1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Expr nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCUDARuntime.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsWebAssembly.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/MatrixBuilder.h"
40 #include "llvm/Passes/OptimizationLevel.h"
41 #include "llvm/Support/ConvertUTF.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/Path.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/xxhash.h"
46 #include "llvm/Transforms/Utils/SanitizerStats.h"
51 using namespace clang
;
52 using namespace CodeGen
;
54 //===--------------------------------------------------------------------===//
55 // Miscellaneous Helper Methods
56 //===--------------------------------------------------------------------===//
58 llvm::Value
*CodeGenFunction::EmitCastToVoidPtr(llvm::Value
*value
) {
59 unsigned addressSpace
=
60 cast
<llvm::PointerType
>(value
->getType())->getAddressSpace();
62 llvm::PointerType
*destType
= Int8PtrTy
;
64 destType
= llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace
);
66 if (value
->getType() == destType
) return value
;
67 return Builder
.CreateBitCast(value
, destType
);
70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
72 Address
CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type
*Ty
,
75 llvm::Value
*ArraySize
) {
76 auto Alloca
= CreateTempAlloca(Ty
, Name
, ArraySize
);
77 Alloca
->setAlignment(Align
.getAsAlign());
78 return Address(Alloca
, Ty
, Align
, KnownNonNull
);
81 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
82 /// block. The alloca is casted to default address space if necessary.
83 Address
CodeGenFunction::CreateTempAlloca(llvm::Type
*Ty
, CharUnits Align
,
85 llvm::Value
*ArraySize
,
86 Address
*AllocaAddr
) {
87 auto Alloca
= CreateTempAllocaWithoutCast(Ty
, Align
, Name
, ArraySize
);
90 llvm::Value
*V
= Alloca
.getPointer();
91 // Alloca always returns a pointer in alloca address space, which may
92 // be different from the type defined by the language. For example,
93 // in C++ the auto variables are in the default address space. Therefore
94 // cast alloca to the default address space when necessary.
95 if (getASTAllocaAddressSpace() != LangAS::Default
) {
96 auto DestAddrSpace
= getContext().getTargetAddressSpace(LangAS::Default
);
97 llvm::IRBuilderBase::InsertPointGuard
IPG(Builder
);
98 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
99 // otherwise alloca is inserted at the current insertion point of the
102 Builder
.SetInsertPoint(getPostAllocaInsertPoint());
103 V
= getTargetHooks().performAddrSpaceCast(
104 *this, V
, getASTAllocaAddressSpace(), LangAS::Default
,
105 Ty
->getPointerTo(DestAddrSpace
), /*non-null*/ true);
108 return Address(V
, Ty
, Align
, KnownNonNull
);
111 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
112 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
113 /// insertion point of the builder.
114 llvm::AllocaInst
*CodeGenFunction::CreateTempAlloca(llvm::Type
*Ty
,
116 llvm::Value
*ArraySize
) {
118 return Builder
.CreateAlloca(Ty
, ArraySize
, Name
);
119 return new llvm::AllocaInst(Ty
, CGM
.getDataLayout().getAllocaAddrSpace(),
120 ArraySize
, Name
, AllocaInsertPt
);
123 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
124 /// default alignment of the corresponding LLVM type, which is *not*
125 /// guaranteed to be related in any way to the expected alignment of
126 /// an AST type that might have been lowered to Ty.
127 Address
CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type
*Ty
,
130 CharUnits::fromQuantity(CGM
.getDataLayout().getPrefTypeAlign(Ty
));
131 return CreateTempAlloca(Ty
, Align
, Name
);
134 Address
CodeGenFunction::CreateIRTemp(QualType Ty
, const Twine
&Name
) {
135 CharUnits Align
= getContext().getTypeAlignInChars(Ty
);
136 return CreateTempAlloca(ConvertType(Ty
), Align
, Name
);
139 Address
CodeGenFunction::CreateMemTemp(QualType Ty
, const Twine
&Name
,
141 // FIXME: Should we prefer the preferred type alignment here?
142 return CreateMemTemp(Ty
, getContext().getTypeAlignInChars(Ty
), Name
, Alloca
);
145 Address
CodeGenFunction::CreateMemTemp(QualType Ty
, CharUnits Align
,
146 const Twine
&Name
, Address
*Alloca
) {
147 Address Result
= CreateTempAlloca(ConvertTypeForMem(Ty
), Align
, Name
,
148 /*ArraySize=*/nullptr, Alloca
);
150 if (Ty
->isConstantMatrixType()) {
151 auto *ArrayTy
= cast
<llvm::ArrayType
>(Result
.getElementType());
152 auto *VectorTy
= llvm::FixedVectorType::get(ArrayTy
->getElementType(),
153 ArrayTy
->getNumElements());
156 Builder
.CreateBitCast(Result
.getPointer(), VectorTy
->getPointerTo()),
157 VectorTy
, Result
.getAlignment(), KnownNonNull
);
162 Address
CodeGenFunction::CreateMemTempWithoutCast(QualType Ty
, CharUnits Align
,
164 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty
), Align
, Name
);
167 Address
CodeGenFunction::CreateMemTempWithoutCast(QualType Ty
,
169 return CreateMemTempWithoutCast(Ty
, getContext().getTypeAlignInChars(Ty
),
173 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
174 /// expression and compare the result against zero, returning an Int1Ty value.
175 llvm::Value
*CodeGenFunction::EvaluateExprAsBool(const Expr
*E
) {
176 PGO
.setCurrentStmt(E
);
177 if (const MemberPointerType
*MPT
= E
->getType()->getAs
<MemberPointerType
>()) {
178 llvm::Value
*MemPtr
= EmitScalarExpr(E
);
179 return CGM
.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr
, MPT
);
182 QualType BoolTy
= getContext().BoolTy
;
183 SourceLocation Loc
= E
->getExprLoc();
184 CGFPOptionsRAII
FPOptsRAII(*this, E
);
185 if (!E
->getType()->isAnyComplexType())
186 return EmitScalarConversion(EmitScalarExpr(E
), E
->getType(), BoolTy
, Loc
);
188 return EmitComplexToScalarConversion(EmitComplexExpr(E
), E
->getType(), BoolTy
,
192 /// EmitIgnoredExpr - Emit code to compute the specified expression,
193 /// ignoring the result.
194 void CodeGenFunction::EmitIgnoredExpr(const Expr
*E
) {
196 return (void)EmitAnyExpr(E
, AggValueSlot::ignored(), true);
198 // if this is a bitfield-resulting conditional operator, we can special case
199 // emit this. The normal 'EmitLValue' version of this is particularly
200 // difficult to codegen for, since creating a single "LValue" for two
201 // different sized arguments here is not particularly doable.
202 if (const auto *CondOp
= dyn_cast
<AbstractConditionalOperator
>(
203 E
->IgnoreParenNoopCasts(getContext()))) {
204 if (CondOp
->getObjectKind() == OK_BitField
)
205 return EmitIgnoredConditionalOperator(CondOp
);
208 // Just emit it as an l-value and drop the result.
212 /// EmitAnyExpr - Emit code to compute the specified expression which
213 /// can have any type. The result is returned as an RValue struct.
214 /// If this is an aggregate expression, AggSlot indicates where the
215 /// result should be returned.
216 RValue
CodeGenFunction::EmitAnyExpr(const Expr
*E
,
217 AggValueSlot aggSlot
,
219 switch (getEvaluationKind(E
->getType())) {
221 return RValue::get(EmitScalarExpr(E
, ignoreResult
));
223 return RValue::getComplex(EmitComplexExpr(E
, ignoreResult
, ignoreResult
));
225 if (!ignoreResult
&& aggSlot
.isIgnored())
226 aggSlot
= CreateAggTemp(E
->getType(), "agg-temp");
227 EmitAggExpr(E
, aggSlot
);
228 return aggSlot
.asRValue();
230 llvm_unreachable("bad evaluation kind");
233 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
234 /// always be accessible even if no aggregate location is provided.
235 RValue
CodeGenFunction::EmitAnyExprToTemp(const Expr
*E
) {
236 AggValueSlot AggSlot
= AggValueSlot::ignored();
238 if (hasAggregateEvaluationKind(E
->getType()))
239 AggSlot
= CreateAggTemp(E
->getType(), "agg.tmp");
240 return EmitAnyExpr(E
, AggSlot
);
243 /// EmitAnyExprToMem - Evaluate an expression into a given memory
245 void CodeGenFunction::EmitAnyExprToMem(const Expr
*E
,
249 // FIXME: This function should take an LValue as an argument.
250 switch (getEvaluationKind(E
->getType())) {
252 EmitComplexExprIntoLValue(E
, MakeAddrLValue(Location
, E
->getType()),
256 case TEK_Aggregate
: {
257 EmitAggExpr(E
, AggValueSlot::forAddr(Location
, Quals
,
258 AggValueSlot::IsDestructed_t(IsInit
),
259 AggValueSlot::DoesNotNeedGCBarriers
,
260 AggValueSlot::IsAliased_t(!IsInit
),
261 AggValueSlot::MayOverlap
));
266 RValue RV
= RValue::get(EmitScalarExpr(E
, /*Ignore*/ false));
267 LValue LV
= MakeAddrLValue(Location
, E
->getType());
268 EmitStoreThroughLValue(RV
, LV
);
272 llvm_unreachable("bad evaluation kind");
276 pushTemporaryCleanup(CodeGenFunction
&CGF
, const MaterializeTemporaryExpr
*M
,
277 const Expr
*E
, Address ReferenceTemporary
) {
278 // Objective-C++ ARC:
279 // If we are binding a reference to a temporary that has ownership, we
280 // need to perform retain/release operations on the temporary.
282 // FIXME: This should be looking at E, not M.
283 if (auto Lifetime
= M
->getType().getObjCLifetime()) {
285 case Qualifiers::OCL_None
:
286 case Qualifiers::OCL_ExplicitNone
:
287 // Carry on to normal cleanup handling.
290 case Qualifiers::OCL_Autoreleasing
:
291 // Nothing to do; cleaned up by an autorelease pool.
294 case Qualifiers::OCL_Strong
:
295 case Qualifiers::OCL_Weak
:
296 switch (StorageDuration Duration
= M
->getStorageDuration()) {
298 // Note: we intentionally do not register a cleanup to release
299 // the object on program termination.
303 // FIXME: We should probably register a cleanup in this case.
307 case SD_FullExpression
:
308 CodeGenFunction::Destroyer
*Destroy
;
309 CleanupKind CleanupKind
;
310 if (Lifetime
== Qualifiers::OCL_Strong
) {
311 const ValueDecl
*VD
= M
->getExtendingDecl();
313 VD
&& isa
<VarDecl
>(VD
) && VD
->hasAttr
<ObjCPreciseLifetimeAttr
>();
314 CleanupKind
= CGF
.getARCCleanupKind();
315 Destroy
= Precise
? &CodeGenFunction::destroyARCStrongPrecise
316 : &CodeGenFunction::destroyARCStrongImprecise
;
318 // __weak objects always get EH cleanups; otherwise, exceptions
319 // could cause really nasty crashes instead of mere leaks.
320 CleanupKind
= NormalAndEHCleanup
;
321 Destroy
= &CodeGenFunction::destroyARCWeak
;
323 if (Duration
== SD_FullExpression
)
324 CGF
.pushDestroy(CleanupKind
, ReferenceTemporary
,
325 M
->getType(), *Destroy
,
326 CleanupKind
& EHCleanup
);
328 CGF
.pushLifetimeExtendedDestroy(CleanupKind
, ReferenceTemporary
,
330 *Destroy
, CleanupKind
& EHCleanup
);
334 llvm_unreachable("temporary cannot have dynamic storage duration");
336 llvm_unreachable("unknown storage duration");
340 CXXDestructorDecl
*ReferenceTemporaryDtor
= nullptr;
341 if (const RecordType
*RT
=
342 E
->getType()->getBaseElementTypeUnsafe()->getAs
<RecordType
>()) {
343 // Get the destructor for the reference temporary.
344 auto *ClassDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
345 if (!ClassDecl
->hasTrivialDestructor())
346 ReferenceTemporaryDtor
= ClassDecl
->getDestructor();
349 if (!ReferenceTemporaryDtor
)
352 // Call the destructor for the temporary.
353 switch (M
->getStorageDuration()) {
356 llvm::FunctionCallee CleanupFn
;
357 llvm::Constant
*CleanupArg
;
358 if (E
->getType()->isArrayType()) {
359 CleanupFn
= CodeGenFunction(CGF
.CGM
).generateDestroyHelper(
360 ReferenceTemporary
, E
->getType(),
361 CodeGenFunction::destroyCXXObject
, CGF
.getLangOpts().Exceptions
,
362 dyn_cast_or_null
<VarDecl
>(M
->getExtendingDecl()));
363 CleanupArg
= llvm::Constant::getNullValue(CGF
.Int8PtrTy
);
365 CleanupFn
= CGF
.CGM
.getAddrAndTypeOfCXXStructor(
366 GlobalDecl(ReferenceTemporaryDtor
, Dtor_Complete
));
367 CleanupArg
= cast
<llvm::Constant
>(ReferenceTemporary
.getPointer());
369 CGF
.CGM
.getCXXABI().registerGlobalDtor(
370 CGF
, *cast
<VarDecl
>(M
->getExtendingDecl()), CleanupFn
, CleanupArg
);
374 case SD_FullExpression
:
375 CGF
.pushDestroy(NormalAndEHCleanup
, ReferenceTemporary
, E
->getType(),
376 CodeGenFunction::destroyCXXObject
,
377 CGF
.getLangOpts().Exceptions
);
381 CGF
.pushLifetimeExtendedDestroy(NormalAndEHCleanup
,
382 ReferenceTemporary
, E
->getType(),
383 CodeGenFunction::destroyCXXObject
,
384 CGF
.getLangOpts().Exceptions
);
388 llvm_unreachable("temporary cannot have dynamic storage duration");
392 static Address
createReferenceTemporary(CodeGenFunction
&CGF
,
393 const MaterializeTemporaryExpr
*M
,
395 Address
*Alloca
= nullptr) {
396 auto &TCG
= CGF
.getTargetHooks();
397 switch (M
->getStorageDuration()) {
398 case SD_FullExpression
:
400 // If we have a constant temporary array or record try to promote it into a
401 // constant global under the same rules a normal constant would've been
402 // promoted. This is easier on the optimizer and generally emits fewer
404 QualType Ty
= Inner
->getType();
405 if (CGF
.CGM
.getCodeGenOpts().MergeAllConstants
&&
406 (Ty
->isArrayType() || Ty
->isRecordType()) &&
407 CGF
.CGM
.isTypeConstant(Ty
, true, false))
408 if (auto Init
= ConstantEmitter(CGF
).tryEmitAbstract(Inner
, Ty
)) {
409 auto AS
= CGF
.CGM
.GetGlobalConstantAddressSpace();
410 auto *GV
= new llvm::GlobalVariable(
411 CGF
.CGM
.getModule(), Init
->getType(), /*isConstant=*/true,
412 llvm::GlobalValue::PrivateLinkage
, Init
, ".ref.tmp", nullptr,
413 llvm::GlobalValue::NotThreadLocal
,
414 CGF
.getContext().getTargetAddressSpace(AS
));
415 CharUnits alignment
= CGF
.getContext().getTypeAlignInChars(Ty
);
416 GV
->setAlignment(alignment
.getAsAlign());
417 llvm::Constant
*C
= GV
;
418 if (AS
!= LangAS::Default
)
419 C
= TCG
.performAddrSpaceCast(
420 CGF
.CGM
, GV
, AS
, LangAS::Default
,
421 GV
->getValueType()->getPointerTo(
422 CGF
.getContext().getTargetAddressSpace(LangAS::Default
)));
423 // FIXME: Should we put the new global into a COMDAT?
424 return Address(C
, GV
->getValueType(), alignment
);
426 return CGF
.CreateMemTemp(Ty
, "ref.tmp", Alloca
);
430 return CGF
.CGM
.GetAddrOfGlobalTemporary(M
, Inner
);
433 llvm_unreachable("temporary can't have dynamic storage duration");
435 llvm_unreachable("unknown storage duration");
438 /// Helper method to check if the underlying ABI is AAPCS
439 static bool isAAPCS(const TargetInfo
&TargetInfo
) {
440 return TargetInfo
.getABI().startswith("aapcs");
443 LValue
CodeGenFunction::
444 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr
*M
) {
445 const Expr
*E
= M
->getSubExpr();
447 assert((!M
->getExtendingDecl() || !isa
<VarDecl
>(M
->getExtendingDecl()) ||
448 !cast
<VarDecl
>(M
->getExtendingDecl())->isARCPseudoStrong()) &&
449 "Reference should never be pseudo-strong!");
451 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
452 // as that will cause the lifetime adjustment to be lost for ARC
453 auto ownership
= M
->getType().getObjCLifetime();
454 if (ownership
!= Qualifiers::OCL_None
&&
455 ownership
!= Qualifiers::OCL_ExplicitNone
) {
456 Address Object
= createReferenceTemporary(*this, M
, E
);
457 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(Object
.getPointer())) {
458 llvm::Type
*Ty
= ConvertTypeForMem(E
->getType());
459 Object
= Address(llvm::ConstantExpr::getBitCast(
460 Var
, Ty
->getPointerTo(Object
.getAddressSpace())),
461 Ty
, Object
.getAlignment());
463 // createReferenceTemporary will promote the temporary to a global with a
464 // constant initializer if it can. It can only do this to a value of
465 // ARC-manageable type if the value is global and therefore "immune" to
466 // ref-counting operations. Therefore we have no need to emit either a
467 // dynamic initialization or a cleanup and we can just return the address
469 if (Var
->hasInitializer())
470 return MakeAddrLValue(Object
, M
->getType(), AlignmentSource::Decl
);
472 Var
->setInitializer(CGM
.EmitNullConstant(E
->getType()));
474 LValue RefTempDst
= MakeAddrLValue(Object
, M
->getType(),
475 AlignmentSource::Decl
);
477 switch (getEvaluationKind(E
->getType())) {
478 default: llvm_unreachable("expected scalar or aggregate expression");
480 EmitScalarInit(E
, M
->getExtendingDecl(), RefTempDst
, false);
482 case TEK_Aggregate
: {
483 EmitAggExpr(E
, AggValueSlot::forAddr(Object
,
484 E
->getType().getQualifiers(),
485 AggValueSlot::IsDestructed
,
486 AggValueSlot::DoesNotNeedGCBarriers
,
487 AggValueSlot::IsNotAliased
,
488 AggValueSlot::DoesNotOverlap
));
493 pushTemporaryCleanup(*this, M
, E
, Object
);
497 SmallVector
<const Expr
*, 2> CommaLHSs
;
498 SmallVector
<SubobjectAdjustment
, 2> Adjustments
;
499 E
= E
->skipRValueSubobjectAdjustments(CommaLHSs
, Adjustments
);
501 for (const auto &Ignored
: CommaLHSs
)
502 EmitIgnoredExpr(Ignored
);
504 if (const auto *opaque
= dyn_cast
<OpaqueValueExpr
>(E
)) {
505 if (opaque
->getType()->isRecordType()) {
506 assert(Adjustments
.empty());
507 return EmitOpaqueValueLValue(opaque
);
511 // Create and initialize the reference temporary.
512 Address Alloca
= Address::invalid();
513 Address Object
= createReferenceTemporary(*this, M
, E
, &Alloca
);
514 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(
515 Object
.getPointer()->stripPointerCasts())) {
516 llvm::Type
*TemporaryType
= ConvertTypeForMem(E
->getType());
517 Object
= Address(llvm::ConstantExpr::getBitCast(
518 cast
<llvm::Constant
>(Object
.getPointer()),
519 TemporaryType
->getPointerTo()),
521 Object
.getAlignment());
522 // If the temporary is a global and has a constant initializer or is a
523 // constant temporary that we promoted to a global, we may have already
525 if (!Var
->hasInitializer()) {
526 Var
->setInitializer(CGM
.EmitNullConstant(E
->getType()));
527 EmitAnyExprToMem(E
, Object
, Qualifiers(), /*IsInit*/true);
530 switch (M
->getStorageDuration()) {
532 if (auto *Size
= EmitLifetimeStart(
533 CGM
.getDataLayout().getTypeAllocSize(Alloca
.getElementType()),
534 Alloca
.getPointer())) {
535 pushCleanupAfterFullExpr
<CallLifetimeEnd
>(NormalEHLifetimeMarker
,
540 case SD_FullExpression
: {
541 if (!ShouldEmitLifetimeMarkers
)
544 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
545 // marker. Instead, start the lifetime of a conditional temporary earlier
546 // so that it's unconditional. Don't do this with sanitizers which need
547 // more precise lifetime marks. However when inside an "await.suspend"
548 // block, we should always avoid conditional cleanup because it creates
549 // boolean marker that lives across await_suspend, which can destroy coro
551 ConditionalEvaluation
*OldConditional
= nullptr;
552 CGBuilderTy::InsertPoint OldIP
;
553 if (isInConditionalBranch() && !E
->getType().isDestructedType() &&
554 ((!SanOpts
.has(SanitizerKind::HWAddress
) &&
555 !SanOpts
.has(SanitizerKind::Memory
) &&
556 !CGM
.getCodeGenOpts().SanitizeAddressUseAfterScope
) ||
558 OldConditional
= OutermostConditional
;
559 OutermostConditional
= nullptr;
561 OldIP
= Builder
.saveIP();
562 llvm::BasicBlock
*Block
= OldConditional
->getStartingBlock();
563 Builder
.restoreIP(CGBuilderTy::InsertPoint(
564 Block
, llvm::BasicBlock::iterator(Block
->back())));
567 if (auto *Size
= EmitLifetimeStart(
568 CGM
.getDataLayout().getTypeAllocSize(Alloca
.getElementType()),
569 Alloca
.getPointer())) {
570 pushFullExprCleanup
<CallLifetimeEnd
>(NormalEHLifetimeMarker
, Alloca
,
574 if (OldConditional
) {
575 OutermostConditional
= OldConditional
;
576 Builder
.restoreIP(OldIP
);
584 EmitAnyExprToMem(E
, Object
, Qualifiers(), /*IsInit*/true);
586 pushTemporaryCleanup(*this, M
, E
, Object
);
588 // Perform derived-to-base casts and/or field accesses, to get from the
589 // temporary object we created (and, potentially, for which we extended
590 // the lifetime) to the subobject we're binding the reference to.
591 for (SubobjectAdjustment
&Adjustment
: llvm::reverse(Adjustments
)) {
592 switch (Adjustment
.Kind
) {
593 case SubobjectAdjustment::DerivedToBaseAdjustment
:
595 GetAddressOfBaseClass(Object
, Adjustment
.DerivedToBase
.DerivedClass
,
596 Adjustment
.DerivedToBase
.BasePath
->path_begin(),
597 Adjustment
.DerivedToBase
.BasePath
->path_end(),
598 /*NullCheckValue=*/ false, E
->getExprLoc());
601 case SubobjectAdjustment::FieldAdjustment
: {
602 LValue LV
= MakeAddrLValue(Object
, E
->getType(), AlignmentSource::Decl
);
603 LV
= EmitLValueForField(LV
, Adjustment
.Field
);
604 assert(LV
.isSimple() &&
605 "materialized temporary field is not a simple lvalue");
606 Object
= LV
.getAddress(*this);
610 case SubobjectAdjustment::MemberPointerAdjustment
: {
611 llvm::Value
*Ptr
= EmitScalarExpr(Adjustment
.Ptr
.RHS
);
612 Object
= EmitCXXMemberDataPointerAddress(E
, Object
, Ptr
,
619 return MakeAddrLValue(Object
, M
->getType(), AlignmentSource::Decl
);
623 CodeGenFunction::EmitReferenceBindingToExpr(const Expr
*E
) {
624 // Emit the expression as an lvalue.
625 LValue LV
= EmitLValue(E
);
626 assert(LV
.isSimple());
627 llvm::Value
*Value
= LV
.getPointer(*this);
629 if (sanitizePerformTypeCheck() && !E
->getType()->isFunctionType()) {
630 // C++11 [dcl.ref]p5 (as amended by core issue 453):
631 // If a glvalue to which a reference is directly bound designates neither
632 // an existing object or function of an appropriate type nor a region of
633 // storage of suitable size and alignment to contain an object of the
634 // reference's type, the behavior is undefined.
635 QualType Ty
= E
->getType();
636 EmitTypeCheck(TCK_ReferenceBinding
, E
->getExprLoc(), Value
, Ty
);
639 return RValue::get(Value
);
643 /// getAccessedFieldNo - Given an encoded value and a result number, return the
644 /// input field number being accessed.
645 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx
,
646 const llvm::Constant
*Elts
) {
647 return cast
<llvm::ConstantInt
>(Elts
->getAggregateElement(Idx
))
651 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
652 static llvm::Value
*emitHash16Bytes(CGBuilderTy
&Builder
, llvm::Value
*Low
,
654 llvm::Value
*KMul
= Builder
.getInt64(0x9ddfea08eb382d69ULL
);
655 llvm::Value
*K47
= Builder
.getInt64(47);
656 llvm::Value
*A0
= Builder
.CreateMul(Builder
.CreateXor(Low
, High
), KMul
);
657 llvm::Value
*A1
= Builder
.CreateXor(Builder
.CreateLShr(A0
, K47
), A0
);
658 llvm::Value
*B0
= Builder
.CreateMul(Builder
.CreateXor(High
, A1
), KMul
);
659 llvm::Value
*B1
= Builder
.CreateXor(Builder
.CreateLShr(B0
, K47
), B0
);
660 return Builder
.CreateMul(B1
, KMul
);
663 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK
) {
664 return TCK
== TCK_DowncastPointer
|| TCK
== TCK_Upcast
||
665 TCK
== TCK_UpcastToVirtualBase
|| TCK
== TCK_DynamicOperation
;
668 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK
, QualType Ty
) {
669 CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
670 return (RD
&& RD
->hasDefinition() && RD
->isDynamicClass()) &&
671 (TCK
== TCK_MemberAccess
|| TCK
== TCK_MemberCall
||
672 TCK
== TCK_DowncastPointer
|| TCK
== TCK_DowncastReference
||
673 TCK
== TCK_UpcastToVirtualBase
|| TCK
== TCK_DynamicOperation
);
676 bool CodeGenFunction::sanitizePerformTypeCheck() const {
677 return SanOpts
.has(SanitizerKind::Null
) ||
678 SanOpts
.has(SanitizerKind::Alignment
) ||
679 SanOpts
.has(SanitizerKind::ObjectSize
) ||
680 SanOpts
.has(SanitizerKind::Vptr
);
683 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK
, SourceLocation Loc
,
684 llvm::Value
*Ptr
, QualType Ty
,
686 SanitizerSet SkippedChecks
,
687 llvm::Value
*ArraySize
) {
688 if (!sanitizePerformTypeCheck())
691 // Don't check pointers outside the default address space. The null check
692 // isn't correct, the object-size check isn't supported by LLVM, and we can't
693 // communicate the addresses to the runtime handler for the vptr check.
694 if (Ptr
->getType()->getPointerAddressSpace())
697 // Don't check pointers to volatile data. The behavior here is implementation-
699 if (Ty
.isVolatileQualified())
702 SanitizerScope
SanScope(this);
704 SmallVector
<std::pair
<llvm::Value
*, SanitizerMask
>, 3> Checks
;
705 llvm::BasicBlock
*Done
= nullptr;
707 // Quickly determine whether we have a pointer to an alloca. It's possible
708 // to skip null checks, and some alignment checks, for these pointers. This
709 // can reduce compile-time significantly.
710 auto PtrToAlloca
= dyn_cast
<llvm::AllocaInst
>(Ptr
->stripPointerCasts());
712 llvm::Value
*True
= llvm::ConstantInt::getTrue(getLLVMContext());
713 llvm::Value
*IsNonNull
= nullptr;
714 bool IsGuaranteedNonNull
=
715 SkippedChecks
.has(SanitizerKind::Null
) || PtrToAlloca
;
716 bool AllowNullPointers
= isNullPointerAllowed(TCK
);
717 if ((SanOpts
.has(SanitizerKind::Null
) || AllowNullPointers
) &&
718 !IsGuaranteedNonNull
) {
719 // The glvalue must not be an empty glvalue.
720 IsNonNull
= Builder
.CreateIsNotNull(Ptr
);
722 // The IR builder can constant-fold the null check if the pointer points to
724 IsGuaranteedNonNull
= IsNonNull
== True
;
726 // Skip the null check if the pointer is known to be non-null.
727 if (!IsGuaranteedNonNull
) {
728 if (AllowNullPointers
) {
729 // When performing pointer casts, it's OK if the value is null.
730 // Skip the remaining checks in that case.
731 Done
= createBasicBlock("null");
732 llvm::BasicBlock
*Rest
= createBasicBlock("not.null");
733 Builder
.CreateCondBr(IsNonNull
, Rest
, Done
);
736 Checks
.push_back(std::make_pair(IsNonNull
, SanitizerKind::Null
));
741 if (SanOpts
.has(SanitizerKind::ObjectSize
) &&
742 !SkippedChecks
.has(SanitizerKind::ObjectSize
) &&
743 !Ty
->isIncompleteType()) {
744 uint64_t TySize
= CGM
.getMinimumObjectSize(Ty
).getQuantity();
745 llvm::Value
*Size
= llvm::ConstantInt::get(IntPtrTy
, TySize
);
747 Size
= Builder
.CreateMul(Size
, ArraySize
);
749 // Degenerate case: new X[0] does not need an objectsize check.
750 llvm::Constant
*ConstantSize
= dyn_cast
<llvm::Constant
>(Size
);
751 if (!ConstantSize
|| !ConstantSize
->isNullValue()) {
752 // The glvalue must refer to a large enough storage region.
753 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
755 // FIXME: Get object address space
756 llvm::Type
*Tys
[2] = { IntPtrTy
, Int8PtrTy
};
757 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::objectsize
, Tys
);
758 llvm::Value
*Min
= Builder
.getFalse();
759 llvm::Value
*NullIsUnknown
= Builder
.getFalse();
760 llvm::Value
*Dynamic
= Builder
.getFalse();
761 llvm::Value
*CastAddr
= Builder
.CreateBitCast(Ptr
, Int8PtrTy
);
762 llvm::Value
*LargeEnough
= Builder
.CreateICmpUGE(
763 Builder
.CreateCall(F
, {CastAddr
, Min
, NullIsUnknown
, Dynamic
}), Size
);
764 Checks
.push_back(std::make_pair(LargeEnough
, SanitizerKind::ObjectSize
));
768 llvm::MaybeAlign AlignVal
;
769 llvm::Value
*PtrAsInt
= nullptr;
771 if (SanOpts
.has(SanitizerKind::Alignment
) &&
772 !SkippedChecks
.has(SanitizerKind::Alignment
)) {
773 AlignVal
= Alignment
.getAsMaybeAlign();
774 if (!Ty
->isIncompleteType() && !AlignVal
)
775 AlignVal
= CGM
.getNaturalTypeAlignment(Ty
, nullptr, nullptr,
776 /*ForPointeeType=*/true)
779 // The glvalue must be suitably aligned.
780 if (AlignVal
&& *AlignVal
> llvm::Align(1) &&
781 (!PtrToAlloca
|| PtrToAlloca
->getAlign() < *AlignVal
)) {
782 PtrAsInt
= Builder
.CreatePtrToInt(Ptr
, IntPtrTy
);
783 llvm::Value
*Align
= Builder
.CreateAnd(
784 PtrAsInt
, llvm::ConstantInt::get(IntPtrTy
, AlignVal
->value() - 1));
785 llvm::Value
*Aligned
=
786 Builder
.CreateICmpEQ(Align
, llvm::ConstantInt::get(IntPtrTy
, 0));
788 Checks
.push_back(std::make_pair(Aligned
, SanitizerKind::Alignment
));
792 if (Checks
.size() > 0) {
793 llvm::Constant
*StaticData
[] = {
794 EmitCheckSourceLocation(Loc
), EmitCheckTypeDescriptor(Ty
),
795 llvm::ConstantInt::get(Int8Ty
, AlignVal
? llvm::Log2(*AlignVal
) : 1),
796 llvm::ConstantInt::get(Int8Ty
, TCK
)};
797 EmitCheck(Checks
, SanitizerHandler::TypeMismatch
, StaticData
,
798 PtrAsInt
? PtrAsInt
: Ptr
);
801 // If possible, check that the vptr indicates that there is a subobject of
802 // type Ty at offset zero within this object.
