[AMDGPU][AsmParser][NFC] Get rid of custom default operand handlers.
[llvm-project.git] / clang / lib / CodeGen / CGExprCXX.cpp
blobc37fa3f75c234cd5f5357085d41dcb4d49e92ae9
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
11 //===----------------------------------------------------------------------===//
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
27 namespace {
28 struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
35 static MemberCallInfo
36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 auto *MD = cast<CXXMethodDecl>(GD.getDecl());
42 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
43 isa<CXXOperatorCallExpr>(CE));
44 assert(MD->isInstance() &&
45 "Trying to emit a member or operator call expr on a static method!");
47 // Push the this ptr.
48 const CXXRecordDecl *RD =
49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
50 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
52 // If there is an implicit parameter (e.g. VTT), emit it.
53 if (ImplicitParam) {
54 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
59 unsigned PrefixSize = Args.size() - 1;
61 // And the rest of the call args.
62 if (RtlArgs) {
63 // Special case: if the caller emitted the arguments right-to-left already
64 // (prior to emitting the *this argument), we're done. This happens for
65 // assignment operators.
66 Args.addFrom(*RtlArgs);
67 } else if (CE) {
68 // Special case: skip first argument of CXXOperatorCall (it is "this").
69 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
70 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
71 CE->getDirectCallee());
72 } else {
73 assert(
74 FPT->getNumParams() == 0 &&
75 "No CallExpr specified for function with non-zero number of arguments");
77 return {required, PrefixSize};
80 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
81 const CXXMethodDecl *MD, const CGCallee &Callee,
82 ReturnValueSlot ReturnValue,
83 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
84 const CallExpr *CE, CallArgList *RtlArgs) {
85 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
86 CallArgList Args;
87 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
88 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
89 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
90 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
91 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
92 CE && CE == MustTailCall,
93 CE ? CE->getExprLoc() : SourceLocation());
96 RValue CodeGenFunction::EmitCXXDestructorCall(
97 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
98 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
99 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
101 assert(!ThisTy.isNull());
102 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
103 "Pointer/Object mixup");
105 LangAS SrcAS = ThisTy.getAddressSpace();
106 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
107 if (SrcAS != DstAS) {
108 QualType DstTy = DtorDecl->getThisType();
109 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
110 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
111 NewType);
114 CallArgList Args;
115 commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam,
116 ImplicitParamTy, CE, Args, nullptr);
117 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
118 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
119 CE ? CE->getExprLoc() : SourceLocation{});
122 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
123 const CXXPseudoDestructorExpr *E) {
124 QualType DestroyedType = E->getDestroyedType();
125 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
126 // Automatic Reference Counting:
127 // If the pseudo-expression names a retainable object with weak or
128 // strong lifetime, the object shall be released.
129 Expr *BaseExpr = E->getBase();
130 Address BaseValue = Address::invalid();
131 Qualifiers BaseQuals;
133 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
134 if (E->isArrow()) {
135 BaseValue = EmitPointerWithAlignment(BaseExpr);
136 const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
137 BaseQuals = PTy->getPointeeType().getQualifiers();
138 } else {
139 LValue BaseLV = EmitLValue(BaseExpr);
140 BaseValue = BaseLV.getAddress(*this);
141 QualType BaseTy = BaseExpr->getType();
142 BaseQuals = BaseTy.getQualifiers();
145 switch (DestroyedType.getObjCLifetime()) {
146 case Qualifiers::OCL_None:
147 case Qualifiers::OCL_ExplicitNone:
148 case Qualifiers::OCL_Autoreleasing:
149 break;
151 case Qualifiers::OCL_Strong:
152 EmitARCRelease(Builder.CreateLoad(BaseValue,
153 DestroyedType.isVolatileQualified()),
154 ARCPreciseLifetime);
155 break;
157 case Qualifiers::OCL_Weak:
158 EmitARCDestroyWeak(BaseValue);
159 break;
161 } else {
162 // C++ [expr.pseudo]p1:
163 // The result shall only be used as the operand for the function call
164 // operator (), and the result of such a call has type void. The only
165 // effect is the evaluation of the postfix-expression before the dot or
166 // arrow.
167 EmitIgnoredExpr(E->getBase());
170 return RValue::get(nullptr);
173 static CXXRecordDecl *getCXXRecord(const Expr *E) {
174 QualType T = E->getType();
175 if (const PointerType *PTy = T->getAs<PointerType>())
176 T = PTy->getPointeeType();
177 const RecordType *Ty = T->castAs<RecordType>();
178 return cast<CXXRecordDecl>(Ty->getDecl());
181 // Note: This function also emit constructor calls to support a MSVC
182 // extensions allowing explicit constructor function call.
183 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
184 ReturnValueSlot ReturnValue) {
185 const Expr *callee = CE->getCallee()->IgnoreParens();
187 if (isa<BinaryOperator>(callee))
188 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
190 const MemberExpr *ME = cast<MemberExpr>(callee);
191 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
193 if (MD->isStatic()) {
194 // The method is static, emit it as we would a regular call.
195 CGCallee callee =
196 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
197 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
198 ReturnValue);
201 bool HasQualifier = ME->hasQualifier();
202 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
203 bool IsArrow = ME->isArrow();
204 const Expr *Base = ME->getBase();
206 return EmitCXXMemberOrOperatorMemberCallExpr(
207 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
210 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
211 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
212 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
213 const Expr *Base) {
214 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
216 // Compute the object pointer.
217 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
219 const CXXMethodDecl *DevirtualizedMethod = nullptr;
220 if (CanUseVirtualCall &&
221 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
222 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
223 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
224 assert(DevirtualizedMethod);
225 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
226 const Expr *Inner = Base->IgnoreParenBaseCasts();
227 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
228 MD->getReturnType().getCanonicalType())
229 // If the return types are not the same, this might be a case where more
230 // code needs to run to compensate for it. For example, the derived
231 // method might return a type that inherits form from the return
232 // type of MD and has a prefix.
233 // For now we just avoid devirtualizing these covariant cases.
