[AMDGPU][AsmParser][NFC] Get rid of custom default operand handlers.
[llvm-project.git] / clang / lib / CodeGen / CGExprAgg.cpp
blob0b29190c0930dc4ba3b85386561c262b8a966e76
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
32 //===----------------------------------------------------------------------===//
33 // Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
36 namespace {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38 CodeGenFunction &CGF;
39 CGBuilderTy &Builder;
40 AggValueSlot Dest;
41 bool IsResultUnused;
43 AggValueSlot EnsureSlot(QualType T) {
44 if (!Dest.isIgnored()) return Dest;
45 return CGF.CreateAggTemp(T, "agg.tmp.ensured");
47 void EnsureDest(QualType T) {
48 if (!Dest.isIgnored()) return;
49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
52 // Calls `Fn` with a valid return value slot, potentially creating a temporary
53 // to do so. If a temporary is created, an appropriate copy into `Dest` will
54 // be emitted, as will lifetime markers.
56 // The given function should take a ReturnValueSlot, and return an RValue that
57 // points to said slot.
58 void withReturnValueSlot(const Expr *E,
59 llvm::function_ref<RValue(ReturnValueSlot)> Fn);
61 public:
62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64 IsResultUnused(IsResultUnused) { }
66 //===--------------------------------------------------------------------===//
67 // Utilities
68 //===--------------------------------------------------------------------===//
70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71 /// represents a value lvalue, this method emits the address of the lvalue,
72 /// then loads the result into DestPtr.
73 void EmitAggLoadOfLValue(const Expr *E);
75 enum ExprValueKind {
76 EVK_RValue,
77 EVK_NonRValue
80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81 /// SrcIsRValue is true if source comes from an RValue.
82 void EmitFinalDestCopy(QualType type, const LValue &src,
83 ExprValueKind SrcValueKind = EVK_NonRValue);
84 void EmitFinalDestCopy(QualType type, RValue src);
85 void EmitCopy(QualType type, const AggValueSlot &dest,
86 const AggValueSlot &src);
88 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy,
89 Expr *ExprToVisit, ArrayRef<Expr *> Args,
90 Expr *ArrayFiller);
92 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
93 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
94 return AggValueSlot::NeedsGCBarriers;
95 return AggValueSlot::DoesNotNeedGCBarriers;
98 bool TypeRequiresGCollection(QualType T);
100 //===--------------------------------------------------------------------===//
101 // Visitor Methods
102 //===--------------------------------------------------------------------===//
104 void Visit(Expr *E) {
105 ApplyDebugLocation DL(CGF, E);
106 StmtVisitor<AggExprEmitter>::Visit(E);
109 void VisitStmt(Stmt *S) {
110 CGF.ErrorUnsupported(S, "aggregate expression");
112 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
113 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
114 Visit(GE->getResultExpr());
116 void VisitCoawaitExpr(CoawaitExpr *E) {
117 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119 void VisitCoyieldExpr(CoyieldExpr *E) {
120 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
123 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
124 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
125 return Visit(E->getReplacement());
128 void VisitConstantExpr(ConstantExpr *E) {
129 EnsureDest(E->getType());
131 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
132 Address StoreDest = Dest.getAddress();
133 // The emitted value is guaranteed to have the same size as the
134 // destination but can have a different type. Just do a bitcast in this
135 // case to avoid incorrect GEPs.
136 if (Result->getType() != StoreDest.getType())
137 StoreDest =
138 CGF.Builder.CreateElementBitCast(StoreDest, Result->getType());
139 CGF.EmitAggregateStore(Result, StoreDest,
140 E->getType().isVolatileQualified());
141 return;
143 return Visit(E->getSubExpr());
146 // l-values.
147 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
148 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
149 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
150 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
151 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
152 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
153 EmitAggLoadOfLValue(E);
155 void VisitPredefinedExpr(const PredefinedExpr *E) {
156 EmitAggLoadOfLValue(E);
159 // Operators.
160 void VisitCastExpr(CastExpr *E);
161 void VisitCallExpr(const CallExpr *E);
162 void VisitStmtExpr(const StmtExpr *E);
163 void VisitBinaryOperator(const BinaryOperator *BO);
164 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
165 void VisitBinAssign(const BinaryOperator *E);
166 void VisitBinComma(const BinaryOperator *E);
167 void VisitBinCmp(const BinaryOperator *E);
168 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
169 Visit(E->getSemanticForm());
172 void VisitObjCMessageExpr(ObjCMessageExpr *E);
173 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
174 EmitAggLoadOfLValue(E);
177 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
178 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
179 void VisitChooseExpr(const ChooseExpr *CE);
180 void VisitInitListExpr(InitListExpr *E);
181 void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
182 FieldDecl *InitializedFieldInUnion,
183 Expr *ArrayFiller);
184 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
185 llvm::Value *outerBegin = nullptr);
186 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
187 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
188 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
189 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
190 Visit(DAE->getExpr());
192 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
193 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
194 Visit(DIE->getExpr());
196 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
197 void VisitCXXConstructExpr(const CXXConstructExpr *E);
198 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
199 void VisitLambdaExpr(LambdaExpr *E);
200 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
201 void VisitExprWithCleanups(ExprWithCleanups *E);
202 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
203 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
204 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
205 void VisitOpaqueValueExpr(OpaqueValueExpr *E);
207 void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
208 if (E->isGLValue()) {
209 LValue LV = CGF.EmitPseudoObjectLValue(E);
210 return EmitFinalDestCopy(E->getType(), LV);
213 AggValueSlot Slot = EnsureSlot(E->getType());
214 bool NeedsDestruction =
215 !Slot.isExternallyDestructed() &&
216 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
217 if (NeedsDestruction)
218 Slot.setExternallyDestructed();
219 CGF.EmitPseudoObjectRValue(E, Slot);
220 if (NeedsDestruction)
221 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Slot.getAddress(),
222 E->getType());
225 void VisitVAArgExpr(VAArgExpr *E);
226 void VisitCXXParenListInitExpr(CXXParenListInitExpr *E);
227 void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
228 Expr *ArrayFiller);
230 void EmitInitializationToLValue(Expr *E, LValue Address);
231 void EmitNullInitializationToLValue(LValue Address);
232 // case Expr::ChooseExprClass:
233 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
234 void VisitAtomicExpr(AtomicExpr *E) {
235 RValue Res = CGF.EmitAtomicExpr(E);
236 EmitFinalDestCopy(E->getType(), Res);
239 } // end anonymous namespace.
241 //===----------------------------------------------------------------------===//
242 // Utilities
243 //===----------------------------------------------------------------------===//
245 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
246 /// represents a value lvalue, this method emits the address of the lvalue,
247 /// then loads the result into DestPtr.
248 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
249 LValue LV = CGF.EmitLValue(E);
251 // If the type of the l-value is atomic, then do an atomic load.
252 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
253 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
254 return;
257 EmitFinalDestCopy(E->getType(), LV);
260 /// True if the given aggregate type requires special GC API calls.
261 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
262 // Only record types have members that might require garbage collection.
263 const RecordType *RecordTy = T->getAs<RecordType>();
264 if (!RecordTy) return false;
266 // Don't mess with non-trivial C++ types.
267 RecordDecl *Record = RecordTy->getDecl();
268 if (isa<CXXRecordDecl>(Record) &&
269 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
270 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
271 return false;
273 // Check whether the type has an object member.
274 return Record->hasObjectMember();
277 void AggExprEmitter::withReturnValueSlot(
278 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
279 QualType RetTy = E->getType();
280 bool RequiresDestruction =
281 !Dest.isExternallyDestructed() &&
282 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
284 // If it makes no observable difference, save a memcpy + temporary.
286 // We need to always provide our own temporary if destruction is required.
287 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
288 // its lifetime before we have the chance to emit a proper destructor call.
289 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
290 (RequiresDestruction && !Dest.getAddress().isValid());
292 Address RetAddr = Address::invalid();
293 Address RetAllocaAddr = Address::invalid();
295 EHScopeStack::stable_iterator LifetimeEndBlock;
296 llvm::Value *LifetimeSizePtr = nullptr;
297 llvm::IntrinsicInst *LifetimeStartInst = nullptr;
298 if (!UseTemp) {
299 RetAddr = Dest.getAddress();
300 } else {
301 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
302 llvm::TypeSize Size =
303 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
304 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
305 if (LifetimeSizePtr) {
306 LifetimeStartInst =
307 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
308 assert(LifetimeStartInst->getIntrinsicID() ==
309 llvm::Intrinsic::lifetime_start &&
310 "Last insertion wasn't a lifetime.start?");
312 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
313 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
314 LifetimeEndBlock = CGF.EHStack.stable_begin();
318 RValue Src =
319 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
320 Dest.isExternallyDestructed()));
322 if (!UseTemp)
323 return;
325 assert(Dest.isIgnored() || Dest.getPointer() != Src.getAggregatePointer());
326 EmitFinalDestCopy(E->getType(), Src);
328 if (!RequiresDestruction && LifetimeStartInst) {
329 // If there's no dtor to run, the copy was the last use of our temporary.