804 // C++11 [basic.life]p5,6:
805 // [For storage which does not refer to an object within its lifetime]
806 // The program has undefined behavior if:
807 // -- the [pointer or glvalue] is used to access a non-static data member
808 // or call a non-static member function
809 if (SanOpts
.has(SanitizerKind::Vptr
) &&
810 !SkippedChecks
.has(SanitizerKind::Vptr
) && isVptrCheckRequired(TCK
, Ty
)) {
811 // Ensure that the pointer is non-null before loading it. If there is no
812 // compile-time guarantee, reuse the run-time null check or emit a new one.
813 if (!IsGuaranteedNonNull
) {
815 IsNonNull
= Builder
.CreateIsNotNull(Ptr
);
817 Done
= createBasicBlock("vptr.null");
818 llvm::BasicBlock
*VptrNotNull
= createBasicBlock("vptr.not.null");
819 Builder
.CreateCondBr(IsNonNull
, VptrNotNull
, Done
);
820 EmitBlock(VptrNotNull
);
823 // Compute a hash of the mangled name of the type.
825 // FIXME: This is not guaranteed to be deterministic! Move to a
826 // fingerprinting mechanism once LLVM provides one. For the time
827 // being the implementation happens to be deterministic.
828 SmallString
<64> MangledName
;
829 llvm::raw_svector_ostream
Out(MangledName
);
830 CGM
.getCXXABI().getMangleContext().mangleCXXRTTI(Ty
.getUnqualifiedType(),
833 // Contained in NoSanitizeList based on the mangled type.
834 if (!CGM
.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr
,
836 llvm::hash_code TypeHash
= hash_value(Out
.str());
838 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
839 llvm::Value
*Low
= llvm::ConstantInt::get(Int64Ty
, TypeHash
);
840 llvm::Type
*VPtrTy
= llvm::PointerType::get(IntPtrTy
, 0);
841 Address
VPtrAddr(Builder
.CreateBitCast(Ptr
, VPtrTy
), IntPtrTy
,
843 llvm::Value
*VPtrVal
= Builder
.CreateLoad(VPtrAddr
);
844 llvm::Value
*High
= Builder
.CreateZExt(VPtrVal
, Int64Ty
);
846 llvm::Value
*Hash
= emitHash16Bytes(Builder
, Low
, High
);
847 Hash
= Builder
.CreateTrunc(Hash
, IntPtrTy
);
849 // Look the hash up in our cache.
850 const int CacheSize
= 128;
851 llvm::Type
*HashTable
= llvm::ArrayType::get(IntPtrTy
, CacheSize
);
852 llvm::Value
*Cache
= CGM
.CreateRuntimeVariable(HashTable
,
853 "__ubsan_vptr_type_cache");
854 llvm::Value
*Slot
= Builder
.CreateAnd(Hash
,
855 llvm::ConstantInt::get(IntPtrTy
,
857 llvm::Value
*Indices
[] = { Builder
.getInt32(0), Slot
};
858 llvm::Value
*CacheVal
= Builder
.CreateAlignedLoad(
859 IntPtrTy
, Builder
.CreateInBoundsGEP(HashTable
, Cache
, Indices
),
862 // If the hash isn't in the cache, call a runtime handler to perform the
863 // hard work of checking whether the vptr is for an object of the right
864 // type. This will either fill in the cache and return, or produce a
866 llvm::Value
*EqualHash
= Builder
.CreateICmpEQ(CacheVal
, Hash
);
867 llvm::Constant
*StaticData
[] = {
868 EmitCheckSourceLocation(Loc
),
869 EmitCheckTypeDescriptor(Ty
),
870 CGM
.GetAddrOfRTTIDescriptor(Ty
.getUnqualifiedType()),
871 llvm::ConstantInt::get(Int8Ty
, TCK
)
873 llvm::Value
*DynamicData
[] = { Ptr
, Hash
};
874 EmitCheck(std::make_pair(EqualHash
, SanitizerKind::Vptr
),
875 SanitizerHandler::DynamicTypeCacheMiss
, StaticData
,
881 Builder
.CreateBr(Done
);
886 llvm::Value
*CodeGenFunction::LoadPassedObjectSize(const Expr
*E
,
888 ASTContext
&C
= getContext();
889 uint64_t EltSize
= C
.getTypeSizeInChars(EltTy
).getQuantity();
893 auto *ArrayDeclRef
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts());
897 auto *ParamDecl
= dyn_cast
<ParmVarDecl
>(ArrayDeclRef
->getDecl());
901 auto *POSAttr
= ParamDecl
->getAttr
<PassObjectSizeAttr
>();
905 // Don't load the size if it's a lower bound.
906 int POSType
= POSAttr
->getType();
907 if (POSType
!= 0 && POSType
!= 1)
910 // Find the implicit size parameter.
911 auto PassedSizeIt
= SizeArguments
.find(ParamDecl
);
912 if (PassedSizeIt
== SizeArguments
.end())
915 const ImplicitParamDecl
*PassedSizeDecl
= PassedSizeIt
->second
;
916 assert(LocalDeclMap
.count(PassedSizeDecl
) && "Passed size not loadable");
917 Address AddrOfSize
= LocalDeclMap
.find(PassedSizeDecl
)->second
;
918 llvm::Value
*SizeInBytes
= EmitLoadOfScalar(AddrOfSize
, /*Volatile=*/false,
919 C
.getSizeType(), E
->getExprLoc());
920 llvm::Value
*SizeOfElement
=
921 llvm::ConstantInt::get(SizeInBytes
->getType(), EltSize
);
922 return Builder
.CreateUDiv(SizeInBytes
, SizeOfElement
);
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value
*getArrayIndexingBound(CodeGenFunction
&CGF
,
929 QualType
&IndexedType
,
930 LangOptions::StrictFlexArraysLevelKind
931 StrictFlexArraysLevel
) {
932 // For the vector indexing extension, the bound is the number of elements.
933 if (const VectorType
*VT
= Base
->getType()->getAs
<VectorType
>()) {
934 IndexedType
= Base
->getType();
935 return CGF
.Builder
.getInt32(VT
->getNumElements());
938 Base
= Base
->IgnoreParens();
940 if (const auto *CE
= dyn_cast
<CastExpr
>(Base
)) {
941 if (CE
->getCastKind() == CK_ArrayToPointerDecay
&&
942 !CE
->getSubExpr()->isFlexibleArrayMemberLike(CGF
.getContext(),
943 StrictFlexArraysLevel
)) {
944 IndexedType
= CE
->getSubExpr()->getType();
945 const ArrayType
*AT
= IndexedType
->castAsArrayTypeUnsafe();
946 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(AT
))
947 return CGF
.Builder
.getInt(CAT
->getSize());
948 else if (const auto *VAT
= dyn_cast
<VariableArrayType
>(AT
))
949 return CGF
.getVLASize(VAT
).NumElts
;
950 // Ignore pass_object_size here. It's not applicable on decayed pointers.
954 QualType EltTy
{Base
->getType()->getPointeeOrArrayElementType(), 0};
955 if (llvm::Value
*POS
= CGF
.LoadPassedObjectSize(Base
, EltTy
)) {
956 IndexedType
= Base
->getType();
963 void CodeGenFunction::EmitBoundsCheck(const Expr
*E
, const Expr
*Base
,
964 llvm::Value
*Index
, QualType IndexType
,
966 assert(SanOpts
.has(SanitizerKind::ArrayBounds
) &&
967 "should not be called unless adding bounds checks");
968 SanitizerScope
SanScope(this);
970 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel
=
971 getLangOpts().getStrictFlexArraysLevel();
973 QualType IndexedType
;
975 getArrayIndexingBound(*this, Base
, IndexedType
, StrictFlexArraysLevel
);
979 bool IndexSigned
= IndexType
->isSignedIntegerOrEnumerationType();
980 llvm::Value
*IndexVal
= Builder
.CreateIntCast(Index
, SizeTy
, IndexSigned
);
981 llvm::Value
*BoundVal
= Builder
.CreateIntCast(Bound
, SizeTy
, false);
983 llvm::Constant
*StaticData
[] = {
984 EmitCheckSourceLocation(E
->getExprLoc()),
985 EmitCheckTypeDescriptor(IndexedType
),
986 EmitCheckTypeDescriptor(IndexType
)
988 llvm::Value
*Check
= Accessed
? Builder
.CreateICmpULT(IndexVal
, BoundVal
)
989 : Builder
.CreateICmpULE(IndexVal
, BoundVal
);
990 EmitCheck(std::make_pair(Check
, SanitizerKind::ArrayBounds
),
991 SanitizerHandler::OutOfBounds
, StaticData
, Index
);
995 CodeGenFunction::ComplexPairTy
CodeGenFunction::
996 EmitComplexPrePostIncDec(const UnaryOperator
*E
, LValue LV
,
997 bool isInc
, bool isPre
) {
998 ComplexPairTy InVal
= EmitLoadOfComplex(LV
, E
->getExprLoc());
1000 llvm::Value
*NextVal
;
1001 if (isa
<llvm::IntegerType
>(InVal
.first
->getType())) {
1002 uint64_t AmountVal
= isInc
? 1 : -1;
1003 NextVal
= llvm::ConstantInt::get(InVal
.first
->getType(), AmountVal
, true);
1005 // Add the inc/dec to the real part.
1006 NextVal
= Builder
.CreateAdd(InVal
.first
, NextVal
, isInc
? "inc" : "dec");
1008 QualType ElemTy
= E
->getType()->castAs
<ComplexType
>()->getElementType();
1009 llvm::APFloat
FVal(getContext().getFloatTypeSemantics(ElemTy
), 1);
1012 NextVal
= llvm::ConstantFP::get(getLLVMContext(), FVal
);
1014 // Add the inc/dec to the real part.
1015 NextVal
= Builder
.CreateFAdd(InVal
.first
, NextVal
, isInc
? "inc" : "dec");
1018 ComplexPairTy
IncVal(NextVal
, InVal
.second
);
1020 // Store the updated result through the lvalue.
1021 EmitStoreOfComplex(IncVal
, LV
, /*init*/ false);
1022 if (getLangOpts().OpenMP
)
1023 CGM
.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1026 // If this is a postinc, return the value read from memory, otherwise use the
1028 return isPre
? IncVal
: InVal
;
1031 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr
*E
,
1032 CodeGenFunction
*CGF
) {
1033 // Bind VLAs in the cast type.
1034 if (CGF
&& E
->getType()->isVariablyModifiedType())
1035 CGF
->EmitVariablyModifiedType(E
->getType());
1037 if (CGDebugInfo
*DI
= getModuleDebugInfo())
1038 DI
->EmitExplicitCastType(E
->getType());
1041 //===----------------------------------------------------------------------===//
1042 // LValue Expression Emission
1043 //===----------------------------------------------------------------------===//
1045 static Address
EmitPointerWithAlignment(const Expr
*E
, LValueBaseInfo
*BaseInfo
,
1046 TBAAAccessInfo
*TBAAInfo
,
1047 KnownNonNull_t IsKnownNonNull
,
1048 CodeGenFunction
&CGF
) {
1049 // We allow this with ObjC object pointers because of fragile ABIs.
1050 assert(E
->getType()->isPointerType() ||
1051 E
->getType()->isObjCObjectPointerType());
1052 E
= E
->IgnoreParens();
1055 if (const CastExpr
*CE
= dyn_cast
<CastExpr
>(E
)) {
1056 if (const auto *ECE
= dyn_cast
<ExplicitCastExpr
>(CE
))
1057 CGF
.CGM
.EmitExplicitCastExprType(ECE
, &CGF
);
1059 switch (CE
->getCastKind()) {
1060 // Non-converting casts (but not C's implicit conversion from void*).
1063 case CK_AddressSpaceConversion
:
1064 if (auto PtrTy
= CE
->getSubExpr()->getType()->getAs
<PointerType
>()) {
1065 if (PtrTy
->getPointeeType()->isVoidType())
1068 LValueBaseInfo InnerBaseInfo
;
1069 TBAAAccessInfo InnerTBAAInfo
;
1070 Address Addr
= CGF
.EmitPointerWithAlignment(
1071 CE
->getSubExpr(), &InnerBaseInfo
, &InnerTBAAInfo
, IsKnownNonNull
);
1072 if (BaseInfo
) *BaseInfo
= InnerBaseInfo
;
1073 if (TBAAInfo
) *TBAAInfo
= InnerTBAAInfo
;
1075 if (isa
<ExplicitCastExpr
>(CE
)) {
1076 LValueBaseInfo TargetTypeBaseInfo
;
1077 TBAAAccessInfo TargetTypeTBAAInfo
;
1078 CharUnits Align
= CGF
.CGM
.getNaturalPointeeTypeAlignment(
1079 E
->getType(), &TargetTypeBaseInfo
, &TargetTypeTBAAInfo
);
1082 CGF
.CGM
.mergeTBAAInfoForCast(*TBAAInfo
, TargetTypeTBAAInfo
);
1083 // If the source l-value is opaque, honor the alignment of the
1085 if (InnerBaseInfo
.getAlignmentSource() != AlignmentSource::Decl
) {
1087 BaseInfo
->mergeForCast(TargetTypeBaseInfo
);
1088 Addr
= Address(Addr
.getPointer(), Addr
.getElementType(), Align
,
1093 if (CGF
.SanOpts
.has(SanitizerKind::CFIUnrelatedCast
) &&
1094 CE
->getCastKind() == CK_BitCast
) {
1095 if (auto PT
= E
->getType()->getAs
<PointerType
>())
1096 CGF
.EmitVTablePtrCheckForCast(PT
->getPointeeType(), Addr
,
1098 CodeGenFunction::CFITCK_UnrelatedCast
,
1102 llvm::Type
*ElemTy
=
1103 CGF
.ConvertTypeForMem(E
->getType()->getPointeeType());
1104 Addr
= CGF
.Builder
.CreateElementBitCast(Addr
, ElemTy
);
1105 if (CE
->getCastKind() == CK_AddressSpaceConversion
)
1106 Addr
= CGF
.Builder
.CreateAddrSpaceCast(Addr
,
1107 CGF
.ConvertType(E
->getType()));
1112 // Array-to-pointer decay.
1113 case CK_ArrayToPointerDecay
:
1114 return CGF
.EmitArrayToPointerDecay(CE
->getSubExpr(), BaseInfo
, TBAAInfo
);
1116 // Derived-to-base conversions.
1117 case CK_UncheckedDerivedToBase
:
1118 case CK_DerivedToBase
: {
1119 // TODO: Support accesses to members of base classes in TBAA. For now, we
1120 // conservatively pretend that the complete object is of the base class
1123 *TBAAInfo
= CGF
.CGM
.getTBAAAccessInfo(E
->getType());
1124 Address Addr
= CGF
.EmitPointerWithAlignment(
1125 CE
->getSubExpr(), BaseInfo
, nullptr,
1126 (KnownNonNull_t
)(IsKnownNonNull
||
1127 CE
->getCastKind() == CK_UncheckedDerivedToBase
));
1128 auto Derived
= CE
->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1129 return CGF
.GetAddressOfBaseClass(
1130 Addr
, Derived
, CE
->path_begin(), CE
->path_end(),
1131 CGF
.ShouldNullCheckClassCastValue(CE
), CE
->getExprLoc());
1134 // TODO: Is there any reason to treat base-to-derived conversions
1142 if (const UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(E
)) {
1143 if (UO
->getOpcode() == UO_AddrOf
) {
1144 LValue LV
= CGF
.EmitLValue(UO
->getSubExpr(), IsKnownNonNull
);
1145 if (BaseInfo
) *BaseInfo
= LV
.getBaseInfo();
1146 if (TBAAInfo
) *TBAAInfo
= LV
.getTBAAInfo();
1147 return LV
.getAddress(CGF
);
1151 // std::addressof and variants.
1152 if (auto *Call
= dyn_cast
<CallExpr
>(E
)) {
1153 switch (Call
->getBuiltinCallee()) {
1156 case Builtin::BIaddressof
:
1157 case Builtin::BI__addressof
:
1158 case Builtin::BI__builtin_addressof
: {
1159 LValue LV
= CGF
.EmitLValue(Call
->getArg(0), IsKnownNonNull
);
1160 if (BaseInfo
) *BaseInfo
= LV
.getBaseInfo();
1161 if (TBAAInfo
) *TBAAInfo
= LV
.getTBAAInfo();
1162 return LV
.getAddress(CGF
);
1167 // TODO: conditional operators, comma.
1169 // Otherwise, use the alignment of the type.
1171 CGF
.CGM
.getNaturalPointeeTypeAlignment(E
->getType(), BaseInfo
, TBAAInfo
);
1172 llvm::Type
*ElemTy
= CGF
.ConvertTypeForMem(E
->getType()->getPointeeType());
1173 return Address(CGF
.EmitScalarExpr(E
), ElemTy
, Align
, IsKnownNonNull
);
1176 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1177 /// derive a more accurate bound on the alignment of the pointer.
1178 Address
CodeGenFunction::EmitPointerWithAlignment(
1179 const Expr
*E
, LValueBaseInfo
*BaseInfo
, TBAAAccessInfo
*TBAAInfo
,
1180 KnownNonNull_t IsKnownNonNull
) {
1182 ::EmitPointerWithAlignment(E
, BaseInfo
, TBAAInfo
, IsKnownNonNull
, *this);
1183 if (IsKnownNonNull
&& !Addr
.isKnownNonNull())
1184 Addr
.setKnownNonNull();
1188 llvm::Value
*CodeGenFunction::EmitNonNullRValueCheck(RValue RV
, QualType T
) {
1189 llvm::Value
*V
= RV
.getScalarVal();
1190 if (auto MPT
= T
->getAs
<MemberPointerType
>())
1191 return CGM
.getCXXABI().EmitMemberPointerIsNotNull(*this, V
, MPT
);
1192 return Builder
.CreateICmpNE(V
, llvm::Constant::getNullValue(V
->getType()));
1195 RValue
CodeGenFunction::GetUndefRValue(QualType Ty
) {
1196 if (Ty
->isVoidType())
1197 return RValue::get(nullptr);
1199 switch (getEvaluationKind(Ty
)) {
1202 ConvertType(Ty
->castAs
<ComplexType
>()->getElementType());
1203 llvm::Value
*U
= llvm::UndefValue::get(EltTy
);
1204 return RValue::getComplex(std::make_pair(U
, U
));
1207 // If this is a use of an undefined aggregate type, the aggregate must have an
1208 // identifiable address. Just because the contents of the value are undefined
1209 // doesn't mean that the address can't be taken and compared.
1210 case TEK_Aggregate
: {
1211 Address DestPtr
= CreateMemTemp(Ty
, "undef.agg.tmp");
1212 return RValue::getAggregate(DestPtr
);
1216 return RValue::get(llvm::UndefValue::get(ConvertType(Ty
)));
1218 llvm_unreachable("bad evaluation kind");
1221 RValue
CodeGenFunction::EmitUnsupportedRValue(const Expr
*E
,
1223 ErrorUnsupported(E
, Name
);
1224 return GetUndefRValue(E
->getType());
1227 LValue
CodeGenFunction::EmitUnsupportedLValue(const Expr
*E
,
1229 ErrorUnsupported(E
, Name
);
1230 llvm::Type
*ElTy
= ConvertType(E
->getType());
1231 llvm::Type
*Ty
= llvm::PointerType::getUnqual(ElTy
);
1232 return MakeAddrLValue(
1233 Address(llvm::UndefValue::get(Ty
), ElTy
, CharUnits::One()), E
->getType());
1236 bool CodeGenFunction::IsWrappedCXXThis(const Expr
*Obj
) {
1237 const Expr
*Base
= Obj
;
1238 while (!isa
<CXXThisExpr
>(Base
)) {
1239 // The result of a dynamic_cast can be null.
1240 if (isa
<CXXDynamicCastExpr
>(Base
))
1243 if (const auto *CE
= dyn_cast
<CastExpr
>(Base
)) {
1244 Base
= CE
->getSubExpr();
1245 } else if (const auto *PE
= dyn_cast
<ParenExpr
>(Base
)) {
1246 Base
= PE
->getSubExpr();
1247 } else if (const auto *UO
= dyn_cast
<UnaryOperator
>(Base
)) {
1248 if (UO
->getOpcode() == UO_Extension
)
1249 Base
= UO
->getSubExpr();
1259 LValue
CodeGenFunction::EmitCheckedLValue(const Expr
*E
, TypeCheckKind TCK
) {
1261 if (SanOpts
.has(SanitizerKind::ArrayBounds
) && isa
<ArraySubscriptExpr
>(E
))
1262 LV
= EmitArraySubscriptExpr(cast
<ArraySubscriptExpr
>(E
), /*Accessed*/true);
1265 if (!isa
<DeclRefExpr
>(E
) && !LV
.isBitField() && LV
.isSimple()) {
1266 SanitizerSet SkippedChecks
;
1267 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
)) {
1268 bool IsBaseCXXThis
= IsWrappedCXXThis(ME
->getBase());
1270 SkippedChecks
.set(SanitizerKind::Alignment
, true);
1271 if (IsBaseCXXThis
|| isa
<DeclRefExpr
>(ME
->getBase()))
1272 SkippedChecks
.set(SanitizerKind::Null
, true);
1274 EmitTypeCheck(TCK
, E
->getExprLoc(), LV
.getPointer(*this), E
->getType(),
1275 LV
.getAlignment(), SkippedChecks
);
1280 /// EmitLValue - Emit code to compute a designator that specifies the location
1281 /// of the expression.
1283 /// This can return one of two things: a simple address or a bitfield reference.
1284 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1285 /// an LLVM pointer type.
1287 /// If this returns a bitfield reference, nothing about the pointee type of the
1288 /// LLVM value is known: For example, it may not be a pointer to an integer.
1290 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1291 /// this method guarantees that the returned pointer type will point to an LLVM
1292 /// type of the same size of the lvalue's type. If the lvalue has a variable
1293 /// length type, this is not possible.
1295 LValue
CodeGenFunction::EmitLValue(const Expr
*E
,
1296 KnownNonNull_t IsKnownNonNull
) {
1297 LValue LV
= EmitLValueHelper(E
, IsKnownNonNull
);
1298 if (IsKnownNonNull
&& !LV
.isKnownNonNull())
1299 LV
.setKnownNonNull();
1303 LValue
CodeGenFunction::EmitLValueHelper(const Expr
*E
,
1304 KnownNonNull_t IsKnownNonNull
) {
1305 ApplyDebugLocation
DL(*this, E
);
1306 switch (E
->getStmtClass()) {
1307 default: return EmitUnsupportedLValue(E
, "l-value expression");
1309 case Expr::ObjCPropertyRefExprClass
:
1310 llvm_unreachable("cannot emit a property reference directly");
1312 case Expr::ObjCSelectorExprClass
:
1313 return EmitObjCSelectorLValue(cast
<ObjCSelectorExpr
>(E
));
1314 case Expr::ObjCIsaExprClass
:
1315 return EmitObjCIsaExpr(cast
<ObjCIsaExpr
>(E
));
1316 case Expr::BinaryOperatorClass
:
1317 return EmitBinaryOperatorLValue(cast
<BinaryOperator
>(E
));
1318 case Expr::CompoundAssignOperatorClass
: {
1319 QualType Ty
= E
->getType();
1320 if (const AtomicType
*AT
= Ty
->getAs
<AtomicType
>())
1321 Ty
= AT
->getValueType();
1322 if (!Ty
->isAnyComplexType())
1323 return EmitCompoundAssignmentLValue(cast
<CompoundAssignOperator
>(E
));
1324 return EmitComplexCompoundAssignmentLValue(cast
<CompoundAssignOperator
>(E
));
1326 case Expr::CallExprClass
:
1327 case Expr::CXXMemberCallExprClass
:
1328 case Expr::CXXOperatorCallExprClass
:
1329 case Expr::UserDefinedLiteralClass
:
1330 return EmitCallExprLValue(cast
<CallExpr
>(E
));
1331 case Expr::CXXRewrittenBinaryOperatorClass
:
1332 return EmitLValue(cast
<CXXRewrittenBinaryOperator
>(E
)->getSemanticForm(),
1334 case Expr::VAArgExprClass
:
1335 return EmitVAArgExprLValue(cast
<VAArgExpr
>(E
));
1336 case Expr::DeclRefExprClass
:
1337 return EmitDeclRefLValue(cast
<DeclRefExpr
>(E
));
1338 case Expr::ConstantExprClass
: {
1339 const ConstantExpr
*CE
= cast
<ConstantExpr
>(E
);
1340 if (llvm::Value
*Result
= ConstantEmitter(*this).tryEmitConstantExpr(CE
)) {
1341 QualType RetType
= cast
<CallExpr
>(CE
->getSubExpr()->IgnoreImplicit())
1342 ->getCallReturnType(getContext())
1344 return MakeNaturalAlignAddrLValue(Result
, RetType
);
1346 return EmitLValue(cast
<ConstantExpr
>(E
)->getSubExpr(), IsKnownNonNull
);
1348 case Expr::ParenExprClass
:
1349 return EmitLValue(cast
<ParenExpr
>(E
)->getSubExpr(), IsKnownNonNull
);
1350 case Expr::GenericSelectionExprClass
:
1351 return EmitLValue(cast
<GenericSelectionExpr
>(E
)->getResultExpr(),
1353 case Expr::PredefinedExprClass
:
1354 return EmitPredefinedLValue(cast
<PredefinedExpr
>(E
));
1355 case Expr::StringLiteralClass
:
1356 return EmitStringLiteralLValue(cast
<StringLiteral
>(E
));
1357 case Expr::ObjCEncodeExprClass
:
1358 return EmitObjCEncodeExprLValue(cast
<ObjCEncodeExpr
>(E
));
1359 case Expr::PseudoObjectExprClass
:
1360 return EmitPseudoObjectLValue(cast
<PseudoObjectExpr
>(E
));
1361 case Expr::InitListExprClass
:
1362 return EmitInitListLValue(cast
<InitListExpr
>(E
));
1363 case Expr::CXXTemporaryObjectExprClass
:
1364 case Expr::CXXConstructExprClass
:
1365 return EmitCXXConstructLValue(cast
<CXXConstructExpr
>(E
));
1366 case Expr::CXXBindTemporaryExprClass
:
1367 return EmitCXXBindTemporaryLValue(cast
<CXXBindTemporaryExpr
>(E
));
1368 case Expr::CXXUuidofExprClass
:
1369 return EmitCXXUuidofLValue(cast
<CXXUuidofExpr
>(E
));
1370 case Expr::LambdaExprClass
:
1371 return EmitAggExprToLValue(E
);
1373 case Expr::ExprWithCleanupsClass
: {
1374 const auto *cleanups
= cast
<ExprWithCleanups
>(E
);
1375 RunCleanupsScope
Scope(*this);
1376 LValue LV
= EmitLValue(cleanups
->getSubExpr(), IsKnownNonNull
);
1377 if (LV
.isSimple()) {
1378 // Defend against branches out of gnu statement expressions surrounded by
1380 Address Addr
= LV
.getAddress(*this);
1381 llvm::Value
*V
= Addr
.getPointer();
1382 Scope
.ForceCleanup({&V
});
1383 return LValue::MakeAddr(Addr
.withPointer(V
, Addr
.isKnownNonNull()),
1384 LV
.getType(), getContext(), LV
.getBaseInfo(),
1387 // FIXME: Is it possible to create an ExprWithCleanups that produces a
1388 // bitfield lvalue or some other non-simple lvalue?
1392 case Expr::CXXDefaultArgExprClass
: {
1393 auto *DAE
= cast
<CXXDefaultArgExpr
>(E
);
1394 CXXDefaultArgExprScope
Scope(*this, DAE
);
1395 return EmitLValue(DAE
->getExpr(), IsKnownNonNull
);
1397 case Expr::CXXDefaultInitExprClass
: {
1398 auto *DIE
= cast
<CXXDefaultInitExpr
>(E
);
1399 CXXDefaultInitExprScope
Scope(*this, DIE
);
1400 return EmitLValue(DIE
->getExpr(), IsKnownNonNull
);
1402 case Expr::CXXTypeidExprClass
:
1403 return EmitCXXTypeidLValue(cast
<CXXTypeidExpr
>(E
));
1405 case Expr::ObjCMessageExprClass
:
1406 return EmitObjCMessageExprLValue(cast
<ObjCMessageExpr
>(E
));
1407 case Expr::ObjCIvarRefExprClass
:
1408 return EmitObjCIvarRefLValue(cast
<ObjCIvarRefExpr
>(E
));
1409 case Expr::StmtExprClass
:
1410 return EmitStmtExprLValue(cast
<StmtExpr
>(E
));
1411 case Expr::UnaryOperatorClass
:
1412 return EmitUnaryOpLValue(cast
<UnaryOperator
>(E
));
1413 case Expr::ArraySubscriptExprClass
:
1414 return EmitArraySubscriptExpr(cast
<ArraySubscriptExpr
>(E
));
1415 case Expr::MatrixSubscriptExprClass
:
1416 return EmitMatrixSubscriptExpr(cast
<MatrixSubscriptExpr
>(E
));
1417 case Expr::OMPArraySectionExprClass
:
1418 return EmitOMPArraySectionExpr(cast
<OMPArraySectionExpr
>(E
));
1419 case Expr::ExtVectorElementExprClass
:
1420 return EmitExtVectorElementExpr(cast
<ExtVectorElementExpr
>(E
));
1421 case Expr::CXXThisExprClass
:
1422 return MakeAddrLValue(LoadCXXThisAddress(), E
->getType());
1423 case Expr::MemberExprClass
:
1424 return EmitMemberExpr(cast
<MemberExpr
>(E
));
1425 case Expr::CompoundLiteralExprClass
:
1426 return EmitCompoundLiteralLValue(cast
<CompoundLiteralExpr
>(E
));
1427 case Expr::ConditionalOperatorClass
:
1428 return EmitConditionalOperatorLValue(cast
<ConditionalOperator
>(E
));
1429 case Expr::BinaryConditionalOperatorClass
:
1430 return EmitConditionalOperatorLValue(cast
<BinaryConditionalOperator
>(E
));
1431 case Expr::ChooseExprClass
:
1432 return EmitLValue(cast
<ChooseExpr
>(E
)->getChosenSubExpr(), IsKnownNonNull
);
1433 case Expr::OpaqueValueExprClass
:
1434 return EmitOpaqueValueLValue(cast
<OpaqueValueExpr
>(E
));
1435 case Expr::SubstNonTypeTemplateParmExprClass
:
1436 return EmitLValue(cast
<SubstNonTypeTemplateParmExpr
>(E
)->getReplacement(),
1438 case Expr::ImplicitCastExprClass
:
1439 case Expr::CStyleCastExprClass
:
1440 case Expr::CXXFunctionalCastExprClass
:
1441 case Expr::CXXStaticCastExprClass
:
1442 case Expr::CXXDynamicCastExprClass
:
1443 case Expr::CXXReinterpretCastExprClass
:
1444 case Expr::CXXConstCastExprClass
:
1445 case Expr::CXXAddrspaceCastExprClass
:
1446 case Expr::ObjCBridgedCastExprClass
:
1447 return EmitCastLValue(cast
<CastExpr
>(E
));
1449 case Expr::MaterializeTemporaryExprClass
:
1450 return EmitMaterializeTemporaryExpr(cast
<MaterializeTemporaryExpr
>(E
));
1452 case Expr::CoawaitExprClass
:
1453 return EmitCoawaitLValue(cast
<CoawaitExpr
>(E
));
1454 case Expr::CoyieldExprClass
:
1455 return EmitCoyieldLValue(cast
<CoyieldExpr
>(E
));
1459 /// Given an object of the given canonical type, can we safely copy a
1460 /// value out of it based on its initializer?
1461 static bool isConstantEmittableObjectType(QualType type
) {
1462 assert(type
.isCanonical());
1463 assert(!type
->isReferenceType());
1465 // Must be const-qualified but non-volatile.
1466 Qualifiers qs
= type
.getLocalQualifiers();
1467 if (!qs
.hasConst() || qs
.hasVolatile()) return false;
1469 // Otherwise, all object types satisfy this except C++ classes with
1470 // mutable subobjects or non-trivial copy/destroy behavior.
