 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
517 /// ...
518 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
519 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
520 /// ...
521 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
522 /// }
523 /// \endcode
524 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
525 // No need to register anything
526 if (EmittedKernels.empty() && DeviceVars.empty())
527 return nullptr;
529 llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
530 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
531 addUnderscoredPrefixToName("_register_globals"), &TheModule);
532 llvm::BasicBlock *EntryBB =
533 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
534 CGBuilderTy Builder(CGM, Context);
535 Builder.SetInsertPoint(EntryBB);
537 // void __cudaRegisterFunction(void **, const char *, char *, const char *,
538 // int, uint3*, uint3*, dim3*, dim3*, int*)
539 llvm::Type *RegisterFuncParams[] = {
540 VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
541 VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
542 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
543 llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
544 addUnderscoredPrefixToName("RegisterFunction"));
546 // Extract GpuBinaryHandle passed as the first argument passed to
547 // __cuda_register_globals() and generate __cudaRegisterFunction() call for
548 // each emitted kernel.
549 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
550 for (auto &&I : EmittedKernels) {
551 llvm::Constant *KernelName =
552 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
553 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
554 llvm::Value *Args[] = {
555 &GpuBinaryHandlePtr,
556 Builder.CreateBitCast(KernelHandles[I.Kernel->getName()], VoidPtrTy),
557 KernelName,
558 KernelName,
559 llvm::ConstantInt::get(IntTy, -1),
560 NullPtr,
561 NullPtr,
562 NullPtr,
563 NullPtr,
564 llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
565 Builder.CreateCall(RegisterFunc, Args);
568 llvm::Type *VarSizeTy = IntTy;
569 // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
570 if (CGM.getLangOpts().HIP ||
571 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
572 VarSizeTy = SizeTy;
574 // void __cudaRegisterVar(void **, char *, char *, const char *,
575 // int, int, int, int)
576 llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
577 CharPtrTy, IntTy, VarSizeTy,
578 IntTy, IntTy};
579 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
580 llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
581 addUnderscoredPrefixToName("RegisterVar"));
582 // void __hipRegisterManagedVar(void **, char *, char *, const char *,
583 // size_t, unsigned)
584 llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
585 CharPtrTy, VarSizeTy, IntTy};
586 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
587 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
588 addUnderscoredPrefixToName("RegisterManagedVar"));
589 // void __cudaRegisterSurface(void **, const struct surfaceReference *,
590 // const void **, const char *, int, int);
591 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
592 llvm::FunctionType::get(
593 VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
594 false),
595 addUnderscoredPrefixToName("RegisterSurface"));
596 // void __cudaRegisterTexture(void **, const struct textureReference *,
597 // const void **, const char *, int, int, int)
598 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
599 llvm::FunctionType::get(
600 VoidTy,
601 {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
602 false),
603 addUnderscoredPrefixToName("RegisterTexture"));
604 for (auto &&Info : DeviceVars) {
605 llvm::GlobalVariable *Var = Info.Var;
606 assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
607 "External variables should not show up here, except HIP managed "
608 "variables");
609 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
610 switch (Info.Flags.getKind()) {
611 case DeviceVarFlags::Variable: {
612 uint64_t VarSize =
613 CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
614 if (Info.Flags.isManaged()) {
615 auto *ManagedVar = new llvm::GlobalVariable(
616 CGM.getModule(), Var->getType(),
617 /*isConstant=*/false, Var->getLinkage(),
618 /*Init=*/Var->isDeclaration()
619 ? nullptr
620 : llvm::ConstantPointerNull::get(Var->getType()),
621 /*Name=*/"", /*InsertBefore=*/nullptr,
622 llvm::GlobalVariable::NotThreadLocal);
623 ManagedVar->setDSOLocal(Var->isDSOLocal());
624 ManagedVar->setVisibility(Var->getVisibility());
625 ManagedVar->setExternallyInitialized(true);
626 ManagedVar->takeName(Var);
627 Var->setName(Twine(ManagedVar->getName() + ".managed"));
628 replaceManagedVar(Var, ManagedVar);
629 llvm::Value *Args[] = {