330 // Since we're not guaranteed to be in an ExprWithCleanups, clean up
331 // eagerly.
332 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
333 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
337 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
338 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
339 assert(src.isAggregate() && "value must be aggregate value!");
340 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
341 EmitFinalDestCopy(type, srcLV, EVK_RValue);
344 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
345 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
346 ExprValueKind SrcValueKind) {
347 // If Dest is ignored, then we're evaluating an aggregate expression
348 // in a context that doesn't care about the result. Note that loads
349 // from volatile l-values force the existence of a non-ignored
350 // destination.
351 if (Dest.isIgnored())
352 return;
354 // Copy non-trivial C structs here.
355 LValue DstLV = CGF.MakeAddrLValue(
356 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
358 if (SrcValueKind == EVK_RValue) {
359 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
360 if (Dest.isPotentiallyAliased())
361 CGF.callCStructMoveAssignmentOperator(DstLV, src);
362 else
363 CGF.callCStructMoveConstructor(DstLV, src);
364 return;
366 } else {
367 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
368 if (Dest.isPotentiallyAliased())
369 CGF.callCStructCopyAssignmentOperator(DstLV, src);
370 else
371 CGF.callCStructCopyConstructor(DstLV, src);
372 return;
376 AggValueSlot srcAgg = AggValueSlot::forLValue(
377 src, CGF, AggValueSlot::IsDestructed, needsGC(type),
378 AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
379 EmitCopy(type, Dest, srcAgg);
382 /// Perform a copy from the source into the destination.
384 /// \param type - the type of the aggregate being copied; qualifiers are
385 /// ignored
386 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
387 const AggValueSlot &src) {
388 if (dest.requiresGCollection()) {
389 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
390 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
391 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
392 dest.getAddress(),
393 src.getAddress(),
394 size);
395 return;
398 // If the result of the assignment is used, copy the LHS there also.
399 // It's volatile if either side is. Use the minimum alignment of
400 // the two sides.
401 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
402 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
403 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
404 dest.isVolatile() || src.isVolatile());
407 /// Emit the initializer for a std::initializer_list initialized with a
408 /// real initializer list.
409 void
410 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
411 // Emit an array containing the elements. The array is externally destructed
412 // if the std::initializer_list object is.
413 ASTContext &Ctx = CGF.getContext();
414 LValue Array = CGF.EmitLValue(E->getSubExpr());
415 assert(Array.isSimple() && "initializer_list array not a simple lvalue");
416 Address ArrayPtr = Array.getAddress(CGF);
418 const ConstantArrayType *ArrayType =
419 Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
420 assert(ArrayType && "std::initializer_list constructed from non-array");
422 // FIXME: Perform the checks on the field types in SemaInit.
423 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
424 RecordDecl::field_iterator Field = Record->field_begin();
425 if (Field == Record->field_end()) {
426 CGF.ErrorUnsupported(E, "weird std::initializer_list");
427 return;
430 // Start pointer.
431 if (!Field->getType()->isPointerType() ||
432 !Ctx.hasSameType(Field->getType()->getPointeeType(),
433 ArrayType->getElementType())) {
434 CGF.ErrorUnsupported(E, "weird std::initializer_list");
435 return;
438 AggValueSlot Dest = EnsureSlot(E->getType());
439 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
440 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
441 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
442 llvm::Value *IdxStart[] = { Zero, Zero };
443 llvm::Value *ArrayStart = Builder.CreateInBoundsGEP(
444 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxStart, "arraystart");
445 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
446 ++Field;
448 if (Field == Record->field_end()) {
449 CGF.ErrorUnsupported(E, "weird std::initializer_list");
450 return;
453 llvm::Value *Size = Builder.getInt(ArrayType->getSize());
454 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
455 if (Field->getType()->isPointerType() &&
456 Ctx.hasSameType(Field->getType()->getPointeeType(),
457 ArrayType->getElementType())) {
458 // End pointer.
459 llvm::Value *IdxEnd[] = { Zero, Size };
460 llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
461 ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxEnd, "arrayend");
462 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
463 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
464 // Length.
465 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
466 } else {
467 CGF.ErrorUnsupported(E, "weird std::initializer_list");
468 return;
472 /// Determine if E is a trivial array filler, that is, one that is
473 /// equivalent to zero-initialization.
474 static bool isTrivialFiller(Expr *E) {
475 if (!E)
476 return true;
478 if (isa<ImplicitValueInitExpr>(E))
479 return true;
481 if (auto *ILE = dyn_cast<InitListExpr>(E)) {
482 if (ILE->getNumInits())
483 return false;
484 return isTrivialFiller(ILE->getArrayFiller());
487 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
488 return Cons->getConstructor()->isDefaultConstructor() &&
489 Cons->getConstructor()->isTrivial();
491 // FIXME: Are there other cases where we can avoid emitting an initializer?
492 return false;
495 /// Emit initialization of an array from an initializer list. ExprToVisit must
496 /// be either an InitListEpxr a CXXParenInitListExpr.
497 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
498 QualType ArrayQTy, Expr *ExprToVisit,
499 ArrayRef<Expr *> Args, Expr *ArrayFiller) {
500 uint64_t NumInitElements = Args.size();
502 uint64_t NumArrayElements = AType->getNumElements();
503 assert(NumInitElements <= NumArrayElements);
505 QualType elementType =
506 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
508 // DestPtr is an array*. Construct an elementType* by drilling
509 // down a level.
510 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
511 llvm::Value *indices[] = { zero, zero };
512 llvm::Value *begin = Builder.CreateInBoundsGEP(
513 DestPtr.getElementType(), DestPtr.getPointer(), indices,
514 "arrayinit.begin");
516 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
517 CharUnits elementAlign =
518 DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
519 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
521 // Consider initializing the array by copying from a global. For this to be
522 // more efficient than per-element initialization, the size of the elements
523 // with explicit initializers should be large enough.
524 if (NumInitElements * elementSize.getQuantity() > 16 &&
525 elementType.isTriviallyCopyableType(CGF.getContext())) {
526 CodeGen::CodeGenModule &CGM = CGF.CGM;
527 ConstantEmitter Emitter(CGF);
528 LangAS AS = ArrayQTy.getAddressSpace();
529 if (llvm::Constant *C =
530 Emitter.tryEmitForInitializer(ExprToVisit, AS, ArrayQTy)) {
531 auto GV = new llvm::GlobalVariable(
532 CGM.getModule(), C->getType(),
533 /* isConstant= */ true, llvm::GlobalValue::PrivateLinkage, C,
534 "constinit",
535 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
536 CGM.getContext().getTargetAddressSpace(AS));
537 Emitter.finalize(GV);
538 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
539 GV->setAlignment(Align.getAsAlign());
540 Address GVAddr(GV, GV->getValueType(), Align);
541 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, ArrayQTy));
542 return;
546 // Exception safety requires us to destroy all the
547 // already-constructed members if an initializer throws.
548 // For that, we'll need an EH cleanup.
549 QualType::DestructionKind dtorKind = elementType.isDestructedType();
550 Address endOfInit = Address::invalid();
551 EHScopeStack::stable_iterator cleanup;
552 llvm::Instruction *cleanupDominator = nullptr;
553 if (CGF.needsEHCleanup(dtorKind)) {
554 // In principle we could tell the cleanup where we are more
555 // directly, but the control flow can get so varied here that it
556 // would actually be quite complex. Therefore we go through an
557 // alloca.
558 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
559 "arrayinit.endOfInit");
560 cleanupDominator = Builder.CreateStore(begin, endOfInit);
561 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
562 elementAlign,
563 CGF.getDestroyer(dtorKind));
564 cleanup = CGF.EHStack.stable_begin();
566 // Otherwise, remember that we didn't need a cleanup.
567 } else {
568 dtorKind = QualType::DK_none;
571 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
573 // The 'current element to initialize'. The invariants on this
574 // variable are complicated. Essentially, after each iteration of
575 // the loop, it points to the last initialized element, except
576 // that it points to the beginning of the array before any
577 // elements have been initialized.