1471 if (const auto *RT
= dyn_cast
<RecordType
>(type
))
1472 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl()))
1473 if (RD
->hasMutableFields() || !RD
->isTrivial())
1479 /// Can we constant-emit a load of a reference to a variable of the
1480 /// given type? This is different from predicates like
1481 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1482 /// in situations that don't necessarily satisfy the language's rules
1483 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
1484 /// to do this with const float variables even if those variables
1485 /// aren't marked 'constexpr'.
1486 enum ConstantEmissionKind
{
1488 CEK_AsReferenceOnly
,
1489 CEK_AsValueOrReference
,
1492 static ConstantEmissionKind
checkVarTypeForConstantEmission(QualType type
) {
1493 type
= type
.getCanonicalType();
1494 if (const auto *ref
= dyn_cast
<ReferenceType
>(type
)) {
1495 if (isConstantEmittableObjectType(ref
->getPointeeType()))
1496 return CEK_AsValueOrReference
;
1497 return CEK_AsReferenceOnly
;
1499 if (isConstantEmittableObjectType(type
))
1500 return CEK_AsValueOnly
;
1504 /// Try to emit a reference to the given value without producing it as
1505 /// an l-value. This is just an optimization, but it avoids us needing
1506 /// to emit global copies of variables if they're named without triggering
1507 /// a formal use in a context where we can't emit a direct reference to them,
1508 /// for instance if a block or lambda or a member of a local class uses a
1509 /// const int variable or constexpr variable from an enclosing function.
1510 CodeGenFunction::ConstantEmission
1511 CodeGenFunction::tryEmitAsConstant(DeclRefExpr
*refExpr
) {
1512 ValueDecl
*value
= refExpr
->getDecl();
1514 // The value needs to be an enum constant or a constant variable.
1515 ConstantEmissionKind CEK
;
1516 if (isa
<ParmVarDecl
>(value
)) {
1518 } else if (auto *var
= dyn_cast
<VarDecl
>(value
)) {
1519 CEK
= checkVarTypeForConstantEmission(var
->getType());
1520 } else if (isa
<EnumConstantDecl
>(value
)) {
1521 CEK
= CEK_AsValueOnly
;
1525 if (CEK
== CEK_None
) return ConstantEmission();
1527 Expr::EvalResult result
;
1528 bool resultIsReference
;
1529 QualType resultType
;
1531 // It's best to evaluate all the way as an r-value if that's permitted.
1532 if (CEK
!= CEK_AsReferenceOnly
&&
1533 refExpr
->EvaluateAsRValue(result
, getContext())) {
1534 resultIsReference
= false;
1535 resultType
= refExpr
->getType();
1537 // Otherwise, try to evaluate as an l-value.
1538 } else if (CEK
!= CEK_AsValueOnly
&&
1539 refExpr
->EvaluateAsLValue(result
, getContext())) {
1540 resultIsReference
= true;
1541 resultType
= value
->getType();
1545 return ConstantEmission();
1548 // In any case, if the initializer has side-effects, abandon ship.
1549 if (result
.HasSideEffects
)
1550 return ConstantEmission();
1552 // In CUDA/HIP device compilation, a lambda may capture a reference variable
1553 // referencing a global host variable by copy. In this case the lambda should
1554 // make a copy of the value of the global host variable. The DRE of the
1555 // captured reference variable cannot be emitted as load from the host
1556 // global variable as compile time constant, since the host variable is not
1557 // accessible on device. The DRE of the captured reference variable has to be
1558 // loaded from captures.
1559 if (CGM
.getLangOpts().CUDAIsDevice
&& result
.Val
.isLValue() &&
1560 refExpr
->refersToEnclosingVariableOrCapture()) {
1561 auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(CurCodeDecl
);
1562 if (MD
&& MD
->getParent()->isLambda() &&
1563 MD
->getOverloadedOperator() == OO_Call
) {
1564 const APValue::LValueBase
&base
= result
.Val
.getLValueBase();
1565 if (const ValueDecl
*D
= base
.dyn_cast
<const ValueDecl
*>()) {
1566 if (const VarDecl
*VD
= dyn_cast
<const VarDecl
>(D
)) {
1567 if (!VD
->hasAttr
<CUDADeviceAttr
>()) {
1568 return ConstantEmission();
1575 // Emit as a constant.
1576 auto C
= ConstantEmitter(*this).emitAbstract(refExpr
->getLocation(),
1577 result
.Val
, resultType
);
1579 // Make sure we emit a debug reference to the global variable.
1580 // This should probably fire even for
1581 if (isa
<VarDecl
>(value
)) {
1582 if (!getContext().DeclMustBeEmitted(cast
<VarDecl
>(value
)))
1583 EmitDeclRefExprDbgValue(refExpr
, result
.Val
);
1585 assert(isa
<EnumConstantDecl
>(value
));
1586 EmitDeclRefExprDbgValue(refExpr
, result
.Val
);
1589 // If we emitted a reference constant, we need to dereference that.
1590 if (resultIsReference
)
1591 return ConstantEmission::forReference(C
);
1593 return ConstantEmission::forValue(C
);
1596 static DeclRefExpr
*tryToConvertMemberExprToDeclRefExpr(CodeGenFunction
&CGF
,
1597 const MemberExpr
*ME
) {
1598 if (auto *VD
= dyn_cast
<VarDecl
>(ME
->getMemberDecl())) {
1599 // Try to emit static variable member expressions as DREs.
1600 return DeclRefExpr::Create(
1601 CGF
.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD
,
1602 /*RefersToEnclosingVariableOrCapture=*/false, ME
->getExprLoc(),
1603 ME
->getType(), ME
->getValueKind(), nullptr, nullptr, ME
->isNonOdrUse());
1608 CodeGenFunction::ConstantEmission
1609 CodeGenFunction::tryEmitAsConstant(const MemberExpr
*ME
) {
1610 if (DeclRefExpr
*DRE
= tryToConvertMemberExprToDeclRefExpr(*this, ME
))
1611 return tryEmitAsConstant(DRE
);
1612 return ConstantEmission();
1615 llvm::Value
*CodeGenFunction::emitScalarConstant(
1616 const CodeGenFunction::ConstantEmission
&Constant
, Expr
*E
) {
1617 assert(Constant
&& "not a constant");
1618 if (Constant
.isReference())
1619 return EmitLoadOfLValue(Constant
.getReferenceLValue(*this, E
),
1622 return Constant
.getValue();
1625 llvm::Value
*CodeGenFunction::EmitLoadOfScalar(LValue lvalue
,
1626 SourceLocation Loc
) {
1627 return EmitLoadOfScalar(lvalue
.getAddress(*this), lvalue
.isVolatile(),
1628 lvalue
.getType(), Loc
, lvalue
.getBaseInfo(),
1629 lvalue
.getTBAAInfo(), lvalue
.isNontemporal());
1632 static bool hasBooleanRepresentation(QualType Ty
) {
1633 if (Ty
->isBooleanType())
1636 if (const EnumType
*ET
= Ty
->getAs
<EnumType
>())
1637 return ET
->getDecl()->getIntegerType()->isBooleanType();
1639 if (const AtomicType
*AT
= Ty
->getAs
<AtomicType
>())
1640 return hasBooleanRepresentation(AT
->getValueType());
1645 static bool getRangeForType(CodeGenFunction
&CGF
, QualType Ty
,
1646 llvm::APInt
&Min
, llvm::APInt
&End
,
1647 bool StrictEnums
, bool IsBool
) {
1648 const EnumType
*ET
= Ty
->getAs
<EnumType
>();
1649 bool IsRegularCPlusPlusEnum
= CGF
.getLangOpts().CPlusPlus
&& StrictEnums
&&
1650 ET
&& !ET
->getDecl()->isFixed();
1651 if (!IsBool
&& !IsRegularCPlusPlusEnum
)
1655 Min
= llvm::APInt(CGF
.getContext().getTypeSize(Ty
), 0);
1656 End
= llvm::APInt(CGF
.getContext().getTypeSize(Ty
), 2);
1658 const EnumDecl
*ED
= ET
->getDecl();
1659 ED
->getValueRange(End
, Min
);
1664 llvm::MDNode
*CodeGenFunction::getRangeForLoadFromType(QualType Ty
) {
1665 llvm::APInt Min
, End
;
1666 if (!getRangeForType(*this, Ty
, Min
, End
, CGM
.getCodeGenOpts().StrictEnums
,
1667 hasBooleanRepresentation(Ty
)))
1670 llvm::MDBuilder
MDHelper(getLLVMContext());
1671 return MDHelper
.createRange(Min
, End
);
1674 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value
*Value
, QualType Ty
,
1675 SourceLocation Loc
) {
1676 bool HasBoolCheck
= SanOpts
.has(SanitizerKind::Bool
);
1677 bool HasEnumCheck
= SanOpts
.has(SanitizerKind::Enum
);
1678 if (!HasBoolCheck
&& !HasEnumCheck
)
1681 bool IsBool
= hasBooleanRepresentation(Ty
) ||
1682 NSAPI(CGM
.getContext()).isObjCBOOLType(Ty
);
1683 bool NeedsBoolCheck
= HasBoolCheck
&& IsBool
;
1684 bool NeedsEnumCheck
= HasEnumCheck
&& Ty
->getAs
<EnumType
>();
1685 if (!NeedsBoolCheck
&& !NeedsEnumCheck
)
1688 // Single-bit booleans don't need to be checked. Special-case this to avoid
1689 // a bit width mismatch when handling bitfield values. This is handled by
1690 // EmitFromMemory for the non-bitfield case.
1692 cast
<llvm::IntegerType
>(Value
->getType())->getBitWidth() == 1)
1695 llvm::APInt Min
, End
;
1696 if (!getRangeForType(*this, Ty
, Min
, End
, /*StrictEnums=*/true, IsBool
))
1699 auto &Ctx
= getLLVMContext();
1700 SanitizerScope
SanScope(this);
1704 Check
= Builder
.CreateICmpULE(Value
, llvm::ConstantInt::get(Ctx
, End
));
1706 llvm::Value
*Upper
=
1707 Builder
.CreateICmpSLE(Value
, llvm::ConstantInt::get(Ctx
, End
));
1708 llvm::Value
*Lower
=
1709 Builder
.CreateICmpSGE(Value
, llvm::ConstantInt::get(Ctx
, Min
));
1710 Check
= Builder
.CreateAnd(Upper
, Lower
);
1712 llvm::Constant
*StaticArgs
[] = {EmitCheckSourceLocation(Loc
),
1713 EmitCheckTypeDescriptor(Ty
)};
1714 SanitizerMask Kind
=
1715 NeedsEnumCheck
? SanitizerKind::Enum
: SanitizerKind::Bool
;
1716 EmitCheck(std::make_pair(Check
, Kind
), SanitizerHandler::LoadInvalidValue
,
1717 StaticArgs
, EmitCheckValue(Value
));
1721 llvm::Value
*CodeGenFunction::EmitLoadOfScalar(Address Addr
, bool Volatile
,
1724 LValueBaseInfo BaseInfo
,
1725 TBAAAccessInfo TBAAInfo
,
1726 bool isNontemporal
) {
1727 if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
.getPointer()))
1728 if (GV
->isThreadLocal())
1729 Addr
= Addr
.withPointer(Builder
.CreateThreadLocalAddress(GV
),
1732 if (const auto *ClangVecTy
= Ty
->getAs
<VectorType
>()) {
1733 // Boolean vectors use `iN` as storage type.
1734 if (ClangVecTy
->isExtVectorBoolType()) {
1735 llvm::Type
*ValTy
= ConvertType(Ty
);
1736 unsigned ValNumElems
=
1737 cast
<llvm::FixedVectorType
>(ValTy
)->getNumElements();
1738 // Load the `iP` storage object (P is the padded vector size).
1739 auto *RawIntV
= Builder
.CreateLoad(Addr
, Volatile
, "load_bits");
1740 const auto *RawIntTy
= RawIntV
->getType();
1741 assert(RawIntTy
->isIntegerTy() && "compressed iN storage for bitvectors");
1742 // Bitcast iP --> <P x i1>.
1743 auto *PaddedVecTy
= llvm::FixedVectorType::get(
1744 Builder
.getInt1Ty(), RawIntTy
->getPrimitiveSizeInBits());
1745 llvm::Value
*V
= Builder
.CreateBitCast(RawIntV
, PaddedVecTy
);
1746 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1747 V
= emitBoolVecConversion(V
, ValNumElems
, "extractvec");
1749 return EmitFromMemory(V
, Ty
);
1752 // Handle vectors of size 3 like size 4 for better performance.
1753 const llvm::Type
*EltTy
= Addr
.getElementType();
1754 const auto *VTy
= cast
<llvm::FixedVectorType
>(EltTy
);
1756 if (!CGM
.getCodeGenOpts().PreserveVec3Type
&& VTy
->getNumElements() == 3) {
1758 // Bitcast to vec4 type.
1759 llvm::VectorType
*vec4Ty
=
1760 llvm::FixedVectorType::get(VTy
->getElementType(), 4);
1761 Address Cast
= Builder
.CreateElementBitCast(Addr
, vec4Ty
, "castToVec4");
1763 llvm::Value
*V
= Builder
.CreateLoad(Cast
, Volatile
, "loadVec4");
1765 // Shuffle vector to get vec3.
1766 V
= Builder
.CreateShuffleVector(V
, ArrayRef
<int>{0, 1, 2}, "extractVec");
1767 return EmitFromMemory(V
, Ty
);
1771 // Atomic operations have to be done on integral types.
1772 LValue AtomicLValue
=
1773 LValue::MakeAddr(Addr
, Ty
, getContext(), BaseInfo
, TBAAInfo
);
1774 if (Ty
->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue
)) {
1775 return EmitAtomicLoad(AtomicLValue
, Loc
).getScalarVal();
1778 llvm::LoadInst
*Load
= Builder
.CreateLoad(Addr
, Volatile
);
1779 if (isNontemporal
) {
1780 llvm::MDNode
*Node
= llvm::MDNode::get(
1781 Load
->getContext(), llvm::ConstantAsMetadata::get(Builder
.getInt32(1)));
1782 Load
->setMetadata(llvm::LLVMContext::MD_nontemporal
, Node
);
1785 CGM
.DecorateInstructionWithTBAA(Load
, TBAAInfo
);
1787 if (EmitScalarRangeCheck(Load
, Ty
, Loc
)) {
1788 // In order to prevent the optimizer from throwing away the check, don't
1789 // attach range metadata to the load.
1790 } else if (CGM
.getCodeGenOpts().OptimizationLevel
> 0)
1791 if (llvm::MDNode
*RangeInfo
= getRangeForLoadFromType(Ty
)) {
1792 Load
->setMetadata(llvm::LLVMContext::MD_range
, RangeInfo
);
1793 Load
->setMetadata(llvm::LLVMContext::MD_noundef
,
1794 llvm::MDNode::get(getLLVMContext(), std::nullopt
));
1797 return EmitFromMemory(Load
, Ty
);
1800 llvm::Value
*CodeGenFunction::EmitToMemory(llvm::Value
*Value
, QualType Ty
) {
1801 // Bool has a different representation in memory than in registers.
1802 if (hasBooleanRepresentation(Ty
)) {
1803 // This should really always be an i1, but sometimes it's already
1804 // an i8, and it's awkward to track those cases down.
1805 if (Value
->getType()->isIntegerTy(1))
1806 return Builder
.CreateZExt(Value
, ConvertTypeForMem(Ty
), "frombool");
1807 assert(Value
->getType()->isIntegerTy(getContext().getTypeSize(Ty
)) &&
1808 "wrong value rep of bool");
1814 llvm::Value
*CodeGenFunction::EmitFromMemory(llvm::Value
*Value
, QualType Ty
) {
1815 // Bool has a different representation in memory than in registers.
1816 if (hasBooleanRepresentation(Ty
)) {
1817 assert(Value
->getType()->isIntegerTy(getContext().getTypeSize(Ty
)) &&
1818 "wrong value rep of bool");
1819 return Builder
.CreateTrunc(Value
, Builder
.getInt1Ty(), "tobool");
1821 if (Ty
->isExtVectorBoolType()) {
1822 const auto *RawIntTy
= Value
->getType();
1823 // Bitcast iP --> <P x i1>.
1824 auto *PaddedVecTy
= llvm::FixedVectorType::get(
1825 Builder
.getInt1Ty(), RawIntTy
->getPrimitiveSizeInBits());
1826 auto *V
= Builder
.CreateBitCast(Value
, PaddedVecTy
);
1827 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1828 llvm::Type
*ValTy
= ConvertType(Ty
);
1829 unsigned ValNumElems
= cast
<llvm::FixedVectorType
>(ValTy
)->getNumElements();
1830 return emitBoolVecConversion(V
, ValNumElems
, "extractvec");
1836 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1837 // MatrixType), if it points to a array (the memory type of MatrixType).
1838 static Address
MaybeConvertMatrixAddress(Address Addr
, CodeGenFunction
&CGF
,
1839 bool IsVector
= true) {
1840 auto *ArrayTy
= dyn_cast
<llvm::ArrayType
>(Addr
.getElementType());
1841 if (ArrayTy
&& IsVector
) {
1842 auto *VectorTy
= llvm::FixedVectorType::get(ArrayTy
->getElementType(),
1843 ArrayTy
->getNumElements());
1845 return Address(CGF
.Builder
.CreateElementBitCast(Addr
, VectorTy
));
1847 auto *VectorTy
= dyn_cast
<llvm::VectorType
>(Addr
.getElementType());
1848 if (VectorTy
&& !IsVector
) {
1849 auto *ArrayTy
= llvm::ArrayType::get(
1850 VectorTy
->getElementType(),
1851 cast
<llvm::FixedVectorType
>(VectorTy
)->getNumElements());
1853 return Address(CGF
.Builder
.CreateElementBitCast(Addr
, ArrayTy
));
1859 // Emit a store of a matrix LValue. This may require casting the original
1860 // pointer to memory address (ArrayType) to a pointer to the value type
1862 static void EmitStoreOfMatrixScalar(llvm::Value
*value
, LValue lvalue
,
1863 bool isInit
, CodeGenFunction
&CGF
) {
1864 Address Addr
= MaybeConvertMatrixAddress(lvalue
.getAddress(CGF
), CGF
,
1865 value
->getType()->isVectorTy());
1866 CGF
.EmitStoreOfScalar(value
, Addr
, lvalue
.isVolatile(), lvalue
.getType(),
1867 lvalue
.getBaseInfo(), lvalue
.getTBAAInfo(), isInit
,
1868 lvalue
.isNontemporal());
1871 void CodeGenFunction::EmitStoreOfScalar(llvm::Value
*Value
, Address Addr
,
1872 bool Volatile
, QualType Ty
,
1873 LValueBaseInfo BaseInfo
,
1874 TBAAAccessInfo TBAAInfo
,
1875 bool isInit
, bool isNontemporal
) {
1876 if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
.getPointer()))
1877 if (GV
->isThreadLocal())
1878 Addr
= Addr
.withPointer(Builder
.CreateThreadLocalAddress(GV
),
1881 llvm::Type
*SrcTy
= Value
->getType();
1882 if (const auto *ClangVecTy
= Ty
->getAs
<VectorType
>()) {
1883 auto *VecTy
= dyn_cast
<llvm::FixedVectorType
>(SrcTy
);
1884 if (VecTy
&& ClangVecTy
->isExtVectorBoolType()) {
1885 auto *MemIntTy
= cast
<llvm::IntegerType
>(Addr
.getElementType());
1886 // Expand to the memory bit width.
1887 unsigned MemNumElems
= MemIntTy
->getPrimitiveSizeInBits();
1888 // <N x i1> --> <P x i1>.
1889 Value
= emitBoolVecConversion(Value
, MemNumElems
, "insertvec");
1891 Value
= Builder
.CreateBitCast(Value
, MemIntTy
);
1892 } else if (!CGM
.getCodeGenOpts().PreserveVec3Type
) {
1893 // Handle vec3 special.
1894 if (VecTy
&& cast
<llvm::FixedVectorType
>(VecTy
)->getNumElements() == 3) {
1895 // Our source is a vec3, do a shuffle vector to make it a vec4.
1896 Value
= Builder
.CreateShuffleVector(Value
, ArrayRef
<int>{0, 1, 2, -1},
1898 SrcTy
= llvm::FixedVectorType::get(VecTy
->getElementType(), 4);
1900 if (Addr
.getElementType() != SrcTy
) {
1901 Addr
= Builder
.CreateElementBitCast(Addr
, SrcTy
, "storetmp");
1906 Value
= EmitToMemory(Value
, Ty
);
1908 LValue AtomicLValue
=
1909 LValue::MakeAddr(Addr
, Ty
, getContext(), BaseInfo
, TBAAInfo
);
1910 if (Ty
->isAtomicType() ||
1911 (!isInit
&& LValueIsSuitableForInlineAtomic(AtomicLValue
))) {
1912 EmitAtomicStore(RValue::get(Value
), AtomicLValue
, isInit
);
1916 llvm::StoreInst
*Store
= Builder
.CreateStore(Value
, Addr
, Volatile
);
1917 if (isNontemporal
) {
1918 llvm::MDNode
*Node
=
1919 llvm::MDNode::get(Store
->getContext(),
1920 llvm::ConstantAsMetadata::get(Builder
.getInt32(1)));
1921 Store
->setMetadata(llvm::LLVMContext::MD_nontemporal
, Node
);
1924 CGM
.DecorateInstructionWithTBAA(Store
, TBAAInfo
);
1927 void CodeGenFunction::EmitStoreOfScalar(llvm::Value
*value
, LValue lvalue
,
1929 if (lvalue
.getType()->isConstantMatrixType()) {
1930 EmitStoreOfMatrixScalar(value
, lvalue
, isInit
, *this);
1934 EmitStoreOfScalar(value
, lvalue
.getAddress(*this), lvalue
.isVolatile(),
1935 lvalue
.getType(), lvalue
.getBaseInfo(),
1936 lvalue
.getTBAAInfo(), isInit
, lvalue
.isNontemporal());
1939 // Emit a load of a LValue of matrix type. This may require casting the pointer
1940 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1941 static RValue
EmitLoadOfMatrixLValue(LValue LV
, SourceLocation Loc
,
1942 CodeGenFunction
&CGF
) {
1943 assert(LV
.getType()->isConstantMatrixType());
1944 Address Addr
= MaybeConvertMatrixAddress(LV
.getAddress(CGF
), CGF
);
1945 LV
.setAddress(Addr
);
1946 return RValue::get(CGF
.EmitLoadOfScalar(LV
, Loc
));
1949 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1950 /// method emits the address of the lvalue, then loads the result as an rvalue,
1951 /// returning the rvalue.
1952 RValue
CodeGenFunction::EmitLoadOfLValue(LValue LV
, SourceLocation Loc
) {
1953 if (LV
.isObjCWeak()) {
1954 // load of a __weak object.
1955 Address AddrWeakObj
= LV
.getAddress(*this);
1956 return RValue::get(CGM
.getObjCRuntime().EmitObjCWeakRead(*this,
1959 if (LV
.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1960 // In MRC mode, we do a load+autorelease.
1961 if (!getLangOpts().ObjCAutoRefCount
) {
1962 return RValue::get(EmitARCLoadWeak(LV
.getAddress(*this)));
1965 // In ARC mode, we load retained and then consume the value.
1966 llvm::Value
*Object
= EmitARCLoadWeakRetained(LV
.getAddress(*this));
1967 Object
= EmitObjCConsumeObject(LV
.getType(), Object
);
1968 return RValue::get(Object
);
1971 if (LV
.isSimple()) {
1972 assert(!LV
.getType()->isFunctionType());
1974 if (LV
.getType()->isConstantMatrixType())
1975 return EmitLoadOfMatrixLValue(LV
, Loc
, *this);
1977 // Everything needs a load.
1978 return RValue::get(EmitLoadOfScalar(LV
, Loc
));
1981 if (LV
.isVectorElt()) {
1982 llvm::LoadInst
*Load
= Builder
.CreateLoad(LV
.getVectorAddress(),
1983 LV
.isVolatileQualified());
1984 return RValue::get(Builder
.CreateExtractElement(Load
, LV
.getVectorIdx(),
1988 // If this is a reference to a subset of the elements of a vector, either
1989 // shuffle the input or extract/insert them as appropriate.
1990 if (LV
.isExtVectorElt()) {
1991 return EmitLoadOfExtVectorElementLValue(LV
);
1994 // Global Register variables always invoke intrinsics
1995 if (LV
.isGlobalReg())
1996 return EmitLoadOfGlobalRegLValue(LV
);
1998 if (LV
.isMatrixElt()) {
1999 llvm::Value
*Idx
= LV
.getMatrixIdx();
2000 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0) {
2001 const auto *const MatTy
= LV
.getType()->castAs
<ConstantMatrixType
>();
2002 llvm::MatrixBuilder
MB(Builder
);
2003 MB
.CreateIndexAssumption(Idx
, MatTy
->getNumElementsFlattened());
2005 llvm::LoadInst
*Load
=
2006 Builder
.CreateLoad(LV
.getMatrixAddress(), LV
.isVolatileQualified());
2007 return RValue::get(Builder
.CreateExtractElement(Load
, Idx
, "matrixext"));
2010 assert(LV
.isBitField() && "Unknown LValue type!");
2011 return EmitLoadOfBitfieldLValue(LV
, Loc
);
2014 RValue
CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV
,
2015 SourceLocation Loc
) {
2016 const CGBitFieldInfo
&Info
= LV
.getBitFieldInfo();
2018 // Get the output type.
2019 llvm::Type
*ResLTy
= ConvertType(LV
.getType());
2021 Address Ptr
= LV
.getBitFieldAddress();
2023 Builder
.CreateLoad(Ptr
, LV
.isVolatileQualified(), "bf.load");
2025 bool UseVolatile
= LV
.isVolatileQualified() &&
2026 Info
.VolatileStorageSize
!= 0 && isAAPCS(CGM
.getTarget());
2027 const unsigned Offset
= UseVolatile
? Info
.VolatileOffset
: Info
.Offset
;
2028 const unsigned StorageSize
=
2029 UseVolatile
? Info
.VolatileStorageSize
: Info
.StorageSize
;
2030 if (Info
.IsSigned
) {
2031 assert(static_cast<unsigned>(Offset
+ Info
.Size
) <= StorageSize
);
2032 unsigned HighBits
= StorageSize
- Offset
- Info
.Size
;
2034 Val
= Builder
.CreateShl(Val
, HighBits
, "bf.shl");
2035 if (Offset
+ HighBits
)
2036 Val
= Builder
.CreateAShr(Val
, Offset
+ HighBits
, "bf.ashr");
2039 Val
= Builder
.CreateLShr(Val
, Offset
, "bf.lshr");
2040 if (static_cast<unsigned>(Offset
) + Info
.Size
< StorageSize
)
2041 Val
= Builder
.CreateAnd(
2042 Val
, llvm::APInt::getLowBitsSet(StorageSize
, Info
.Size
), "bf.clear");
2044 Val
= Builder
.CreateIntCast(Val
, ResLTy
, Info
.IsSigned
, "bf.cast");
2045 EmitScalarRangeCheck(Val
, LV
.getType(), Loc
);
2046 return RValue::get(Val
);
2049 // If this is a reference to a subset of the elements of a vector, create an
2050 // appropriate shufflevector.
2051 RValue
CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV
) {
2052 llvm::Value
*Vec
= Builder
.CreateLoad(LV
.getExtVectorAddress(),
2053 LV
.isVolatileQualified());
2055 const llvm::Constant
*Elts
= LV
.getExtVectorElts();
2057 // If the result of the expression is a non-vector type, we must be extracting
2058 // a single element. Just codegen as an extractelement.
2059 const VectorType
*ExprVT
= LV
.getType()->getAs
<VectorType
>();
2061 unsigned InIdx
= getAccessedFieldNo(0, Elts
);
2062 llvm::Value
*Elt
= llvm::ConstantInt::get(SizeTy
, InIdx
);
2063 return RValue::get(Builder
.CreateExtractElement(Vec
, Elt
));
2066 // Always use shuffle vector to try to retain the original program structure
2067 unsigned NumResultElts
= ExprVT
->getNumElements();
2069 SmallVector
<int, 4> Mask
;
2070 for (unsigned i
= 0; i
!= NumResultElts
; ++i
)
2071 Mask
.push_back(getAccessedFieldNo(i
, Elts
));
2073 Vec
= Builder
.CreateShuffleVector(Vec
, Mask
);
2074 return RValue::get(Vec
);
2077 /// Generates lvalue for partial ext_vector access.
2078 Address
CodeGenFunction::EmitExtVectorElementLValue(LValue LV
) {
2079 Address VectorAddress
= LV
.getExtVectorAddress();
2080 QualType EQT
= LV
.getType()->castAs
<VectorType
>()->getElementType();
2081 llvm::Type
*VectorElementTy
= CGM
.getTypes().ConvertType(EQT
);
2083 Address CastToPointerElement
=
2084 Builder
.CreateElementBitCast(VectorAddress
, VectorElementTy
,
2085 "conv.ptr.element");
2087 const llvm::Constant
*Elts
= LV
.getExtVectorElts();
2088 unsigned ix
= getAccessedFieldNo(0, Elts
);
2090 Address VectorBasePtrPlusIx
=
2091 Builder
.CreateConstInBoundsGEP(CastToPointerElement
, ix
,
2094 return VectorBasePtrPlusIx
;
2097 /// Load of global gamed gegisters are always calls to intrinsics.
2098 RValue
CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV
) {
2099 assert((LV
.getType()->isIntegerType() || LV
.getType()->isPointerType()) &&
2100 "Bad type for register variable");
2101 llvm::MDNode
*RegName
= cast
<llvm::MDNode
>(
2102 cast
<llvm::MetadataAsValue
>(LV
.getGlobalReg())->getMetadata());
2104 // We accept integer and pointer types only
2105 llvm::Type
*OrigTy
= CGM
.getTypes().ConvertType(LV
.getType());
2106 llvm::Type
*Ty
= OrigTy
;
2107 if (OrigTy
->isPointerTy())
2108 Ty
= CGM
.getTypes().getDataLayout().getIntPtrType(OrigTy
);
2109 llvm::Type
*Types
[] = { Ty
};
2111 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::read_register
, Types
);
2112 llvm::Value
*Call
= Builder
.CreateCall(
2113 F
, llvm::MetadataAsValue::get(Ty
->getContext(), RegName
));
2114 if (OrigTy
->isPointerTy())
2115 Call
= Builder
.CreateIntToPtr(Call
, OrigTy
);
2116 return RValue::get(Call
);
2119 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2120 /// lvalue, where both are guaranteed to the have the same type, and that type
2122 void CodeGenFunction::EmitStoreThroughLValue(RValue Src
, LValue Dst
,
2124 if (!Dst
.isSimple()) {
2125 if (Dst
.isVectorElt()) {
2126 // Read/modify/write the vector, inserting the new element.
2127 llvm::Value
*Vec
= Builder
.CreateLoad(Dst
.getVectorAddress(),
2128 Dst
.isVolatileQualified());
2129 auto *IRStoreTy
= dyn_cast
<llvm::IntegerType
>(Vec
->getType());
2131 auto *IRVecTy
= llvm::FixedVectorType::get(
2132 Builder
.getInt1Ty(), IRStoreTy
->getPrimitiveSizeInBits());
2133 Vec
= Builder
.CreateBitCast(Vec
, IRVecTy
);
2136 Vec
= Builder
.CreateInsertElement(Vec
, Src
.getScalarVal(),
2137 Dst
.getVectorIdx(), "vecins");
2139 // <N x i1> --> <iN>.