630 &GpuBinaryHandlePtr,
631 Builder.CreateBitCast(ManagedVar, VoidPtrTy),
632 Builder.CreateBitCast(Var, VoidPtrTy),
633 VarName,
634 llvm::ConstantInt::get(VarSizeTy, VarSize),
635 llvm::ConstantInt::get(IntTy, Var->getAlignment())};
636 if (!Var->isDeclaration())
637 Builder.CreateCall(RegisterManagedVar, Args);
638 } else {
639 llvm::Value *Args[] = {
640 &GpuBinaryHandlePtr,
641 Builder.CreateBitCast(Var, VoidPtrTy),
642 VarName,
643 VarName,
644 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
645 llvm::ConstantInt::get(VarSizeTy, VarSize),
646 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
647 llvm::ConstantInt::get(IntTy, 0)};
648 Builder.CreateCall(RegisterVar, Args);
650 break;
652 case DeviceVarFlags::Surface:
653 Builder.CreateCall(
654 RegisterSurf,
655 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
656 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
657 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
658 break;
659 case DeviceVarFlags::Texture:
660 Builder.CreateCall(
661 RegisterTex,
662 {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
663 VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
664 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
665 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
666 break;
670 Builder.CreateRetVoid();
671 return RegisterKernelsFunc;
674 /// Creates a global constructor function for the module:
676 /// For CUDA:
677 /// \code
678 /// void __cuda_module_ctor() {
679 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
680 /// __cuda_register_globals(Handle);
681 /// }
682 /// \endcode
684 /// For HIP:
685 /// \code
686 /// void __hip_module_ctor() {
687 /// if (__hip_gpubin_handle == 0) {
688 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
689 /// __hip_register_globals(__hip_gpubin_handle);
690 /// }
691 /// }
692 /// \endcode
693 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
694 bool IsHIP = CGM.getLangOpts().HIP;
695 bool IsCUDA = CGM.getLangOpts().CUDA;
696 // No need to generate ctors/dtors if there is no GPU binary.
697 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
698 if (CudaGpuBinaryFileName.empty() && !IsHIP)
699 return nullptr;
700 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
701 DeviceVars.empty())
702 return nullptr;
704 // void __{cuda|hip}_register_globals(void* handle);
705 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
706 // We always need a function to pass in as callback. Create a dummy
707 // implementation if we don't need to register anything.
708 if (RelocatableDeviceCode && !RegisterGlobalsFunc)
709 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
711 // void ** __{cuda|hip}RegisterFatBinary(void *);
712 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
713 llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
714 addUnderscoredPrefixToName("RegisterFatBinary"));
715 // struct { int magic, int version, void * gpu_binary, void * dont_care };
716 llvm::StructType *FatbinWrapperTy =
717 llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
719 // Register GPU binary with the CUDA runtime, store returned handle in a
720 // global variable and save a reference in GpuBinaryHandle to be cleaned up
721 // in destructor on exit. Then associate all known kernels with the GPU binary
722 // handle so CUDA runtime can figure out what to call on the GPU side.
723 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
724 if (!CudaGpuBinaryFileName.empty()) {
725 auto VFS = CGM.getFileSystem();
726 auto CudaGpuBinaryOrErr =
727 VFS->getBufferForFile(CudaGpuBinaryFileName, -1, false);
728 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
729 CGM.getDiags().Report(diag::err_cannot_open_file)
730 << CudaGpuBinaryFileName << EC.message();
731 return nullptr;
733 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
736 llvm::Function *ModuleCtorFunc = llvm::Function::Create(
737 llvm::FunctionType::get(VoidTy, false),
738 llvm::GlobalValue::InternalLinkage,
739 addUnderscoredPrefixToName("_module_ctor"), &TheModule);
740 llvm::BasicBlock *CtorEntryBB =
741 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
742 CGBuilderTy CtorBuilder(CGM, Context);
744 CtorBuilder.SetInsertPoint(CtorEntryBB);
746 const char *FatbinConstantName;
747 const char *FatbinSectionName;
748 const char *ModuleIDSectionName;
749 StringRef ModuleIDPrefix;
750 llvm::Constant *FatBinStr;
751 unsigned FatMagic;
752 if (IsHIP) {
753 FatbinConstantName = ".hip_fatbin";
754 FatbinSectionName = ".hipFatBinSegment";
756 ModuleIDSectionName = "__hip_module_id";
757 ModuleIDPrefix = "__hip_";
759 if (CudaGpuBinary) {
760 // If fatbin is available from early finalization, create a string
761 // literal containing the fat binary loaded from the given file.