234 DevirtualizedMethod = nullptr;
235 else if (getCXXRecord(Inner) == DevirtualizedClass)
236 // If the class of the Inner expression is where the dynamic method
237 // is defined, build the this pointer from it.
238 Base = Inner;
239 else if (getCXXRecord(Base) != DevirtualizedClass) {
240 // If the method is defined in a class that is not the best dynamic
241 // one or the one of the full expression, we would have to build
242 // a derived-to-base cast to compute the correct this pointer, but
243 // we don't have support for that yet, so do a virtual call.
244 DevirtualizedMethod = nullptr;
248 bool TrivialForCodegen =
249 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
250 bool TrivialAssignment =
251 TrivialForCodegen &&
252 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
253 !MD->getParent()->mayInsertExtraPadding();
255 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
256 // operator before the LHS.
257 CallArgList RtlArgStorage;
258 CallArgList *RtlArgs = nullptr;
259 LValue TrivialAssignmentRHS;
260 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
261 if (OCE->isAssignmentOp()) {
262 if (TrivialAssignment) {
263 TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
264 } else {
265 RtlArgs = &RtlArgStorage;
266 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
267 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
268 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
273 LValue This;
274 if (IsArrow) {
275 LValueBaseInfo BaseInfo;
276 TBAAAccessInfo TBAAInfo;
277 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
278 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
279 } else {
280 This = EmitLValue(Base);
283 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
284 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
285 // constructing a new complete object of type Ctor.
286 assert(!RtlArgs);
287 assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
288 CallArgList Args;
289 commonEmitCXXMemberOrOperatorCall(
290 *this, {Ctor, Ctor_Complete}, This.getPointer(*this),
291 /*ImplicitParam=*/nullptr,
292 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
294 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
295 /*Delegating=*/false, This.getAddress(*this), Args,
296 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
297 /*NewPointerIsChecked=*/false);
298 return RValue::get(nullptr);
301 if (TrivialForCodegen) {
302 if (isa<CXXDestructorDecl>(MD))
303 return RValue::get(nullptr);
305 if (TrivialAssignment) {
306 // We don't like to generate the trivial copy/move assignment operator
307 // when it isn't necessary; just produce the proper effect here.
308 // It's important that we use the result of EmitLValue here rather than
309 // emitting call arguments, in order to preserve TBAA information from
310 // the RHS.
311 LValue RHS = isa<CXXOperatorCallExpr>(CE)
312 ? TrivialAssignmentRHS
313 : EmitLValue(*CE->arg_begin());
314 EmitAggregateAssign(This, RHS, CE->getType());
315 return RValue::get(This.getPointer(*this));
318 assert(MD->getParent()->mayInsertExtraPadding() &&
319 "unknown trivial member function");
322 // Compute the function type we're calling.
323 const CXXMethodDecl *CalleeDecl =
324 DevirtualizedMethod ? DevirtualizedMethod : MD;
325 const CGFunctionInfo *FInfo = nullptr;
326 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
327 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
328 GlobalDecl(Dtor, Dtor_Complete));
329 else
330 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
332 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
334 // C++11 [class.mfct.non-static]p2:
335 // If a non-static member function of a class X is called for an object that
336 // is not of type X, or of a type derived from X, the behavior is undefined.
337 SourceLocation CallLoc;
338 ASTContext &C = getContext();
339 if (CE)
340 CallLoc = CE->getExprLoc();
342 SanitizerSet SkippedChecks;
343 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
344 auto *IOA = CMCE->getImplicitObjectArgument();
345 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
346 if (IsImplicitObjectCXXThis)
347 SkippedChecks.set(SanitizerKind::Alignment, true);
348 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
349 SkippedChecks.set(SanitizerKind::Null, true);
351 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
352 This.getPointer(*this),
353 C.getRecordType(CalleeDecl->getParent()),
354 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
356 // C++ [class.virtual]p12:
357 // Explicit qualification with the scope operator (5.1) suppresses the
358 // virtual call mechanism.
360 // We also don't emit a virtual call if the base expression has a record type
361 // because then we know what the type is.
362 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
364 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
365 assert(CE->arg_begin() == CE->arg_end() &&
366 "Destructor shouldn't have explicit parameters");
367 assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
368 if (UseVirtualCall) {
369 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
370 This.getAddress(*this),
371 cast<CXXMemberCallExpr>(CE));
372 } else {
373 GlobalDecl GD(Dtor, Dtor_Complete);
374 CGCallee Callee;
375 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
376 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
377 else if (!DevirtualizedMethod)
378 Callee =
379 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
380 else {
381 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
384 QualType ThisTy =
385 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
386 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
387 /*ImplicitParam=*/nullptr,
388 /*ImplicitParamTy=*/QualType(), CE);
390 return RValue::get(nullptr);
393 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
394 // 'CalleeDecl' instead.
396 CGCallee Callee;
397 if (UseVirtualCall) {
398 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
399 } else {
400 if (SanOpts.has(SanitizerKind::CFINVCall) &&
401 MD->getParent()->isDynamicClass()) {
402 llvm::Value *VTable;
403 const CXXRecordDecl *RD;
404 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
405 *this, This.getAddress(*this), CalleeDecl->getParent());
406 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
409 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
410 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
411 else if (!DevirtualizedMethod)
412 Callee =
413 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
414 else {
415 Callee =
416 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
417 GlobalDecl(DevirtualizedMethod));
421 if (MD->isVirtual()) {
422 Address NewThisAddr =
423 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
424 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
425 This.setAddress(NewThisAddr);
428 return EmitCXXMemberOrOperatorCall(
429 CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
430 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
433 RValue
434 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
435 ReturnValueSlot ReturnValue) {
436 const BinaryOperator *BO =
437 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
438 const Expr *BaseExpr = BO->getLHS();
439 const Expr *MemFnExpr = BO->getRHS();
441 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
442 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
443 const auto *RD =
444 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
446 // Emit the 'this' pointer.
447 Address This = Address::invalid();
448 if (BO->getOpcode() == BO_PtrMemI)
449 This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull);
450 else
451 This = EmitLValue(BaseExpr, KnownNonNull).getAddress(*this);
453 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
454 QualType(MPT->getClass(), 0));
456 // Get the member function pointer.