2140 Vec
= Builder
.CreateBitCast(Vec
, IRStoreTy
);
2142 Builder
.CreateStore(Vec
, Dst
.getVectorAddress(),
2143 Dst
.isVolatileQualified());
2147 // If this is an update of extended vector elements, insert them as
2149 if (Dst
.isExtVectorElt())
2150 return EmitStoreThroughExtVectorComponentLValue(Src
, Dst
);
2152 if (Dst
.isGlobalReg())
2153 return EmitStoreThroughGlobalRegLValue(Src
, Dst
);
2155 if (Dst
.isMatrixElt()) {
2156 llvm::Value
*Idx
= Dst
.getMatrixIdx();
2157 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0) {
2158 const auto *const MatTy
= Dst
.getType()->castAs
<ConstantMatrixType
>();
2159 llvm::MatrixBuilder
MB(Builder
);
2160 MB
.CreateIndexAssumption(Idx
, MatTy
->getNumElementsFlattened());
2162 llvm::Instruction
*Load
= Builder
.CreateLoad(Dst
.getMatrixAddress());
2164 Builder
.CreateInsertElement(Load
, Src
.getScalarVal(), Idx
, "matins");
2165 Builder
.CreateStore(Vec
, Dst
.getMatrixAddress(),
2166 Dst
.isVolatileQualified());
2170 assert(Dst
.isBitField() && "Unknown LValue type");
2171 return EmitStoreThroughBitfieldLValue(Src
, Dst
);
2174 // There's special magic for assigning into an ARC-qualified l-value.
2175 if (Qualifiers::ObjCLifetime Lifetime
= Dst
.getQuals().getObjCLifetime()) {
2177 case Qualifiers::OCL_None
:
2178 llvm_unreachable("present but none");
2180 case Qualifiers::OCL_ExplicitNone
:
2184 case Qualifiers::OCL_Strong
:
2186 Src
= RValue::get(EmitARCRetain(Dst
.getType(), Src
.getScalarVal()));
2189 EmitARCStoreStrong(Dst
, Src
.getScalarVal(), /*ignore*/ true);
2192 case Qualifiers::OCL_Weak
:
2194 // Initialize and then skip the primitive store.
2195 EmitARCInitWeak(Dst
.getAddress(*this), Src
.getScalarVal());
2197 EmitARCStoreWeak(Dst
.getAddress(*this), Src
.getScalarVal(),
2201 case Qualifiers::OCL_Autoreleasing
:
2202 Src
= RValue::get(EmitObjCExtendObjectLifetime(Dst
.getType(),
2203 Src
.getScalarVal()));
2204 // fall into the normal path
2209 if (Dst
.isObjCWeak() && !Dst
.isNonGC()) {
2210 // load of a __weak object.
2211 Address LvalueDst
= Dst
.getAddress(*this);
2212 llvm::Value
*src
= Src
.getScalarVal();
2213 CGM
.getObjCRuntime().EmitObjCWeakAssign(*this, src
, LvalueDst
);
2217 if (Dst
.isObjCStrong() && !Dst
.isNonGC()) {
2218 // load of a __strong object.
2219 Address LvalueDst
= Dst
.getAddress(*this);
2220 llvm::Value
*src
= Src
.getScalarVal();
2221 if (Dst
.isObjCIvar()) {
2222 assert(Dst
.getBaseIvarExp() && "BaseIvarExp is NULL");
2223 llvm::Type
*ResultType
= IntPtrTy
;
2224 Address dst
= EmitPointerWithAlignment(Dst
.getBaseIvarExp());
2225 llvm::Value
*RHS
= dst
.getPointer();
2226 RHS
= Builder
.CreatePtrToInt(RHS
, ResultType
, "sub.ptr.rhs.cast");
2228 Builder
.CreatePtrToInt(LvalueDst
.getPointer(), ResultType
,
2229 "sub.ptr.lhs.cast");
2230 llvm::Value
*BytesBetween
= Builder
.CreateSub(LHS
, RHS
, "ivar.offset");
2231 CGM
.getObjCRuntime().EmitObjCIvarAssign(*this, src
, dst
,
2233 } else if (Dst
.isGlobalObjCRef()) {
2234 CGM
.getObjCRuntime().EmitObjCGlobalAssign(*this, src
, LvalueDst
,
2235 Dst
.isThreadLocalRef());
2238 CGM
.getObjCRuntime().EmitObjCStrongCastAssign(*this, src
, LvalueDst
);
2242 assert(Src
.isScalar() && "Can't emit an agg store with this method");
2243 EmitStoreOfScalar(Src
.getScalarVal(), Dst
, isInit
);
2246 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src
, LValue Dst
,
2247 llvm::Value
**Result
) {
2248 const CGBitFieldInfo
&Info
= Dst
.getBitFieldInfo();
2249 llvm::Type
*ResLTy
= ConvertTypeForMem(Dst
.getType());
2250 Address Ptr
= Dst
.getBitFieldAddress();
2252 // Get the source value, truncated to the width of the bit-field.
2253 llvm::Value
*SrcVal
= Src
.getScalarVal();
2255 // Cast the source to the storage type and shift it into place.
2256 SrcVal
= Builder
.CreateIntCast(SrcVal
, Ptr
.getElementType(),
2257 /*isSigned=*/false);
2258 llvm::Value
*MaskedVal
= SrcVal
;
2260 const bool UseVolatile
=
2261 CGM
.getCodeGenOpts().AAPCSBitfieldWidth
&& Dst
.isVolatileQualified() &&
2262 Info
.VolatileStorageSize
!= 0 && isAAPCS(CGM
.getTarget());
2263 const unsigned StorageSize
=
2264 UseVolatile
? Info
.VolatileStorageSize
: Info
.StorageSize
;
2265 const unsigned Offset
= UseVolatile
? Info
.VolatileOffset
: Info
.Offset
;
2266 // See if there are other bits in the bitfield's storage we'll need to load
2267 // and mask together with source before storing.
2268 if (StorageSize
!= Info
.Size
) {
2269 assert(StorageSize
> Info
.Size
&& "Invalid bitfield size.");
2271 Builder
.CreateLoad(Ptr
, Dst
.isVolatileQualified(), "bf.load");
2273 // Mask the source value as needed.
2274 if (!hasBooleanRepresentation(Dst
.getType()))
2275 SrcVal
= Builder
.CreateAnd(
2276 SrcVal
, llvm::APInt::getLowBitsSet(StorageSize
, Info
.Size
),
2280 SrcVal
= Builder
.CreateShl(SrcVal
, Offset
, "bf.shl");
2282 // Mask out the original value.
2283 Val
= Builder
.CreateAnd(
2284 Val
, ~llvm::APInt::getBitsSet(StorageSize
, Offset
, Offset
+ Info
.Size
),
2287 // Or together the unchanged values and the source value.
2288 SrcVal
= Builder
.CreateOr(Val
, SrcVal
, "bf.set");
2290 assert(Offset
== 0);
2291 // According to the AACPS:
2292 // When a volatile bit-field is written, and its container does not overlap
2293 // with any non-bit-field member, its container must be read exactly once
2294 // and written exactly once using the access width appropriate to the type
2295 // of the container. The two accesses are not atomic.
2296 if (Dst
.isVolatileQualified() && isAAPCS(CGM
.getTarget()) &&
2297 CGM
.getCodeGenOpts().ForceAAPCSBitfieldLoad
)
2298 Builder
.CreateLoad(Ptr
, true, "bf.load");
2301 // Write the new value back out.
2302 Builder
.CreateStore(SrcVal
, Ptr
, Dst
.isVolatileQualified());
2304 // Return the new value of the bit-field, if requested.
2306 llvm::Value
*ResultVal
= MaskedVal
;
2308 // Sign extend the value if needed.
2309 if (Info
.IsSigned
) {
2310 assert(Info
.Size
<= StorageSize
);
2311 unsigned HighBits
= StorageSize
- Info
.Size
;
2313 ResultVal
= Builder
.CreateShl(ResultVal
, HighBits
, "bf.result.shl");
2314 ResultVal
= Builder
.CreateAShr(ResultVal
, HighBits
, "bf.result.ashr");
2318 ResultVal
= Builder
.CreateIntCast(ResultVal
, ResLTy
, Info
.IsSigned
,
2320 *Result
= EmitFromMemory(ResultVal
, Dst
.getType());
2324 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src
,
2326 // This access turns into a read/modify/write of the vector. Load the input
2328 llvm::Value
*Vec
= Builder
.CreateLoad(Dst
.getExtVectorAddress(),
2329 Dst
.isVolatileQualified());
2330 const llvm::Constant
*Elts
= Dst
.getExtVectorElts();
2332 llvm::Value
*SrcVal
= Src
.getScalarVal();
2334 if (const VectorType
*VTy
= Dst
.getType()->getAs
<VectorType
>()) {
2335 unsigned NumSrcElts
= VTy
->getNumElements();
2336 unsigned NumDstElts
=
2337 cast
<llvm::FixedVectorType
>(Vec
->getType())->getNumElements();
2338 if (NumDstElts
== NumSrcElts
) {
2339 // Use shuffle vector is the src and destination are the same number of
2340 // elements and restore the vector mask since it is on the side it will be
2342 SmallVector
<int, 4> Mask(NumDstElts
);
2343 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
)
2344 Mask
[getAccessedFieldNo(i
, Elts
)] = i
;
2346 Vec
= Builder
.CreateShuffleVector(SrcVal
, Mask
);
2347 } else if (NumDstElts
> NumSrcElts
) {
2348 // Extended the source vector to the same length and then shuffle it
2349 // into the destination.
2350 // FIXME: since we're shuffling with undef, can we just use the indices
2351 // into that? This could be simpler.
2352 SmallVector
<int, 4> ExtMask
;
2353 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
)
2354 ExtMask
.push_back(i
);
2355 ExtMask
.resize(NumDstElts
, -1);
2356 llvm::Value
*ExtSrcVal
= Builder
.CreateShuffleVector(SrcVal
, ExtMask
);
2358 SmallVector
<int, 4> Mask
;
2359 for (unsigned i
= 0; i
!= NumDstElts
; ++i
)
2362 // When the vector size is odd and .odd or .hi is used, the last element
2363 // of the Elts constant array will be one past the size of the vector.
2364 // Ignore the last element here, if it is greater than the mask size.
2365 if (getAccessedFieldNo(NumSrcElts
- 1, Elts
) == Mask
.size())
2368 // modify when what gets shuffled in
2369 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
)
2370 Mask
[getAccessedFieldNo(i
, Elts
)] = i
+ NumDstElts
;
2371 Vec
= Builder
.CreateShuffleVector(Vec
, ExtSrcVal
, Mask
);
2373 // We should never shorten the vector
2374 llvm_unreachable("unexpected shorten vector length");
2377 // If the Src is a scalar (not a vector) it must be updating one element.
2378 unsigned InIdx
= getAccessedFieldNo(0, Elts
);
2379 llvm::Value
*Elt
= llvm::ConstantInt::get(SizeTy
, InIdx
);
2380 Vec
= Builder
.CreateInsertElement(Vec
, SrcVal
, Elt
);
2383 Builder
.CreateStore(Vec
, Dst
.getExtVectorAddress(),
2384 Dst
.isVolatileQualified());
2387 /// Store of global named registers are always calls to intrinsics.
2388 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src
, LValue Dst
) {
2389 assert((Dst
.getType()->isIntegerType() || Dst
.getType()->isPointerType()) &&
2390 "Bad type for register variable");
2391 llvm::MDNode
*RegName
= cast
<llvm::MDNode
>(
2392 cast
<llvm::MetadataAsValue
>(Dst
.getGlobalReg())->getMetadata());
2393 assert(RegName
&& "Register LValue is not metadata");
2395 // We accept integer and pointer types only
2396 llvm::Type
*OrigTy
= CGM
.getTypes().ConvertType(Dst
.getType());
2397 llvm::Type
*Ty
= OrigTy
;
2398 if (OrigTy
->isPointerTy())
2399 Ty
= CGM
.getTypes().getDataLayout().getIntPtrType(OrigTy
);
2400 llvm::Type
*Types
[] = { Ty
};
2402 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::write_register
, Types
);
2403 llvm::Value
*Value
= Src
.getScalarVal();
2404 if (OrigTy
->isPointerTy())
2405 Value
= Builder
.CreatePtrToInt(Value
, Ty
);
2407 F
, {llvm::MetadataAsValue::get(Ty
->getContext(), RegName
), Value
});
2410 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2411 // generating write-barries API. It is currently a global, ivar,
2413 static void setObjCGCLValueClass(const ASTContext
&Ctx
, const Expr
*E
,
2415 bool IsMemberAccess
=false) {
2416 if (Ctx
.getLangOpts().getGC() == LangOptions::NonGC
)
2419 if (isa
<ObjCIvarRefExpr
>(E
)) {
2420 QualType ExpTy
= E
->getType();
2421 if (IsMemberAccess
&& ExpTy
->isPointerType()) {
2422 // If ivar is a structure pointer, assigning to field of
2423 // this struct follows gcc's behavior and makes it a non-ivar
2424 // writer-barrier conservatively.
2425 ExpTy
= ExpTy
->castAs
<PointerType
>()->getPointeeType();
2426 if (ExpTy
->isRecordType()) {
2427 LV
.setObjCIvar(false);
2431 LV
.setObjCIvar(true);
2432 auto *Exp
= cast
<ObjCIvarRefExpr
>(const_cast<Expr
*>(E
));
2433 LV
.setBaseIvarExp(Exp
->getBase());
2434 LV
.setObjCArray(E
->getType()->isArrayType());
2438 if (const auto *Exp
= dyn_cast
<DeclRefExpr
>(E
)) {
2439 if (const auto *VD
= dyn_cast
<VarDecl
>(Exp
->getDecl())) {
2440 if (VD
->hasGlobalStorage()) {
2441 LV
.setGlobalObjCRef(true);
2442 LV
.setThreadLocalRef(VD
->getTLSKind() != VarDecl::TLS_None
);
2445 LV
.setObjCArray(E
->getType()->isArrayType());
2449 if (const auto *Exp
= dyn_cast
<UnaryOperator
>(E
)) {
2450 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2454 if (const auto *Exp
= dyn_cast
<ParenExpr
>(E
)) {
2455 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2456 if (LV
.isObjCIvar()) {
2457 // If cast is to a structure pointer, follow gcc's behavior and make it
2458 // a non-ivar write-barrier.
2459 QualType ExpTy
= E
->getType();
2460 if (ExpTy
->isPointerType())
2461 ExpTy
= ExpTy
->castAs
<PointerType
>()->getPointeeType();
2462 if (ExpTy
->isRecordType())
2463 LV
.setObjCIvar(false);
2468 if (const auto *Exp
= dyn_cast
<GenericSelectionExpr
>(E
)) {
2469 setObjCGCLValueClass(Ctx
, Exp
->getResultExpr(), LV
);
2473 if (const auto *Exp
= dyn_cast
<ImplicitCastExpr
>(E
)) {
2474 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2478 if (const auto *Exp
= dyn_cast
<CStyleCastExpr
>(E
)) {
2479 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2483 if (const auto *Exp
= dyn_cast
<ObjCBridgedCastExpr
>(E
)) {
2484 setObjCGCLValueClass(Ctx
, Exp
->getSubExpr(), LV
, IsMemberAccess
);
2488 if (const auto *Exp
= dyn_cast
<ArraySubscriptExpr
>(E
)) {
2489 setObjCGCLValueClass(Ctx
, Exp
->getBase(), LV
);
2490 if (LV
.isObjCIvar() && !LV
.isObjCArray())
2491 // Using array syntax to assigning to what an ivar points to is not
2492 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2493 LV
.setObjCIvar(false);
2494 else if (LV
.isGlobalObjCRef() && !LV
.isObjCArray())
2495 // Using array syntax to assigning to what global points to is not
2496 // same as assigning to the global itself. {id *G;} G[i] = 0;
2497 LV
.setGlobalObjCRef(false);
2501 if (const auto *Exp
= dyn_cast
<MemberExpr
>(E
)) {
2502 setObjCGCLValueClass(Ctx
, Exp
->getBase(), LV
, true);
2503 // We don't know if member is an 'ivar', but this flag is looked at
2504 // only in the context of LV.isObjCIvar().
2505 LV
.setObjCArray(E
->getType()->isArrayType());
2510 static llvm::Value
*
2511 EmitBitCastOfLValueToProperType(CodeGenFunction
&CGF
,
2512 llvm::Value
*V
, llvm::Type
*IRType
,
2513 StringRef Name
= StringRef()) {
2514 unsigned AS
= cast
<llvm::PointerType
>(V
->getType())->getAddressSpace();
2515 return CGF
.Builder
.CreateBitCast(V
, IRType
->getPointerTo(AS
), Name
);
2518 static LValue
EmitThreadPrivateVarDeclLValue(
2519 CodeGenFunction
&CGF
, const VarDecl
*VD
, QualType T
, Address Addr
,
2520 llvm::Type
*RealVarTy
, SourceLocation Loc
) {
2521 if (CGF
.CGM
.getLangOpts().OpenMPIRBuilder
)
2522 Addr
= CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2523 CGF
, VD
, Addr
, Loc
);
2526 CGF
.CGM
.getOpenMPRuntime().getAddrOfThreadPrivate(CGF
, VD
, Addr
, Loc
);
2528 Addr
= CGF
.Builder
.CreateElementBitCast(Addr
, RealVarTy
);
2529 return CGF
.MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2532 static Address
emitDeclTargetVarDeclLValue(CodeGenFunction
&CGF
,
2533 const VarDecl
*VD
, QualType T
) {
2534 std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> Res
=
2535 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
);
2536 // Return an invalid address if variable is MT_To (or MT_Enter starting with
2537 // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link
2538 // and MT_To (or MT_Enter) with unified memory, return a valid address.
2539 if (!Res
|| ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
2540 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
2541 !CGF
.CGM
.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2542 return Address::invalid();
2543 assert(((*Res
== OMPDeclareTargetDeclAttr::MT_Link
) ||
2544 ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
2545 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
2546 CGF
.CGM
.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2547 "Expected link clause OR to clause with unified memory enabled.");
2548 QualType PtrTy
= CGF
.getContext().getPointerType(VD
->getType());
2549 Address Addr
= CGF
.CGM
.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD
);
2550 return CGF
.EmitLoadOfPointer(Addr
, PtrTy
->castAs
<PointerType
>());
2554 CodeGenFunction::EmitLoadOfReference(LValue RefLVal
,
2555 LValueBaseInfo
*PointeeBaseInfo
,
2556 TBAAAccessInfo
*PointeeTBAAInfo
) {
2557 llvm::LoadInst
*Load
=
2558 Builder
.CreateLoad(RefLVal
.getAddress(*this), RefLVal
.isVolatile());
2559 CGM
.DecorateInstructionWithTBAA(Load
, RefLVal
.getTBAAInfo());
2561 QualType PointeeType
= RefLVal
.getType()->getPointeeType();
2562 CharUnits Align
= CGM
.getNaturalTypeAlignment(
2563 PointeeType
, PointeeBaseInfo
, PointeeTBAAInfo
,
2564 /* forPointeeType= */ true);
2565 return Address(Load
, ConvertTypeForMem(PointeeType
), Align
);
2568 LValue
CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal
) {
2569 LValueBaseInfo PointeeBaseInfo
;
2570 TBAAAccessInfo PointeeTBAAInfo
;
2571 Address PointeeAddr
= EmitLoadOfReference(RefLVal
, &PointeeBaseInfo
,
2573 return MakeAddrLValue(PointeeAddr
, RefLVal
.getType()->getPointeeType(),
2574 PointeeBaseInfo
, PointeeTBAAInfo
);
2577 Address
CodeGenFunction::EmitLoadOfPointer(Address Ptr
,
2578 const PointerType
*PtrTy
,
2579 LValueBaseInfo
*BaseInfo
,
2580 TBAAAccessInfo
*TBAAInfo
) {
2581 llvm::Value
*Addr
= Builder
.CreateLoad(Ptr
);
2582 return Address(Addr
, ConvertTypeForMem(PtrTy
->getPointeeType()),
2583 CGM
.getNaturalTypeAlignment(PtrTy
->getPointeeType(), BaseInfo
,
2585 /*forPointeeType=*/true));
2588 LValue
CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr
,
2589 const PointerType
*PtrTy
) {
2590 LValueBaseInfo BaseInfo
;
2591 TBAAAccessInfo TBAAInfo
;
2592 Address Addr
= EmitLoadOfPointer(PtrAddr
, PtrTy
, &BaseInfo
, &TBAAInfo
);
2593 return MakeAddrLValue(Addr
, PtrTy
->getPointeeType(), BaseInfo
, TBAAInfo
);
2596 static LValue
EmitGlobalVarDeclLValue(CodeGenFunction
&CGF
,
2597 const Expr
*E
, const VarDecl
*VD
) {
2598 QualType T
= E
->getType();
2600 // If it's thread_local, emit a call to its wrapper function instead.
2601 if (VD
->getTLSKind() == VarDecl::TLS_Dynamic
&&
2602 CGF
.CGM
.getCXXABI().usesThreadWrapperFunction(VD
))
2603 return CGF
.CGM
.getCXXABI().EmitThreadLocalVarDeclLValue(CGF
, VD
, T
);
2604 // Check if the variable is marked as declare target with link clause in
2606 if (CGF
.getLangOpts().OpenMPIsDevice
) {
2607 Address Addr
= emitDeclTargetVarDeclLValue(CGF
, VD
, T
);
2609 return CGF
.MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2612 llvm::Value
*V
= CGF
.CGM
.GetAddrOfGlobalVar(VD
);
2614 if (VD
->getTLSKind() != VarDecl::TLS_None
)
2615 V
= CGF
.Builder
.CreateThreadLocalAddress(V
);
2617 llvm::Type
*RealVarTy
= CGF
.getTypes().ConvertTypeForMem(VD
->getType());
2618 V
= EmitBitCastOfLValueToProperType(CGF
, V
, RealVarTy
);
2619 CharUnits Alignment
= CGF
.getContext().getDeclAlign(VD
);
2620 Address
Addr(V
, RealVarTy
, Alignment
);
2621 // Emit reference to the private copy of the variable if it is an OpenMP
2622 // threadprivate variable.
2623 if (CGF
.getLangOpts().OpenMP
&& !CGF
.getLangOpts().OpenMPSimd
&&
2624 VD
->hasAttr
<OMPThreadPrivateDeclAttr
>()) {
2625 return EmitThreadPrivateVarDeclLValue(CGF
, VD
, T
, Addr
, RealVarTy
,
2628 LValue LV
= VD
->getType()->isReferenceType() ?
2629 CGF
.EmitLoadOfReferenceLValue(Addr
, VD
->getType(),
2630 AlignmentSource::Decl
) :
2631 CGF
.MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2632 setObjCGCLValueClass(CGF
.getContext(), E
, LV
);
2636 static llvm::Constant
*EmitFunctionDeclPointer(CodeGenModule
&CGM
,
2638 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
2639 if (FD
->hasAttr
<WeakRefAttr
>()) {
2640 ConstantAddress aliasee
= CGM
.GetWeakRefReference(FD
);
2641 return aliasee
.getPointer();
2644 llvm::Constant
*V
= CGM
.GetAddrOfFunction(GD
);
2645 if (!FD
->hasPrototype()) {
2646 if (const FunctionProtoType
*Proto
=
2647 FD
->getType()->getAs
<FunctionProtoType
>()) {
2648 // Ugly case: for a K&R-style definition, the type of the definition
2649 // isn't the same as the type of a use. Correct for this with a
2651 QualType NoProtoType
=
2652 CGM
.getContext().getFunctionNoProtoType(Proto
->getReturnType());
2653 NoProtoType
= CGM
.getContext().getPointerType(NoProtoType
);
2654 V
= llvm::ConstantExpr::getBitCast(V
,
2655 CGM
.getTypes().ConvertType(NoProtoType
));
2661 static LValue
EmitFunctionDeclLValue(CodeGenFunction
&CGF
, const Expr
*E
,
2663 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
2664 llvm::Value
*V
= EmitFunctionDeclPointer(CGF
.CGM
, GD
);
2665 CharUnits Alignment
= CGF
.getContext().getDeclAlign(FD
);
2666 return CGF
.MakeAddrLValue(V
, E
->getType(), Alignment
,
2667 AlignmentSource::Decl
);
2670 static LValue
EmitCapturedFieldLValue(CodeGenFunction
&CGF
, const FieldDecl
*FD
,
2671 llvm::Value
*ThisValue
) {
2672 QualType TagType
= CGF
.getContext().getTagDeclType(FD
->getParent());
2673 LValue LV
= CGF
.MakeNaturalAlignAddrLValue(ThisValue
, TagType
);
2674 return CGF
.EmitLValueForField(LV
, FD
);
2677 /// Named Registers are named metadata pointing to the register name
2678 /// which will be read from/written to as an argument to the intrinsic
2679 /// @llvm.read/write_register.
2680 /// So far, only the name is being passed down, but other options such as
2681 /// register type, allocation type or even optimization options could be
2682 /// passed down via the metadata node.
2683 static LValue
EmitGlobalNamedRegister(const VarDecl
*VD
, CodeGenModule
&CGM
) {
2684 SmallString
<64> Name("llvm.named.register.");
2685 AsmLabelAttr
*Asm
= VD
->getAttr
<AsmLabelAttr
>();
2686 assert(Asm
->getLabel().size() < 64-Name
.size() &&
2687 "Register name too big");
2688 Name
.append(Asm
->getLabel());
2689 llvm::NamedMDNode
*M
=
2690 CGM
.getModule().getOrInsertNamedMetadata(Name
);
2691 if (M
->getNumOperands() == 0) {
2692 llvm::MDString
*Str
= llvm::MDString::get(CGM
.getLLVMContext(),
2694 llvm::Metadata
*Ops
[] = {Str
};
2695 M
->addOperand(llvm::MDNode::get(CGM
.getLLVMContext(), Ops
));
2698 CharUnits Alignment
= CGM
.getContext().getDeclAlign(VD
);
2701 llvm::MetadataAsValue::get(CGM
.getLLVMContext(), M
->getOperand(0));
2702 return LValue::MakeGlobalReg(Ptr
, Alignment
, VD
->getType());
2705 /// Determine whether we can emit a reference to \p VD from the current
2706 /// context, despite not necessarily having seen an odr-use of the variable in
2708 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction
&CGF
,
2709 const DeclRefExpr
*E
,
2712 // For a variable declared in an enclosing scope, do not emit a spurious
2713 // reference even if we have a capture, as that will emit an unwarranted
2714 // reference to our capture state, and will likely generate worse code than
2715 // emitting a local copy.
2716 if (E
->refersToEnclosingVariableOrCapture())
2719 // For a local declaration declared in this function, we can always reference
2720 // it even if we don't have an odr-use.
2721 if (VD
->hasLocalStorage()) {
2722 return VD
->getDeclContext() ==
2723 dyn_cast_or_null
<DeclContext
>(CGF
.CurCodeDecl
);
2726 // For a global declaration, we can emit a reference to it if we know
2727 // for sure that we are able to emit a definition of it.
2728 VD
= VD
->getDefinition(CGF
.getContext());
2732 // Don't emit a spurious reference if it might be to a variable that only
2733 // exists on a different device / target.
2734 // FIXME: This is unnecessarily broad. Check whether this would actually be a
2735 // cross-target reference.
2736 if (CGF
.getLangOpts().OpenMP
|| CGF
.getLangOpts().CUDA
||
2737 CGF
.getLangOpts().OpenCL
) {
2741 // We can emit a spurious reference only if the linkage implies that we'll
2742 // be emitting a non-interposable symbol that will be retained until link
2744 switch (CGF
.CGM
.getLLVMLinkageVarDefinition(VD
, IsConstant
)) {
2745 case llvm::GlobalValue::ExternalLinkage
:
2746 case llvm::GlobalValue::LinkOnceODRLinkage
:
2747 case llvm::GlobalValue::WeakODRLinkage
:
2748 case llvm::GlobalValue::InternalLinkage
:
2749 case llvm::GlobalValue::PrivateLinkage
:
2756 LValue
CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr
*E
) {
2757 const NamedDecl
*ND
= E
->getDecl();
2758 QualType T
= E
->getType();
2760 assert(E
->isNonOdrUse() != NOUR_Unevaluated
&&
2761 "should not emit an unevaluated operand");
2763 if (const auto *VD
= dyn_cast
<VarDecl
>(ND
)) {
2764 // Global Named registers access via intrinsics only
2765 if (VD
->getStorageClass() == SC_Register
&&
2766 VD
->hasAttr
<AsmLabelAttr
>() && !VD
->isLocalVarDecl())
2767 return EmitGlobalNamedRegister(VD
, CGM
);
2769 // If this DeclRefExpr does not constitute an odr-use of the variable,
2770 // we're not permitted to emit a reference to it in general, and it might
2771 // not be captured if capture would be necessary for a use. Emit the
2772 // constant value directly instead.
2773 if (E
->isNonOdrUse() == NOUR_Constant
&&
2774 (VD
->getType()->isReferenceType() ||
2775 !canEmitSpuriousReferenceToVariable(*this, E
, VD
, true))) {
2776 VD
->getAnyInitializer(VD
);
2777 llvm::Constant
*Val
= ConstantEmitter(*this).emitAbstract(
2778 E
->getLocation(), *VD
->evaluateValue(), VD
->getType());
2779 assert(Val
&& "failed to emit constant expression");
2781 Address Addr
= Address::invalid();
2782 if (!VD
->getType()->isReferenceType()) {
2783 // Spill the constant value to a global.
2784 Addr
= CGM
.createUnnamedGlobalFrom(*VD
, Val
,
2785 getContext().getDeclAlign(VD
));
2786 llvm::Type
*VarTy
= getTypes().ConvertTypeForMem(VD
->getType());
2787 auto *PTy
= llvm::PointerType::get(
2788 VarTy
, getTypes().getTargetAddressSpace(VD
->getType()));
2789 Addr
= Builder
.CreatePointerBitCastOrAddrSpaceCast(Addr
, PTy
, VarTy
);
2791 // Should we be using the alignment of the constant pointer we emitted?
2792 CharUnits Alignment
=
2793 CGM
.getNaturalTypeAlignment(E
->getType(),
2794 /* BaseInfo= */ nullptr,
2795 /* TBAAInfo= */ nullptr,
2796 /* forPointeeType= */ true);
2797 Addr
= Address(Val
, ConvertTypeForMem(E
->getType()), Alignment
);
2799 return MakeAddrLValue(Addr
, T
, AlignmentSource::Decl
);
2802 // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2804 // Check for captured variables.
2805 if (E
->refersToEnclosingVariableOrCapture()) {
2806 VD
= VD
->getCanonicalDecl();
2807 if (auto *FD
= LambdaCaptureFields
.lookup(VD
))
2808 return EmitCapturedFieldLValue(*this, FD
, CXXABIThisValue
);
2809 if (CapturedStmtInfo
) {
2810 auto I
= LocalDeclMap
.find(VD
);
2811 if (I
!= LocalDeclMap
.end()) {
2813 if (VD
->getType()->isReferenceType())
2814 CapLVal
= EmitLoadOfReferenceLValue(I
->second
, VD
->getType(),
2815 AlignmentSource::Decl
);
2817 CapLVal
= MakeAddrLValue(I
->second
, T
);
2818 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2820 if (getLangOpts().OpenMP
&&
2821 CGM
.getOpenMPRuntime().isNontemporalDecl(VD
))
2822 CapLVal
.setNontemporal(/*Value=*/true);
2826 EmitCapturedFieldLValue(*this, CapturedStmtInfo
->lookup(VD
),
2827 CapturedStmtInfo
->getContextValue());
2828 Address LValueAddress
= CapLVal
.getAddress(*this);
2829 CapLVal
= MakeAddrLValue(
2830 Address(LValueAddress
.getPointer(), LValueAddress
.getElementType(),
2831 getContext().getDeclAlign(VD
)),
2832 CapLVal
.getType(), LValueBaseInfo(AlignmentSource::Decl
),
2833 CapLVal
.getTBAAInfo());
2834 // Mark lvalue as nontemporal if the variable is marked as nontemporal
2836 if (getLangOpts().OpenMP
&&
2837 CGM
.getOpenMPRuntime().isNontemporalDecl(VD
))
2838 CapLVal
.setNontemporal(/*Value=*/true);
2842 assert(isa
<BlockDecl
>(CurCodeDecl
));
2843 Address addr
= GetAddrOfBlockDecl(VD
);
2844 return MakeAddrLValue(addr
, T
, AlignmentSource::Decl
);
2848 // FIXME: We should be able to assert this for FunctionDecls as well!
2849 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2850 // those with a valid source location.