762 const unsigned HIPCodeObjectAlign = 4096;
763 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
764 FatbinConstantName, HIPCodeObjectAlign);
765 } else {
766 // If fatbin is not available, create an external symbol
767 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
768 // to contain the fat binary but will be populated somewhere else,
769 // e.g. by lld through link script.
770 FatBinStr = new llvm::GlobalVariable(
771 CGM.getModule(), CGM.Int8Ty,
772 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
773 "__hip_fatbin", nullptr,
774 llvm::GlobalVariable::NotThreadLocal);
775 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
778 FatMagic = HIPFatMagic;
779 } else {
780 if (RelocatableDeviceCode)
781 FatbinConstantName = CGM.getTriple().isMacOSX()
782 ? "__NV_CUDA,__nv_relfatbin"
783 : "__nv_relfatbin";
784 else
785 FatbinConstantName =
786 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
787 // NVIDIA's cuobjdump looks for fatbins in this section.
788 FatbinSectionName =
789 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
791 ModuleIDSectionName = CGM.getTriple().isMacOSX()
792 ? "__NV_CUDA,__nv_module_id"
793 : "__nv_module_id";
794 ModuleIDPrefix = "__nv_";
796 // For CUDA, create a string literal containing the fat binary loaded from
797 // the given file.
798 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
799 FatbinConstantName, 8);
800 FatMagic = CudaFatMagic;
803 // Create initialized wrapper structure that points to the loaded GPU binary
804 ConstantInitBuilder Builder(CGM);
805 auto Values = Builder.beginStruct(FatbinWrapperTy);
806 // Fatbin wrapper magic.
807 Values.addInt(IntTy, FatMagic);
808 // Fatbin version.
809 Values.addInt(IntTy, 1);
810 // Data.
811 Values.add(FatBinStr);
812 // Unused in fatbin v1.
813 Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
814 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
815 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
816 /*constant*/ true);
817 FatbinWrapper->setSection(FatbinSectionName);
819 // There is only one HIP fat binary per linked module, however there are
820 // multiple constructor functions. Make sure the fat binary is registered
821 // only once. The constructor functions are executed by the dynamic loader
822 // before the program gains control. The dynamic loader cannot execute the
823 // constructor functions concurrently since doing that would not guarantee
824 // thread safety of the loaded program. Therefore we can assume sequential
825 // execution of constructor functions here.
826 if (IsHIP) {
827 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
828 llvm::GlobalValue::LinkOnceAnyLinkage;
829 llvm::BasicBlock *IfBlock =
830 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
831 llvm::BasicBlock *ExitBlock =
832 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
833 // The name, size, and initialization pattern of this variable is part
834 // of HIP ABI.
835 GpuBinaryHandle = new llvm::GlobalVariable(
836 TheModule, VoidPtrPtrTy, /*isConstant=*/false,
837 Linkage,
838 /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
839 "__hip_gpubin_handle");
840 if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage)
841 GpuBinaryHandle->setComdat(
842 CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName()));
843 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
844 // Prevent the weak symbol in different shared libraries being merged.
845 if (Linkage != llvm::GlobalValue::InternalLinkage)
846 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
847 Address GpuBinaryAddr(
848 GpuBinaryHandle, VoidPtrPtrTy,
849 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
851 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
852 llvm::Constant *Zero =
853 llvm::Constant::getNullValue(HandleValue->getType());
854 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
855 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
858 CtorBuilder.SetInsertPoint(IfBlock);
859 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
860 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
861 RegisterFatbinFunc,
862 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
863 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
864 CtorBuilder.CreateBr(ExitBlock);
867 CtorBuilder.SetInsertPoint(ExitBlock);
868 // Call __hip_register_globals(GpuBinaryHandle);
869 if (RegisterGlobalsFunc) {
870 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
871 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
874 } else if (!RelocatableDeviceCode) {
875 // Register binary with CUDA runtime. This is substantially different in
876 // default mode vs. separate compilation!