578 llvm::Value *element = begin;
580 // Emit the explicit initializers.
581 for (uint64_t i = 0; i != NumInitElements; ++i) {
582 // Advance to the next element.
583 if (i > 0) {
584 element = Builder.CreateInBoundsGEP(
585 llvmElementType, element, one, "arrayinit.element");
587 // Tell the cleanup that it needs to destroy up to this
588 // element. TODO: some of these stores can be trivially
589 // observed to be unnecessary.
590 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
593 LValue elementLV = CGF.MakeAddrLValue(
594 Address(element, llvmElementType, elementAlign), elementType);
595 EmitInitializationToLValue(Args[i], elementLV);
598 // Check whether there's a non-trivial array-fill expression.
599 bool hasTrivialFiller = isTrivialFiller(ArrayFiller);
601 // Any remaining elements need to be zero-initialized, possibly
602 // using the filler expression. We can skip this if the we're
603 // emitting to zeroed memory.
604 if (NumInitElements != NumArrayElements &&
605 !(Dest.isZeroed() && hasTrivialFiller &&
606 CGF.getTypes().isZeroInitializable(elementType))) {
608 // Use an actual loop. This is basically
609 // do { *array++ = filler; } while (array != end);
611 // Advance to the start of the rest of the array.
612 if (NumInitElements) {
613 element = Builder.CreateInBoundsGEP(
614 llvmElementType, element, one, "arrayinit.start");
615 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
618 // Compute the end of the array.
619 llvm::Value *end = Builder.CreateInBoundsGEP(
620 llvmElementType, begin,
621 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
623 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
624 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
626 // Jump into the body.
627 CGF.EmitBlock(bodyBB);
628 llvm::PHINode *currentElement =
629 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
630 currentElement->addIncoming(element, entryBB);
632 // Emit the actual filler expression.
634 // C++1z [class.temporary]p5:
635 // when a default constructor is called to initialize an element of
636 // an array with no corresponding initializer [...] the destruction of
637 // every temporary created in a default argument is sequenced before
638 // the construction of the next array element, if any
639 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
640 LValue elementLV = CGF.MakeAddrLValue(
641 Address(currentElement, llvmElementType, elementAlign), elementType);
642 if (ArrayFiller)
643 EmitInitializationToLValue(ArrayFiller, elementLV);
644 else
645 EmitNullInitializationToLValue(elementLV);
648 // Move on to the next element.
649 llvm::Value *nextElement = Builder.CreateInBoundsGEP(
650 llvmElementType, currentElement, one, "arrayinit.next");
652 // Tell the EH cleanup that we finished with the last element.
653 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
655 // Leave the loop if we're done.
656 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
657 "arrayinit.done");
658 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
659 Builder.CreateCondBr(done, endBB, bodyBB);
660 currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
662 CGF.EmitBlock(endBB);
665 // Leave the partial-array cleanup if we entered one.
666 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
669 //===----------------------------------------------------------------------===//
670 // Visitor Methods
671 //===----------------------------------------------------------------------===//
673 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
674 Visit(E->getSubExpr());
677 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
678 // If this is a unique OVE, just visit its source expression.
679 if (e->isUnique())
680 Visit(e->getSourceExpr());
681 else
682 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
685 void
686 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
687 if (Dest.isPotentiallyAliased() &&
688 E->getType().isPODType(CGF.getContext())) {
689 // For a POD type, just emit a load of the lvalue + a copy, because our
690 // compound literal might alias the destination.
691 EmitAggLoadOfLValue(E);
692 return;
695 AggValueSlot Slot = EnsureSlot(E->getType());
697 // Block-scope compound literals are destroyed at the end of the enclosing
698 // scope in C.
699 bool Destruct =
700 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
701 if (Destruct)
702 Slot.setExternallyDestructed();
704 CGF.EmitAggExpr(E->getInitializer(), Slot);
706 if (Destruct)
707 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
708 CGF.pushLifetimeExtendedDestroy(
709 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
710 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
713 /// Attempt to look through various unimportant expressions to find a
714 /// cast of the given kind.
715 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
716 op = op->IgnoreParenNoopCasts(ctx);
717 if (auto castE = dyn_cast<CastExpr>(op)) {
718 if (castE->getCastKind() == kind)
719 return castE->getSubExpr();
721 return nullptr;
724 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
725 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
726 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
727 switch (E->getCastKind()) {
728 case CK_Dynamic: {
729 // FIXME: Can this actually happen? We have no test coverage for it.
730 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
731 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
732 CodeGenFunction::TCK_Load);
733 // FIXME: Do we also need to handle property references here?
734 if (LV.isSimple())
735 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
736 else
737 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
739 if (!Dest.isIgnored())
740 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
741 break;
744 case CK_ToUnion: {
745 // Evaluate even if the destination is ignored.
746 if (Dest.isIgnored()) {
747 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
748 /*ignoreResult=*/true);
749 break;
752 // GCC union extension
753 QualType Ty = E->getSubExpr()->getType();
754 Address CastPtr =
755 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
756 EmitInitializationToLValue(E->getSubExpr(),
757 CGF.MakeAddrLValue(CastPtr, Ty));
758 break;
761 case CK_LValueToRValueBitCast: {
762 if (Dest.isIgnored()) {
763 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
764 /*ignoreResult=*/true);
765 break;
768 LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
769 Address SourceAddress =
770 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
771 Address DestAddress =
772 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
773 llvm::Value *SizeVal = llvm::ConstantInt::get(
774 CGF.SizeTy,
775 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
776 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
777 break;
780 case CK_DerivedToBase:
781 case CK_BaseToDerived:
782 case CK_UncheckedDerivedToBase: {
783 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
784 "should have been unpacked before we got here");
787 case CK_NonAtomicToAtomic:
788 case CK_AtomicToNonAtomic: {
789 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
791 // Determine the atomic and value types.
792 QualType atomicType = E->getSubExpr()->getType();
793 QualType valueType = E->getType();
794 if (isToAtomic) std::swap(atomicType, valueType);
796 assert(atomicType->isAtomicType());
797 assert(CGF.getContext().hasSameUnqualifiedType(valueType,
798 atomicType->castAs<AtomicType>()->getValueType()));
800 // Just recurse normally if we're ignoring the result or the
801 // atomic type doesn't change representation.
802 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
803 return Visit(E->getSubExpr());
806 CastKind peepholeTarget =
807 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
809 // These two cases are reverses of each other; try to peephole them.
810 if (Expr *op =
811 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
812 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
813 E->getType()) &&
814 "peephole significantly changed types?");
815 return Visit(op);
818 // If we're converting an r-value of non-atomic type to an r-value
819 // of atomic type, just emit directly into the relevant sub-object.
820 if (isToAtomic) {
821 AggValueSlot valueDest = Dest;
822 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
823 // Zero-initialize. (Strictly speaking, we only need to initialize
824 // the padding at the end, but this is simpler.)
825 if (!Dest.isZeroed())
826 CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
828 // Build a GEP to refer to the subobject.
829 Address valueAddr =
830 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
831 valueDest = AggValueSlot::forAddr(valueAddr,
832 valueDest.getQualifiers(),
833 valueDest.isExternallyDestructed(),
834 valueDest.requiresGCollection(),
835 valueDest.isPotentiallyAliased(),
836 AggValueSlot::DoesNotOverlap,
837 AggValueSlot::IsZeroed);
840 CGF.EmitAggExpr(E->getSubExpr(), valueDest);
841 return;
844 // Otherwise, we're converting an atomic type to a non-atomic type.
845 // Make an atomic temporary, emit into that, and then copy the value out.
846 AggValueSlot atomicSlot =
847 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
848 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
850 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
851 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
852 return EmitFinalDestCopy(valueType, rvalue);
854 case CK_AddressSpaceConversion:
855 return Visit(E->getSubExpr());
857 case CK_LValueToRValue:
858 // If we're loading from a volatile type, force the destination
859 // into existence.