2851 assert((ND
->isUsed(false) || !isa
<VarDecl
>(ND
) || E
->isNonOdrUse() ||
2852 !E
->getLocation().isValid()) &&
2853 "Should not use decl without marking it used!");
2855 if (ND
->hasAttr
<WeakRefAttr
>()) {
2856 const auto *VD
= cast
<ValueDecl
>(ND
);
2857 ConstantAddress Aliasee
= CGM
.GetWeakRefReference(VD
);
2858 return MakeAddrLValue(Aliasee
, T
, AlignmentSource::Decl
);
2861 if (const auto *VD
= dyn_cast
<VarDecl
>(ND
)) {
2862 // Check if this is a global variable.
2863 if (VD
->hasLinkage() || VD
->isStaticDataMember())
2864 return EmitGlobalVarDeclLValue(*this, E
, VD
);
2866 Address addr
= Address::invalid();
2868 // The variable should generally be present in the local decl map.
2869 auto iter
= LocalDeclMap
.find(VD
);
2870 if (iter
!= LocalDeclMap
.end()) {
2871 addr
= iter
->second
;
2873 // Otherwise, it might be static local we haven't emitted yet for
2874 // some reason; most likely, because it's in an outer function.
2875 } else if (VD
->isStaticLocal()) {
2876 llvm::Constant
*var
= CGM
.getOrCreateStaticVarDecl(
2877 *VD
, CGM
.getLLVMLinkageVarDefinition(VD
, /*IsConstant=*/false));
2879 var
, ConvertTypeForMem(VD
->getType()), getContext().getDeclAlign(VD
));
2881 // No other cases for now.
2883 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2886 // Handle threadlocal function locals.
2887 if (VD
->getTLSKind() != VarDecl::TLS_None
)
2888 addr
= addr
.withPointer(
2889 Builder
.CreateThreadLocalAddress(addr
.getPointer()), NotKnownNonNull
);
2891 // Check for OpenMP threadprivate variables.
2892 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
&&
2893 VD
->hasAttr
<OMPThreadPrivateDeclAttr
>()) {
2894 return EmitThreadPrivateVarDeclLValue(
2895 *this, VD
, T
, addr
, getTypes().ConvertTypeForMem(VD
->getType()),
2899 // Drill into block byref variables.
2900 bool isBlockByref
= VD
->isEscapingByref();
2902 addr
= emitBlockByrefAddress(addr
, VD
);
2905 // Drill into reference types.
2906 LValue LV
= VD
->getType()->isReferenceType() ?
2907 EmitLoadOfReferenceLValue(addr
, VD
->getType(), AlignmentSource::Decl
) :
2908 MakeAddrLValue(addr
, T
, AlignmentSource::Decl
);
2910 bool isLocalStorage
= VD
->hasLocalStorage();
2912 bool NonGCable
= isLocalStorage
&&
2913 !VD
->getType()->isReferenceType() &&
2916 LV
.getQuals().removeObjCGCAttr();
2920 bool isImpreciseLifetime
=
2921 (isLocalStorage
&& !VD
->hasAttr
<ObjCPreciseLifetimeAttr
>());
2922 if (isImpreciseLifetime
)
2923 LV
.setARCPreciseLifetime(ARCImpreciseLifetime
);
2924 setObjCGCLValueClass(getContext(), E
, LV
);
2928 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
)) {
2929 LValue LV
= EmitFunctionDeclLValue(*this, E
, FD
);
2931 // Emit debuginfo for the function declaration if the target wants to.
2932 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2933 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo()) {
2935 cast
<llvm::Function
>(LV
.getPointer(*this)->stripPointerCasts());
2936 if (!Fn
->getSubprogram())
2937 DI
->EmitFunctionDecl(FD
, FD
->getLocation(), T
, Fn
);
2944 // FIXME: While we're emitting a binding from an enclosing scope, all other
2945 // DeclRefExprs we see should be implicitly treated as if they also refer to
2946 // an enclosing scope.
2947 if (const auto *BD
= dyn_cast
<BindingDecl
>(ND
)) {
2948 if (E
->refersToEnclosingVariableOrCapture()) {
2949 auto *FD
= LambdaCaptureFields
.lookup(BD
);
2950 return EmitCapturedFieldLValue(*this, FD
, CXXABIThisValue
);
2952 return EmitLValue(BD
->getBinding());
2955 // We can form DeclRefExprs naming GUID declarations when reconstituting
2956 // non-type template parameters into expressions.
2957 if (const auto *GD
= dyn_cast
<MSGuidDecl
>(ND
))
2958 return MakeAddrLValue(CGM
.GetAddrOfMSGuidDecl(GD
), T
,
2959 AlignmentSource::Decl
);
2961 if (const auto *TPO
= dyn_cast
<TemplateParamObjectDecl
>(ND
))
2962 return MakeAddrLValue(CGM
.GetAddrOfTemplateParamObject(TPO
), T
,
2963 AlignmentSource::Decl
);
2965 llvm_unreachable("Unhandled DeclRefExpr");
2968 LValue
CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator
*E
) {
2969 // __extension__ doesn't affect lvalue-ness.
2970 if (E
->getOpcode() == UO_Extension
)
2971 return EmitLValue(E
->getSubExpr());
2973 QualType ExprTy
= getContext().getCanonicalType(E
->getSubExpr()->getType());
2974 switch (E
->getOpcode()) {
2975 default: llvm_unreachable("Unknown unary operator lvalue!");
2977 QualType T
= E
->getSubExpr()->getType()->getPointeeType();
2978 assert(!T
.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2980 LValueBaseInfo BaseInfo
;
2981 TBAAAccessInfo TBAAInfo
;
2982 Address Addr
= EmitPointerWithAlignment(E
->getSubExpr(), &BaseInfo
,
2984 LValue LV
= MakeAddrLValue(Addr
, T
, BaseInfo
, TBAAInfo
);
2985 LV
.getQuals().setAddressSpace(ExprTy
.getAddressSpace());
2987 // We should not generate __weak write barrier on indirect reference
2988 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2989 // But, we continue to generate __strong write barrier on indirect write
2990 // into a pointer to object.
2991 if (getLangOpts().ObjC
&&
2992 getLangOpts().getGC() != LangOptions::NonGC
&&
2994 LV
.setNonGC(!E
->isOBJCGCCandidate(getContext()));
2999 LValue LV
= EmitLValue(E
->getSubExpr());
3000 assert(LV
.isSimple() && "real/imag on non-ordinary l-value");
3002 // __real is valid on scalars. This is a faster way of testing that.
3003 // __imag can only produce an rvalue on scalars.
3004 if (E
->getOpcode() == UO_Real
&&
3005 !LV
.getAddress(*this).getElementType()->isStructTy()) {
3006 assert(E
->getSubExpr()->getType()->isArithmeticType());
3010 QualType T
= ExprTy
->castAs
<ComplexType
>()->getElementType();
3013 (E
->getOpcode() == UO_Real
3014 ? emitAddrOfRealComponent(LV
.getAddress(*this), LV
.getType())
3015 : emitAddrOfImagComponent(LV
.getAddress(*this), LV
.getType()));
3016 LValue ElemLV
= MakeAddrLValue(Component
, T
, LV
.getBaseInfo(),
3017 CGM
.getTBAAInfoForSubobject(LV
, T
));
3018 ElemLV
.getQuals().addQualifiers(LV
.getQuals());
3023 LValue LV
= EmitLValue(E
->getSubExpr());
3024 bool isInc
= E
->getOpcode() == UO_PreInc
;
3026 if (E
->getType()->isAnyComplexType())
3027 EmitComplexPrePostIncDec(E
, LV
, isInc
, true/*isPre*/);
3029 EmitScalarPrePostIncDec(E
, LV
, isInc
, true/*isPre*/);
3035 LValue
CodeGenFunction::EmitStringLiteralLValue(const StringLiteral
*E
) {
3036 return MakeAddrLValue(CGM
.GetAddrOfConstantStringFromLiteral(E
),
3037 E
->getType(), AlignmentSource::Decl
);
3040 LValue
CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr
*E
) {
3041 return MakeAddrLValue(CGM
.GetAddrOfConstantStringFromObjCEncode(E
),
3042 E
->getType(), AlignmentSource::Decl
);
3045 LValue
CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr
*E
) {
3046 auto SL
= E
->getFunctionName();
3047 assert(SL
!= nullptr && "No StringLiteral name in PredefinedExpr");
3048 StringRef FnName
= CurFn
->getName();
3049 if (FnName
.startswith("\01"))
3050 FnName
= FnName
.substr(1);
3051 StringRef NameItems
[] = {
3052 PredefinedExpr::getIdentKindName(E
->getIdentKind()), FnName
};
3053 std::string GVName
= llvm::join(NameItems
, NameItems
+ 2, ".");
3054 if (auto *BD
= dyn_cast_or_null
<BlockDecl
>(CurCodeDecl
)) {
3055 std::string Name
= std::string(SL
->getString());
3056 if (!Name
.empty()) {
3057 unsigned Discriminator
=
3058 CGM
.getCXXABI().getMangleContext().getBlockId(BD
, true);
3060 Name
+= "_" + Twine(Discriminator
+ 1).str();
3061 auto C
= CGM
.GetAddrOfConstantCString(Name
, GVName
.c_str());
3062 return MakeAddrLValue(C
, E
->getType(), AlignmentSource::Decl
);
3065 CGM
.GetAddrOfConstantCString(std::string(FnName
), GVName
.c_str());
3066 return MakeAddrLValue(C
, E
->getType(), AlignmentSource::Decl
);
3069 auto C
= CGM
.GetAddrOfConstantStringFromLiteral(SL
, GVName
);
3070 return MakeAddrLValue(C
, E
->getType(), AlignmentSource::Decl
);
3073 /// Emit a type description suitable for use by a runtime sanitizer library. The
3074 /// format of a type descriptor is
3077 /// { i16 TypeKind, i16 TypeInfo }
3080 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3081 /// integer, 1 for a floating point value, and -1 for anything else.
3082 llvm::Constant
*CodeGenFunction::EmitCheckTypeDescriptor(QualType T
) {
3083 // Only emit each type's descriptor once.
3084 if (llvm::Constant
*C
= CGM
.getTypeDescriptorFromMap(T
))
3087 uint16_t TypeKind
= -1;
3088 uint16_t TypeInfo
= 0;
3090 if (T
->isIntegerType()) {
3092 TypeInfo
= (llvm::Log2_32(getContext().getTypeSize(T
)) << 1) |
3093 (T
->isSignedIntegerType() ? 1 : 0);
3094 } else if (T
->isFloatingType()) {
3096 TypeInfo
= getContext().getTypeSize(T
);
3099 // Format the type name as if for a diagnostic, including quotes and
3100 // optionally an 'aka'.
3101 SmallString
<32> Buffer
;
3102 CGM
.getDiags().ConvertArgToString(
3103 DiagnosticsEngine::ak_qualtype
, (intptr_t)T
.getAsOpaquePtr(), StringRef(),
3104 StringRef(), std::nullopt
, Buffer
, std::nullopt
);
3106 llvm::Constant
*Components
[] = {
3107 Builder
.getInt16(TypeKind
), Builder
.getInt16(TypeInfo
),
3108 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer
)
3110 llvm::Constant
*Descriptor
= llvm::ConstantStruct::getAnon(Components
);
3112 auto *GV
= new llvm::GlobalVariable(
3113 CGM
.getModule(), Descriptor
->getType(),
3114 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage
, Descriptor
);
3115 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3116 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(GV
);
3118 // Remember the descriptor for this type.
3119 CGM
.setTypeDescriptorInMap(T
, GV
);
3124 llvm::Value
*CodeGenFunction::EmitCheckValue(llvm::Value
*V
) {
3125 llvm::Type
*TargetTy
= IntPtrTy
;
3127 if (V
->getType() == TargetTy
)
3130 // Floating-point types which fit into intptr_t are bitcast to integers
3131 // and then passed directly (after zero-extension, if necessary).
3132 if (V
->getType()->isFloatingPointTy()) {
3133 unsigned Bits
= V
->getType()->getPrimitiveSizeInBits().getFixedValue();
3134 if (Bits
<= TargetTy
->getIntegerBitWidth())
3135 V
= Builder
.CreateBitCast(V
, llvm::Type::getIntNTy(getLLVMContext(),
3139 // Integers which fit in intptr_t are zero-extended and passed directly.
3140 if (V
->getType()->isIntegerTy() &&
3141 V
->getType()->getIntegerBitWidth() <= TargetTy
->getIntegerBitWidth())
3142 return Builder
.CreateZExt(V
, TargetTy
);
3144 // Pointers are passed directly, everything else is passed by address.
3145 if (!V
->getType()->isPointerTy()) {
3146 Address Ptr
= CreateDefaultAlignTempAlloca(V
->getType());
3147 Builder
.CreateStore(V
, Ptr
);
3148 V
= Ptr
.getPointer();
3150 return Builder
.CreatePtrToInt(V
, TargetTy
);
3153 /// Emit a representation of a SourceLocation for passing to a handler
3154 /// in a sanitizer runtime library. The format for this data is:
3156 /// struct SourceLocation {
3157 /// const char *Filename;
3158 /// int32_t Line, Column;
3161 /// For an invalid SourceLocation, the Filename pointer is null.
3162 llvm::Constant
*CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc
) {
3163 llvm::Constant
*Filename
;
3166 PresumedLoc PLoc
= getContext().getSourceManager().getPresumedLoc(Loc
);
3167 if (PLoc
.isValid()) {
3168 StringRef FilenameString
= PLoc
.getFilename();
3170 int PathComponentsToStrip
=
3171 CGM
.getCodeGenOpts().EmitCheckPathComponentsToStrip
;
3172 if (PathComponentsToStrip
< 0) {
3173 assert(PathComponentsToStrip
!= INT_MIN
);
3174 int PathComponentsToKeep
= -PathComponentsToStrip
;
3175 auto I
= llvm::sys::path::rbegin(FilenameString
);
3176 auto E
= llvm::sys::path::rend(FilenameString
);
3177 while (I
!= E
&& --PathComponentsToKeep
)
3180 FilenameString
= FilenameString
.substr(I
- E
);
3181 } else if (PathComponentsToStrip
> 0) {
3182 auto I
= llvm::sys::path::begin(FilenameString
);
3183 auto E
= llvm::sys::path::end(FilenameString
);
3184 while (I
!= E
&& PathComponentsToStrip
--)
3189 FilenameString
.substr(I
- llvm::sys::path::begin(FilenameString
));
3191 FilenameString
= llvm::sys::path::filename(FilenameString
);
3195 CGM
.GetAddrOfConstantCString(std::string(FilenameString
), ".src");
3196 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(
3197 cast
<llvm::GlobalVariable
>(
3198 FilenameGV
.getPointer()->stripPointerCasts()));
3199 Filename
= FilenameGV
.getPointer();
3200 Line
= PLoc
.getLine();
3201 Column
= PLoc
.getColumn();
3203 Filename
= llvm::Constant::getNullValue(Int8PtrTy
);
3207 llvm::Constant
*Data
[] = {Filename
, Builder
.getInt32(Line
),
3208 Builder
.getInt32(Column
)};
3210 return llvm::ConstantStruct::getAnon(Data
);
3214 /// Specify under what conditions this check can be recovered
3215 enum class CheckRecoverableKind
{
3216 /// Always terminate program execution if this check fails.
3218 /// Check supports recovering, runtime has both fatal (noreturn) and
3219 /// non-fatal handlers for this check.
3221 /// Runtime conditionally aborts, always need to support recovery.
3226 static CheckRecoverableKind
getRecoverableKind(SanitizerMask Kind
) {
3227 assert(Kind
.countPopulation() == 1);
3228 if (Kind
== SanitizerKind::Vptr
)
3229 return CheckRecoverableKind::AlwaysRecoverable
;
3230 else if (Kind
== SanitizerKind::Return
|| Kind
== SanitizerKind::Unreachable
)
3231 return CheckRecoverableKind::Unrecoverable
;
3233 return CheckRecoverableKind::Recoverable
;
3237 struct SanitizerHandlerInfo
{
3238 char const *const Name
;
3243 const SanitizerHandlerInfo SanitizerHandlers
[] = {
3244 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3245 LIST_SANITIZER_CHECKS
3246 #undef SANITIZER_CHECK
3249 static void emitCheckHandlerCall(CodeGenFunction
&CGF
,
3250 llvm::FunctionType
*FnType
,
3251 ArrayRef
<llvm::Value
*> FnArgs
,
3252 SanitizerHandler CheckHandler
,
3253 CheckRecoverableKind RecoverKind
, bool IsFatal
,
3254 llvm::BasicBlock
*ContBB
) {
3255 assert(IsFatal
|| RecoverKind
!= CheckRecoverableKind::Unrecoverable
);
3256 std::optional
<ApplyDebugLocation
> DL
;
3257 if (!CGF
.Builder
.getCurrentDebugLocation()) {
3258 // Ensure that the call has at least an artificial debug location.
3259 DL
.emplace(CGF
, SourceLocation());
3261 bool NeedsAbortSuffix
=
3262 IsFatal
&& RecoverKind
!= CheckRecoverableKind::Unrecoverable
;
3263 bool MinimalRuntime
= CGF
.CGM
.getCodeGenOpts().SanitizeMinimalRuntime
;
3264 const SanitizerHandlerInfo
&CheckInfo
= SanitizerHandlers
[CheckHandler
];
3265 const StringRef CheckName
= CheckInfo
.Name
;
3266 std::string FnName
= "__ubsan_handle_" + CheckName
.str();
3267 if (CheckInfo
.Version
&& !MinimalRuntime
)
3268 FnName
+= "_v" + llvm::utostr(CheckInfo
.Version
);
3270 FnName
+= "_minimal";
3271 if (NeedsAbortSuffix
)
3274 !IsFatal
|| RecoverKind
== CheckRecoverableKind::AlwaysRecoverable
;
3276 llvm::AttrBuilder
B(CGF
.getLLVMContext());
3278 B
.addAttribute(llvm::Attribute::NoReturn
)
3279 .addAttribute(llvm::Attribute::NoUnwind
);
3281 B
.addUWTableAttr(llvm::UWTableKind::Default
);
3283 llvm::FunctionCallee Fn
= CGF
.CGM
.CreateRuntimeFunction(
3285 llvm::AttributeList::get(CGF
.getLLVMContext(),
3286 llvm::AttributeList::FunctionIndex
, B
),
3288 llvm::CallInst
*HandlerCall
= CGF
.EmitNounwindRuntimeCall(Fn
, FnArgs
);
3290 HandlerCall
->setDoesNotReturn();
3291 CGF
.Builder
.CreateUnreachable();
3293 CGF
.Builder
.CreateBr(ContBB
);
3297 void CodeGenFunction::EmitCheck(
3298 ArrayRef
<std::pair
<llvm::Value
*, SanitizerMask
>> Checked
,
3299 SanitizerHandler CheckHandler
, ArrayRef
<llvm::Constant
*> StaticArgs
,
3300 ArrayRef
<llvm::Value
*> DynamicArgs
) {
3301 assert(IsSanitizerScope
);
3302 assert(Checked
.size() > 0);
3303 assert(CheckHandler
>= 0 &&
3304 size_t(CheckHandler
) < std::size(SanitizerHandlers
));
3305 const StringRef CheckName
= SanitizerHandlers
[CheckHandler
].Name
;
3307 llvm::Value
*FatalCond
= nullptr;
3308 llvm::Value
*RecoverableCond
= nullptr;
3309 llvm::Value
*TrapCond
= nullptr;
3310 for (int i
= 0, n
= Checked
.size(); i
< n
; ++i
) {
3311 llvm::Value
*Check
= Checked
[i
].first
;
3312 // -fsanitize-trap= overrides -fsanitize-recover=.
3313 llvm::Value
*&Cond
=
3314 CGM
.getCodeGenOpts().SanitizeTrap
.has(Checked
[i
].second
)
3316 : CGM
.getCodeGenOpts().SanitizeRecover
.has(Checked
[i
].second
)
3319 Cond
= Cond
? Builder
.CreateAnd(Cond
, Check
) : Check
;
3323 EmitTrapCheck(TrapCond
, CheckHandler
);
3324 if (!FatalCond
&& !RecoverableCond
)
3327 llvm::Value
*JointCond
;
3328 if (FatalCond
&& RecoverableCond
)
3329 JointCond
= Builder
.CreateAnd(FatalCond
, RecoverableCond
);
3331 JointCond
= FatalCond
? FatalCond
: RecoverableCond
;
3334 CheckRecoverableKind RecoverKind
= getRecoverableKind(Checked
[0].second
);
3335 assert(SanOpts
.has(Checked
[0].second
));
3337 for (int i
= 1, n
= Checked
.size(); i
< n
; ++i
) {
3338 assert(RecoverKind
== getRecoverableKind(Checked
[i
].second
) &&
3339 "All recoverable kinds in a single check must be same!");
3340 assert(SanOpts
.has(Checked
[i
].second
));
3344 llvm::BasicBlock
*Cont
= createBasicBlock("cont");
3345 llvm::BasicBlock
*Handlers
= createBasicBlock("handler." + CheckName
);
3346 llvm::Instruction
*Branch
= Builder
.CreateCondBr(JointCond
, Cont
, Handlers
);
3347 // Give hint that we very much don't expect to execute the handler
3348 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3349 llvm::MDBuilder
MDHelper(getLLVMContext());
3350 llvm::MDNode
*Node
= MDHelper
.createBranchWeights((1U << 20) - 1, 1);
3351 Branch
->setMetadata(llvm::LLVMContext::MD_prof
, Node
);
3352 EmitBlock(Handlers
);
3354 // Handler functions take an i8* pointing to the (handler-specific) static
3355 // information block, followed by a sequence of intptr_t arguments
3356 // representing operand values.
3357 SmallVector
<llvm::Value
*, 4> Args
;
3358 SmallVector
<llvm::Type
*, 4> ArgTypes
;
3359 if (!CGM
.getCodeGenOpts().SanitizeMinimalRuntime
) {
3360 Args
.reserve(DynamicArgs
.size() + 1);
3361 ArgTypes
.reserve(DynamicArgs
.size() + 1);
3363 // Emit handler arguments and create handler function type.
3364 if (!StaticArgs
.empty()) {
3365 llvm::Constant
*Info
= llvm::ConstantStruct::getAnon(StaticArgs
);
3366 auto *InfoPtr
= new llvm::GlobalVariable(
3367 CGM
.getModule(), Info
->getType(), false,
3368 llvm::GlobalVariable::PrivateLinkage
, Info
, "", nullptr,
3369 llvm::GlobalVariable::NotThreadLocal
,
3370 CGM
.getDataLayout().getDefaultGlobalsAddressSpace());
3371 InfoPtr
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3372 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr
);
3373 Args
.push_back(EmitCastToVoidPtr(InfoPtr
));
3374 ArgTypes
.push_back(Args
.back()->getType());
3377 for (size_t i
= 0, n
= DynamicArgs
.size(); i
!= n
; ++i
) {
3378 Args
.push_back(EmitCheckValue(DynamicArgs
[i
]));
3379 ArgTypes
.push_back(IntPtrTy
);
3383 llvm::FunctionType
*FnType
=
3384 llvm::FunctionType::get(CGM
.VoidTy
, ArgTypes
, false);
3386 if (!FatalCond
|| !RecoverableCond
) {
3387 // Simple case: we need to generate a single handler call, either
3388 // fatal, or non-fatal.
3389 emitCheckHandlerCall(*this, FnType
, Args
, CheckHandler
, RecoverKind
,
3390 (FatalCond
!= nullptr), Cont
);
3392 // Emit two handler calls: first one for set of unrecoverable checks,
3393 // another one for recoverable.
3394 llvm::BasicBlock
*NonFatalHandlerBB
=
3395 createBasicBlock("non_fatal." + CheckName
);
3396 llvm::BasicBlock
*FatalHandlerBB
= createBasicBlock("fatal." + CheckName
);
3397 Builder
.CreateCondBr(FatalCond
, NonFatalHandlerBB
, FatalHandlerBB
);
3398 EmitBlock(FatalHandlerBB
);
3399 emitCheckHandlerCall(*this, FnType
, Args
, CheckHandler
, RecoverKind
, true,
3401 EmitBlock(NonFatalHandlerBB
);
3402 emitCheckHandlerCall(*this, FnType
, Args
, CheckHandler
, RecoverKind
, false,
3409 void CodeGenFunction::EmitCfiSlowPathCheck(
3410 SanitizerMask Kind
, llvm::Value
*Cond
, llvm::ConstantInt
*TypeId
,
3411 llvm::Value
*Ptr
, ArrayRef
<llvm::Constant
*> StaticArgs
) {
3412 llvm::BasicBlock
*Cont
= createBasicBlock("cfi.cont");
3414 llvm::BasicBlock
*CheckBB
= createBasicBlock("cfi.slowpath");
3415 llvm::BranchInst
*BI
= Builder
.CreateCondBr(Cond
, Cont
, CheckBB
);
3417 llvm::MDBuilder
MDHelper(getLLVMContext());
3418 llvm::MDNode
*Node
= MDHelper
.createBranchWeights((1U << 20) - 1, 1);
3419 BI
->setMetadata(llvm::LLVMContext::MD_prof
, Node
);
3423 bool WithDiag
= !CGM
.getCodeGenOpts().SanitizeTrap
.has(Kind
);
3425 llvm::CallInst
*CheckCall
;
3426 llvm::FunctionCallee SlowPathFn
;
3428 llvm::Constant
*Info
= llvm::ConstantStruct::getAnon(StaticArgs
);
3430 new llvm::GlobalVariable(CGM
.getModule(), Info
->getType(), false,
3431 llvm::GlobalVariable::PrivateLinkage
, Info
);
3432 InfoPtr
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3433 CGM
.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr
);
3435 SlowPathFn
= CGM
.getModule().getOrInsertFunction(
3436 "__cfi_slowpath_diag",
3437 llvm::FunctionType::get(VoidTy
, {Int64Ty
, Int8PtrTy
, Int8PtrTy
},
3439 CheckCall
= Builder
.CreateCall(
3440 SlowPathFn
, {TypeId
, Ptr
, Builder
.CreateBitCast(InfoPtr
, Int8PtrTy
)});
3442 SlowPathFn
= CGM
.getModule().getOrInsertFunction(
3444 llvm::FunctionType::get(VoidTy
, {Int64Ty
, Int8PtrTy
}, false));
3445 CheckCall
= Builder
.CreateCall(SlowPathFn
, {TypeId
, Ptr
});
3449 cast
<llvm::GlobalValue
>(SlowPathFn
.getCallee()->stripPointerCasts()));
3450 CheckCall
->setDoesNotThrow();
3455 // Emit a stub for __cfi_check function so that the linker knows about this
3456 // symbol in LTO mode.
3457 void CodeGenFunction::EmitCfiCheckStub() {
3458 llvm::Module
*M
= &CGM
.getModule();
3459 auto &Ctx
= M
->getContext();
3460 llvm::Function
*F
= llvm::Function::Create(
3461 llvm::FunctionType::get(VoidTy
, {Int64Ty
, Int8PtrTy
, Int8PtrTy
}, false),
3462 llvm::GlobalValue::WeakAnyLinkage
, "__cfi_check", M
);
3464 llvm::BasicBlock
*BB
= llvm::BasicBlock::Create(Ctx
, "entry", F
);
3465 // FIXME: consider emitting an intrinsic call like
3466 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3467 // which can be lowered in CrossDSOCFI pass to the actual contents of
3468 // __cfi_check. This would allow inlining of __cfi_check calls.
3469 llvm::CallInst::Create(
3470 llvm::Intrinsic::getDeclaration(M
, llvm::Intrinsic::trap
), "", BB
);
3471 llvm::ReturnInst::Create(Ctx
, nullptr, BB
);
3474 // This function is basically a switch over the CFI failure kind, which is
3475 // extracted from CFICheckFailData (1st function argument). Each case is either
3476 // llvm.trap or a call to one of the two runtime handlers, based on
3477 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
3478 // failure kind) traps, but this should really never happen. CFICheckFailData
3479 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3480 // check kind; in this case __cfi_check_fail traps as well.
3481 void CodeGenFunction::EmitCfiCheckFail() {
3482 SanitizerScope
SanScope(this);
3483 FunctionArgList Args
;
3484 ImplicitParamDecl
ArgData(getContext(), getContext().VoidPtrTy
,
3485 ImplicitParamDecl::Other
);
3486 ImplicitParamDecl
ArgAddr(getContext(), getContext().VoidPtrTy
,
3487 ImplicitParamDecl::Other
);
3488 Args
.push_back(&ArgData
);
3489 Args
.push_back(&ArgAddr
);
3491 const CGFunctionInfo
&FI
=
3492 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy
, Args
);
3494 llvm::Function
*F
= llvm::Function::Create(
3495 llvm::FunctionType::get(VoidTy
, {VoidPtrTy
, VoidPtrTy
}, false),
3496 llvm::GlobalValue::WeakODRLinkage
, "__cfi_check_fail", &CGM
.getModule());
3498 CGM
.SetLLVMFunctionAttributes(GlobalDecl(), FI
, F
, /*IsThunk=*/false);
3499 CGM
.SetLLVMFunctionAttributesForDefinition(nullptr, F
);
3500 F
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
3502 StartFunction(GlobalDecl(), CGM
.getContext().VoidTy
, F
, FI
, Args
,
3505 // This function is not affected by NoSanitizeList. This function does
3506 // not have a source location, but "src:*" would still apply. Revert any
3507 // changes to SanOpts made in StartFunction.
3508 SanOpts
= CGM
.getLangOpts().Sanitize
;
3511 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData
), /*Volatile=*/false,
3512 CGM
.getContext().VoidPtrTy
, ArgData
.getLocation());
3514 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr
), /*Volatile=*/false,
3515 CGM
.getContext().VoidPtrTy
, ArgAddr
.getLocation());
3517 // Data == nullptr means the calling module has trap behaviour for this check.
3518 llvm::Value
*DataIsNotNullPtr
=
3519 Builder
.CreateICmpNE(Data
, llvm::ConstantPointerNull::get(Int8PtrTy
));
3520 EmitTrapCheck(DataIsNotNullPtr
, SanitizerHandler::CFICheckFail
);
3522 llvm::StructType
*SourceLocationTy
=
3523 llvm::StructType::get(VoidPtrTy
, Int32Ty
, Int32Ty
);
3524 llvm::StructType
*CfiCheckFailDataTy
=
3525 llvm::StructType::get(Int8Ty
, SourceLocationTy
, VoidPtrTy
);
3527 llvm::Value
*V
= Builder
.CreateConstGEP2_32(
3529 Builder
.CreatePointerCast(Data
, CfiCheckFailDataTy
->getPointerTo(0)), 0,
3532 Address
CheckKindAddr(V
, Int8Ty
, getIntAlign());
3533 llvm::Value
*CheckKind
= Builder
.CreateLoad(CheckKindAddr
);
3535 llvm::Value
*AllVtables
= llvm::MetadataAsValue::get(
3536 CGM
.getLLVMContext(),
3537 llvm::MDString::get(CGM
.getLLVMContext(), "all-vtables"));
3538 llvm::Value
*ValidVtable
= Builder
.CreateZExt(
3539 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::type_test
),
3540 {Addr
, AllVtables
}),
3543 const std::pair
<int, SanitizerMask
> CheckKinds
[] = {
3544 {CFITCK_VCall
, SanitizerKind::CFIVCall
},
3545 {CFITCK_NVCall
, SanitizerKind::CFINVCall
},
3546 {CFITCK_DerivedCast
, SanitizerKind::CFIDerivedCast
},
3547 {CFITCK_UnrelatedCast
, SanitizerKind::CFIUnrelatedCast
},
3548 {CFITCK_ICall
, SanitizerKind::CFIICall
}};
3550 SmallVector
<std::pair
<llvm::Value
*, SanitizerMask
>, 5> Checks
;
3551 for (auto CheckKindMaskPair
: CheckKinds
) {
3552 int Kind
= CheckKindMaskPair
.first
;
3553 SanitizerMask Mask
= CheckKindMaskPair
.second
;
3555 Builder
.CreateICmpNE(CheckKind
, llvm::ConstantInt::get(Int8Ty
, Kind
));
3556 if (CGM
.getLangOpts().Sanitize
.has(Mask
))
3557 EmitCheck(std::make_pair(Cond
, Mask
), SanitizerHandler::CFICheckFail
, {},
3558 {Data
, Addr
, ValidVtable
});
3560 EmitTrapCheck(Cond
, SanitizerHandler::CFICheckFail
);
3564 // The only reference to this function will be created during LTO link.