877 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
878 llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
879 RegisterFatbinFunc,
880 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
881 GpuBinaryHandle = new llvm::GlobalVariable(
882 TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
883 llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
884 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
885 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
886 CGM.getPointerAlign());
888 // Call __cuda_register_globals(GpuBinaryHandle);
889 if (RegisterGlobalsFunc)
890 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
892 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
893 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
894 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
895 // void __cudaRegisterFatBinaryEnd(void **);
896 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
897 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
898 "__cudaRegisterFatBinaryEnd");
899 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
901 } else {
902 // Generate a unique module ID.
903 SmallString<64> ModuleID;
904 llvm::raw_svector_ostream OS(ModuleID);
905 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
906 llvm::Constant *ModuleIDConstant = makeConstantArray(
907 std::string(ModuleID.str()), "", ModuleIDSectionName, 32, /*AddNull=*/true);
909 // Create an alias for the FatbinWrapper that nvcc will look for.
910 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
911 Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
913 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
914 // void *, void (*)(void **))
915 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
916 RegisterLinkedBinaryName += ModuleID;
917 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
918 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
920 assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
921 llvm::Value *Args[] = {RegisterGlobalsFunc,
922 CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
923 ModuleIDConstant,
924 makeDummyFunction(getCallbackFnTy())};
925 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
928 // Create destructor and register it with atexit() the way NVCC does it. Doing
929 // it during regular destructor phase worked in CUDA before 9.2 but results in
930 // double-free in 9.2.
931 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
932 // extern "C" int atexit(void (*f)(void));
933 llvm::FunctionType *AtExitTy =
934 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
935 llvm::FunctionCallee AtExitFunc =
936 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
937 /*Local=*/true);
938 CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
941 CtorBuilder.CreateRetVoid();
942 return ModuleCtorFunc;
945 /// Creates a global destructor function that unregisters the GPU code blob
946 /// registered by constructor.
948 /// For CUDA:
949 /// \code
950 /// void __cuda_module_dtor() {
951 /// __cudaUnregisterFatBinary(Handle);
952 /// }
953 /// \endcode
955 /// For HIP:
956 /// \code
957 /// void __hip_module_dtor() {
958 /// if (__hip_gpubin_handle) {
959 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
960 /// __hip_gpubin_handle = 0;
961 /// }
962 /// }
963 /// \endcode
964 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
965 // No need for destructor if we don't have a handle to unregister.
966 if (!GpuBinaryHandle)
967 return nullptr;
969 // void __cudaUnregisterFatBinary(void ** handle);
970 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
971 llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
972 addUnderscoredPrefixToName("UnregisterFatBinary"));
974 llvm::Function *ModuleDtorFunc = llvm::Function::Create(
975 llvm::FunctionType::get(VoidTy, false),
976 llvm::GlobalValue::InternalLinkage,
977 addUnderscoredPrefixToName("_module_dtor"), &TheModule);
979 llvm::BasicBlock *DtorEntryBB =
980 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
981 CGBuilderTy DtorBuilder(CGM, Context);
982 DtorBuilder.SetInsertPoint(DtorEntryBB);
984 Address GpuBinaryAddr(
985 GpuBinaryHandle, GpuBinaryHandle->getValueType(),
986 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
987 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
988 // There is only one HIP fat binary per linked module, however there are
989 // multiple destructor functions. Make sure the fat binary is unregistered
990 // only once.
991 if (CGM.getLangOpts().HIP) {
992 llvm::BasicBlock *IfBlock =
993 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
994 llvm::BasicBlock *ExitBlock =
995 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
996 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
997 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
998 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
1000 DtorBuilder.SetInsertPoint(IfBlock);
1001 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
1002 DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
1003 DtorBuilder.CreateBr(ExitBlock);
1005 DtorBuilder.SetInsertPoint(ExitBlock);
1006 } else {
1007 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
1009 DtorBuilder.CreateRetVoid();
1010 return ModuleDtorFunc;
1013 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
1014 return new CGNVCUDARuntime(CGM);
1017 void CGNVCUDARuntime::internalizeDeviceSideVar(
1018 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
1019 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
1020 // global variables become internal definitions. These have to be internal in
1021 // order to prevent name conflicts with global host variables with the same
1022 // name in a different TUs.
1024 // For -fgpu-rdc, the shadow variables should not be internalized because
1025 // they may be accessed by different TU.