860 if (E->getSubExpr()->getType().isVolatileQualified()) {
861 bool Destruct =
862 !Dest.isExternallyDestructed() &&
863 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
864 if (Destruct)
865 Dest.setExternallyDestructed();
866 EnsureDest(E->getType());
867 Visit(E->getSubExpr());
869 if (Destruct)
870 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
871 E->getType());
873 return;
876 [[fallthrough]];
879 case CK_NoOp:
880 case CK_UserDefinedConversion:
881 case CK_ConstructorConversion:
882 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
883 E->getType()) &&
884 "Implicit cast types must be compatible");
885 Visit(E->getSubExpr());
886 break;
888 case CK_LValueBitCast:
889 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
891 case CK_Dependent:
892 case CK_BitCast:
893 case CK_ArrayToPointerDecay:
894 case CK_FunctionToPointerDecay:
895 case CK_NullToPointer:
896 case CK_NullToMemberPointer:
897 case CK_BaseToDerivedMemberPointer:
898 case CK_DerivedToBaseMemberPointer:
899 case CK_MemberPointerToBoolean:
900 case CK_ReinterpretMemberPointer:
901 case CK_IntegralToPointer:
902 case CK_PointerToIntegral:
903 case CK_PointerToBoolean:
904 case CK_ToVoid:
905 case CK_VectorSplat:
906 case CK_IntegralCast:
907 case CK_BooleanToSignedIntegral:
908 case CK_IntegralToBoolean:
909 case CK_IntegralToFloating:
910 case CK_FloatingToIntegral:
911 case CK_FloatingToBoolean:
912 case CK_FloatingCast:
913 case CK_CPointerToObjCPointerCast:
914 case CK_BlockPointerToObjCPointerCast:
915 case CK_AnyPointerToBlockPointerCast:
916 case CK_ObjCObjectLValueCast:
917 case CK_FloatingRealToComplex:
918 case CK_FloatingComplexToReal:
919 case CK_FloatingComplexToBoolean:
920 case CK_FloatingComplexCast:
921 case CK_FloatingComplexToIntegralComplex:
922 case CK_IntegralRealToComplex:
923 case CK_IntegralComplexToReal:
924 case CK_IntegralComplexToBoolean:
925 case CK_IntegralComplexCast:
926 case CK_IntegralComplexToFloatingComplex:
927 case CK_ARCProduceObject:
928 case CK_ARCConsumeObject:
929 case CK_ARCReclaimReturnedObject:
930 case CK_ARCExtendBlockObject:
931 case CK_CopyAndAutoreleaseBlockObject:
932 case CK_BuiltinFnToFnPtr:
933 case CK_ZeroToOCLOpaqueType:
934 case CK_MatrixCast:
936 case CK_IntToOCLSampler:
937 case CK_FloatingToFixedPoint:
938 case CK_FixedPointToFloating:
939 case CK_FixedPointCast:
940 case CK_FixedPointToBoolean:
941 case CK_FixedPointToIntegral:
942 case CK_IntegralToFixedPoint:
943 llvm_unreachable("cast kind invalid for aggregate types");
947 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
948 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
949 EmitAggLoadOfLValue(E);
950 return;
953 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
954 return CGF.EmitCallExpr(E, Slot);
958 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
959 withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
960 return CGF.EmitObjCMessageExpr(E, Slot);
964 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
965 CGF.EmitIgnoredExpr(E->getLHS());
966 Visit(E->getRHS());
969 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
970 CodeGenFunction::StmtExprEvaluation eval(CGF);
971 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
974 enum CompareKind {
975 CK_Less,
976 CK_Greater,
977 CK_Equal,
980 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
981 const BinaryOperator *E, llvm::Value *LHS,
982 llvm::Value *RHS, CompareKind Kind,
983 const char *NameSuffix = "") {
984 QualType ArgTy = E->getLHS()->getType();
985 if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
986 ArgTy = CT->getElementType();
988 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
989 assert(Kind == CK_Equal &&
990 "member pointers may only be compared for equality");
991 return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
992 CGF, LHS, RHS, MPT, /*IsInequality*/ false);
995 // Compute the comparison instructions for the specified comparison kind.
996 struct CmpInstInfo {
997 const char *Name;
998 llvm::CmpInst::Predicate FCmp;
999 llvm::CmpInst::Predicate SCmp;
1000 llvm::CmpInst::Predicate UCmp;
1002 CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
1003 using FI = llvm::FCmpInst;
1004 using II = llvm::ICmpInst;
1005 switch (Kind) {
1006 case CK_Less:
1007 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
1008 case CK_Greater:
1009 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
1010 case CK_Equal:
1011 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
1013 llvm_unreachable("Unrecognised CompareKind enum");
1014 }();
1016 if (ArgTy->hasFloatingRepresentation())
1017 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
1018 llvm::Twine(InstInfo.Name) + NameSuffix);
1019 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
1020 auto Inst =
1021 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
1022 return Builder.CreateICmp(Inst, LHS, RHS,
1023 llvm::Twine(InstInfo.Name) + NameSuffix);
1026 llvm_unreachable("unsupported aggregate binary expression should have "
1027 "already been handled");
1030 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1031 using llvm::BasicBlock;
1032 using llvm::PHINode;
1033 using llvm::Value;
1034 assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1035 E->getRHS()->getType()));
1036 const ComparisonCategoryInfo &CmpInfo =
1037 CGF.getContext().CompCategories.getInfoForType(E->getType());
1038 assert(CmpInfo.Record->isTriviallyCopyable() &&
1039 "cannot copy non-trivially copyable aggregate");
1041 QualType ArgTy = E->getLHS()->getType();
1043 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1044 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1045 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1046 return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1048 bool IsComplex = ArgTy->isAnyComplexType();
1050 // Evaluate the operands to the expression and extract their values.
1051 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1052 RValue RV = CGF.EmitAnyExpr(E);
1053 if (RV.isScalar())
1054 return {RV.getScalarVal(), nullptr};
1055 if (RV.isAggregate())
1056 return {RV.getAggregatePointer(), nullptr};
1057 assert(RV.isComplex());
1058 return RV.getComplexVal();
1060 auto LHSValues = EmitOperand(E->getLHS()),
1061 RHSValues = EmitOperand(E->getRHS());
1063 auto EmitCmp = [&](CompareKind K) {
1064 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1065 K, IsComplex ? ".r" : "");
1066 if (!IsComplex)
1067 return Cmp;
1068 assert(K == CompareKind::CK_Equal);
1069 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1070 RHSValues.second, K, ".i");
1071 return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1073 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1074 return Builder.getInt(VInfo->getIntValue());
1077 Value *Select;
1078 if (ArgTy->isNullPtrType()) {
1079 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1080 } else if (!CmpInfo.isPartial()) {
1081 Value *SelectOne =
1082 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1083 EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1084 Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1085 EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1086 SelectOne, "sel.eq");
1087 } else {
1088 Value *SelectEq = Builder.CreateSelect(
1089 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1090 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1091 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1092 EmitCmpRes(CmpInfo.getGreater()),
1093 SelectEq, "sel.gt");
1094 Select = Builder.CreateSelect(
1095 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1097 // Create the return value in the destination slot.
1098 EnsureDest(E->getType());
1099 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1101 // Emit the address of the first (and only) field in the comparison category
1102 // type, and initialize it from the constant integer value selected above.
1103 LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1104 DestLV, *CmpInfo.Record->field_begin());
1105 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1107 // All done! The result is in the Dest slot.
1110 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1111 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1112 VisitPointerToDataMemberBinaryOperator(E);
1113 else
1114 CGF.ErrorUnsupported(E, "aggregate binary expression");
1117 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1118 const BinaryOperator *E) {
1119 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1120 EmitFinalDestCopy(E->getType(), LV);
1123 /// Is the value of the given expression possibly a reference to or
1124 /// into a __block variable?
1125 static bool isBlockVarRef(const Expr *E) {
1126 // Make sure we look through parens.
1127 E = E->IgnoreParens();
1129 // Check for a direct reference to a __block variable.
1130 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1131 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1132 return (var && var->hasAttr<BlocksAttr>());
1135 // More complicated stuff.
1137 // Binary operators.
1138 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1139 // For an assignment or pointer-to-member operation, just care
1140 // about the LHS.
1141 if (op->isAssignmentOp() || op->isPtrMemOp())
1142 return isBlockVarRef(op->getLHS());
1144 // For a comma, just care about the RHS.
1145 if (op->getOpcode() == BO_Comma)
1146 return isBlockVarRef(op->getRHS());
1148 // FIXME: pointer arithmetic?
1149 return false;
1151 // Check both sides of a conditional operator.
1152 } else if (const AbstractConditionalOperator *op
1153 = dyn_cast<AbstractConditionalOperator>(E)) {
1154 return isBlockVarRef(op->getTrueExpr())
1155 || isBlockVarRef(op->getFalseExpr());
1157 // OVEs are required to support BinaryConditionalOperators.