3565 // Make sure it survives until then.
3566 CGM
.addUsedGlobal(F
);
3569 void CodeGenFunction::EmitUnreachable(SourceLocation Loc
) {
3570 if (SanOpts
.has(SanitizerKind::Unreachable
)) {
3571 SanitizerScope
SanScope(this);
3572 EmitCheck(std::make_pair(static_cast<llvm::Value
*>(Builder
.getFalse()),
3573 SanitizerKind::Unreachable
),
3574 SanitizerHandler::BuiltinUnreachable
,
3575 EmitCheckSourceLocation(Loc
), std::nullopt
);
3577 Builder
.CreateUnreachable();
3580 void CodeGenFunction::EmitTrapCheck(llvm::Value
*Checked
,
3581 SanitizerHandler CheckHandlerID
) {
3582 llvm::BasicBlock
*Cont
= createBasicBlock("cont");
3584 // If we're optimizing, collapse all calls to trap down to just one per
3585 // check-type per function to save on code size.
3586 if (TrapBBs
.size() <= CheckHandlerID
)
3587 TrapBBs
.resize(CheckHandlerID
+ 1);
3588 llvm::BasicBlock
*&TrapBB
= TrapBBs
[CheckHandlerID
];
3590 if (!CGM
.getCodeGenOpts().OptimizationLevel
|| !TrapBB
||
3591 (CurCodeDecl
&& CurCodeDecl
->hasAttr
<OptimizeNoneAttr
>())) {
3592 TrapBB
= createBasicBlock("trap");
3593 Builder
.CreateCondBr(Checked
, Cont
, TrapBB
);
3596 llvm::CallInst
*TrapCall
=
3597 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::ubsantrap
),
3598 llvm::ConstantInt::get(CGM
.Int8Ty
, CheckHandlerID
));
3600 if (!CGM
.getCodeGenOpts().TrapFuncName
.empty()) {
3601 auto A
= llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3602 CGM
.getCodeGenOpts().TrapFuncName
);
3603 TrapCall
->addFnAttr(A
);
3605 TrapCall
->setDoesNotReturn();
3606 TrapCall
->setDoesNotThrow();
3607 Builder
.CreateUnreachable();
3609 auto Call
= TrapBB
->begin();
3610 assert(isa
<llvm::CallInst
>(Call
) && "Expected call in trap BB");
3612 Call
->applyMergedLocation(Call
->getDebugLoc(),
3613 Builder
.getCurrentDebugLocation());
3614 Builder
.CreateCondBr(Checked
, Cont
, TrapBB
);
3620 llvm::CallInst
*CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID
) {
3621 llvm::CallInst
*TrapCall
=
3622 Builder
.CreateCall(CGM
.getIntrinsic(IntrID
));
3624 if (!CGM
.getCodeGenOpts().TrapFuncName
.empty()) {
3625 auto A
= llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3626 CGM
.getCodeGenOpts().TrapFuncName
);
3627 TrapCall
->addFnAttr(A
);
3633 Address
CodeGenFunction::EmitArrayToPointerDecay(const Expr
*E
,
3634 LValueBaseInfo
*BaseInfo
,
3635 TBAAAccessInfo
*TBAAInfo
) {
3636 assert(E
->getType()->isArrayType() &&
3637 "Array to pointer decay must have array source type!");
3639 // Expressions of array type can't be bitfields or vector elements.
3640 LValue LV
= EmitLValue(E
);
3641 Address Addr
= LV
.getAddress(*this);
3643 // If the array type was an incomplete type, we need to make sure
3644 // the decay ends up being the right type.
3645 llvm::Type
*NewTy
= ConvertType(E
->getType());
3646 Addr
= Builder
.CreateElementBitCast(Addr
, NewTy
);
3648 // Note that VLA pointers are always decayed, so we don't need to do
3650 if (!E
->getType()->isVariableArrayType()) {
3651 assert(isa
<llvm::ArrayType
>(Addr
.getElementType()) &&
3652 "Expected pointer to array");
3653 Addr
= Builder
.CreateConstArrayGEP(Addr
, 0, "arraydecay");
3656 // The result of this decay conversion points to an array element within the
3657 // base lvalue. However, since TBAA currently does not support representing
3658 // accesses to elements of member arrays, we conservatively represent accesses
3659 // to the pointee object as if it had no any base lvalue specified.
3660 // TODO: Support TBAA for member arrays.
3661 QualType EltType
= E
->getType()->castAsArrayTypeUnsafe()->getElementType();
3662 if (BaseInfo
) *BaseInfo
= LV
.getBaseInfo();
3663 if (TBAAInfo
) *TBAAInfo
= CGM
.getTBAAAccessInfo(EltType
);
3665 return Builder
.CreateElementBitCast(Addr
, ConvertTypeForMem(EltType
));
3668 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3669 /// array to pointer, return the array subexpression.
3670 static const Expr
*isSimpleArrayDecayOperand(const Expr
*E
) {
3671 // If this isn't just an array->pointer decay, bail out.
3672 const auto *CE
= dyn_cast
<CastExpr
>(E
);
3673 if (!CE
|| CE
->getCastKind() != CK_ArrayToPointerDecay
)
3676 // If this is a decay from variable width array, bail out.
3677 const Expr
*SubExpr
= CE
->getSubExpr();
3678 if (SubExpr
->getType()->isVariableArrayType())
3684 static llvm::Value
*emitArraySubscriptGEP(CodeGenFunction
&CGF
,
3685 llvm::Type
*elemType
,
3687 ArrayRef
<llvm::Value
*> indices
,
3691 const llvm::Twine
&name
= "arrayidx") {
3693 return CGF
.EmitCheckedInBoundsGEP(elemType
, ptr
, indices
, signedIndices
,
3694 CodeGenFunction::NotSubtraction
, loc
,
3697 return CGF
.Builder
.CreateGEP(elemType
, ptr
, indices
, name
);
3701 static CharUnits
getArrayElementAlign(CharUnits arrayAlign
,
3703 CharUnits eltSize
) {
3704 // If we have a constant index, we can use the exact offset of the
3705 // element we're accessing.
3706 if (auto constantIdx
= dyn_cast
<llvm::ConstantInt
>(idx
)) {
3707 CharUnits offset
= constantIdx
->getZExtValue() * eltSize
;
3708 return arrayAlign
.alignmentAtOffset(offset
);
3710 // Otherwise, use the worst-case alignment for any element.
3712 return arrayAlign
.alignmentOfArrayElement(eltSize
);
3716 static QualType
getFixedSizeElementType(const ASTContext
&ctx
,
3717 const VariableArrayType
*vla
) {
3720 eltType
= vla
->getElementType();
3721 } while ((vla
= ctx
.getAsVariableArrayType(eltType
)));
3725 /// Given an array base, check whether its member access belongs to a record
3726 /// with preserve_access_index attribute or not.
3727 static bool IsPreserveAIArrayBase(CodeGenFunction
&CGF
, const Expr
*ArrayBase
) {
3728 if (!ArrayBase
|| !CGF
.getDebugInfo())
3731 // Only support base as either a MemberExpr or DeclRefExpr.
3732 // DeclRefExpr to cover cases like:
3733 // struct s { int a; int b[10]; };
3736 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3737 // p->b[5] is a MemberExpr example.
3738 const Expr
*E
= ArrayBase
->IgnoreImpCasts();
3739 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
))
3740 return ME
->getMemberDecl()->hasAttr
<BPFPreserveAccessIndexAttr
>();
3742 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
3743 const auto *VarDef
= dyn_cast
<VarDecl
>(DRE
->getDecl());
3747 const auto *PtrT
= VarDef
->getType()->getAs
<PointerType
>();
3751 const auto *PointeeT
= PtrT
->getPointeeType()
3752 ->getUnqualifiedDesugaredType();
3753 if (const auto *RecT
= dyn_cast
<RecordType
>(PointeeT
))
3754 return RecT
->getDecl()->hasAttr
<BPFPreserveAccessIndexAttr
>();
3761 static Address
emitArraySubscriptGEP(CodeGenFunction
&CGF
, Address addr
,
3762 ArrayRef
<llvm::Value
*> indices
,
3763 QualType eltType
, bool inbounds
,
3764 bool signedIndices
, SourceLocation loc
,
3765 QualType
*arrayType
= nullptr,
3766 const Expr
*Base
= nullptr,
3767 const llvm::Twine
&name
= "arrayidx") {
3768 // All the indices except that last must be zero.
3770 for (auto *idx
: indices
.drop_back())
3771 assert(isa
<llvm::ConstantInt
>(idx
) &&
3772 cast
<llvm::ConstantInt
>(idx
)->isZero());
3775 // Determine the element size of the statically-sized base. This is
3776 // the thing that the indices are expressed in terms of.
3777 if (auto vla
= CGF
.getContext().getAsVariableArrayType(eltType
)) {
3778 eltType
= getFixedSizeElementType(CGF
.getContext(), vla
);
3781 // We can use that to compute the best alignment of the element.
3782 CharUnits eltSize
= CGF
.getContext().getTypeSizeInChars(eltType
);
3783 CharUnits eltAlign
=
3784 getArrayElementAlign(addr
.getAlignment(), indices
.back(), eltSize
);
3786 llvm::Value
*eltPtr
;
3787 auto LastIndex
= dyn_cast
<llvm::ConstantInt
>(indices
.back());
3789 (!CGF
.IsInPreservedAIRegion
&& !IsPreserveAIArrayBase(CGF
, Base
))) {
3790 eltPtr
= emitArraySubscriptGEP(
3791 CGF
, addr
.getElementType(), addr
.getPointer(), indices
, inbounds
,
3792 signedIndices
, loc
, name
);
3794 // Remember the original array subscript for bpf target
3795 unsigned idx
= LastIndex
->getZExtValue();
3796 llvm::DIType
*DbgInfo
= nullptr;
3798 DbgInfo
= CGF
.getDebugInfo()->getOrCreateStandaloneType(*arrayType
, loc
);
3799 eltPtr
= CGF
.Builder
.CreatePreserveArrayAccessIndex(addr
.getElementType(),
3805 return Address(eltPtr
, CGF
.ConvertTypeForMem(eltType
), eltAlign
);
3808 LValue
CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr
*E
,
3810 // The index must always be an integer, which is not an aggregate. Emit it
3811 // in lexical order (this complexity is, sadly, required by C++17).
3812 llvm::Value
*IdxPre
=
3813 (E
->getLHS() == E
->getIdx()) ? EmitScalarExpr(E
->getIdx()) : nullptr;
3814 bool SignedIndices
= false;
3815 auto EmitIdxAfterBase
= [&, IdxPre
](bool Promote
) -> llvm::Value
* {
3817 if (E
->getLHS() != E
->getIdx()) {
3818 assert(E
->getRHS() == E
->getIdx() && "index was neither LHS nor RHS");
3819 Idx
= EmitScalarExpr(E
->getIdx());
3822 QualType IdxTy
= E
->getIdx()->getType();
3823 bool IdxSigned
= IdxTy
->isSignedIntegerOrEnumerationType();
3824 SignedIndices
|= IdxSigned
;
3826 if (SanOpts
.has(SanitizerKind::ArrayBounds
))
3827 EmitBoundsCheck(E
, E
->getBase(), Idx
, IdxTy
, Accessed
);
3829 // Extend or truncate the index type to 32 or 64-bits.
3830 if (Promote
&& Idx
->getType() != IntPtrTy
)
3831 Idx
= Builder
.CreateIntCast(Idx
, IntPtrTy
, IdxSigned
, "idxprom");
3837 // If the base is a vector type, then we are forming a vector element lvalue
3838 // with this subscript.
3839 if (E
->getBase()->getType()->isVectorType() &&
3840 !isa
<ExtVectorElementExpr
>(E
->getBase())) {
3841 // Emit the vector as an lvalue to get its address.
3842 LValue LHS
= EmitLValue(E
->getBase());
3843 auto *Idx
= EmitIdxAfterBase(/*Promote*/false);
3844 assert(LHS
.isSimple() && "Can only subscript lvalue vectors here!");
3845 return LValue::MakeVectorElt(LHS
.getAddress(*this), Idx
,
3846 E
->getBase()->getType(), LHS
.getBaseInfo(),
3850 // All the other cases basically behave like simple offsetting.
3852 // Handle the extvector case we ignored above.
3853 if (isa
<ExtVectorElementExpr
>(E
->getBase())) {
3854 LValue LV
= EmitLValue(E
->getBase());
3855 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3856 Address Addr
= EmitExtVectorElementLValue(LV
);
3858 QualType EltType
= LV
.getType()->castAs
<VectorType
>()->getElementType();
3859 Addr
= emitArraySubscriptGEP(*this, Addr
, Idx
, EltType
, /*inbounds*/ true,
3860 SignedIndices
, E
->getExprLoc());
3861 return MakeAddrLValue(Addr
, EltType
, LV
.getBaseInfo(),
3862 CGM
.getTBAAInfoForSubobject(LV
, EltType
));
3865 LValueBaseInfo EltBaseInfo
;
3866 TBAAAccessInfo EltTBAAInfo
;
3867 Address Addr
= Address::invalid();
3868 if (const VariableArrayType
*vla
=
3869 getContext().getAsVariableArrayType(E
->getType())) {
3870 // The base must be a pointer, which is not an aggregate. Emit
3871 // it. It needs to be emitted first in case it's what captures
3873 Addr
= EmitPointerWithAlignment(E
->getBase(), &EltBaseInfo
, &EltTBAAInfo
);
3874 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3876 // The element count here is the total number of non-VLA elements.
3877 llvm::Value
*numElements
= getVLASize(vla
).NumElts
;
3879 // Effectively, the multiply by the VLA size is part of the GEP.
3880 // GEP indexes are signed, and scaling an index isn't permitted to
3881 // signed-overflow, so we use the same semantics for our explicit
3882 // multiply. We suppress this if overflow is not undefined behavior.
3883 if (getLangOpts().isSignedOverflowDefined()) {
3884 Idx
= Builder
.CreateMul(Idx
, numElements
);
3886 Idx
= Builder
.CreateNSWMul(Idx
, numElements
);
3889 Addr
= emitArraySubscriptGEP(*this, Addr
, Idx
, vla
->getElementType(),
3890 !getLangOpts().isSignedOverflowDefined(),
3891 SignedIndices
, E
->getExprLoc());
3893 } else if (const ObjCObjectType
*OIT
= E
->getType()->getAs
<ObjCObjectType
>()){
3894 // Indexing over an interface, as in "NSString *P; P[4];"
3896 // Emit the base pointer.
3897 Addr
= EmitPointerWithAlignment(E
->getBase(), &EltBaseInfo
, &EltTBAAInfo
);
3898 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3900 CharUnits InterfaceSize
= getContext().getTypeSizeInChars(OIT
);
3901 llvm::Value
*InterfaceSizeVal
=
3902 llvm::ConstantInt::get(Idx
->getType(), InterfaceSize
.getQuantity());
3904 llvm::Value
*ScaledIdx
= Builder
.CreateMul(Idx
, InterfaceSizeVal
);
3906 // We don't necessarily build correct LLVM struct types for ObjC
3907 // interfaces, so we can't rely on GEP to do this scaling
3908 // correctly, so we need to cast to i8*. FIXME: is this actually
3909 // true? A lot of other things in the fragile ABI would break...
3910 llvm::Type
*OrigBaseElemTy
= Addr
.getElementType();
3911 Addr
= Builder
.CreateElementBitCast(Addr
, Int8Ty
);
3914 CharUnits EltAlign
=
3915 getArrayElementAlign(Addr
.getAlignment(), Idx
, InterfaceSize
);
3916 llvm::Value
*EltPtr
=
3917 emitArraySubscriptGEP(*this, Addr
.getElementType(), Addr
.getPointer(),
3918 ScaledIdx
, false, SignedIndices
, E
->getExprLoc());
3919 Addr
= Address(EltPtr
, Addr
.getElementType(), EltAlign
);
3922 Addr
= Builder
.CreateElementBitCast(Addr
, OrigBaseElemTy
);
3923 } else if (const Expr
*Array
= isSimpleArrayDecayOperand(E
->getBase())) {
3924 // If this is A[i] where A is an array, the frontend will have decayed the
3925 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
3926 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3927 // "gep x, i" here. Emit one "gep A, 0, i".
3928 assert(Array
->getType()->isArrayType() &&
3929 "Array to pointer decay must have array source type!");
3931 // For simple multidimensional array indexing, set the 'accessed' flag for
3932 // better bounds-checking of the base expression.
3933 if (const auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(Array
))
3934 ArrayLV
= EmitArraySubscriptExpr(ASE
, /*Accessed*/ true);
3936 ArrayLV
= EmitLValue(Array
);
3937 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3939 // Propagate the alignment from the array itself to the result.
3940 QualType arrayType
= Array
->getType();
3941 Addr
= emitArraySubscriptGEP(
3942 *this, ArrayLV
.getAddress(*this), {CGM
.getSize(CharUnits::Zero()), Idx
},
3943 E
->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices
,
3944 E
->getExprLoc(), &arrayType
, E
->getBase());
3945 EltBaseInfo
= ArrayLV
.getBaseInfo();
3946 EltTBAAInfo
= CGM
.getTBAAInfoForSubobject(ArrayLV
, E
->getType());
3948 // The base must be a pointer; emit it with an estimate of its alignment.
3949 Addr
= EmitPointerWithAlignment(E
->getBase(), &EltBaseInfo
, &EltTBAAInfo
);
3950 auto *Idx
= EmitIdxAfterBase(/*Promote*/true);
3951 QualType ptrType
= E
->getBase()->getType();
3952 Addr
= emitArraySubscriptGEP(*this, Addr
, Idx
, E
->getType(),
3953 !getLangOpts().isSignedOverflowDefined(),
3954 SignedIndices
, E
->getExprLoc(), &ptrType
,
3958 LValue LV
= MakeAddrLValue(Addr
, E
->getType(), EltBaseInfo
, EltTBAAInfo
);
3960 if (getLangOpts().ObjC
&&
3961 getLangOpts().getGC() != LangOptions::NonGC
) {
3962 LV
.setNonGC(!E
->isOBJCGCCandidate(getContext()));
3963 setObjCGCLValueClass(getContext(), E
, LV
);
3968 LValue
CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr
*E
) {
3970 !E
->isIncomplete() &&
3971 "incomplete matrix subscript expressions should be rejected during Sema");
3972 LValue Base
= EmitLValue(E
->getBase());
3973 llvm::Value
*RowIdx
= EmitScalarExpr(E
->getRowIdx());
3974 llvm::Value
*ColIdx
= EmitScalarExpr(E
->getColumnIdx());
3975 llvm::Value
*NumRows
= Builder
.getIntN(
3976 RowIdx
->getType()->getScalarSizeInBits(),
3977 E
->getBase()->getType()->castAs
<ConstantMatrixType
>()->getNumRows());
3978 llvm::Value
*FinalIdx
=
3979 Builder
.CreateAdd(Builder
.CreateMul(ColIdx
, NumRows
), RowIdx
);
3980 return LValue::MakeMatrixElt(
3981 MaybeConvertMatrixAddress(Base
.getAddress(*this), *this), FinalIdx
,
3982 E
->getBase()->getType(), Base
.getBaseInfo(), TBAAAccessInfo());
3985 static Address
emitOMPArraySectionBase(CodeGenFunction
&CGF
, const Expr
*Base
,
3986 LValueBaseInfo
&BaseInfo
,
3987 TBAAAccessInfo
&TBAAInfo
,
3988 QualType BaseTy
, QualType ElTy
,
3989 bool IsLowerBound
) {
3991 if (auto *ASE
= dyn_cast
<OMPArraySectionExpr
>(Base
->IgnoreParenImpCasts())) {
3992 BaseLVal
= CGF
.EmitOMPArraySectionExpr(ASE
, IsLowerBound
);
3993 if (BaseTy
->isArrayType()) {
3994 Address Addr
= BaseLVal
.getAddress(CGF
);
3995 BaseInfo
= BaseLVal
.getBaseInfo();
3997 // If the array type was an incomplete type, we need to make sure
3998 // the decay ends up being the right type.
3999 llvm::Type
*NewTy
= CGF
.ConvertType(BaseTy
);
4000 Addr
= CGF
.Builder
.CreateElementBitCast(Addr
, NewTy
);
4002 // Note that VLA pointers are always decayed, so we don't need to do
4004 if (!BaseTy
->isVariableArrayType()) {
4005 assert(isa
<llvm::ArrayType
>(Addr
.getElementType()) &&
4006 "Expected pointer to array");
4007 Addr
= CGF
.Builder
.CreateConstArrayGEP(Addr
, 0, "arraydecay");
4010 return CGF
.Builder
.CreateElementBitCast(Addr
,
4011 CGF
.ConvertTypeForMem(ElTy
));
4013 LValueBaseInfo TypeBaseInfo
;
4014 TBAAAccessInfo TypeTBAAInfo
;
4016 CGF
.CGM
.getNaturalTypeAlignment(ElTy
, &TypeBaseInfo
, &TypeTBAAInfo
);
4017 BaseInfo
.mergeForCast(TypeBaseInfo
);
4018 TBAAInfo
= CGF
.CGM
.mergeTBAAInfoForCast(TBAAInfo
, TypeTBAAInfo
);
4019 return Address(CGF
.Builder
.CreateLoad(BaseLVal
.getAddress(CGF
)),
4020 CGF
.ConvertTypeForMem(ElTy
), Align
);
4022 return CGF
.EmitPointerWithAlignment(Base
, &BaseInfo
, &TBAAInfo
);
4025 LValue
CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr
*E
,
4026 bool IsLowerBound
) {
4027 QualType BaseTy
= OMPArraySectionExpr::getBaseOriginalType(E
->getBase());
4028 QualType ResultExprTy
;
4029 if (auto *AT
= getContext().getAsArrayType(BaseTy
))
4030 ResultExprTy
= AT
->getElementType();
4032 ResultExprTy
= BaseTy
->getPointeeType();
4033 llvm::Value
*Idx
= nullptr;
4034 if (IsLowerBound
|| E
->getColonLocFirst().isInvalid()) {
4035 // Requesting lower bound or upper bound, but without provided length and
4036 // without ':' symbol for the default length -> length = 1.
4037 // Idx = LowerBound ?: 0;
4038 if (auto *LowerBound
= E
->getLowerBound()) {
4039 Idx
= Builder
.CreateIntCast(
4040 EmitScalarExpr(LowerBound
), IntPtrTy
,
4041 LowerBound
->getType()->hasSignedIntegerRepresentation());
4043 Idx
= llvm::ConstantInt::getNullValue(IntPtrTy
);
4045 // Try to emit length or lower bound as constant. If this is possible, 1
4046 // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4047 // IR (LB + Len) - 1.
4048 auto &C
= CGM
.getContext();
4049 auto *Length
= E
->getLength();
4050 llvm::APSInt ConstLength
;
4052 // Idx = LowerBound + Length - 1;
4053 if (std::optional
<llvm::APSInt
> CL
= Length
->getIntegerConstantExpr(C
)) {
4054 ConstLength
= CL
->zextOrTrunc(PointerWidthInBits
);
4057 auto *LowerBound
= E
->getLowerBound();
4058 llvm::APSInt
ConstLowerBound(PointerWidthInBits
, /*isUnsigned=*/false);
4060 if (std::optional
<llvm::APSInt
> LB
=
4061 LowerBound
->getIntegerConstantExpr(C
)) {
4062 ConstLowerBound
= LB
->zextOrTrunc(PointerWidthInBits
);
4063 LowerBound
= nullptr;
4068 else if (!LowerBound
)
4071 if (Length
|| LowerBound
) {
4072 auto *LowerBoundVal
=
4074 ? Builder
.CreateIntCast(
4075 EmitScalarExpr(LowerBound
), IntPtrTy
,
4076 LowerBound
->getType()->hasSignedIntegerRepresentation())
4077 : llvm::ConstantInt::get(IntPtrTy
, ConstLowerBound
);
4080 ? Builder
.CreateIntCast(
4081 EmitScalarExpr(Length
), IntPtrTy
,
4082 Length
->getType()->hasSignedIntegerRepresentation())
4083 : llvm::ConstantInt::get(IntPtrTy
, ConstLength
);
4084 Idx
= Builder
.CreateAdd(LowerBoundVal
, LengthVal
, "lb_add_len",
4086 !getLangOpts().isSignedOverflowDefined());
4087 if (Length
&& LowerBound
) {
4088 Idx
= Builder
.CreateSub(
4089 Idx
, llvm::ConstantInt::get(IntPtrTy
, /*V=*/1), "idx_sub_1",
4090 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4093 Idx
= llvm::ConstantInt::get(IntPtrTy
, ConstLength
+ ConstLowerBound
);
4095 // Idx = ArraySize - 1;
4096 QualType ArrayTy
= BaseTy
->isPointerType()
4097 ? E
->getBase()->IgnoreParenImpCasts()->getType()
4099 if (auto *VAT
= C
.getAsVariableArrayType(ArrayTy
)) {
4100 Length
= VAT
->getSizeExpr();
4101 if (std::optional
<llvm::APSInt
> L
= Length
->getIntegerConstantExpr(C
)) {
4106 auto *CAT
= C
.getAsConstantArrayType(ArrayTy
);
4107 assert(CAT
&& "unexpected type for array initializer");
4108 ConstLength
= CAT
->getSize();
4111 auto *LengthVal
= Builder
.CreateIntCast(
4112 EmitScalarExpr(Length
), IntPtrTy
,
4113 Length
->getType()->hasSignedIntegerRepresentation());
4114 Idx
= Builder
.CreateSub(
4115 LengthVal
, llvm::ConstantInt::get(IntPtrTy
, /*V=*/1), "len_sub_1",
4116 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4118 ConstLength
= ConstLength
.zextOrTrunc(PointerWidthInBits
);
4120 Idx
= llvm::ConstantInt::get(IntPtrTy
, ConstLength
);
4126 Address EltPtr
= Address::invalid();
4127 LValueBaseInfo BaseInfo
;
4128 TBAAAccessInfo TBAAInfo
;
4129 if (auto *VLA
= getContext().getAsVariableArrayType(ResultExprTy
)) {
4130 // The base must be a pointer, which is not an aggregate. Emit
4131 // it. It needs to be emitted first in case it's what captures
4134 emitOMPArraySectionBase(*this, E
->getBase(), BaseInfo
, TBAAInfo
,
4135 BaseTy
, VLA
->getElementType(), IsLowerBound
);
4136 // The element count here is the total number of non-VLA elements.
4137 llvm::Value
*NumElements
= getVLASize(VLA
).NumElts
;
4139 // Effectively, the multiply by the VLA size is part of the GEP.
4140 // GEP indexes are signed, and scaling an index isn't permitted to
4141 // signed-overflow, so we use the same semantics for our explicit
4142 // multiply. We suppress this if overflow is not undefined behavior.
4143 if (getLangOpts().isSignedOverflowDefined())
4144 Idx
= Builder
.CreateMul(Idx
, NumElements
);
4146 Idx
= Builder
.CreateNSWMul(Idx
, NumElements
);
4147 EltPtr
= emitArraySubscriptGEP(*this, Base
, Idx
, VLA
->getElementType(),
4148 !getLangOpts().isSignedOverflowDefined(),
4149 /*signedIndices=*/false, E
->getExprLoc());
4150 } else if (const Expr
*Array
= isSimpleArrayDecayOperand(E
->getBase())) {
4151 // If this is A[i] where A is an array, the frontend will have decayed the
4152 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
4153 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4154 // "gep x, i" here. Emit one "gep A, 0, i".
4155 assert(Array
->getType()->isArrayType() &&
4156 "Array to pointer decay must have array source type!");
4158 // For simple multidimensional array indexing, set the 'accessed' flag for
4159 // better bounds-checking of the base expression.
4160 if (const auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(Array
))
4161 ArrayLV
= EmitArraySubscriptExpr(ASE
, /*Accessed*/ true);
4163 ArrayLV
= EmitLValue(Array
);
4165 // Propagate the alignment from the array itself to the result.
4166 EltPtr
= emitArraySubscriptGEP(
4167 *this, ArrayLV
.getAddress(*this), {CGM
.getSize(CharUnits::Zero()), Idx
},
4168 ResultExprTy
, !getLangOpts().isSignedOverflowDefined(),
4169 /*signedIndices=*/false, E
->getExprLoc());
4170 BaseInfo
= ArrayLV
.getBaseInfo();
4171 TBAAInfo
= CGM
.getTBAAInfoForSubobject(ArrayLV
, ResultExprTy
);
4173 Address Base
= emitOMPArraySectionBase(*this, E
->getBase(), BaseInfo
,
4174 TBAAInfo
, BaseTy
, ResultExprTy
,
4176 EltPtr
= emitArraySubscriptGEP(*this, Base
, Idx
, ResultExprTy
,
4177 !getLangOpts().isSignedOverflowDefined(),
4178 /*signedIndices=*/false, E
->getExprLoc());
4181 return MakeAddrLValue(EltPtr
, ResultExprTy
, BaseInfo
, TBAAInfo
);
4184 LValue
CodeGenFunction::
4185 EmitExtVectorElementExpr(const ExtVectorElementExpr
*E
) {
4186 // Emit the base vector as an l-value.
4189 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4191 // If it is a pointer to a vector, emit the address and form an lvalue with
4193 LValueBaseInfo BaseInfo
;
4194 TBAAAccessInfo TBAAInfo
;
4195 Address Ptr
= EmitPointerWithAlignment(E
->getBase(), &BaseInfo
, &TBAAInfo
);
4196 const auto *PT
= E
->getBase()->getType()->castAs
<PointerType
>();
4197 Base
= MakeAddrLValue(Ptr
, PT
->getPointeeType(), BaseInfo
, TBAAInfo
);
4198 Base
.getQuals().removeObjCGCAttr();
4199 } else if (E
->getBase()->isGLValue()) {
4200 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4201 // emit the base as an lvalue.
4202 assert(E
->getBase()->getType()->isVectorType());
4203 Base
= EmitLValue(E
->getBase());
4205 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4206 assert(E
->getBase()->getType()->isVectorType() &&
4207 "Result must be a vector");
4208 llvm::Value
*Vec
= EmitScalarExpr(E
->getBase());
4210 // Store the vector to memory (because LValue wants an address).
4211 Address VecMem
= CreateMemTemp(E
->getBase()->getType());
4212 Builder
.CreateStore(Vec
, VecMem
);
4213 Base
= MakeAddrLValue(VecMem
, E
->getBase()->getType(),
4214 AlignmentSource::Decl
);
4218 E
->getType().withCVRQualifiers(Base
.getQuals().getCVRQualifiers());
4220 // Encode the element access list into a vector of unsigned indices.