457 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
459 // Ask the ABI to load the callee. Note that This is modified.
460 llvm::Value *ThisPtrForCall = nullptr;
461 CGCallee Callee =
462 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
463 ThisPtrForCall, MemFnPtr, MPT);
465 CallArgList Args;
467 QualType ThisType =
468 getContext().getPointerType(getContext().getTagDeclType(RD));
470 // Push the this ptr.
471 Args.add(RValue::get(ThisPtrForCall), ThisType);
473 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
475 // And the rest of the call args
476 EmitCallArgs(Args, FPT, E->arguments());
477 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
478 /*PrefixSize=*/0),
479 Callee, ReturnValue, Args, nullptr, E == MustTailCall,
480 E->getExprLoc());
483 RValue
484 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
485 const CXXMethodDecl *MD,
486 ReturnValueSlot ReturnValue) {
487 assert(MD->isInstance() &&
488 "Trying to emit a member call expr on a static method!");
489 return EmitCXXMemberOrOperatorMemberCallExpr(
490 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
491 /*IsArrow=*/false, E->getArg(0));
494 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
495 ReturnValueSlot ReturnValue) {
496 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
499 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
500 Address DestPtr,
501 const CXXRecordDecl *Base) {
502 if (Base->isEmpty())
503 return;
505 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
507 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
508 CharUnits NVSize = Layout.getNonVirtualSize();
510 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
511 // present, they are initialized by the most derived class before calling the
512 // constructor.
513 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
514 Stores.emplace_back(CharUnits::Zero(), NVSize);
516 // Each store is split by the existence of a vbptr.
517 CharUnits VBPtrWidth = CGF.getPointerSize();
518 std::vector<CharUnits> VBPtrOffsets =
519 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
520 for (CharUnits VBPtrOffset : VBPtrOffsets) {
521 // Stop before we hit any virtual base pointers located in virtual bases.
522 if (VBPtrOffset >= NVSize)
523 break;
524 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
525 CharUnits LastStoreOffset = LastStore.first;
526 CharUnits LastStoreSize = LastStore.second;
528 CharUnits SplitBeforeOffset = LastStoreOffset;
529 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
530 assert(!SplitBeforeSize.isNegative() && "negative store size!");
531 if (!SplitBeforeSize.isZero())
532 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
534 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
535 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
536 assert(!SplitAfterSize.isNegative() && "negative store size!");
537 if (!SplitAfterSize.isZero())
538 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
541 // If the type contains a pointer to data member we can't memset it to zero.
542 // Instead, create a null constant and copy it to the destination.
543 // TODO: there are other patterns besides zero that we can usefully memset,
544 // like -1, which happens to be the pattern used by member-pointers.
545 // TODO: isZeroInitializable can be over-conservative in the case where a
546 // virtual base contains a member pointer.
547 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
548 if (!NullConstantForBase->isNullValue()) {
549 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
550 CGF.CGM.getModule(), NullConstantForBase->getType(),
551 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
552 NullConstantForBase, Twine());
554 CharUnits Align =
555 std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
556 NullVariable->setAlignment(Align.getAsAlign());
558 Address SrcPtr =
559 Address(CGF.EmitCastToVoidPtr(NullVariable), CGF.Int8Ty, Align);
561 // Get and call the appropriate llvm.memcpy overload.
562 for (std::pair<CharUnits, CharUnits> Store : Stores) {
563 CharUnits StoreOffset = Store.first;
564 CharUnits StoreSize = Store.second;
565 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
566 CGF.Builder.CreateMemCpy(
567 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
568 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
569 StoreSizeVal);
572 // Otherwise, just memset the whole thing to zero. This is legal
573 // because in LLVM, all default initializers (other than the ones we just
574 // handled above) are guaranteed to have a bit pattern of all zeros.
575 } else {
576 for (std::pair<CharUnits, CharUnits> Store : Stores) {
577 CharUnits StoreOffset = Store.first;
578 CharUnits StoreSize = Store.second;
579 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
580 CGF.Builder.CreateMemSet(
581 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
582 CGF.Builder.getInt8(0), StoreSizeVal);
587 void
588 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
589 AggValueSlot Dest) {
590 assert(!Dest.isIgnored() && "Must have a destination!");
591 const CXXConstructorDecl *CD = E->getConstructor();
593 // If we require zero initialization before (or instead of) calling the
594 // constructor, as can be the case with a non-user-provided default
595 // constructor, emit the zero initialization now, unless destination is
596 // already zeroed.
597 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
598 switch (E->getConstructionKind()) {
599 case CXXConstructExpr::CK_Delegating:
600 case CXXConstructExpr::CK_Complete:
601 EmitNullInitialization(Dest.getAddress(), E->getType());
602 break;
603 case CXXConstructExpr::CK_VirtualBase:
604 case CXXConstructExpr::CK_NonVirtualBase:
605 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
606 CD->getParent());
607 break;
611 // If this is a call to a trivial default constructor, do nothing.
612 if (CD->isTrivial() && CD->isDefaultConstructor())
613 return;
615 // Elide the constructor if we're constructing from a temporary.
616 if (getLangOpts().ElideConstructors && E->isElidable()) {
617 // FIXME: This only handles the simplest case, where the source object
618 // is passed directly as the first argument to the constructor.
619 // This should also handle stepping though implicit casts and
620 // conversion sequences which involve two steps, with a
621 // conversion operator followed by a converting constructor.
622 const Expr *SrcObj = E->getArg(0);
623 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
624 assert(
625 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
626 EmitAggExpr(SrcObj, Dest);
627 return;
630 if (const ArrayType *arrayType
631 = getContext().getAsArrayType(E->getType())) {
632 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
633 Dest.isSanitizerChecked());
634 } else {
635 CXXCtorType Type = Ctor_Complete;
636 bool ForVirtualBase = false;
637 bool Delegating = false;
639 switch (E->getConstructionKind()) {
640 case CXXConstructExpr::CK_Delegating:
641 // We should be emitting a constructor; GlobalDecl will assert this
642 Type = CurGD.getCtorType();
643 Delegating = true;
644 break;
646 case CXXConstructExpr::CK_Complete:
647 Type = Ctor_Complete;
648 break;
650 case CXXConstructExpr::CK_VirtualBase:
651 ForVirtualBase = true;
652 [[fallthrough]];
654 case CXXConstructExpr::CK_NonVirtualBase:
655 Type = Ctor_Base;
658 // Call the constructor.