1158 } else if (const OpaqueValueExpr *op
1159 = dyn_cast<OpaqueValueExpr>(E)) {
1160 if (const Expr *src = op->getSourceExpr())
1161 return isBlockVarRef(src);
1163 // Casts are necessary to get things like (*(int*)&var) = foo().
1164 // We don't really care about the kind of cast here, except
1165 // we don't want to look through l2r casts, because it's okay
1166 // to get the *value* in a __block variable.
1167 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1168 if (cast->getCastKind() == CK_LValueToRValue)
1169 return false;
1170 return isBlockVarRef(cast->getSubExpr());
1172 // Handle unary operators. Again, just aggressively look through
1173 // it, ignoring the operation.
1174 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1175 return isBlockVarRef(uop->getSubExpr());
1177 // Look into the base of a field access.
1178 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1179 return isBlockVarRef(mem->getBase());
1181 // Look into the base of a subscript.
1182 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1183 return isBlockVarRef(sub->getBase());
1186 return false;
1189 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1190 // For an assignment to work, the value on the right has
1191 // to be compatible with the value on the left.
1192 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1193 E->getRHS()->getType())
1194 && "Invalid assignment");
1196 // If the LHS might be a __block variable, and the RHS can
1197 // potentially cause a block copy, we need to evaluate the RHS first
1198 // so that the assignment goes the right place.
1199 // This is pretty semantically fragile.
1200 if (isBlockVarRef(E->getLHS()) &&
1201 E->getRHS()->HasSideEffects(CGF.getContext())) {
1202 // Ensure that we have a destination, and evaluate the RHS into that.
1203 EnsureDest(E->getRHS()->getType());
1204 Visit(E->getRHS());
1206 // Now emit the LHS and copy into it.
1207 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1209 // That copy is an atomic copy if the LHS is atomic.
1210 if (LHS.getType()->isAtomicType() ||
1211 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1212 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1213 return;
1216 EmitCopy(E->getLHS()->getType(),
1217 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1218 needsGC(E->getLHS()->getType()),
1219 AggValueSlot::IsAliased,
1220 AggValueSlot::MayOverlap),
1221 Dest);
1222 return;
1225 LValue LHS = CGF.EmitLValue(E->getLHS());
1227 // If we have an atomic type, evaluate into the destination and then
1228 // do an atomic copy.
1229 if (LHS.getType()->isAtomicType() ||
1230 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1231 EnsureDest(E->getRHS()->getType());
1232 Visit(E->getRHS());
1233 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1234 return;
1237 // Codegen the RHS so that it stores directly into the LHS.
1238 AggValueSlot LHSSlot = AggValueSlot::forLValue(
1239 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1240 AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1241 // A non-volatile aggregate destination might have volatile member.
1242 if (!LHSSlot.isVolatile() &&
1243 CGF.hasVolatileMember(E->getLHS()->getType()))
1244 LHSSlot.setVolatile(true);
1246 CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1248 // Copy into the destination if the assignment isn't ignored.
1249 EmitFinalDestCopy(E->getType(), LHS);
1251 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1252 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1253 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1254 E->getType());
1257 void AggExprEmitter::
1258 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1259 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1260 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1261 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1263 // Bind the common expression if necessary.
1264 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1266 CodeGenFunction::ConditionalEvaluation eval(CGF);
1267 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1268 CGF.getProfileCount(E));
1270 // Save whether the destination's lifetime is externally managed.
1271 bool isExternallyDestructed = Dest.isExternallyDestructed();
1272 bool destructNonTrivialCStruct =
1273 !isExternallyDestructed &&
1274 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1275 isExternallyDestructed |= destructNonTrivialCStruct;
1276 Dest.setExternallyDestructed(isExternallyDestructed);
1278 eval.begin(CGF);
1279 CGF.EmitBlock(LHSBlock);
1280 CGF.incrementProfileCounter(E);
1281 Visit(E->getTrueExpr());
1282 eval.end(CGF);
1284 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1285 CGF.Builder.CreateBr(ContBlock);
1287 // If the result of an agg expression is unused, then the emission
1288 // of the LHS might need to create a destination slot. That's fine
1289 // with us, and we can safely emit the RHS into the same slot, but
1290 // we shouldn't claim that it's already being destructed.
1291 Dest.setExternallyDestructed(isExternallyDestructed);
1293 eval.begin(CGF);
1294 CGF.EmitBlock(RHSBlock);
1295 Visit(E->getFalseExpr());
1296 eval.end(CGF);
1298 if (destructNonTrivialCStruct)
1299 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1300 E->getType());
1302 CGF.EmitBlock(ContBlock);
1305 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1306 Visit(CE->getChosenSubExpr());
1309 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1310 Address ArgValue = Address::invalid();
1311 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1313 // If EmitVAArg fails, emit an error.
1314 if (!ArgPtr.isValid()) {
1315 CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1316 return;
1319 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1322 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1323 // Ensure that we have a slot, but if we already do, remember
1324 // whether it was externally destructed.
1325 bool wasExternallyDestructed = Dest.isExternallyDestructed();
1326 EnsureDest(E->getType());
1328 // We're going to push a destructor if there isn't already one.
1329 Dest.setExternallyDestructed();
1331 Visit(E->getSubExpr());
1333 // Push that destructor we promised.
1334 if (!wasExternallyDestructed)
1335 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1338 void
1339 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1340 AggValueSlot Slot = EnsureSlot(E->getType());
1341 CGF.EmitCXXConstructExpr(E, Slot);
1344 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1345 const CXXInheritedCtorInitExpr *E) {
1346 AggValueSlot Slot = EnsureSlot(E->getType());
1347 CGF.EmitInheritedCXXConstructorCall(
1348 E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1349 E->inheritedFromVBase(), E);
1352 void
1353 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1354 AggValueSlot Slot = EnsureSlot(E->getType());
1355 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1357 // We'll need to enter cleanup scopes in case any of the element
1358 // initializers throws an exception.
1359 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1360 llvm::Instruction *CleanupDominator = nullptr;
1362 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1363 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1364 e = E->capture_init_end();
1365 i != e; ++i, ++CurField) {
1366 // Emit initialization
1367 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1368 if (CurField->hasCapturedVLAType()) {
1369 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1370 continue;
1373 EmitInitializationToLValue(*i, LV);
1375 // Push a destructor if necessary.
1376 if (QualType::DestructionKind DtorKind =
1377 CurField->getType().isDestructedType()) {
1378 assert(LV.isSimple());
1379 if (CGF.needsEHCleanup(DtorKind)) {
1380 if (!CleanupDominator)
1381 CleanupDominator = CGF.Builder.CreateAlignedLoad(
1382 CGF.Int8Ty,
1383 llvm::Constant::getNullValue(CGF.Int8PtrTy),
1384 CharUnits::One()); // placeholder
1386 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1387 CGF.getDestroyer(DtorKind), false);
1388 Cleanups.push_back(CGF.EHStack.stable_begin());
1393 // Deactivate all the partial cleanups in reverse order, which
1394 // generally means popping them.
1395 for (unsigned i = Cleanups.size(); i != 0; --i)
1396 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1398 // Destroy the placeholder if we made one.
1399 if (CleanupDominator)
1400 CleanupDominator->eraseFromParent();
1403 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1404 CodeGenFunction::RunCleanupsScope cleanups(CGF);
1405 Visit(E->getSubExpr());
1408 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1409 QualType T = E->getType();
1410 AggValueSlot Slot = EnsureSlot(T);
1411 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1414 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1415 QualType T = E->getType();
1416 AggValueSlot Slot = EnsureSlot(T);
1417 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1420 /// Determine whether the given cast kind is known to always convert values
1421 /// with all zero bits in their value representation to values with all zero
1422 /// bits in their value representation.
1423 static bool castPreservesZero(const CastExpr *CE) {
1424 switch (CE->getCastKind()) {
1425 // No-ops.
1426 case CK_NoOp:
1427 case CK_UserDefinedConversion:
1428 case CK_ConstructorConversion:
1429 case CK_BitCast:
1430 case CK_ToUnion:
1431 case CK_ToVoid:
1432 // Conversions between (possibly-complex) integral, (possibly-complex)
1433 // floating-point, and bool.
1434 case CK_BooleanToSignedIntegral:
1435 case CK_FloatingCast:
1436 case CK_FloatingComplexCast:
1437 case CK_FloatingComplexToBoolean:
1438 case CK_FloatingComplexToIntegralComplex:
1439 case CK_FloatingComplexToReal:
1440 case CK_FloatingRealToComplex:
1441 case CK_FloatingToBoolean:
1442 case CK_FloatingToIntegral:
1443 case CK_IntegralCast:
1444 case CK_IntegralComplexCast:
1445 case CK_IntegralComplexToBoolean:
1446 case CK_IntegralComplexToFloatingComplex:
1447 case CK_IntegralComplexToReal:
1448 case CK_IntegralRealToComplex:
1449 case CK_IntegralToBoolean:
1450 case CK_IntegralToFloating:
1451 // Reinterpreting integers as pointers and vice versa.