4221 SmallVector
<uint32_t, 4> Indices
;
4222 E
->getEncodedElementAccess(Indices
);
4224 if (Base
.isSimple()) {
4225 llvm::Constant
*CV
=
4226 llvm::ConstantDataVector::get(getLLVMContext(), Indices
);
4227 return LValue::MakeExtVectorElt(Base
.getAddress(*this), CV
, type
,
4228 Base
.getBaseInfo(), TBAAAccessInfo());
4230 assert(Base
.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4232 llvm::Constant
*BaseElts
= Base
.getExtVectorElts();
4233 SmallVector
<llvm::Constant
*, 4> CElts
;
4235 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
)
4236 CElts
.push_back(BaseElts
->getAggregateElement(Indices
[i
]));
4237 llvm::Constant
*CV
= llvm::ConstantVector::get(CElts
);
4238 return LValue::MakeExtVectorElt(Base
.getExtVectorAddress(), CV
, type
,
4239 Base
.getBaseInfo(), TBAAAccessInfo());
4242 LValue
CodeGenFunction::EmitMemberExpr(const MemberExpr
*E
) {
4243 if (DeclRefExpr
*DRE
= tryToConvertMemberExprToDeclRefExpr(*this, E
)) {
4244 EmitIgnoredExpr(E
->getBase());
4245 return EmitDeclRefLValue(DRE
);
4248 Expr
*BaseExpr
= E
->getBase();
4249 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
4252 LValueBaseInfo BaseInfo
;
4253 TBAAAccessInfo TBAAInfo
;
4254 Address Addr
= EmitPointerWithAlignment(BaseExpr
, &BaseInfo
, &TBAAInfo
);
4255 QualType PtrTy
= BaseExpr
->getType()->getPointeeType();
4256 SanitizerSet SkippedChecks
;
4257 bool IsBaseCXXThis
= IsWrappedCXXThis(BaseExpr
);
4259 SkippedChecks
.set(SanitizerKind::Alignment
, true);
4260 if (IsBaseCXXThis
|| isa
<DeclRefExpr
>(BaseExpr
))
4261 SkippedChecks
.set(SanitizerKind::Null
, true);
4262 EmitTypeCheck(TCK_MemberAccess
, E
->getExprLoc(), Addr
.getPointer(), PtrTy
,
4263 /*Alignment=*/CharUnits::Zero(), SkippedChecks
);
4264 BaseLV
= MakeAddrLValue(Addr
, PtrTy
, BaseInfo
, TBAAInfo
);
4266 BaseLV
= EmitCheckedLValue(BaseExpr
, TCK_MemberAccess
);
4268 NamedDecl
*ND
= E
->getMemberDecl();
4269 if (auto *Field
= dyn_cast
<FieldDecl
>(ND
)) {
4270 LValue LV
= EmitLValueForField(BaseLV
, Field
);
4271 setObjCGCLValueClass(getContext(), E
, LV
);
4272 if (getLangOpts().OpenMP
) {
4273 // If the member was explicitly marked as nontemporal, mark it as
4274 // nontemporal. If the base lvalue is marked as nontemporal, mark access
4275 // to children as nontemporal too.
4276 if ((IsWrappedCXXThis(BaseExpr
) &&
4277 CGM
.getOpenMPRuntime().isNontemporalDecl(Field
)) ||
4278 BaseLV
.isNontemporal())
4279 LV
.setNontemporal(/*Value=*/true);
4284 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
4285 return EmitFunctionDeclLValue(*this, E
, FD
);
4287 llvm_unreachable("Unhandled member declaration!");
4290 /// Given that we are currently emitting a lambda, emit an l-value for
4291 /// one of its members.
4292 LValue
CodeGenFunction::EmitLValueForLambdaField(const FieldDecl
*Field
) {
4294 assert(cast
<CXXMethodDecl
>(CurCodeDecl
)->getParent()->isLambda());
4295 assert(cast
<CXXMethodDecl
>(CurCodeDecl
)->getParent() == Field
->getParent());
4297 QualType LambdaTagType
=
4298 getContext().getTagDeclType(Field
->getParent());
4299 LValue LambdaLV
= MakeNaturalAlignAddrLValue(CXXABIThisValue
, LambdaTagType
);
4300 return EmitLValueForField(LambdaLV
, Field
);
4303 /// Get the field index in the debug info. The debug info structure/union
4304 /// will ignore the unnamed bitfields.
4305 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl
*Rec
,
4306 unsigned FieldIndex
) {
4307 unsigned I
= 0, Skipped
= 0;
4309 for (auto *F
: Rec
->getDefinition()->fields()) {
4310 if (I
== FieldIndex
)
4312 if (F
->isUnnamedBitfield())
4317 return FieldIndex
- Skipped
;
4320 /// Get the address of a zero-sized field within a record. The resulting
4321 /// address doesn't necessarily have the right type.
4322 static Address
emitAddrOfZeroSizeField(CodeGenFunction
&CGF
, Address Base
,
4323 const FieldDecl
*Field
) {
4324 CharUnits Offset
= CGF
.getContext().toCharUnitsFromBits(
4325 CGF
.getContext().getFieldOffset(Field
));
4326 if (Offset
.isZero())
4328 Base
= CGF
.Builder
.CreateElementBitCast(Base
, CGF
.Int8Ty
);
4329 return CGF
.Builder
.CreateConstInBoundsByteGEP(Base
, Offset
);
4332 /// Drill down to the storage of a field without walking into
4333 /// reference types.
4335 /// The resulting address doesn't necessarily have the right type.
4336 static Address
emitAddrOfFieldStorage(CodeGenFunction
&CGF
, Address base
,
4337 const FieldDecl
*field
) {
4338 if (field
->isZeroSize(CGF
.getContext()))
4339 return emitAddrOfZeroSizeField(CGF
, base
, field
);
4341 const RecordDecl
*rec
= field
->getParent();
4344 CGF
.CGM
.getTypes().getCGRecordLayout(rec
).getLLVMFieldNo(field
);
4346 return CGF
.Builder
.CreateStructGEP(base
, idx
, field
->getName());
4349 static Address
emitPreserveStructAccess(CodeGenFunction
&CGF
, LValue base
,
4350 Address addr
, const FieldDecl
*field
) {
4351 const RecordDecl
*rec
= field
->getParent();
4352 llvm::DIType
*DbgInfo
= CGF
.getDebugInfo()->getOrCreateStandaloneType(
4353 base
.getType(), rec
->getLocation());
4356 CGF
.CGM
.getTypes().getCGRecordLayout(rec
).getLLVMFieldNo(field
);
4358 return CGF
.Builder
.CreatePreserveStructAccessIndex(
4359 addr
, idx
, CGF
.getDebugInfoFIndex(rec
, field
->getFieldIndex()), DbgInfo
);
4362 static bool hasAnyVptr(const QualType Type
, const ASTContext
&Context
) {
4363 const auto *RD
= Type
.getTypePtr()->getAsCXXRecordDecl();
4367 if (RD
->isDynamicClass())
4370 for (const auto &Base
: RD
->bases())
4371 if (hasAnyVptr(Base
.getType(), Context
))
4374 for (const FieldDecl
*Field
: RD
->fields())
4375 if (hasAnyVptr(Field
->getType(), Context
))
4381 LValue
CodeGenFunction::EmitLValueForField(LValue base
,
4382 const FieldDecl
*field
) {
4383 LValueBaseInfo BaseInfo
= base
.getBaseInfo();
4385 if (field
->isBitField()) {
4386 const CGRecordLayout
&RL
=
4387 CGM
.getTypes().getCGRecordLayout(field
->getParent());
4388 const CGBitFieldInfo
&Info
= RL
.getBitFieldInfo(field
);
4389 const bool UseVolatile
= isAAPCS(CGM
.getTarget()) &&
4390 CGM
.getCodeGenOpts().AAPCSBitfieldWidth
&&
4391 Info
.VolatileStorageSize
!= 0 &&
4393 .withCVRQualifiers(base
.getVRQualifiers())
4394 .isVolatileQualified();
4395 Address Addr
= base
.getAddress(*this);
4396 unsigned Idx
= RL
.getLLVMFieldNo(field
);
4397 const RecordDecl
*rec
= field
->getParent();
4399 if (!IsInPreservedAIRegion
&&
4400 (!getDebugInfo() || !rec
->hasAttr
<BPFPreserveAccessIndexAttr
>())) {
4402 // For structs, we GEP to the field that the record layout suggests.
4403 Addr
= Builder
.CreateStructGEP(Addr
, Idx
, field
->getName());
4405 llvm::DIType
*DbgInfo
= getDebugInfo()->getOrCreateRecordType(
4406 getContext().getRecordType(rec
), rec
->getLocation());
4407 Addr
= Builder
.CreatePreserveStructAccessIndex(
4408 Addr
, Idx
, getDebugInfoFIndex(rec
, field
->getFieldIndex()),
4413 UseVolatile
? Info
.VolatileStorageSize
: Info
.StorageSize
;
4414 // Get the access type.
4415 llvm::Type
*FieldIntTy
= llvm::Type::getIntNTy(getLLVMContext(), SS
);
4416 if (Addr
.getElementType() != FieldIntTy
)
4417 Addr
= Builder
.CreateElementBitCast(Addr
, FieldIntTy
);
4419 const unsigned VolatileOffset
= Info
.VolatileStorageOffset
.getQuantity();
4421 Addr
= Builder
.CreateConstInBoundsGEP(Addr
, VolatileOffset
);
4424 QualType fieldType
=
4425 field
->getType().withCVRQualifiers(base
.getVRQualifiers());
4426 // TODO: Support TBAA for bit fields.
4427 LValueBaseInfo
FieldBaseInfo(BaseInfo
.getAlignmentSource());
4428 return LValue::MakeBitfield(Addr
, Info
, fieldType
, FieldBaseInfo
,
4432 // Fields of may-alias structures are may-alias themselves.
4433 // FIXME: this should get propagated down through anonymous structs
4435 QualType FieldType
= field
->getType();
4436 const RecordDecl
*rec
= field
->getParent();
4437 AlignmentSource BaseAlignSource
= BaseInfo
.getAlignmentSource();
4438 LValueBaseInfo
FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource
));
4439 TBAAAccessInfo FieldTBAAInfo
;
4440 if (base
.getTBAAInfo().isMayAlias() ||
4441 rec
->hasAttr
<MayAliasAttr
>() || FieldType
->isVectorType()) {
4442 FieldTBAAInfo
= TBAAAccessInfo::getMayAliasInfo();
4443 } else if (rec
->isUnion()) {
4444 // TODO: Support TBAA for unions.
4445 FieldTBAAInfo
= TBAAAccessInfo::getMayAliasInfo();
4447 // If no base type been assigned for the base access, then try to generate
4448 // one for this base lvalue.
4449 FieldTBAAInfo
= base
.getTBAAInfo();
4450 if (!FieldTBAAInfo
.BaseType
) {
4451 FieldTBAAInfo
.BaseType
= CGM
.getTBAABaseTypeInfo(base
.getType());
4452 assert(!FieldTBAAInfo
.Offset
&&
4453 "Nonzero offset for an access with no base type!");
4456 // Adjust offset to be relative to the base type.
4457 const ASTRecordLayout
&Layout
=
4458 getContext().getASTRecordLayout(field
->getParent());
4459 unsigned CharWidth
= getContext().getCharWidth();
4460 if (FieldTBAAInfo
.BaseType
)
4461 FieldTBAAInfo
.Offset
+=
4462 Layout
.getFieldOffset(field
->getFieldIndex()) / CharWidth
;
4464 // Update the final access type and size.
4465 FieldTBAAInfo
.AccessType
= CGM
.getTBAATypeInfo(FieldType
);
4466 FieldTBAAInfo
.Size
=
4467 getContext().getTypeSizeInChars(FieldType
).getQuantity();
4470 Address addr
= base
.getAddress(*this);
4471 if (auto *ClassDef
= dyn_cast
<CXXRecordDecl
>(rec
)) {
4472 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
4473 ClassDef
->isDynamicClass()) {
4474 // Getting to any field of dynamic object requires stripping dynamic
4475 // information provided by invariant.group. This is because accessing
4476 // fields may leak the real address of dynamic object, which could result
4477 // in miscompilation when leaked pointer would be compared.
4478 auto *stripped
= Builder
.CreateStripInvariantGroup(addr
.getPointer());
4479 addr
= Address(stripped
, addr
.getElementType(), addr
.getAlignment());
4483 unsigned RecordCVR
= base
.getVRQualifiers();
4484 if (rec
->isUnion()) {
4485 // For unions, there is no pointer adjustment.
4486 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
4487 hasAnyVptr(FieldType
, getContext()))
4488 // Because unions can easily skip invariant.barriers, we need to add
4489 // a barrier every time CXXRecord field with vptr is referenced.
4490 addr
= Builder
.CreateLaunderInvariantGroup(addr
);
4492 if (IsInPreservedAIRegion
||
4493 (getDebugInfo() && rec
->hasAttr
<BPFPreserveAccessIndexAttr
>())) {
4494 // Remember the original union field index
4495 llvm::DIType
*DbgInfo
= getDebugInfo()->getOrCreateStandaloneType(base
.getType(),
4496 rec
->getLocation());
4498 Builder
.CreatePreserveUnionAccessIndex(
4499 addr
.getPointer(), getDebugInfoFIndex(rec
, field
->getFieldIndex()), DbgInfo
),
4500 addr
.getElementType(), addr
.getAlignment());
4503 if (FieldType
->isReferenceType())
4504 addr
= Builder
.CreateElementBitCast(
4505 addr
, CGM
.getTypes().ConvertTypeForMem(FieldType
), field
->getName());
4507 if (!IsInPreservedAIRegion
&&
4508 (!getDebugInfo() || !rec
->hasAttr
<BPFPreserveAccessIndexAttr
>()))
4509 // For structs, we GEP to the field that the record layout suggests.
4510 addr
= emitAddrOfFieldStorage(*this, addr
, field
);
4512 // Remember the original struct field index
4513 addr
= emitPreserveStructAccess(*this, base
, addr
, field
);
4516 // If this is a reference field, load the reference right now.
4517 if (FieldType
->isReferenceType()) {
4519 MakeAddrLValue(addr
, FieldType
, FieldBaseInfo
, FieldTBAAInfo
);
4520 if (RecordCVR
& Qualifiers::Volatile
)
4521 RefLVal
.getQuals().addVolatile();
4522 addr
= EmitLoadOfReference(RefLVal
, &FieldBaseInfo
, &FieldTBAAInfo
);
4524 // Qualifiers on the struct don't apply to the referencee.
4526 FieldType
= FieldType
->getPointeeType();
4529 // Make sure that the address is pointing to the right type. This is critical
4530 // for both unions and structs. A union needs a bitcast, a struct element
4531 // will need a bitcast if the LLVM type laid out doesn't match the desired
4533 addr
= Builder
.CreateElementBitCast(
4534 addr
, CGM
.getTypes().ConvertTypeForMem(FieldType
), field
->getName());
4536 if (field
->hasAttr
<AnnotateAttr
>())
4537 addr
= EmitFieldAnnotations(field
, addr
);
4539 LValue LV
= MakeAddrLValue(addr
, FieldType
, FieldBaseInfo
, FieldTBAAInfo
);
4540 LV
.getQuals().addCVRQualifiers(RecordCVR
);
4542 // __weak attribute on a field is ignored.
4543 if (LV
.getQuals().getObjCGCAttr() == Qualifiers::Weak
)
4544 LV
.getQuals().removeObjCGCAttr();
4550 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base
,
4551 const FieldDecl
*Field
) {
4552 QualType FieldType
= Field
->getType();
4554 if (!FieldType
->isReferenceType())
4555 return EmitLValueForField(Base
, Field
);
4557 Address V
= emitAddrOfFieldStorage(*this, Base
.getAddress(*this), Field
);
4559 // Make sure that the address is pointing to the right type.
4560 llvm::Type
*llvmType
= ConvertTypeForMem(FieldType
);
4561 V
= Builder
.CreateElementBitCast(V
, llvmType
, Field
->getName());
4563 // TODO: Generate TBAA information that describes this access as a structure
4564 // member access and not just an access to an object of the field's type. This
4565 // should be similar to what we do in EmitLValueForField().
4566 LValueBaseInfo BaseInfo
= Base
.getBaseInfo();
4567 AlignmentSource FieldAlignSource
= BaseInfo
.getAlignmentSource();
4568 LValueBaseInfo
FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource
));
4569 return MakeAddrLValue(V
, FieldType
, FieldBaseInfo
,
4570 CGM
.getTBAAInfoForSubobject(Base
, FieldType
));
4573 LValue
CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr
*E
){
4574 if (E
->isFileScope()) {
4575 ConstantAddress GlobalPtr
= CGM
.GetAddrOfConstantCompoundLiteral(E
);
4576 return MakeAddrLValue(GlobalPtr
, E
->getType(), AlignmentSource::Decl
);
4578 if (E
->getType()->isVariablyModifiedType())
4579 // make sure to emit the VLA size.
4580 EmitVariablyModifiedType(E
->getType());
4582 Address DeclPtr
= CreateMemTemp(E
->getType(), ".compoundliteral");
4583 const Expr
*InitExpr
= E
->getInitializer();
4584 LValue Result
= MakeAddrLValue(DeclPtr
, E
->getType(), AlignmentSource::Decl
);
4586 EmitAnyExprToMem(InitExpr
, DeclPtr
, E
->getType().getQualifiers(),
4589 // Block-scope compound literals are destroyed at the end of the enclosing
4591 if (!getLangOpts().CPlusPlus
)
4592 if (QualType::DestructionKind DtorKind
= E
->getType().isDestructedType())
4593 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind
), DeclPtr
,
4594 E
->getType(), getDestroyer(DtorKind
),
4595 DtorKind
& EHCleanup
);
4600 LValue
CodeGenFunction::EmitInitListLValue(const InitListExpr
*E
) {
4601 if (!E
->isGLValue())
4602 // Initializing an aggregate temporary in C++11: T{...}.
4603 return EmitAggExprToLValue(E
);
4605 // An lvalue initializer list must be initializing a reference.
4606 assert(E
->isTransparent() && "non-transparent glvalue init list");
4607 return EmitLValue(E
->getInit(0));
4610 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4611 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4612 /// LValue is returned and the current block has been terminated.
4613 static std::optional
<LValue
> EmitLValueOrThrowExpression(CodeGenFunction
&CGF
,
4614 const Expr
*Operand
) {
4615 if (auto *ThrowExpr
= dyn_cast
<CXXThrowExpr
>(Operand
->IgnoreParens())) {
4616 CGF
.EmitCXXThrowExpr(ThrowExpr
, /*KeepInsertionPoint*/false);
4617 return std::nullopt
;
4620 return CGF
.EmitLValue(Operand
);
4624 // Handle the case where the condition is a constant evaluatable simple integer,
4625 // which means we don't have to separately handle the true/false blocks.
4626 std::optional
<LValue
> HandleConditionalOperatorLValueSimpleCase(
4627 CodeGenFunction
&CGF
, const AbstractConditionalOperator
*E
) {
4628 const Expr
*condExpr
= E
->getCond();
4630 if (CGF
.ConstantFoldsToSimpleInteger(condExpr
, CondExprBool
)) {
4631 const Expr
*Live
= E
->getTrueExpr(), *Dead
= E
->getFalseExpr();
4633 std::swap(Live
, Dead
);
4635 if (!CGF
.ContainsLabel(Dead
)) {
4636 // If the true case is live, we need to track its region.
4638 CGF
.incrementProfileCounter(E
);
4639 // If a throw expression we emit it and return an undefined lvalue
4640 // because it can't be used.
4641 if (auto *ThrowExpr
= dyn_cast
<CXXThrowExpr
>(Live
->IgnoreParens())) {
4642 CGF
.EmitCXXThrowExpr(ThrowExpr
);
4643 llvm::Type
*ElemTy
= CGF
.ConvertType(Dead
->getType());
4644 llvm::Type
*Ty
= llvm::PointerType::getUnqual(ElemTy
);
4645 return CGF
.MakeAddrLValue(
4646 Address(llvm::UndefValue::get(Ty
), ElemTy
, CharUnits::One()),
4649 return CGF
.EmitLValue(Live
);
4652 return std::nullopt
;
4654 struct ConditionalInfo
{
4655 llvm::BasicBlock
*lhsBlock
, *rhsBlock
;
4656 std::optional
<LValue
> LHS
, RHS
;
4659 // Create and generate the 3 blocks for a conditional operator.
4660 // Leaves the 'current block' in the continuation basic block.
4661 template<typename FuncTy
>
4662 ConditionalInfo
EmitConditionalBlocks(CodeGenFunction
&CGF
,
4663 const AbstractConditionalOperator
*E
,
4664 const FuncTy
&BranchGenFunc
) {
4665 ConditionalInfo Info
{CGF
.createBasicBlock("cond.true"),
4666 CGF
.createBasicBlock("cond.false"), std::nullopt
,
4668 llvm::BasicBlock
*endBlock
= CGF
.createBasicBlock("cond.end");
4670 CodeGenFunction::ConditionalEvaluation
eval(CGF
);
4671 CGF
.EmitBranchOnBoolExpr(E
->getCond(), Info
.lhsBlock
, Info
.rhsBlock
,
4672 CGF
.getProfileCount(E
));
4674 // Any temporaries created here are conditional.
4675 CGF
.EmitBlock(Info
.lhsBlock
);
4676 CGF
.incrementProfileCounter(E
);
4678 Info
.LHS
= BranchGenFunc(CGF
, E
->getTrueExpr());
4680 Info
.lhsBlock
= CGF
.Builder
.GetInsertBlock();
4683 CGF
.Builder
.CreateBr(endBlock
);
4685 // Any temporaries created here are conditional.
4686 CGF
.EmitBlock(Info
.rhsBlock
);
4688 Info
.RHS
= BranchGenFunc(CGF
, E
->getFalseExpr());
4690 Info
.rhsBlock
= CGF
.Builder
.GetInsertBlock();
4691 CGF
.EmitBlock(endBlock
);
4697 void CodeGenFunction::EmitIgnoredConditionalOperator(
4698 const AbstractConditionalOperator
*E
) {
4699 if (!E
->isGLValue()) {
4700 // ?: here should be an aggregate.
4701 assert(hasAggregateEvaluationKind(E
->getType()) &&
4702 "Unexpected conditional operator!");
4703 return (void)EmitAggExprToLValue(E
);
4706 OpaqueValueMapping
binding(*this, E
);
4707 if (HandleConditionalOperatorLValueSimpleCase(*this, E
))
4710 EmitConditionalBlocks(*this, E
, [](CodeGenFunction
&CGF
, const Expr
*E
) {
4711 CGF
.EmitIgnoredExpr(E
);
4715 LValue
CodeGenFunction::EmitConditionalOperatorLValue(
4716 const AbstractConditionalOperator
*expr
) {
4717 if (!expr
->isGLValue()) {
4718 // ?: here should be an aggregate.
4719 assert(hasAggregateEvaluationKind(expr
->getType()) &&
4720 "Unexpected conditional operator!");
4721 return EmitAggExprToLValue(expr
);
4724 OpaqueValueMapping
binding(*this, expr
);
4725 if (std::optional
<LValue
> Res
=
4726 HandleConditionalOperatorLValueSimpleCase(*this, expr
))
4729 ConditionalInfo Info
= EmitConditionalBlocks(
4730 *this, expr
, [](CodeGenFunction
&CGF
, const Expr
*E
) {
4731 return EmitLValueOrThrowExpression(CGF
, E
);
4734 if ((Info
.LHS
&& !Info
.LHS
->isSimple()) ||
4735 (Info
.RHS
&& !Info
.RHS
->isSimple()))
4736 return EmitUnsupportedLValue(expr
, "conditional operator");
4738 if (Info
.LHS
&& Info
.RHS
) {
4739 Address lhsAddr
= Info
.LHS
->getAddress(*this);
4740 Address rhsAddr
= Info
.RHS
->getAddress(*this);
4741 llvm::PHINode
*phi
= Builder
.CreatePHI(lhsAddr
.getType(), 2, "cond-lvalue");
4742 phi
->addIncoming(lhsAddr
.getPointer(), Info
.lhsBlock
);
4743 phi
->addIncoming(rhsAddr
.getPointer(), Info
.rhsBlock
);
4744 Address
result(phi
, lhsAddr
.getElementType(),
4745 std::min(lhsAddr
.getAlignment(), rhsAddr
.getAlignment()));
4746 AlignmentSource alignSource
=
4747 std::max(Info
.LHS
->getBaseInfo().getAlignmentSource(),
4748 Info
.RHS
->getBaseInfo().getAlignmentSource());
4749 TBAAAccessInfo TBAAInfo
= CGM
.mergeTBAAInfoForConditionalOperator(
4750 Info
.LHS
->getTBAAInfo(), Info
.RHS
->getTBAAInfo());
4751 return MakeAddrLValue(result
, expr
->getType(), LValueBaseInfo(alignSource
),
4754 assert((Info
.LHS
|| Info
.RHS
) &&
4755 "both operands of glvalue conditional are throw-expressions?");
4756 return Info
.LHS
? *Info
.LHS
: *Info
.RHS
;
4760 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4761 /// type. If the cast is to a reference, we can have the usual lvalue result,
4762 /// otherwise if a cast is needed by the code generator in an lvalue context,
4763 /// then it must mean that we need the address of an aggregate in order to
4764 /// access one of its members. This can happen for all the reasons that casts
4765 /// are permitted with aggregate result, including noop aggregate casts, and
4766 /// cast from scalar to union.
4767 LValue
CodeGenFunction::EmitCastLValue(const CastExpr
*E
) {
4768 switch (E
->getCastKind()) {
4771 case CK_LValueToRValueBitCast
:
4772 case CK_ArrayToPointerDecay
:
4773 case CK_FunctionToPointerDecay
:
4774 case CK_NullToMemberPointer
:
4775 case CK_NullToPointer
:
4776 case CK_IntegralToPointer
:
4777 case CK_PointerToIntegral
:
4778 case CK_PointerToBoolean
:
4779 case CK_VectorSplat
:
4780 case CK_IntegralCast
:
4781 case CK_BooleanToSignedIntegral
:
4782 case CK_IntegralToBoolean
:
4783 case CK_IntegralToFloating
:
4784 case CK_FloatingToIntegral
:
4785 case CK_FloatingToBoolean
:
4786 case CK_FloatingCast
:
4787 case CK_FloatingRealToComplex
:
4788 case CK_FloatingComplexToReal
:
4789 case CK_FloatingComplexToBoolean
:
4790 case CK_FloatingComplexCast
:
4791 case CK_FloatingComplexToIntegralComplex
:
4792 case CK_IntegralRealToComplex
:
4793 case CK_IntegralComplexToReal
:
4794 case CK_IntegralComplexToBoolean
:
4795 case CK_IntegralComplexCast
:
4796 case CK_IntegralComplexToFloatingComplex
:
4797 case CK_DerivedToBaseMemberPointer
:
4798 case CK_BaseToDerivedMemberPointer
:
4799 case CK_MemberPointerToBoolean
:
4800 case CK_ReinterpretMemberPointer
:
4801 case CK_AnyPointerToBlockPointerCast
:
4802 case CK_ARCProduceObject
:
4803 case CK_ARCConsumeObject
:
4804 case CK_ARCReclaimReturnedObject
:
4805 case CK_ARCExtendBlockObject
:
4806 case CK_CopyAndAutoreleaseBlockObject
:
4807 case CK_IntToOCLSampler
:
4808 case CK_FloatingToFixedPoint
:
4809 case CK_FixedPointToFloating
:
4810 case CK_FixedPointCast
:
4811 case CK_FixedPointToBoolean
:
4812 case CK_FixedPointToIntegral
:
4813 case CK_IntegralToFixedPoint
:
4815 return EmitUnsupportedLValue(E
, "unexpected cast lvalue");
4818 llvm_unreachable("dependent cast kind in IR gen!");
4820 case CK_BuiltinFnToFnPtr
:
4821 llvm_unreachable("builtin functions are handled elsewhere");
4823 // These are never l-values; just use the aggregate emission code.
4824 case CK_NonAtomicToAtomic
:
4825 case CK_AtomicToNonAtomic
:
4826 return EmitAggExprToLValue(E
);
4829 LValue LV
= EmitLValue(E
->getSubExpr());
4830 Address V
= LV
.getAddress(*this);
4831 const auto *DCE
= cast
<CXXDynamicCastExpr
>(E
);
4832 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V
, DCE
), E
->getType());
4835 case CK_ConstructorConversion
:
4836 case CK_UserDefinedConversion
:
4837 case CK_CPointerToObjCPointerCast
:
4838 case CK_BlockPointerToObjCPointerCast
:
4839 case CK_LValueToRValue
:
4840 return EmitLValue(E
->getSubExpr());
4843 // CK_NoOp can model a qualification conversion, which can remove an array
4844 // bound and change the IR type.
4845 // FIXME: Once pointee types are removed from IR, remove this.
4846 LValue LV
= EmitLValue(E
->getSubExpr());
4847 if (LV
.isSimple()) {
4848 Address V
= LV
.getAddress(*this);
4850 llvm::Type
*T
= ConvertTypeForMem(E
->getType());
4851 if (V
.getElementType() != T
)
4852 LV
.setAddress(Builder
.CreateElementBitCast(V
, T
));
4858 case CK_UncheckedDerivedToBase
:
4859 case CK_DerivedToBase
: {
4860 const auto *DerivedClassTy
=
4861 E
->getSubExpr()->getType()->castAs
<RecordType
>();
4862 auto *DerivedClassDecl
= cast
<CXXRecordDecl
>(DerivedClassTy
->getDecl());
4864 LValue LV
= EmitLValue(E
->getSubExpr());
4865 Address This
= LV
.getAddress(*this);
4867 // Perform the derived-to-base conversion
4868 Address Base
= GetAddressOfBaseClass(
4869 This
, DerivedClassDecl
, E
->path_begin(), E
->path_end(),
4870 /*NullCheckValue=*/false, E
->getExprLoc());
4872 // TODO: Support accesses to members of base classes in TBAA. For now, we
4873 // conservatively pretend that the complete object is of the base class
4875 return MakeAddrLValue(Base
, E
->getType(), LV
.getBaseInfo(),
4876 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4879 return EmitAggExprToLValue(E
);
4880 case CK_BaseToDerived
: {
4881 const auto *DerivedClassTy
= E
->getType()->castAs
<RecordType
>();
4882 auto *DerivedClassDecl
= cast
<CXXRecordDecl
>(DerivedClassTy
->getDecl());
4884 LValue LV
= EmitLValue(E
->getSubExpr());
4886 // Perform the base-to-derived conversion
4887 Address Derived
= GetAddressOfDerivedClass(
4888 LV
.getAddress(*this), DerivedClassDecl
, E
->path_begin(), E
->path_end(),
4889 /*NullCheckValue=*/false);
4891 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4892 // performed and the object is not of the derived type.
4893 if (sanitizePerformTypeCheck())
4894 EmitTypeCheck(TCK_DowncastReference
, E
->getExprLoc(),
4895 Derived
.getPointer(), E
->getType());
4897 if (SanOpts
.has(SanitizerKind::CFIDerivedCast
))
4898 EmitVTablePtrCheckForCast(E
->getType(), Derived
,
4899 /*MayBeNull=*/false, CFITCK_DerivedCast
,
4902 return MakeAddrLValue(Derived
, E
->getType(), LV
.getBaseInfo(),
4903 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4905 case CK_LValueBitCast
: {
4906 // This must be a reinterpret_cast (or c-style equivalent).
4907 const auto *CE
= cast
<ExplicitCastExpr
>(E
);
4909 CGM
.EmitExplicitCastExprType(CE
, this);
4910 LValue LV
= EmitLValue(E
->getSubExpr());
4911 Address V
= Builder
.CreateElementBitCast(
4912 LV
.getAddress(*this),
4913 ConvertTypeForMem(CE
->getTypeAsWritten()->getPointeeType()));
4915 if (SanOpts
.has(SanitizerKind::CFIUnrelatedCast
))
4916 EmitVTablePtrCheckForCast(E
->getType(), V
,
4917 /*MayBeNull=*/false, CFITCK_UnrelatedCast
,
4920 return MakeAddrLValue(V
, E
->getType(), LV
.getBaseInfo(),
4921 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4923 case CK_AddressSpaceConversion
: {
4924 LValue LV
= EmitLValue(E
->getSubExpr());
4925 QualType DestTy
= getContext().getPointerType(E
->getType());
4926 llvm::Value
*V
= getTargetHooks().performAddrSpaceCast(
4927 *this, LV
.getPointer(*this),
4928 E
->getSubExpr()->getType().getAddressSpace(),
4929 E
->getType().getAddressSpace(), ConvertType(DestTy
));
4930 return MakeAddrLValue(Address(V
, ConvertTypeForMem(E
->getType()),
4931 LV
.getAddress(*this).getAlignment()),
4932 E
->getType(), LV
.getBaseInfo(), LV
.getTBAAInfo());
4934 case CK_ObjCObjectLValueCast
: {
4935 LValue LV
= EmitLValue(E
->getSubExpr());
4936 Address V
= Builder
.CreateElementBitCast(LV
.getAddress(*this),
4937 ConvertType(E
->getType()));
4938 return MakeAddrLValue(V
, E
->getType(), LV
.getBaseInfo(),
4939 CGM
.getTBAAInfoForSubobject(LV
, E
->getType()));
4941 case CK_ZeroToOCLOpaqueType
:
4942 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4945 llvm_unreachable("Unhandled lvalue cast kind?");
4948 LValue
CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr
*e
) {
4949 assert(OpaqueValueMappingData::shouldBindAsLValue(e
));
4950 return getOrCreateOpaqueLValueMapping(e
);
4954 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr
*e
) {
4955 assert(OpaqueValueMapping::shouldBindAsLValue(e
));
4957 llvm::DenseMap
<const OpaqueValueExpr
*,LValue
>::iterator
4958 it
= OpaqueLValues
.find(e
);
4960 if (it
!= OpaqueLValues
.end())
4963 assert(e
->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4964 return EmitLValue(e
->getSourceExpr());
4968 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr
*e
) {
4969 assert(!OpaqueValueMapping::shouldBindAsLValue(e
));
4971 llvm::DenseMap
<const OpaqueValueExpr
*,RValue
>::iterator
4972 it
= OpaqueRValues
.find(e
);
4974 if (it
!= OpaqueRValues
.end())
4977 assert(e
->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4978 return EmitAnyExpr(e
->getSourceExpr());
4981 RValue
CodeGenFunction::EmitRValueForField(LValue LV
,
4982 const FieldDecl
*FD
,
4983 SourceLocation Loc
) {
4984 QualType FT
= FD
->getType();
4985 LValue FieldLV
= EmitLValueForField(LV
, FD
);
4986 switch (getEvaluationKind(FT
)) {
4988 return RValue::getComplex(EmitLoadOfComplex(FieldLV
, Loc
));
4990 return FieldLV
.asAggregateRValue(*this);
4992 // This routine is used to load fields one-by-one to perform a copy, so
4993 // don't load reference fields.