659 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
663 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
664 const Expr *Exp) {
665 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
666 Exp = E->getSubExpr();
667 assert(isa<CXXConstructExpr>(Exp) &&
668 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
669 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
670 const CXXConstructorDecl *CD = E->getConstructor();
671 RunCleanupsScope Scope(*this);
673 // If we require zero initialization before (or instead of) calling the
674 // constructor, as can be the case with a non-user-provided default
675 // constructor, emit the zero initialization now.
676 // FIXME. Do I still need this for a copy ctor synthesis?
677 if (E->requiresZeroInitialization())
678 EmitNullInitialization(Dest, E->getType());
680 assert(!getContext().getAsConstantArrayType(E->getType())
681 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
682 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
685 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
686 const CXXNewExpr *E) {
687 if (!E->isArray())
688 return CharUnits::Zero();
690 // No cookie is required if the operator new[] being used is the
691 // reserved placement operator new[].
692 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
693 return CharUnits::Zero();
695 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
698 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
699 const CXXNewExpr *e,
700 unsigned minElements,
701 llvm::Value *&numElements,
702 llvm::Value *&sizeWithoutCookie) {
703 QualType type = e->getAllocatedType();
705 if (!e->isArray()) {
706 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
707 sizeWithoutCookie
708 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
709 return sizeWithoutCookie;
712 // The width of size_t.
713 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
715 // Figure out the cookie size.
716 llvm::APInt cookieSize(sizeWidth,
717 CalculateCookiePadding(CGF, e).getQuantity());
719 // Emit the array size expression.
720 // We multiply the size of all dimensions for NumElements.
721 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
722 numElements =
723 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
724 if (!numElements)
725 numElements = CGF.EmitScalarExpr(*e->getArraySize());
726 assert(isa<llvm::IntegerType>(numElements->getType()));
728 // The number of elements can be have an arbitrary integer type;
729 // essentially, we need to multiply it by a constant factor, add a
730 // cookie size, and verify that the result is representable as a
731 // size_t. That's just a gloss, though, and it's wrong in one
732 // important way: if the count is negative, it's an error even if
733 // the cookie size would bring the total size >= 0.
734 bool isSigned
735 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
736 llvm::IntegerType *numElementsType
737 = cast<llvm::IntegerType>(numElements->getType());
738 unsigned numElementsWidth = numElementsType->getBitWidth();
740 // Compute the constant factor.
741 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
742 while (const ConstantArrayType *CAT
743 = CGF.getContext().getAsConstantArrayType(type)) {
744 type = CAT->getElementType();
745 arraySizeMultiplier *= CAT->getSize();
748 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
749 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
750 typeSizeMultiplier *= arraySizeMultiplier;
752 // This will be a size_t.
753 llvm::Value *size;
755 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
756 // Don't bloat the -O0 code.
757 if (llvm::ConstantInt *numElementsC =
758 dyn_cast<llvm::ConstantInt>(numElements)) {
759 const llvm::APInt &count = numElementsC->getValue();
761 bool hasAnyOverflow = false;
763 // If 'count' was a negative number, it's an overflow.
764 if (isSigned && count.isNegative())
765 hasAnyOverflow = true;
767 // We want to do all this arithmetic in size_t. If numElements is
768 // wider than that, check whether it's already too big, and if so,
769 // overflow.
770 else if (numElementsWidth > sizeWidth &&
771 numElementsWidth - sizeWidth > count.countl_zero())
772 hasAnyOverflow = true;
774 // Okay, compute a count at the right width.
775 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
777 // If there is a brace-initializer, we cannot allocate fewer elements than
778 // there are initializers. If we do, that's treated like an overflow.
779 if (adjustedCount.ult(minElements))
780 hasAnyOverflow = true;
782 // Scale numElements by that. This might overflow, but we don't
783 // care because it only overflows if allocationSize does, too, and
784 // if that overflows then we shouldn't use this.
785 numElements = llvm::ConstantInt::get(CGF.SizeTy,
786 adjustedCount * arraySizeMultiplier);
788 // Compute the size before cookie, and track whether it overflowed.
789 bool overflow;
790 llvm::APInt allocationSize
791 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
792 hasAnyOverflow |= overflow;
794 // Add in the cookie, and check whether it's overflowed.
795 if (cookieSize != 0) {
796 // Save the current size without a cookie. This shouldn't be
797 // used if there was overflow.
798 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
800 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
801 hasAnyOverflow |= overflow;
804 // On overflow, produce a -1 so operator new will fail.
805 if (hasAnyOverflow) {
806 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
807 } else {
808 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
811 // Otherwise, we might need to use the overflow intrinsics.
812 } else {
813 // There are up to five conditions we need to test for:
814 // 1) if isSigned, we need to check whether numElements is negative;
815 // 2) if numElementsWidth > sizeWidth, we need to check whether
816 // numElements is larger than something representable in size_t;
817 // 3) if minElements > 0, we need to check whether numElements is smaller
818 // than that.
819 // 4) we need to compute
820 // sizeWithoutCookie := numElements * typeSizeMultiplier
821 // and check whether it overflows; and
822 // 5) if we need a cookie, we need to compute
823 // size := sizeWithoutCookie + cookieSize
824 // and check whether it overflows.
826 llvm::Value *hasOverflow = nullptr;
828 // If numElementsWidth > sizeWidth, then one way or another, we're
829 // going to have to do a comparison for (2), and this happens to
830 // take care of (1), too.
831 if (numElementsWidth > sizeWidth) {
832 llvm::APInt threshold =
833 llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth);
835 llvm::Value *thresholdV
836 = llvm::ConstantInt::get(numElementsType, threshold);
838 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
839 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
841 // Otherwise, if we're signed, we want to sext up to size_t.