1452 case CK_IntegralToPointer:
1453 case CK_PointerToIntegral:
1454 // Language extensions.
1455 case CK_VectorSplat:
1456 case CK_MatrixCast:
1457 case CK_NonAtomicToAtomic:
1458 case CK_AtomicToNonAtomic:
1459 return true;
1461 case CK_BaseToDerivedMemberPointer:
1462 case CK_DerivedToBaseMemberPointer:
1463 case CK_MemberPointerToBoolean:
1464 case CK_NullToMemberPointer:
1465 case CK_ReinterpretMemberPointer:
1466 // FIXME: ABI-dependent.
1467 return false;
1469 case CK_AnyPointerToBlockPointerCast:
1470 case CK_BlockPointerToObjCPointerCast:
1471 case CK_CPointerToObjCPointerCast:
1472 case CK_ObjCObjectLValueCast:
1473 case CK_IntToOCLSampler:
1474 case CK_ZeroToOCLOpaqueType:
1475 // FIXME: Check these.
1476 return false;
1478 case CK_FixedPointCast:
1479 case CK_FixedPointToBoolean:
1480 case CK_FixedPointToFloating:
1481 case CK_FixedPointToIntegral:
1482 case CK_FloatingToFixedPoint:
1483 case CK_IntegralToFixedPoint:
1484 // FIXME: Do all fixed-point types represent zero as all 0 bits?
1485 return false;
1487 case CK_AddressSpaceConversion:
1488 case CK_BaseToDerived:
1489 case CK_DerivedToBase:
1490 case CK_Dynamic:
1491 case CK_NullToPointer:
1492 case CK_PointerToBoolean:
1493 // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1494 // same representation in all involved address spaces.
1495 return false;
1497 case CK_ARCConsumeObject:
1498 case CK_ARCExtendBlockObject:
1499 case CK_ARCProduceObject:
1500 case CK_ARCReclaimReturnedObject:
1501 case CK_CopyAndAutoreleaseBlockObject:
1502 case CK_ArrayToPointerDecay:
1503 case CK_FunctionToPointerDecay:
1504 case CK_BuiltinFnToFnPtr:
1505 case CK_Dependent:
1506 case CK_LValueBitCast:
1507 case CK_LValueToRValue:
1508 case CK_LValueToRValueBitCast:
1509 case CK_UncheckedDerivedToBase:
1510 return false;
1512 llvm_unreachable("Unhandled clang::CastKind enum");
1515 /// isSimpleZero - If emitting this value will obviously just cause a store of
1516 /// zero to memory, return true. This can return false if uncertain, so it just
1517 /// handles simple cases.
1518 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1519 E = E->IgnoreParens();
1520 while (auto *CE = dyn_cast<CastExpr>(E)) {
1521 if (!castPreservesZero(CE))
1522 break;
1523 E = CE->getSubExpr()->IgnoreParens();
1526 // 0
1527 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1528 return IL->getValue() == 0;
1529 // +0.0
1530 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1531 return FL->getValue().isPosZero();
1532 // int()
1533 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1534 CGF.getTypes().isZeroInitializable(E->getType()))
1535 return true;
1536 // (int*)0 - Null pointer expressions.
1537 if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1538 return ICE->getCastKind() == CK_NullToPointer &&
1539 CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1540 !E->HasSideEffects(CGF.getContext());
1541 // '\0'
1542 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1543 return CL->getValue() == 0;
1545 // Otherwise, hard case: conservatively return false.
1546 return false;
1550 void
1551 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1552 QualType type = LV.getType();
1553 // FIXME: Ignore result?
1554 // FIXME: Are initializers affected by volatile?
1555 if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1556 // Storing "i32 0" to a zero'd memory location is a noop.
1557 return;
1558 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1559 return EmitNullInitializationToLValue(LV);
1560 } else if (isa<NoInitExpr>(E)) {
1561 // Do nothing.
1562 return;
1563 } else if (type->isReferenceType()) {
1564 RValue RV = CGF.EmitReferenceBindingToExpr(E);
1565 return CGF.EmitStoreThroughLValue(RV, LV);
1568 switch (CGF.getEvaluationKind(type)) {
1569 case TEK_Complex:
1570 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1571 return;
1572 case TEK_Aggregate:
1573 CGF.EmitAggExpr(
1574 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1575 AggValueSlot::DoesNotNeedGCBarriers,
1576 AggValueSlot::IsNotAliased,
1577 AggValueSlot::MayOverlap, Dest.isZeroed()));
1578 return;
1579 case TEK_Scalar:
1580 if (LV.isSimple()) {
1581 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1582 } else {
1583 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1585 return;
1587 llvm_unreachable("bad evaluation kind");
1590 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1591 QualType type = lv.getType();
1593 // If the destination slot is already zeroed out before the aggregate is
1594 // copied into it, we don't have to emit any zeros here.
1595 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1596 return;
1598 if (CGF.hasScalarEvaluationKind(type)) {
1599 // For non-aggregates, we can store the appropriate null constant.
1600 llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1601 // Note that the following is not equivalent to
1602 // EmitStoreThroughBitfieldLValue for ARC types.
1603 if (lv.isBitField()) {
1604 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1605 } else {
1606 assert(lv.isSimple());
1607 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1609 } else {
1610 // There's a potential optimization opportunity in combining
1611 // memsets; that would be easy for arrays, but relatively
1612 // difficult for structures with the current code.
1613 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1617 void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) {
1618 VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
1619 E->getInitializedFieldInUnion(),
1620 E->getArrayFiller());
1623 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1624 if (E->hadArrayRangeDesignator())
1625 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1627 if (E->isTransparent())
1628 return Visit(E->getInit(0));
1630 VisitCXXParenListOrInitListExpr(
1631 E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller());
1634 void AggExprEmitter::VisitCXXParenListOrInitListExpr(
1635 Expr *ExprToVisit, ArrayRef<Expr *> InitExprs,
1636 FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) {
1637 #if 0
1638 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
1639 // (Length of globals? Chunks of zeroed-out space?).
1641 // If we can, prefer a copy from a global; this is a lot less code for long
1642 // globals, and it's easier for the current optimizers to analyze.
1643 if (llvm::Constant *C =
1644 CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) {
1645 llvm::GlobalVariable* GV =
1646 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1647 llvm::GlobalValue::InternalLinkage, C, "");
1648 EmitFinalDestCopy(ExprToVisit->getType(),
1649 CGF.MakeAddrLValue(GV, ExprToVisit->getType()));
1650 return;
1652 #endif
1654 AggValueSlot Dest = EnsureSlot(ExprToVisit->getType());
1656 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), ExprToVisit->getType());
1658 // Handle initialization of an array.
1659 if (ExprToVisit->getType()->isConstantArrayType()) {
1660 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1661 EmitArrayInit(Dest.getAddress(), AType, ExprToVisit->getType(), ExprToVisit,
1662 InitExprs, ArrayFiller);
1663 return;
1664 } else if (ExprToVisit->getType()->isVariableArrayType()) {
1665 // A variable array type that has an initializer can only do empty
1666 // initialization. And because this feature is not exposed as an extension
1667 // in C++, we can safely memset the array memory to zero.
1668 assert(InitExprs.size() == 0 &&
1669 "you can only use an empty initializer with VLAs");
1670 CGF.EmitNullInitialization(Dest.getAddress(), ExprToVisit->getType());
1671 return;
1674 assert(ExprToVisit->getType()->isRecordType() &&
1675 "Only support structs/unions here!");
1677 // Do struct initialization; this code just sets each individual member
1678 // to the approprate value. This makes bitfield support automatic;
1679 // the disadvantage is that the generated code is more difficult for
1680 // the optimizer, especially with bitfields.
1681 unsigned NumInitElements = InitExprs.size();
1682 RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl();
1684 // We'll need to enter cleanup scopes in case any of the element
1685 // initializers throws an exception.
1686 SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1687 llvm::Instruction *cleanupDominator = nullptr;
1688 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1689 cleanups.push_back(cleanup);
1690 if (!cleanupDominator) // create placeholder once needed
1691 cleanupDominator = CGF.Builder.CreateAlignedLoad(
1692 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1693 CharUnits::One());
1696 unsigned curInitIndex = 0;
1698 // Emit initialization of base classes.