4994 if (FD
->getType()->isReferenceType())
4995 return RValue::get(FieldLV
.getPointer(*this));
4996 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4998 if (FieldLV
.isBitField())
4999 return EmitLoadOfLValue(FieldLV
, Loc
);
5000 return RValue::get(EmitLoadOfScalar(FieldLV
, Loc
));
5002 llvm_unreachable("bad evaluation kind");
5005 //===--------------------------------------------------------------------===//
5006 // Expression Emission
5007 //===--------------------------------------------------------------------===//
5009 RValue
CodeGenFunction::EmitCallExpr(const CallExpr
*E
,
5010 ReturnValueSlot ReturnValue
) {
5011 // Builtins never have block type.
5012 if (E
->getCallee()->getType()->isBlockPointerType())
5013 return EmitBlockCallExpr(E
, ReturnValue
);
5015 if (const auto *CE
= dyn_cast
<CXXMemberCallExpr
>(E
))
5016 return EmitCXXMemberCallExpr(CE
, ReturnValue
);
5018 if (const auto *CE
= dyn_cast
<CUDAKernelCallExpr
>(E
))
5019 return EmitCUDAKernelCallExpr(CE
, ReturnValue
);
5021 if (const auto *CE
= dyn_cast
<CXXOperatorCallExpr
>(E
))
5022 if (const CXXMethodDecl
*MD
=
5023 dyn_cast_or_null
<CXXMethodDecl
>(CE
->getCalleeDecl()))
5024 return EmitCXXOperatorMemberCallExpr(CE
, MD
, ReturnValue
);
5026 CGCallee callee
= EmitCallee(E
->getCallee());
5028 if (callee
.isBuiltin()) {
5029 return EmitBuiltinExpr(callee
.getBuiltinDecl(), callee
.getBuiltinID(),
5033 if (callee
.isPseudoDestructor()) {
5034 return EmitCXXPseudoDestructorExpr(callee
.getPseudoDestructorExpr());
5037 return EmitCall(E
->getCallee()->getType(), callee
, E
, ReturnValue
);
5040 /// Emit a CallExpr without considering whether it might be a subclass.
5041 RValue
CodeGenFunction::EmitSimpleCallExpr(const CallExpr
*E
,
5042 ReturnValueSlot ReturnValue
) {
5043 CGCallee Callee
= EmitCallee(E
->getCallee());
5044 return EmitCall(E
->getCallee()->getType(), Callee
, E
, ReturnValue
);
5047 // Detect the unusual situation where an inline version is shadowed by a
5048 // non-inline version. In that case we should pick the external one
5049 // everywhere. That's GCC behavior too.
5050 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl
*FD
) {
5051 for (const FunctionDecl
*PD
= FD
; PD
; PD
= PD
->getPreviousDecl())
5052 if (!PD
->isInlineBuiltinDeclaration())
5057 static CGCallee
EmitDirectCallee(CodeGenFunction
&CGF
, GlobalDecl GD
) {
5058 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
5060 if (auto builtinID
= FD
->getBuiltinID()) {
5061 std::string NoBuiltinFD
= ("no-builtin-" + FD
->getName()).str();
5062 std::string NoBuiltins
= "no-builtins";
5064 StringRef Ident
= CGF
.CGM
.getMangledName(GD
);
5065 std::string FDInlineName
= (Ident
+ ".inline").str();
5067 bool IsPredefinedLibFunction
=
5068 CGF
.getContext().BuiltinInfo
.isPredefinedLibFunction(builtinID
);
5069 bool HasAttributeNoBuiltin
=
5070 CGF
.CurFn
->getAttributes().hasFnAttr(NoBuiltinFD
) ||
5071 CGF
.CurFn
->getAttributes().hasFnAttr(NoBuiltins
);
5073 // When directing calling an inline builtin, call it through it's mangled
5074 // name to make it clear it's not the actual builtin.
5075 if (CGF
.CurFn
->getName() != FDInlineName
&&
5076 OnlyHasInlineBuiltinDeclaration(FD
)) {
5077 llvm::Constant
*CalleePtr
= EmitFunctionDeclPointer(CGF
.CGM
, GD
);
5078 llvm::Function
*Fn
= llvm::cast
<llvm::Function
>(CalleePtr
);
5079 llvm::Module
*M
= Fn
->getParent();
5080 llvm::Function
*Clone
= M
->getFunction(FDInlineName
);
5082 Clone
= llvm::Function::Create(Fn
->getFunctionType(),
5083 llvm::GlobalValue::InternalLinkage
,
5084 Fn
->getAddressSpace(), FDInlineName
, M
);
5085 Clone
->addFnAttr(llvm::Attribute::AlwaysInline
);
5087 return CGCallee::forDirect(Clone
, GD
);
5090 // Replaceable builtins provide their own implementation of a builtin. If we
5091 // are in an inline builtin implementation, avoid trivial infinite
5092 // recursion. Honor __attribute__((no_builtin("foo"))) or
5093 // __attribute__((no_builtin)) on the current function unless foo is
5094 // not a predefined library function which means we must generate the
5095 // builtin no matter what.
5096 else if (!IsPredefinedLibFunction
|| !HasAttributeNoBuiltin
)
5097 return CGCallee::forBuiltin(builtinID
, FD
);
5100 llvm::Constant
*CalleePtr
= EmitFunctionDeclPointer(CGF
.CGM
, GD
);
5101 if (CGF
.CGM
.getLangOpts().CUDA
&& !CGF
.CGM
.getLangOpts().CUDAIsDevice
&&
5102 FD
->hasAttr
<CUDAGlobalAttr
>())
5103 CalleePtr
= CGF
.CGM
.getCUDARuntime().getKernelStub(
5104 cast
<llvm::GlobalValue
>(CalleePtr
->stripPointerCasts()));
5106 return CGCallee::forDirect(CalleePtr
, GD
);
5109 CGCallee
CodeGenFunction::EmitCallee(const Expr
*E
) {
5110 E
= E
->IgnoreParens();
5112 // Look through function-to-pointer decay.
5113 if (auto ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
5114 if (ICE
->getCastKind() == CK_FunctionToPointerDecay
||
5115 ICE
->getCastKind() == CK_BuiltinFnToFnPtr
) {
5116 return EmitCallee(ICE
->getSubExpr());
5119 // Resolve direct calls.
5120 } else if (auto DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
5121 if (auto FD
= dyn_cast
<FunctionDecl
>(DRE
->getDecl())) {
5122 return EmitDirectCallee(*this, FD
);
5124 } else if (auto ME
= dyn_cast
<MemberExpr
>(E
)) {
5125 if (auto FD
= dyn_cast
<FunctionDecl
>(ME
->getMemberDecl())) {
5126 EmitIgnoredExpr(ME
->getBase());
5127 return EmitDirectCallee(*this, FD
);
5130 // Look through template substitutions.
5131 } else if (auto NTTP
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
)) {
5132 return EmitCallee(NTTP
->getReplacement());
5134 // Treat pseudo-destructor calls differently.
5135 } else if (auto PDE
= dyn_cast
<CXXPseudoDestructorExpr
>(E
)) {
5136 return CGCallee::forPseudoDestructor(PDE
);
5139 // Otherwise, we have an indirect reference.
5140 llvm::Value
*calleePtr
;
5141 QualType functionType
;
5142 if (auto ptrType
= E
->getType()->getAs
<PointerType
>()) {
5143 calleePtr
= EmitScalarExpr(E
);
5144 functionType
= ptrType
->getPointeeType();
5146 functionType
= E
->getType();
5147 calleePtr
= EmitLValue(E
, KnownNonNull
).getPointer(*this);
5149 assert(functionType
->isFunctionType());
5152 if (const auto *VD
=
5153 dyn_cast_or_null
<VarDecl
>(E
->getReferencedDeclOfCallee()))
5154 GD
= GlobalDecl(VD
);
5156 CGCalleeInfo
calleeInfo(functionType
->getAs
<FunctionProtoType
>(), GD
);
5157 CGCallee
callee(calleeInfo
, calleePtr
);
5161 LValue
CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator
*E
) {
5162 // Comma expressions just emit their LHS then their RHS as an l-value.
5163 if (E
->getOpcode() == BO_Comma
) {
5164 EmitIgnoredExpr(E
->getLHS());
5165 EnsureInsertPoint();
5166 return EmitLValue(E
->getRHS());
5169 if (E
->getOpcode() == BO_PtrMemD
||
5170 E
->getOpcode() == BO_PtrMemI
)
5171 return EmitPointerToDataMemberBinaryExpr(E
);
5173 assert(E
->getOpcode() == BO_Assign
&& "unexpected binary l-value");
5175 // Note that in all of these cases, __block variables need the RHS
5176 // evaluated first just in case the variable gets moved by the RHS.
5178 switch (getEvaluationKind(E
->getType())) {
5180 switch (E
->getLHS()->getType().getObjCLifetime()) {
5181 case Qualifiers::OCL_Strong
:
5182 return EmitARCStoreStrong(E
, /*ignored*/ false).first
;
5184 case Qualifiers::OCL_Autoreleasing
:
5185 return EmitARCStoreAutoreleasing(E
).first
;
5187 // No reason to do any of these differently.
5188 case Qualifiers::OCL_None
:
5189 case Qualifiers::OCL_ExplicitNone
:
5190 case Qualifiers::OCL_Weak
:
5194 RValue RV
= EmitAnyExpr(E
->getRHS());
5195 LValue LV
= EmitCheckedLValue(E
->getLHS(), TCK_Store
);
5197 EmitNullabilityCheck(LV
, RV
.getScalarVal(), E
->getExprLoc());
5198 EmitStoreThroughLValue(RV
, LV
);
5199 if (getLangOpts().OpenMP
)
5200 CGM
.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5206 return EmitComplexAssignmentLValue(E
);
5209 return EmitAggExprToLValue(E
);
5211 llvm_unreachable("bad evaluation kind");
5214 LValue
CodeGenFunction::EmitCallExprLValue(const CallExpr
*E
) {
5215 RValue RV
= EmitCallExpr(E
);
5218 return MakeAddrLValue(RV
.getAggregateAddress(), E
->getType(),
5219 AlignmentSource::Decl
);
5221 assert(E
->getCallReturnType(getContext())->isReferenceType() &&
5222 "Can't have a scalar return unless the return type is a "
5225 return MakeNaturalAlignPointeeAddrLValue(RV
.getScalarVal(), E
->getType());
5228 LValue
CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr
*E
) {
5229 // FIXME: This shouldn't require another copy.
5230 return EmitAggExprToLValue(E
);
5233 LValue
CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr
*E
) {
5234 assert(E
->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5235 && "binding l-value to type which needs a temporary");
5236 AggValueSlot Slot
= CreateAggTemp(E
->getType());
5237 EmitCXXConstructExpr(E
, Slot
);
5238 return MakeAddrLValue(Slot
.getAddress(), E
->getType(), AlignmentSource::Decl
);
5242 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr
*E
) {
5243 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E
), E
->getType());
5246 Address
CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr
*E
) {
5247 return Builder
.CreateElementBitCast(CGM
.GetAddrOfMSGuidDecl(E
->getGuidDecl()),
5248 ConvertType(E
->getType()));
5251 LValue
CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr
*E
) {
5252 return MakeAddrLValue(EmitCXXUuidofExpr(E
), E
->getType(),
5253 AlignmentSource::Decl
);
5257 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr
*E
) {
5258 AggValueSlot Slot
= CreateAggTemp(E
->getType(), "temp.lvalue");
5259 Slot
.setExternallyDestructed();
5260 EmitAggExpr(E
->getSubExpr(), Slot
);
5261 EmitCXXTemporary(E
->getTemporary(), E
->getType(), Slot
.getAddress());
5262 return MakeAddrLValue(Slot
.getAddress(), E
->getType(), AlignmentSource::Decl
);
5265 LValue
CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr
*E
) {
5266 RValue RV
= EmitObjCMessageExpr(E
);
5269 return MakeAddrLValue(RV
.getAggregateAddress(), E
->getType(),
5270 AlignmentSource::Decl
);
5272 assert(E
->getMethodDecl()->getReturnType()->isReferenceType() &&
5273 "Can't have a scalar return unless the return type is a "
5276 return MakeNaturalAlignPointeeAddrLValue(RV
.getScalarVal(), E
->getType());
5279 LValue
CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr
*E
) {
5281 CGM
.getObjCRuntime().GetAddrOfSelector(*this, E
->getSelector());
5282 return MakeAddrLValue(V
, E
->getType(), AlignmentSource::Decl
);
5285 llvm::Value
*CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl
*Interface
,
5286 const ObjCIvarDecl
*Ivar
) {
5287 return CGM
.getObjCRuntime().EmitIvarOffset(*this, Interface
, Ivar
);
5291 CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl
*Interface
,
5292 const ObjCIvarDecl
*Ivar
) {
5293 llvm::Value
*OffsetValue
= EmitIvarOffset(Interface
, Ivar
);
5294 QualType PointerDiffType
= getContext().getPointerDiffType();
5295 return Builder
.CreateZExtOrTrunc(OffsetValue
,
5296 getTypes().ConvertType(PointerDiffType
));
5299 LValue
CodeGenFunction::EmitLValueForIvar(QualType ObjectTy
,
5300 llvm::Value
*BaseValue
,
5301 const ObjCIvarDecl
*Ivar
,
5302 unsigned CVRQualifiers
) {
5303 return CGM
.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy
, BaseValue
,
5304 Ivar
, CVRQualifiers
);
5307 LValue
CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr
*E
) {
5308 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5309 llvm::Value
*BaseValue
= nullptr;
5310 const Expr
*BaseExpr
= E
->getBase();
5311 Qualifiers BaseQuals
;
5314 BaseValue
= EmitScalarExpr(BaseExpr
);
5315 ObjectTy
= BaseExpr
->getType()->getPointeeType();
5316 BaseQuals
= ObjectTy
.getQualifiers();
5318 LValue BaseLV
= EmitLValue(BaseExpr
);
5319 BaseValue
= BaseLV
.getPointer(*this);
5320 ObjectTy
= BaseExpr
->getType();
5321 BaseQuals
= ObjectTy
.getQualifiers();
5325 EmitLValueForIvar(ObjectTy
, BaseValue
, E
->getDecl(),
5326 BaseQuals
.getCVRQualifiers());
5327 setObjCGCLValueClass(getContext(), E
, LV
);
5331 LValue
CodeGenFunction::EmitStmtExprLValue(const StmtExpr
*E
) {
5332 // Can only get l-value for message expression returning aggregate type
5333 RValue RV
= EmitAnyExprToTemp(E
);
5334 return MakeAddrLValue(RV
.getAggregateAddress(), E
->getType(),
5335 AlignmentSource::Decl
);
5338 RValue
CodeGenFunction::EmitCall(QualType CalleeType
, const CGCallee
&OrigCallee
,
5339 const CallExpr
*E
, ReturnValueSlot ReturnValue
,
5340 llvm::Value
*Chain
) {
5341 // Get the actual function type. The callee type will always be a pointer to
5342 // function type or a block pointer type.
5343 assert(CalleeType
->isFunctionPointerType() &&
5344 "Call must have function pointer type!");
5346 const Decl
*TargetDecl
=
5347 OrigCallee
.getAbstractInfo().getCalleeDecl().getDecl();
5349 CalleeType
= getContext().getCanonicalType(CalleeType
);
5351 auto PointeeType
= cast
<PointerType
>(CalleeType
)->getPointeeType();
5353 CGCallee Callee
= OrigCallee
;
5355 if (SanOpts
.has(SanitizerKind::Function
) &&
5356 (!TargetDecl
|| !isa
<FunctionDecl
>(TargetDecl
)) &&
5357 !isa
<FunctionNoProtoType
>(PointeeType
)) {
5358 if (llvm::Constant
*PrefixSig
=
5359 CGM
.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM
)) {
5360 SanitizerScope
SanScope(this);
5361 auto *TypeHash
= getUBSanFunctionTypeHash(PointeeType
);
5363 llvm::Type
*PrefixSigType
= PrefixSig
->getType();
5364 llvm::StructType
*PrefixStructTy
= llvm::StructType::get(
5365 CGM
.getLLVMContext(), {PrefixSigType
, Int32Ty
}, /*isPacked=*/true);
5367 llvm::Value
*CalleePtr
= Callee
.getFunctionPointer();
5369 // On 32-bit Arm, the low bit of a function pointer indicates whether
5370 // it's using the Arm or Thumb instruction set. The actual first
5371 // instruction lives at the same address either way, so we must clear
5372 // that low bit before using the function address to find the prefix
5375 // This applies to both Arm and Thumb target triples, because
5376 // either one could be used in an interworking context where it
5377 // might be passed function pointers of both types.
5378 llvm::Value
*AlignedCalleePtr
;
5379 if (CGM
.getTriple().isARM() || CGM
.getTriple().isThumb()) {
5380 llvm::Value
*CalleeAddress
=
5381 Builder
.CreatePtrToInt(CalleePtr
, IntPtrTy
);
5382 llvm::Value
*Mask
= llvm::ConstantInt::get(IntPtrTy
, ~1);
5383 llvm::Value
*AlignedCalleeAddress
=
5384 Builder
.CreateAnd(CalleeAddress
, Mask
);
5386 Builder
.CreateIntToPtr(AlignedCalleeAddress
, CalleePtr
->getType());
5388 AlignedCalleePtr
= CalleePtr
;
5391 llvm::Value
*CalleePrefixStruct
= Builder
.CreateBitCast(
5392 AlignedCalleePtr
, llvm::PointerType::getUnqual(PrefixStructTy
));
5393 llvm::Value
*CalleeSigPtr
=
5394 Builder
.CreateConstGEP2_32(PrefixStructTy
, CalleePrefixStruct
, -1, 0);
5395 llvm::Value
*CalleeSig
=
5396 Builder
.CreateAlignedLoad(PrefixSigType
, CalleeSigPtr
, getIntAlign());
5397 llvm::Value
*CalleeSigMatch
= Builder
.CreateICmpEQ(CalleeSig
, PrefixSig
);
5399 llvm::BasicBlock
*Cont
= createBasicBlock("cont");
5400 llvm::BasicBlock
*TypeCheck
= createBasicBlock("typecheck");
5401 Builder
.CreateCondBr(CalleeSigMatch
, TypeCheck
, Cont
);
5403 EmitBlock(TypeCheck
);
5404 llvm::Value
*CalleeTypeHash
= Builder
.CreateAlignedLoad(
5406 Builder
.CreateConstGEP2_32(PrefixStructTy
, CalleePrefixStruct
, -1, 1),
5408 llvm::Value
*CalleeTypeHashMatch
=
5409 Builder
.CreateICmpEQ(CalleeTypeHash
, TypeHash
);
5410 llvm::Constant
*StaticData
[] = {EmitCheckSourceLocation(E
->getBeginLoc()),
5411 EmitCheckTypeDescriptor(CalleeType
)};
5412 EmitCheck(std::make_pair(CalleeTypeHashMatch
, SanitizerKind::Function
),
5413 SanitizerHandler::FunctionTypeMismatch
, StaticData
,
5416 Builder
.CreateBr(Cont
);
5421 const auto *FnType
= cast
<FunctionType
>(PointeeType
);
5423 // If we are checking indirect calls and this call is indirect, check that the
5424 // function pointer is a member of the bit set for the function type.
5425 if (SanOpts
.has(SanitizerKind::CFIICall
) &&
5426 (!TargetDecl
|| !isa
<FunctionDecl
>(TargetDecl
))) {
5427 SanitizerScope
SanScope(this);
5428 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall
);
5431 if (CGM
.getCodeGenOpts().SanitizeCfiICallGeneralizePointers
)
5432 MD
= CGM
.CreateMetadataIdentifierGeneralized(QualType(FnType
, 0));
5434 MD
= CGM
.CreateMetadataIdentifierForType(QualType(FnType
, 0));
5436 llvm::Value
*TypeId
= llvm::MetadataAsValue::get(getLLVMContext(), MD
);
5438 llvm::Value
*CalleePtr
= Callee
.getFunctionPointer();
5439 llvm::Value
*CastedCallee
= Builder
.CreateBitCast(CalleePtr
, Int8PtrTy
);
5440 llvm::Value
*TypeTest
= Builder
.CreateCall(
5441 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {CastedCallee
, TypeId
});
5443 auto CrossDsoTypeId
= CGM
.CreateCrossDsoCfiTypeId(MD
);
5444 llvm::Constant
*StaticData
[] = {
5445 llvm::ConstantInt::get(Int8Ty
, CFITCK_ICall
),
5446 EmitCheckSourceLocation(E
->getBeginLoc()),
5447 EmitCheckTypeDescriptor(QualType(FnType
, 0)),
5449 if (CGM
.getCodeGenOpts().SanitizeCfiCrossDso
&& CrossDsoTypeId
) {
5450 EmitCfiSlowPathCheck(SanitizerKind::CFIICall
, TypeTest
, CrossDsoTypeId
,
5451 CastedCallee
, StaticData
);
5453 EmitCheck(std::make_pair(TypeTest
, SanitizerKind::CFIICall
),
5454 SanitizerHandler::CFICheckFail
, StaticData
,
5455 {CastedCallee
, llvm::UndefValue::get(IntPtrTy
)});
5461 Args
.add(RValue::get(Builder
.CreateBitCast(Chain
, CGM
.VoidPtrTy
)),
5462 CGM
.getContext().VoidPtrTy
);
5464 // C++17 requires that we evaluate arguments to a call using assignment syntax
5465 // right-to-left, and that we evaluate arguments to certain other operators
5466 // left-to-right. Note that we allow this to override the order dictated by
5467 // the calling convention on the MS ABI, which means that parameter
5468 // destruction order is not necessarily reverse construction order.
5469 // FIXME: Revisit this based on C++ committee response to unimplementability.
5470 EvaluationOrder Order
= EvaluationOrder::Default
;
5471 if (auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(E
)) {
5472 if (OCE
->isAssignmentOp())
5473 Order
= EvaluationOrder::ForceRightToLeft
;
5475 switch (OCE
->getOperator()) {
5477 case OO_GreaterGreater
:
5482 Order
= EvaluationOrder::ForceLeftToRight
;
5490 EmitCallArgs(Args
, dyn_cast
<FunctionProtoType
>(FnType
), E
->arguments(),
5491 E
->getDirectCallee(), /*ParamsToSkip*/ 0, Order
);
5493 const CGFunctionInfo
&FnInfo
= CGM
.getTypes().arrangeFreeFunctionCall(
5494 Args
, FnType
, /*ChainCall=*/Chain
);
5497 // If the expression that denotes the called function has a type
5498 // that does not include a prototype, [the default argument
5499 // promotions are performed]. If the number of arguments does not
5500 // equal the number of parameters, the behavior is undefined. If
5501 // the function is defined with a type that includes a prototype,
5502 // and either the prototype ends with an ellipsis (, ...) or the
5503 // types of the arguments after promotion are not compatible with
5504 // the types of the parameters, the behavior is undefined. If the
5505 // function is defined with a type that does not include a
5506 // prototype, and the types of the arguments after promotion are
5507 // not compatible with those of the parameters after promotion,
5508 // the behavior is undefined [except in some trivial cases].
5509 // That is, in the general case, we should assume that a call
5510 // through an unprototyped function type works like a *non-variadic*
5511 // call. The way we make this work is to cast to the exact type
5512 // of the promoted arguments.
5514 // Chain calls use this same code path to add the invisible chain parameter
5515 // to the function type.
5516 if (isa
<FunctionNoProtoType
>(FnType
) || Chain
) {
5517 llvm::Type
*CalleeTy
= getTypes().GetFunctionType(FnInfo
);
5518 int AS
= Callee
.getFunctionPointer()->getType()->getPointerAddressSpace();
5519 CalleeTy
= CalleeTy
->getPointerTo(AS
);
5521 llvm::Value
*CalleePtr
= Callee
.getFunctionPointer();
5522 CalleePtr
= Builder
.CreateBitCast(CalleePtr
, CalleeTy
, "callee.knr.cast");
5523 Callee
.setFunctionPointer(CalleePtr
);
5526 // HIP function pointer contains kernel handle when it is used in triple
5527 // chevron. The kernel stub needs to be loaded from kernel handle and used
5529 if (CGM
.getLangOpts().HIP
&& !CGM
.getLangOpts().CUDAIsDevice
&&
5530 isa
<CUDAKernelCallExpr
>(E
) &&
5531 (!TargetDecl
|| !isa
<FunctionDecl
>(TargetDecl
))) {
5532 llvm::Value
*Handle
= Callee
.getFunctionPointer();
5534 Builder
.CreateBitCast(Handle
, Handle
->getType()->getPointerTo());
5535 auto *Stub
= Builder
.CreateLoad(
5536 Address(Cast
, Handle
->getType(), CGM
.getPointerAlign()));
5537 Callee
.setFunctionPointer(Stub
);
5539 llvm::CallBase
*CallOrInvoke
= nullptr;
5540 RValue Call
= EmitCall(FnInfo
, Callee
, ReturnValue
, Args
, &CallOrInvoke
,
5541 E
== MustTailCall
, E
->getExprLoc());
5543 // Generate function declaration DISuprogram in order to be used
5544 // in debug info about call sites.
5545 if (CGDebugInfo
*DI
= getDebugInfo()) {
5546 if (auto *CalleeDecl
= dyn_cast_or_null
<FunctionDecl
>(TargetDecl
)) {
5547 FunctionArgList Args
;
5548 QualType ResTy
= BuildFunctionArgList(CalleeDecl
, Args
);
5549 DI
->EmitFuncDeclForCallSite(CallOrInvoke
,
5550 DI
->getFunctionType(CalleeDecl
, ResTy
, Args
),
5558 LValue
CodeGenFunction::
5559 EmitPointerToDataMemberBinaryExpr(const BinaryOperator
*E
) {
5560 Address BaseAddr
= Address::invalid();
5561 if (E
->getOpcode() == BO_PtrMemI
) {
5562 BaseAddr
= EmitPointerWithAlignment(E
->getLHS());
5564 BaseAddr
= EmitLValue(E
->getLHS()).getAddress(*this);
5567 llvm::Value
*OffsetV
= EmitScalarExpr(E
->getRHS());
5568 const auto *MPT
= E
->getRHS()->getType()->castAs
<MemberPointerType
>();
5570 LValueBaseInfo BaseInfo
;
5571 TBAAAccessInfo TBAAInfo
;
5572 Address MemberAddr
=
5573 EmitCXXMemberDataPointerAddress(E
, BaseAddr
, OffsetV
, MPT
, &BaseInfo
,
5576 return MakeAddrLValue(MemberAddr
, MPT
->getPointeeType(), BaseInfo
, TBAAInfo
);
5579 /// Given the address of a temporary variable, produce an r-value of
5581 RValue
CodeGenFunction::convertTempToRValue(Address addr
,
5583 SourceLocation loc
) {
5584 LValue lvalue
= MakeAddrLValue(addr
, type
, AlignmentSource::Decl
);
5585 switch (getEvaluationKind(type
)) {
5587 return RValue::getComplex(EmitLoadOfComplex(lvalue
, loc
));
5589 return lvalue
.asAggregateRValue(*this);
5591 return RValue::get(EmitLoadOfScalar(lvalue
, loc
));
5593 llvm_unreachable("bad evaluation kind");
5596 void CodeGenFunction::SetFPAccuracy(llvm::Value
*Val
, float Accuracy
) {
5597 assert(Val
->getType()->isFPOrFPVectorTy());
5598 if (Accuracy
== 0.0 || !isa
<llvm::Instruction
>(Val
))
5601 llvm::MDBuilder
MDHelper(getLLVMContext());
5602 llvm::MDNode
*Node
= MDHelper
.createFPMath(Accuracy
);
5604 cast
<llvm::Instruction
>(Val
)->setMetadata(llvm::LLVMContext::MD_fpmath
, Node
);
5608 struct LValueOrRValue
{
5614 static LValueOrRValue
emitPseudoObjectExpr(CodeGenFunction
&CGF
,
5615 const PseudoObjectExpr
*E
,
5617 AggValueSlot slot
) {
5618 SmallVector
<CodeGenFunction::OpaqueValueMappingData
, 4> opaques
;
5620 // Find the result expression, if any.
5621 const Expr
*resultExpr
= E
->getResultExpr();
5622 LValueOrRValue result
;
5624 for (PseudoObjectExpr::const_semantics_iterator
5625 i
= E
->semantics_begin(), e
= E
->semantics_end(); i
!= e
; ++i
) {
5626 const Expr
*semantic
= *i
;
5628 // If this semantic expression is an opaque value, bind it
5629 // to the result of its source expression.
5630 if (const auto *ov
= dyn_cast
<OpaqueValueExpr
>(semantic
)) {
5631 // Skip unique OVEs.
5632 if (ov
->isUnique()) {
5633 assert(ov
!= resultExpr
&&
5634 "A unique OVE cannot be used as the result expression");
5638 // If this is the result expression, we may need to evaluate
5639 // directly into the slot.
5640 typedef CodeGenFunction::OpaqueValueMappingData OVMA
;
5642 if (ov
== resultExpr
&& ov
->isPRValue() && !forLValue
&&
5643 CodeGenFunction::hasAggregateEvaluationKind(ov
->getType())) {
5644 CGF
.EmitAggExpr(ov
->getSourceExpr(), slot
);
5645 LValue LV
= CGF
.MakeAddrLValue(slot
.getAddress(), ov
->getType(),
5646 AlignmentSource::Decl
);
5647 opaqueData
= OVMA::bind(CGF
, ov
, LV
);
5648 result
.RV
= slot
.asRValue();
5650 // Otherwise, emit as normal.
5652 opaqueData
= OVMA::bind(CGF
, ov
, ov
->getSourceExpr());
5654 // If this is the result, also evaluate the result now.
5655 if (ov
== resultExpr
) {
5657 result
.LV
= CGF
.EmitLValue(ov
);
5659 result
.RV
= CGF
.EmitAnyExpr(ov
, slot
);
5663 opaques
.push_back(opaqueData
);
5665 // Otherwise, if the expression is the result, evaluate it
5666 // and remember the result.
5667 } else if (semantic
== resultExpr
) {
5669 result
.LV
= CGF
.EmitLValue(semantic
);
5671 result
.RV
= CGF
.EmitAnyExpr(semantic
, slot
);
5673 // Otherwise, evaluate the expression in an ignored context.
5675 CGF
.EmitIgnoredExpr(semantic
);
5679 // Unbind all the opaques now.
5680 for (unsigned i
= 0, e
= opaques
.size(); i
!= e
; ++i
)
5681 opaques
[i
].unbind(CGF
);
5686 RValue
CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr
*E
,
5687 AggValueSlot slot
) {
5688 return emitPseudoObjectExpr(*this, E
, false, slot
).RV
;
5691 LValue
CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr
*E
) {
5692 return emitPseudoObjectExpr(*this, E
, true, AggValueSlot::ignored()).LV
;