842 } else if (isSigned) {
843 if (numElementsWidth < sizeWidth)
844 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
846 // If there's a non-1 type size multiplier, then we can do the
847 // signedness check at the same time as we do the multiply
848 // because a negative number times anything will cause an
849 // unsigned overflow. Otherwise, we have to do it here. But at least
850 // in this case, we can subsume the >= minElements check.
851 if (typeSizeMultiplier == 1)
852 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
853 llvm::ConstantInt::get(CGF.SizeTy, minElements));
855 // Otherwise, zext up to size_t if necessary.
856 } else if (numElementsWidth < sizeWidth) {
857 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
860 assert(numElements->getType() == CGF.SizeTy);
862 if (minElements) {
863 // Don't allow allocation of fewer elements than we have initializers.
864 if (!hasOverflow) {
865 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
866 llvm::ConstantInt::get(CGF.SizeTy, minElements));
867 } else if (numElementsWidth > sizeWidth) {
868 // The other existing overflow subsumes this check.
869 // We do an unsigned comparison, since any signed value < -1 is
870 // taken care of either above or below.
871 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
872 CGF.Builder.CreateICmpULT(numElements,
873 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
877 size = numElements;
879 // Multiply by the type size if necessary. This multiplier
880 // includes all the factors for nested arrays.
882 // This step also causes numElements to be scaled up by the
883 // nested-array factor if necessary. Overflow on this computation
884 // can be ignored because the result shouldn't be used if
885 // allocation fails.
886 if (typeSizeMultiplier != 1) {
887 llvm::Function *umul_with_overflow
888 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
890 llvm::Value *tsmV =
891 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
892 llvm::Value *result =
893 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
895 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
896 if (hasOverflow)
897 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
898 else
899 hasOverflow = overflowed;
901 size = CGF.Builder.CreateExtractValue(result, 0);
903 // Also scale up numElements by the array size multiplier.
904 if (arraySizeMultiplier != 1) {
905 // If the base element type size is 1, then we can re-use the
906 // multiply we just did.
907 if (typeSize.isOne()) {
908 assert(arraySizeMultiplier == typeSizeMultiplier);
909 numElements = size;
911 // Otherwise we need a separate multiply.
912 } else {
913 llvm::Value *asmV =
914 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
915 numElements = CGF.Builder.CreateMul(numElements, asmV);
918 } else {
919 // numElements doesn't need to be scaled.
920 assert(arraySizeMultiplier == 1);
923 // Add in the cookie size if necessary.
924 if (cookieSize != 0) {
925 sizeWithoutCookie = size;
927 llvm::Function *uadd_with_overflow
928 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
930 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
931 llvm::Value *result =
932 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
934 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
935 if (hasOverflow)
936 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
937 else
938 hasOverflow = overflowed;
940 size = CGF.Builder.CreateExtractValue(result, 0);
943 // If we had any possibility of dynamic overflow, make a select to
944 // overwrite 'size' with an all-ones value, which should cause
945 // operator new to throw.
946 if (hasOverflow)
947 size = CGF.Builder.CreateSelect(hasOverflow,
948 llvm::Constant::getAllOnesValue(CGF.SizeTy),
949 size);
952 if (cookieSize == 0)
953 sizeWithoutCookie = size;
954 else
955 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
957 return size;
960 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
961 QualType AllocType, Address NewPtr,
962 AggValueSlot::Overlap_t MayOverlap) {
963 // FIXME: Refactor with EmitExprAsInit.
964 switch (CGF.getEvaluationKind(AllocType)) {
965 case TEK_Scalar:
966 CGF.EmitScalarInit(Init, nullptr,
967 CGF.MakeAddrLValue(NewPtr, AllocType), false);
968 return;
969 case TEK_Complex:
970 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
971 /*isInit*/ true);
972 return;
973 case TEK_Aggregate: {
974 AggValueSlot Slot
975 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
976 AggValueSlot::IsDestructed,
977 AggValueSlot::DoesNotNeedGCBarriers,
978 AggValueSlot::IsNotAliased,
979 MayOverlap, AggValueSlot::IsNotZeroed,
980 AggValueSlot::IsSanitizerChecked);
981 CGF.EmitAggExpr(Init, Slot);
982 return;
985 llvm_unreachable("bad evaluation kind");
988 void CodeGenFunction::EmitNewArrayInitializer(
989 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
990 Address BeginPtr, llvm::Value *NumElements,
991 llvm::Value *AllocSizeWithoutCookie) {
992 // If we have a type with trivial initialization and no initializer,
993 // there's nothing to do.
994 if (!E->hasInitializer())
995 return;
997 Address CurPtr = BeginPtr;
999 unsigned InitListElements = 0;
1001 const Expr *Init = E->getInitializer();
1002 Address EndOfInit = Address::invalid();
1003 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1004 EHScopeStack::stable_iterator Cleanup;
1005 llvm::Instruction *CleanupDominator = nullptr;
1007 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1008 CharUnits ElementAlign =
1009 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1011 // Attempt to perform zero-initialization using memset.
1012 auto TryMemsetInitialization = [&]() -> bool {
1013 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1014 // we can initialize with a memset to -1.
1015 if (!CGM.getTypes().isZeroInitializable(ElementType))
1016 return false;
1018 // Optimization: since zero initialization will just set the memory
1019 // to all zeroes, generate a single memset to do it in one shot.
1021 // Subtract out the size of any elements we've already initialized.
1022 auto *RemainingSize = AllocSizeWithoutCookie;
1023 if (InitListElements) {
1024 // We know this can't overflow; we check this when doing the allocation.
1025 auto *InitializedSize = llvm::ConstantInt::get(
1026 RemainingSize->getType(),
1027 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1028 InitListElements);
1029 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1032 // Create the memset.
1033 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1034 return true;
1037 // If the initializer is an initializer list, first do the explicit elements.
1038 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1039 // Initializing from a (braced) string literal is a special case; the init
1040 // list element does not initialize a (single) array element.