1026 if (CGM.getLangOpts().GPURelocatableDeviceCode)
1027 return;
1029 // __shared__ variables are odd. Shadows do get created, but
1030 // they are not registered with the CUDA runtime, so they
1031 // can't really be used to access their device-side
1032 // counterparts. It's not clear yet whether it's nvcc's bug or
1033 // a feature, but we've got to do the same for compatibility.
1034 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
1035 D->hasAttr<CUDASharedAttr>() ||
1036 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1037 D->getType()->isCUDADeviceBuiltinTextureType()) {
1038 Linkage = llvm::GlobalValue::InternalLinkage;
1042 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
1043 llvm::GlobalVariable &GV) {
1044 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
1045 // Shadow variables and their properties must be registered with CUDA
1046 // runtime. Skip Extern global variables, which will be registered in
1047 // the TU where they are defined.
1049 // Don't register a C++17 inline variable. The local symbol can be
1050 // discarded and referencing a discarded local symbol from outside the
1051 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1053 // HIP managed variables need to be always recorded in device and host
1054 // compilations for transformation.
1056 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1057 // added to llvm.compiler-used, therefore they are safe to be registered.
1058 if ((!D->hasExternalStorage() && !D->isInline()) ||
1059 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
1060 D->hasAttr<HIPManagedAttr>()) {
1061 registerDeviceVar(D, GV, !D->hasDefinition(),
1062 D->hasAttr<CUDAConstantAttr>());
1064 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1065 D->getType()->isCUDADeviceBuiltinTextureType()) {
1066 // Builtin surfaces and textures and their template arguments are
1067 // also registered with CUDA runtime.
1068 const auto *TD = cast<ClassTemplateSpecializationDecl>(
1069 D->getType()->castAs<RecordType>()->getDecl());
1070 const TemplateArgumentList &Args = TD->getTemplateArgs();
1071 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
1072 assert(Args.size() == 2 &&
1073 "Unexpected number of template arguments of CUDA device "
1074 "builtin surface type.");
1075 auto SurfType = Args[1].getAsIntegral();
1076 if (!D->hasExternalStorage())
1077 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
1078 } else {
1079 assert(Args.size() == 3 &&
1080 "Unexpected number of template arguments of CUDA device "
1081 "builtin texture type.");
1082 auto TexType = Args[1].getAsIntegral();
1083 auto Normalized = Args[2].getAsIntegral();
1084 if (!D->hasExternalStorage())
1085 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
1086 Normalized.getZExtValue());
1091 // Transform managed variables to pointers to managed variables in device code.
1092 // Each use of the original managed variable is replaced by a load from the
1093 // transformed managed variable. The transformed managed variable contains
1094 // the address of managed memory which will be allocated by the runtime.
1095 void CGNVCUDARuntime::transformManagedVars() {
1096 for (auto &&Info : DeviceVars) {
1097 llvm::GlobalVariable *Var = Info.Var;
1098 if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
1099 Info.Flags.isManaged()) {
1100 auto *ManagedVar = new llvm::GlobalVariable(
1101 CGM.getModule(), Var->getType(),
1102 /*isConstant=*/false, Var->getLinkage(),
1103 /*Init=*/Var->isDeclaration()
1104 ? nullptr
1105 : llvm::ConstantPointerNull::get(Var->getType()),
1106 /*Name=*/"", /*InsertBefore=*/nullptr,
1107 llvm::GlobalVariable::NotThreadLocal,
1108 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
1109 ManagedVar->setDSOLocal(Var->isDSOLocal());
1110 ManagedVar->setVisibility(Var->getVisibility());
1111 ManagedVar->setExternallyInitialized(true);
1112 replaceManagedVar(Var, ManagedVar);
1113 ManagedVar->takeName(Var);
1114 Var->setName(Twine(ManagedVar->getName()) + ".managed");
1115 // Keep managed variables even if they are not used in device code since
1116 // they need to be allocated by the runtime.
1117 if (!Var->isDeclaration()) {
1118 assert(!ManagedVar->isDeclaration());
1119 CGM.addCompilerUsedGlobal(Var);
1120 CGM.addCompilerUsedGlobal(ManagedVar);
1126 // Creates offloading entries for all the kernels and globals that must be
1127 // registered. The linker will provide a pointer to this section so we can
1128 // register the symbols with the linked device image.