1699 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1700 assert(NumInitElements >= CXXRD->getNumBases() &&
1701 "missing initializer for base class");
1702 for (auto &Base : CXXRD->bases()) {
1703 assert(!Base.isVirtual() && "should not see vbases here");
1704 auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1705 Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1706 Dest.getAddress(), CXXRD, BaseRD,
1707 /*isBaseVirtual*/ false);
1708 AggValueSlot AggSlot = AggValueSlot::forAddr(
1709 V, Qualifiers(),
1710 AggValueSlot::IsDestructed,
1711 AggValueSlot::DoesNotNeedGCBarriers,
1712 AggValueSlot::IsNotAliased,
1713 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1714 CGF.EmitAggExpr(InitExprs[curInitIndex++], AggSlot);
1716 if (QualType::DestructionKind dtorKind =
1717 Base.getType().isDestructedType()) {
1718 CGF.pushDestroy(dtorKind, V, Base.getType());
1719 addCleanup(CGF.EHStack.stable_begin());
1724 // Prepare a 'this' for CXXDefaultInitExprs.
1725 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1727 if (record->isUnion()) {
1728 // Only initialize one field of a union. The field itself is
1729 // specified by the initializer list.
1730 if (!InitializedFieldInUnion) {
1731 // Empty union; we have nothing to do.
1733 #ifndef NDEBUG
1734 // Make sure that it's really an empty and not a failure of
1735 // semantic analysis.
1736 for (const auto *Field : record->fields())
1737 assert((Field->isUnnamedBitfield() || Field->isAnonymousStructOrUnion()) && "Only unnamed bitfields or ananymous class allowed");
1738 #endif
1739 return;
1742 // FIXME: volatility
1743 FieldDecl *Field = InitializedFieldInUnion;
1745 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1746 if (NumInitElements) {
1747 // Store the initializer into the field
1748 EmitInitializationToLValue(InitExprs[0], FieldLoc);
1749 } else {
1750 // Default-initialize to null.
1751 EmitNullInitializationToLValue(FieldLoc);
1754 return;
1757 // Here we iterate over the fields; this makes it simpler to both
1758 // default-initialize fields and skip over unnamed fields.
1759 for (const auto *field : record->fields()) {
1760 // We're done once we hit the flexible array member.
1761 if (field->getType()->isIncompleteArrayType())
1762 break;
1764 // Always skip anonymous bitfields.
1765 if (field->isUnnamedBitfield())
1766 continue;
1768 // We're done if we reach the end of the explicit initializers, we
1769 // have a zeroed object, and the rest of the fields are
1770 // zero-initializable.
1771 if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1772 CGF.getTypes().isZeroInitializable(ExprToVisit->getType()))
1773 break;
1776 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1777 // We never generate write-barries for initialized fields.
1778 LV.setNonGC(true);
1780 if (curInitIndex < NumInitElements) {
1781 // Store the initializer into the field.
1782 EmitInitializationToLValue(InitExprs[curInitIndex++], LV);
1783 } else {
1784 // We're out of initializers; default-initialize to null
1785 EmitNullInitializationToLValue(LV);
1788 // Push a destructor if necessary.
1789 // FIXME: if we have an array of structures, all explicitly
1790 // initialized, we can end up pushing a linear number of cleanups.
1791 bool pushedCleanup = false;
1792 if (QualType::DestructionKind dtorKind
1793 = field->getType().isDestructedType()) {
1794 assert(LV.isSimple());
1795 if (CGF.needsEHCleanup(dtorKind)) {
1796 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1797 CGF.getDestroyer(dtorKind), false);
1798 addCleanup(CGF.EHStack.stable_begin());
1799 pushedCleanup = true;
1803 // If the GEP didn't get used because of a dead zero init or something
1804 // else, clean it up for -O0 builds and general tidiness.
1805 if (!pushedCleanup && LV.isSimple())
1806 if (llvm::GetElementPtrInst *GEP =
1807 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1808 if (GEP->use_empty())
1809 GEP->eraseFromParent();
1812 // Deactivate all the partial cleanups in reverse order, which
1813 // generally means popping them.
1814 assert((cleanupDominator || cleanups.empty()) &&
1815 "Missing cleanupDominator before deactivating cleanup blocks");
1816 for (unsigned i = cleanups.size(); i != 0; --i)
1817 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1819 // Destroy the placeholder if we made one.
1820 if (cleanupDominator)
1821 cleanupDominator->eraseFromParent();
1824 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1825 llvm::Value *outerBegin) {
1826 // Emit the common subexpression.
1827 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1829 Address destPtr = EnsureSlot(E->getType()).getAddress();
1830 uint64_t numElements = E->getArraySize().getZExtValue();
1832 if (!numElements)
1833 return;
1835 // destPtr is an array*. Construct an elementType* by drilling down a level.
1836 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1837 llvm::Value *indices[] = {zero, zero};
1838 llvm::Value *begin = Builder.CreateInBoundsGEP(
1839 destPtr.getElementType(), destPtr.getPointer(), indices,
1840 "arrayinit.begin");
1842 // Prepare to special-case multidimensional array initialization: we avoid
1843 // emitting multiple destructor loops in that case.
1844 if (!outerBegin)
1845 outerBegin = begin;
1846 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1848 QualType elementType =
1849 CGF.getContext().getAsArrayType(E->getType())->getElementType();
1850 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1851 CharUnits elementAlign =
1852 destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1853 llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
1855 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1856 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1858 // Jump into the body.
1859 CGF.EmitBlock(bodyBB);
1860 llvm::PHINode *index =
1861 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1862 index->addIncoming(zero, entryBB);
1863 llvm::Value *element =
1864 Builder.CreateInBoundsGEP(llvmElementType, begin, index);
1866 // Prepare for a cleanup.
1867 QualType::DestructionKind dtorKind = elementType.isDestructedType();
1868 EHScopeStack::stable_iterator cleanup;
1869 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1870 if (outerBegin->getType() != element->getType())
1871 outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1872 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1873 elementAlign,
1874 CGF.getDestroyer(dtorKind));
1875 cleanup = CGF.EHStack.stable_begin();
1876 } else {
1877 dtorKind = QualType::DK_none;
1880 // Emit the actual filler expression.
1882 // Temporaries created in an array initialization loop are destroyed
1883 // at the end of each iteration.
1884 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1885 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1886 LValue elementLV = CGF.MakeAddrLValue(
1887 Address(element, llvmElementType, elementAlign), elementType);
1889 if (InnerLoop) {
1890 // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1891 auto elementSlot = AggValueSlot::forLValue(
1892 elementLV, CGF, AggValueSlot::IsDestructed,
1893 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1894 AggValueSlot::DoesNotOverlap);
1895 AggExprEmitter(CGF, elementSlot, false)
1896 .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1897 } else
1898 EmitInitializationToLValue(E->getSubExpr(), elementLV);
1901 // Move on to the next element.
1902 llvm::Value *nextIndex = Builder.CreateNUWAdd(
1903 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1904 index->addIncoming(nextIndex, Builder.GetInsertBlock());
1906 // Leave the loop if we're done.
1907 llvm::Value *done = Builder.CreateICmpEQ(
1908 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1909 "arrayinit.done");
1910 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1911 Builder.CreateCondBr(done, endBB, bodyBB);
1913 CGF.EmitBlock(endBB);
1915 // Leave the partial-array cleanup if we entered one.
1916 if (dtorKind)
1917 CGF.DeactivateCleanupBlock(cleanup, index);
1920 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1921 AggValueSlot Dest = EnsureSlot(E->getType());
1923 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1924 EmitInitializationToLValue(E->getBase(), DestLV);
1925 VisitInitListExpr(E->getUpdater());
1928 //===----------------------------------------------------------------------===//
1929 // Entry Points into this File
1930 //===----------------------------------------------------------------------===//
1932 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1933 /// non-zero bytes that will be stored when outputting the initializer for the
1934 /// specified initializer expression.
1935 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1936 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1937 E = MTE->getSubExpr();
1938 E = E->IgnoreParenNoopCasts(CGF.getContext());
1940 // 0 and 0.0 won't require any non-zero stores!
1941 if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1943 // If this is an initlist expr, sum up the size of sizes of the (present)
1944 // elements. If this is something weird, assume the whole thing is non-zero.