1041 if (ILE->isStringLiteralInit()) {
1042 // Initialize the initial portion of length equal to that of the string
1043 // literal. The allocation must be for at least this much; we emitted a
1044 // check for that earlier.
1045 AggValueSlot Slot =
1046 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1047 AggValueSlot::IsDestructed,
1048 AggValueSlot::DoesNotNeedGCBarriers,
1049 AggValueSlot::IsNotAliased,
1050 AggValueSlot::DoesNotOverlap,
1051 AggValueSlot::IsNotZeroed,
1052 AggValueSlot::IsSanitizerChecked);
1053 EmitAggExpr(ILE->getInit(0), Slot);
1055 // Move past these elements.
1056 InitListElements =
1057 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1058 ->getSize().getZExtValue();
1059 CurPtr = Builder.CreateConstInBoundsGEP(
1060 CurPtr, InitListElements, "string.init.end");
1062 // Zero out the rest, if any remain.
1063 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1064 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1065 bool OK = TryMemsetInitialization();
1066 (void)OK;
1067 assert(OK && "couldn't memset character type?");
1069 return;
1072 InitListElements = ILE->getNumInits();
1074 // If this is a multi-dimensional array new, we will initialize multiple
1075 // elements with each init list element.
1076 QualType AllocType = E->getAllocatedType();
1077 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1078 AllocType->getAsArrayTypeUnsafe())) {
1079 ElementTy = ConvertTypeForMem(AllocType);
1080 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1081 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1084 // Enter a partial-destruction Cleanup if necessary.
1085 if (needsEHCleanup(DtorKind)) {
1086 // In principle we could tell the Cleanup where we are more
1087 // directly, but the control flow can get so varied here that it
1088 // would actually be quite complex. Therefore we go through an
1089 // alloca.
1090 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1091 "array.init.end");
1092 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1093 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1094 ElementType, ElementAlign,
1095 getDestroyer(DtorKind));
1096 Cleanup = EHStack.stable_begin();
1099 CharUnits StartAlign = CurPtr.getAlignment();
1100 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1101 // Tell the cleanup that it needs to destroy up to this
1102 // element. TODO: some of these stores can be trivially
1103 // observed to be unnecessary.
1104 if (EndOfInit.isValid()) {
1105 auto FinishedPtr =
1106 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1107 Builder.CreateStore(FinishedPtr, EndOfInit);
1109 // FIXME: If the last initializer is an incomplete initializer list for
1110 // an array, and we have an array filler, we can fold together the two
1111 // initialization loops.
1112 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1113 ILE->getInit(i)->getType(), CurPtr,
1114 AggValueSlot::DoesNotOverlap);
1115 CurPtr = Address(Builder.CreateInBoundsGEP(
1116 CurPtr.getElementType(), CurPtr.getPointer(),
1117 Builder.getSize(1), "array.exp.next"),
1118 CurPtr.getElementType(),
1119 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1122 // The remaining elements are filled with the array filler expression.
1123 Init = ILE->getArrayFiller();
1125 // Extract the initializer for the individual array elements by pulling
1126 // out the array filler from all the nested initializer lists. This avoids
1127 // generating a nested loop for the initialization.
1128 while (Init && Init->getType()->isConstantArrayType()) {
1129 auto *SubILE = dyn_cast<InitListExpr>(Init);
1130 if (!SubILE)
1131 break;
1132 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1133 Init = SubILE->getArrayFiller();
1136 // Switch back to initializing one base element at a time.
1137 CurPtr = Builder.CreateElementBitCast(CurPtr, BeginPtr.getElementType());
1140 // If all elements have already been initialized, skip any further
1141 // initialization.
1142 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1143 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1144 // If there was a Cleanup, deactivate it.
1145 if (CleanupDominator)
1146 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1147 return;
1150 assert(Init && "have trailing elements to initialize but no initializer");
1152 // If this is a constructor call, try to optimize it out, and failing that
1153 // emit a single loop to initialize all remaining elements.
1154 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1155 CXXConstructorDecl *Ctor = CCE->getConstructor();
1156 if (Ctor->isTrivial()) {
1157 // If new expression did not specify value-initialization, then there
1158 // is no initialization.
1159 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1160 return;
1162 if (TryMemsetInitialization())
1163 return;
1166 // Store the new Cleanup position for irregular Cleanups.
1168 // FIXME: Share this cleanup with the constructor call emission rather than
1169 // having it create a cleanup of its own.
1170 if (EndOfInit.isValid())
1171 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1173 // Emit a constructor call loop to initialize the remaining elements.
1174 if (InitListElements)
1175 NumElements = Builder.CreateSub(
1176 NumElements,
1177 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1178 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1179 /*NewPointerIsChecked*/true,
1180 CCE->requiresZeroInitialization());
1181 return;
1184 // If this is value-initialization, we can usually use memset.
1185 ImplicitValueInitExpr IVIE(ElementType);
1186 if (isa<ImplicitValueInitExpr>(Init)) {
1187 if (TryMemsetInitialization())
1188 return;
1190 // Switch to an ImplicitValueInitExpr for the element type. This handles
1191 // only one case: multidimensional array new of pointers to members. In
1192 // all other cases, we already have an initializer for the array element.
1193 Init = &IVIE;
1196 // At this point we should have found an initializer for the individual
1197 // elements of the array.
1198 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1199 "got wrong type of element to initialize");
1201 // If we have an empty initializer list, we can usually use memset.
1202 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1203 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1204 return;
1206 // If we have a struct whose every field is value-initialized, we can
1207 // usually use memset.
1208 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1209 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1210 if (RType->getDecl()->isStruct()) {
1211 unsigned NumElements = 0;
1212 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1213 NumElements = CXXRD->getNumBases();
1214 for (auto *Field : RType->getDecl()->fields())
1215 if (!Field->isUnnamedBitfield())
1216 ++NumElements;
1217 // FIXME: Recurse into nested InitListExprs.
1218 if (ILE->getNumInits() == NumElements)
1219 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1220 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1221 --NumElements;
1222 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1223 return;
1228 // Create the loop blocks.