1129 void CGNVCUDARuntime::createOffloadingEntries() {
1130 llvm::OpenMPIRBuilder OMPBuilder(CGM.getModule());
1131 OMPBuilder.initialize();
1133 StringRef Section = CGM.getLangOpts().HIP ? "hip_offloading_entries"
1134 : "cuda_offloading_entries";
1135 for (KernelInfo &I : EmittedKernels)
1136 OMPBuilder.emitOffloadingEntry(KernelHandles[I.Kernel->getName()],
1137 getDeviceSideName(cast<NamedDecl>(I.D)), 0,
1138 DeviceVarFlags::OffloadGlobalEntry, Section);
1140 for (VarInfo &I : DeviceVars) {
1141 uint64_t VarSize =
1142 CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType());
1143 if (I.Flags.getKind() == DeviceVarFlags::Variable) {
1144 OMPBuilder.emitOffloadingEntry(
1145 I.Var, getDeviceSideName(I.D), VarSize,
1146 I.Flags.isManaged() ? DeviceVarFlags::OffloadGlobalManagedEntry
1147 : DeviceVarFlags::OffloadGlobalEntry,
1148 Section);
1149 } else if (I.Flags.getKind() == DeviceVarFlags::Surface) {
1150 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
1151 DeviceVarFlags::OffloadGlobalSurfaceEntry,
1152 Section);
1153 } else if (I.Flags.getKind() == DeviceVarFlags::Texture) {
1154 OMPBuilder.emitOffloadingEntry(I.Var, getDeviceSideName(I.D), VarSize,
1155 DeviceVarFlags::OffloadGlobalTextureEntry,
1156 Section);
1161 // Returns module constructor to be added.
1162 llvm::Function *CGNVCUDARuntime::finalizeModule() {
1163 if (CGM.getLangOpts().CUDAIsDevice) {
1164 transformManagedVars();
1166 // Mark ODR-used device variables as compiler used to prevent it from being
1167 // eliminated by optimization. This is necessary for device variables
1168 // ODR-used by host functions. Sema correctly marks them as ODR-used no
1169 // matter whether they are ODR-used by device or host functions.
1171 // We do not need to do this if the variable has used attribute since it
1172 // has already been added.
1174 // Static device variables have been externalized at this point, therefore
1175 // variables with LLVM private or internal linkage need not be added.
1176 for (auto &&Info : DeviceVars) {
1177 auto Kind = Info.Flags.getKind();
1178 if (!Info.Var->isDeclaration() &&
1179 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
1180 (Kind == DeviceVarFlags::Variable ||
1181 Kind == DeviceVarFlags::Surface ||
1182 Kind == DeviceVarFlags::Texture) &&
1183 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
1184 CGM.addCompilerUsedGlobal(Info.Var);
1187 return nullptr;
1189 if (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode)
1190 createOffloadingEntries();
1191 else
1192 return makeModuleCtorFunction();
1194 return nullptr;
1197 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
1198 GlobalDecl GD) {
1199 auto Loc = KernelHandles.find(F->getName());
1200 if (Loc != KernelHandles.end()) {
1201 auto OldHandle = Loc->second;
1202 if (KernelStubs[OldHandle] == F)
1203 return OldHandle;
1205 // We've found the function name, but F itself has changed, so we need to
1206 // update the references.
1207 if (CGM.getLangOpts().HIP) {
1208 // For HIP compilation the handle itself does not change, so we only need
1209 // to update the Stub value.
1210 KernelStubs[OldHandle] = F;
1211 return OldHandle;
1213 // For non-HIP compilation, erase the old Stub and fall-through to creating
1214 // new entries.
1215 KernelStubs.erase(OldHandle);
1218 if (!CGM.getLangOpts().HIP) {
1219 KernelHandles[F->getName()] = F;
1220 KernelStubs[F] = F;
1221 return F;
1224 auto *Var = new llvm::GlobalVariable(
1225 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
1226 /*Initializer=*/nullptr,
1227 CGM.getMangledName(
1228 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
1229 Var->setAlignment(CGM.getPointerAlign().getAsAlign());
1230 Var->setDSOLocal(F->isDSOLocal());
1231 Var->setVisibility(F->getVisibility());
1232 CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var);
1233 KernelHandles[F->getName()] = Var;
1234 KernelStubs[Var] = F;
1235 return Var;