1945 const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1946 while (ILE && ILE->isTransparent())
1947 ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1948 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1949 return CGF.getContext().getTypeSizeInChars(E->getType());
1951 // InitListExprs for structs have to be handled carefully. If there are
1952 // reference members, we need to consider the size of the reference, not the
1953 // referencee. InitListExprs for unions and arrays can't have references.
1954 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1955 if (!RT->isUnionType()) {
1956 RecordDecl *SD = RT->getDecl();
1957 CharUnits NumNonZeroBytes = CharUnits::Zero();
1959 unsigned ILEElement = 0;
1960 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1961 while (ILEElement != CXXRD->getNumBases())
1962 NumNonZeroBytes +=
1963 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1964 for (const auto *Field : SD->fields()) {
1965 // We're done once we hit the flexible array member or run out of
1966 // InitListExpr elements.
1967 if (Field->getType()->isIncompleteArrayType() ||
1968 ILEElement == ILE->getNumInits())
1969 break;
1970 if (Field->isUnnamedBitfield())
1971 continue;
1973 const Expr *E = ILE->getInit(ILEElement++);
1975 // Reference values are always non-null and have the width of a pointer.
1976 if (Field->getType()->isReferenceType())
1977 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1978 CGF.getTarget().getPointerWidth(LangAS::Default));
1979 else
1980 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1983 return NumNonZeroBytes;
1987 // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1988 CharUnits NumNonZeroBytes = CharUnits::Zero();
1989 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1990 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1991 return NumNonZeroBytes;
1994 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1995 /// zeros in it, emit a memset and avoid storing the individual zeros.
1997 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1998 CodeGenFunction &CGF) {
1999 // If the slot is already known to be zeroed, nothing to do. Don't mess with
2000 // volatile stores.
2001 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
2002 return;
2004 // C++ objects with a user-declared constructor don't need zero'ing.
2005 if (CGF.getLangOpts().CPlusPlus)
2006 if (const RecordType *RT = CGF.getContext()
2007 .getBaseElementType(E->getType())->getAs<RecordType>()) {
2008 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2009 if (RD->hasUserDeclaredConstructor())
2010 return;
2013 // If the type is 16-bytes or smaller, prefer individual stores over memset.
2014 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
2015 if (Size <= CharUnits::fromQuantity(16))
2016 return;
2018 // Check to see if over 3/4 of the initializer are known to be zero. If so,
2019 // we prefer to emit memset + individual stores for the rest.
2020 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
2021 if (NumNonZeroBytes*4 > Size)
2022 return;
2024 // Okay, it seems like a good idea to use an initial memset, emit the call.
2025 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
2027 Address Loc = Slot.getAddress();
2028 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
2029 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
2031 // Tell the AggExprEmitter that the slot is known zero.
2032 Slot.setZeroed();
2038 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
2039 /// type. The result is computed into DestPtr. Note that if DestPtr is null,
2040 /// the value of the aggregate expression is not needed. If VolatileDest is
2041 /// true, DestPtr cannot be 0.
2042 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
2043 assert(E && hasAggregateEvaluationKind(E->getType()) &&
2044 "Invalid aggregate expression to emit");
2045 assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
2046 "slot has bits but no address");
2048 // Optimize the slot if possible.
2049 CheckAggExprForMemSetUse(Slot, E, *this);
2051 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
2054 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
2055 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2056 Address Temp = CreateMemTemp(E->getType());
2057 LValue LV = MakeAddrLValue(Temp, E->getType());
2058 EmitAggExpr(E, AggValueSlot::forLValue(
2059 LV, *this, AggValueSlot::IsNotDestructed,
2060 AggValueSlot::DoesNotNeedGCBarriers,
2061 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
2062 return LV;
2065 AggValueSlot::Overlap_t
2066 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2067 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2068 return AggValueSlot::DoesNotOverlap;
2070 // If the field lies entirely within the enclosing class's nvsize, its tail
2071 // padding cannot overlap any already-initialized object. (The only subobjects
2072 // with greater addresses that might already be initialized are vbases.)
2073 const RecordDecl *ClassRD = FD->getParent();
2074 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2075 if (Layout.getFieldOffset(FD->getFieldIndex()) +
2076 getContext().getTypeSize(FD->getType()) <=
2077 (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2078 return AggValueSlot::DoesNotOverlap;
2080 // The tail padding may contain values we need to preserve.
2081 return AggValueSlot::MayOverlap;
2084 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2085 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2086 // If the most-derived object is a field declared with [[no_unique_address]],
2087 // the tail padding of any virtual base could be reused for other subobjects
2088 // of that field's class.
2089 if (IsVirtual)
2090 return AggValueSlot::MayOverlap;
2092 // If the base class is laid out entirely within the nvsize of the derived
2093 // class, its tail padding cannot yet be initialized, so we can issue
2094 // stores at the full width of the base class.
2095 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2096 if (Layout.getBaseClassOffset(BaseRD) +
2097 getContext().getASTRecordLayout(BaseRD).getSize() <=
2098 Layout.getNonVirtualSize())
2099 return AggValueSlot::DoesNotOverlap;
2101 // The tail padding may contain values we need to preserve.
2102 return AggValueSlot::MayOverlap;
2105 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2106 AggValueSlot::Overlap_t MayOverlap,
2107 bool isVolatile) {
2108 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2110 Address DestPtr = Dest.getAddress(*this);
2111 Address SrcPtr = Src.getAddress(*this);
2113 if (getLangOpts().CPlusPlus) {
2114 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2115 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2116 assert((Record->hasTrivialCopyConstructor() ||
2117 Record->hasTrivialCopyAssignment() ||
2118 Record->hasTrivialMoveConstructor() ||
2119 Record->hasTrivialMoveAssignment() ||
2120 Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2121 "Trying to aggregate-copy a type without a trivial copy/move "
2122 "constructor or assignment operator");
2123 // Ignore empty classes in C++.
2124 if (Record->isEmpty())
2125 return;
2129 if (getLangOpts().CUDAIsDevice) {
2130 if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2131 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2132 Src))
2133 return;
2134 } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2135 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2136 Src))
2137 return;
2141 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
2142 // C99 6.5.16.1p3, which states "If the value being stored in an object is
2143 // read from another object that overlaps in anyway the storage of the first
2144 // object, then the overlap shall be exact and the two objects shall have
2145 // qualified or unqualified versions of a compatible type."
2147 // memcpy is not defined if the source and destination pointers are exactly
2148 // equal, but other compilers do this optimization, and almost every memcpy
2149 // implementation handles this case safely. If there is a libc that does not
2150 // safely handle this, we can add a target hook.
2152 // Get data size info for this aggregate. Don't copy the tail padding if this
2153 // might be a potentially-overlapping subobject, since the tail padding might
2154 // be occupied by a different object. Otherwise, copying it is fine.
2155 TypeInfoChars TypeInfo;
2156 if (MayOverlap)
2157 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2158 else
2159 TypeInfo = getContext().getTypeInfoInChars(Ty);
2161 llvm::Value *SizeVal = nullptr;
2162 if (TypeInfo.Width.isZero()) {
2163 // But note that getTypeInfo returns 0 for a VLA.
2164 if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2165 getContext().getAsArrayType(Ty))) {
2166 QualType BaseEltTy;
2167 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2168 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2169 assert(!TypeInfo.Width.isZero());
2170 SizeVal = Builder.CreateNUWMul(
2171 SizeVal,
2172 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2175 if (!SizeVal) {
2176 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2179 // FIXME: If we have a volatile struct, the optimizer can remove what might
2180 // appear to be `extra' memory ops:
2182 // volatile struct { int i; } a, b;
2184 // int main() {
2185 // a = b;
2186 // a = b;
2187 // }
2189 // we need to use a different call here. We use isVolatile to indicate when
2190 // either the source or the destination is volatile.
2192 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2193 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2195 // Don't do any of the memmove_collectable tests if GC isn't set.
2196 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2197 // fall through
2198 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2199 RecordDecl *Record = RecordTy->getDecl();
2200 if (Record->hasObjectMember()) {
2201 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2202 SizeVal);
2203 return;
2205 } else if (Ty->isArrayType()) {
2206 QualType BaseType = getContext().getBaseElementType(Ty);
2207 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2208 if (RecordTy->getDecl()->hasObjectMember()) {
2209 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2210 SizeVal);
2211 return;
2216 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2218 // Determine the metadata to describe the position of any padding in this
2219 // memcpy, as well as the TBAA tags for the members of the struct, in case
2220 // the optimizer wishes to expand it in to scalar memory operations.
2221 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2222 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2224 if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2225 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2226 Dest.getTBAAInfo(), Src.getTBAAInfo());
2227 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);