1229 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1230 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1231 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1233 // Find the end of the array, hoisted out of the loop.
1234 llvm::Value *EndPtr =
1235 Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
1236 NumElements, "array.end");
1238 // If the number of elements isn't constant, we have to now check if there is
1239 // anything left to initialize.
1240 if (!ConstNum) {
1241 llvm::Value *IsEmpty =
1242 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1243 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1246 // Enter the loop.
1247 EmitBlock(LoopBB);
1249 // Set up the current-element phi.
1250 llvm::PHINode *CurPtrPhi =
1251 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1252 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1254 CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1256 // Store the new Cleanup position for irregular Cleanups.
1257 if (EndOfInit.isValid())
1258 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1260 // Enter a partial-destruction Cleanup if necessary.
1261 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1262 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1263 ElementType, ElementAlign,
1264 getDestroyer(DtorKind));
1265 Cleanup = EHStack.stable_begin();
1266 CleanupDominator = Builder.CreateUnreachable();
1269 // Emit the initializer into this element.
1270 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1271 AggValueSlot::DoesNotOverlap);
1273 // Leave the Cleanup if we entered one.
1274 if (CleanupDominator) {
1275 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1276 CleanupDominator->eraseFromParent();
1279 // Advance to the next element by adjusting the pointer type as necessary.
1280 llvm::Value *NextPtr =
1281 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1282 "array.next");
1284 // Check whether we've gotten to the end of the array and, if so,
1285 // exit the loop.
1286 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1287 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1288 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1290 EmitBlock(ContBB);
1293 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1294 QualType ElementType, llvm::Type *ElementTy,
1295 Address NewPtr, llvm::Value *NumElements,
1296 llvm::Value *AllocSizeWithoutCookie) {
1297 ApplyDebugLocation DL(CGF, E);
1298 if (E->isArray())
1299 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1300 AllocSizeWithoutCookie);
1301 else if (const Expr *Init = E->getInitializer())
1302 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1303 AggValueSlot::DoesNotOverlap);
1306 /// Emit a call to an operator new or operator delete function, as implicitly
1307 /// created by new-expressions and delete-expressions.
1308 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1309 const FunctionDecl *CalleeDecl,
1310 const FunctionProtoType *CalleeType,
1311 const CallArgList &Args) {
1312 llvm::CallBase *CallOrInvoke;
1313 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1314 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1315 RValue RV =
1316 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1317 Args, CalleeType, /*ChainCall=*/false),
1318 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1320 /// C++1y [expr.new]p10:
1321 /// [In a new-expression,] an implementation is allowed to omit a call
1322 /// to a replaceable global allocation function.
1324 /// We model such elidable calls with the 'builtin' attribute.
1325 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1326 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1327 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1328 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1331 return RV;
1334 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1335 const CallExpr *TheCall,
1336 bool IsDelete) {
1337 CallArgList Args;
1338 EmitCallArgs(Args, Type, TheCall->arguments());
1339 // Find the allocation or deallocation function that we're calling.
1340 ASTContext &Ctx = getContext();
1341 DeclarationName Name = Ctx.DeclarationNames
1342 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1344 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1345 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1346 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1347 return EmitNewDeleteCall(*this, FD, Type, Args);
1348 llvm_unreachable("predeclared global operator new/delete is missing");
1351 namespace {
1352 /// The parameters to pass to a usual operator delete.
1353 struct UsualDeleteParams {
1354 bool DestroyingDelete = false;
1355 bool Size = false;
1356 bool Alignment = false;
1360 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1361 UsualDeleteParams Params;
1363 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1364 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1366 // The first argument is always a void*.
1367 ++AI;
1369 // The next parameter may be a std::destroying_delete_t.
1370 if (FD->isDestroyingOperatorDelete()) {
1371 Params.DestroyingDelete = true;
1372 assert(AI != AE);
1373 ++AI;
1376 // Figure out what other parameters we should be implicitly passing.
1377 if (AI != AE && (*AI)->isIntegerType()) {
1378 Params.Size = true;
1379 ++AI;
1382 if (AI != AE && (*AI)->isAlignValT()) {
1383 Params.Alignment = true;
1384 ++AI;
1387 assert(AI == AE && "unexpected usual deallocation function parameter");
1388 return Params;
1391 namespace {
1392 /// A cleanup to call the given 'operator delete' function upon abnormal
1393 /// exit from a new expression. Templated on a traits type that deals with
1394 /// ensuring that the arguments dominate the cleanup if necessary.
1395 template<typename Traits>
1396 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1397 /// Type used to hold llvm::Value*s.
1398 typedef typename Traits::ValueTy ValueTy;
1399 /// Type used to hold RValues.
1400 typedef typename Traits::RValueTy RValueTy;
1401 struct PlacementArg {
1402 RValueTy ArgValue;
1403 QualType ArgType;
1406 unsigned NumPlacementArgs : 31;
1407 unsigned PassAlignmentToPlacementDelete : 1;
1408 const FunctionDecl *OperatorDelete;
1409 ValueTy Ptr;
1410 ValueTy AllocSize;
1411 CharUnits AllocAlign;
1413 PlacementArg *getPlacementArgs() {
1414 return reinterpret_cast<PlacementArg *>(this + 1);
1417 public:
1418 static size_t getExtraSize(size_t NumPlacementArgs) {
1419 return NumPlacementArgs * sizeof(PlacementArg);
1422 CallDeleteDuringNew(size_t NumPlacementArgs,
1423 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1424 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1425 CharUnits AllocAlign)
1426 : NumPlacementArgs(NumPlacementArgs),
1427 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1428 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1429 AllocAlign(AllocAlign) {}
1431 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1432 assert(I < NumPlacementArgs && "index out of range");
1433 getPlacementArgs()[I] = {Arg, Type};
1436 void Emit(CodeGenFunction &CGF, Flags flags) override {
1437 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1438 CallArgList DeleteArgs;
1440 // The first argument is always a void* (or C* for a destroying operator
1441 // delete for class type C).
1442 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1444 // Figure out what other parameters we should be implicitly passing.
1445 UsualDeleteParams Params;
1446 if (NumPlacementArgs) {
1447 // A placement deallocation function is implicitly passed an alignment
1448 // if the placement allocation function was, but is never passed a size.
1449 Params.Alignment = PassAlignmentToPlacementDelete;
1450 } else {
1451 // For a non-placement new-expression, 'operator delete' can take a
1452 // size and/or an alignment if it has the right parameters.
1453 Params = getUsualDeleteParams(OperatorDelete);
1456 assert(!Params.DestroyingDelete &&
1457 "should not call destroying delete in a new-expression");
1459 // The second argument can be a std::size_t (for non-placement delete).
1460 if (Params.Size)
1461 DeleteArgs.add(Traits::get(CGF, AllocSize),
1462 CGF.getContext().getSizeType());
1464 // The next (second or third) argument can be a std::align_val_t, which
1465 // is an enum whose underlying type is std::size_t.
1466 // FIXME: Use the right type as the parameter type. Note that in a call
1467 // to operator delete(size_t, ...), we may not have it available.
1468 if (Params.Alignment)
1469 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1470 CGF.SizeTy, AllocAlign.getQuantity())),
1471 CGF.getContext().getSizeType());
1473 // Pass the rest of the arguments, which must match exactly.
1474 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1475 auto Arg = getPlacementArgs()[I];
1476 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1479 // Call 'operator delete'.
1480 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1485 /// Enter a cleanup to call 'operator delete' if the initializer in a
1486 /// new-expression throws.
1487 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1488 const CXXNewExpr *E,
1489 Address NewPtr,
1490 llvm::Value *AllocSize,
1491 CharUnits AllocAlign,
1492 const CallArgList &NewArgs) {
1493 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1495 // If we're not inside a conditional branch, then the cleanup will
1496 // dominate and we can do the easier (and more efficient) thing.
1497 if (!CGF.isInConditionalBranch()) {
1498 struct DirectCleanupTraits {
1499 typedef llvm::Value *ValueTy;
1500 typedef RValue RValueTy;
1501 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1502 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1505 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1507 DirectCleanup *Cleanup = CGF.EHStack
1508 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1509 E->getNumPlacementArgs(),
1510 E->getOperatorDelete(),
1511 NewPtr.getPointer(),
1512 AllocSize,
1513 E->passAlignment(),
1514 AllocAlign);
1515 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1516 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1517 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1520 return;
1523 // Otherwise, we need to save all this stuff.
1524 DominatingValue<RValue>::saved_type SavedNewPtr =
1525 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1526 DominatingValue<RValue>::saved_type SavedAllocSize =
1527 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1529 struct ConditionalCleanupTraits {
1530 typedef DominatingValue<RValue>::saved_type ValueTy;
1531 typedef DominatingValue<RValue>::saved_type RValueTy;
1532 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1533 return V.restore(CGF);
1536 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1538 ConditionalCleanup *Cleanup = CGF.EHStack
1539 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1540 E->getNumPlacementArgs(),
1541 E->getOperatorDelete(),
1542 SavedNewPtr,
1543 SavedAllocSize,
1544 E->passAlignment(),
1545 AllocAlign);
1546 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1547 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1548 Cleanup->setPlacementArg(
1549 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1552 CGF.initFullExprCleanup();
1555 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1556 // The element type being allocated.
1557 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1559 // 1. Build a call to the allocation function.
1560 FunctionDecl *allocator = E->getOperatorNew();
1562 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1563 unsigned minElements = 0;
1564 if (E->isArray() && E->hasInitializer()) {
1565 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1566 if (ILE && ILE->isStringLiteralInit())
1567 minElements =
1568 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1569 ->getSize().getZExtValue();
1570 else if (ILE)
1571 minElements = ILE->getNumInits();
1574 llvm::Value *numElements = nullptr;
1575 llvm::Value *allocSizeWithoutCookie = nullptr;
1576 llvm::Value *allocSize =
1577 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1578 allocSizeWithoutCookie);
1579 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1581 // Emit the allocation call. If the allocator is a global placement
1582 // operator, just "inline" it directly.
1583 Address allocation = Address::invalid();
1584 CallArgList allocatorArgs;
1585 if (allocator->isReservedGlobalPlacementOperator()) {
1586 assert(E->getNumPlacementArgs() == 1);
1587 const Expr *arg = *E->placement_arguments().begin();
1589 LValueBaseInfo BaseInfo;
1590 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1592 // The pointer expression will, in many cases, be an opaque void*.
1593 // In these cases, discard the computed alignment and use the
1594 // formal alignment of the allocated type.
1595 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1596 allocation = allocation.withAlignment(allocAlign);
1598 // Set up allocatorArgs for the call to operator delete if it's not
1599 // the reserved global operator.
1600 if (E->getOperatorDelete() &&
1601 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1602 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1603 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1606 } else {
1607 const FunctionProtoType *allocatorType =
1608 allocator->getType()->castAs<FunctionProtoType>();
1609 unsigned ParamsToSkip = 0;
1611 // The allocation size is the first argument.
1612 QualType sizeType = getContext().getSizeType();
1613 allocatorArgs.add(RValue::get(allocSize), sizeType);
1614 ++ParamsToSkip;
1616 if (allocSize != allocSizeWithoutCookie) {
1617 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1618 allocAlign = std::max(allocAlign, cookieAlign);
1621 // The allocation alignment may be passed as the second argument.
1622 if (E->passAlignment()) {
1623 QualType AlignValT = sizeType;
1624 if (allocatorType->getNumParams() > 1) {
1625 AlignValT = allocatorType->getParamType(1);
1626 assert(getContext().hasSameUnqualifiedType(
1627 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1628 sizeType) &&
1629 "wrong type for alignment parameter");
1630 ++ParamsToSkip;
1631 } else {
1632 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1633 assert(allocator->isVariadic() && "can't pass alignment to allocator");
1635 allocatorArgs.add(
1636 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1637 AlignValT);
1640 // FIXME: Why do we not pass a CalleeDecl here?
1641 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1642 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1644 RValue RV =
1645 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1647 // Set !heapallocsite metadata on the call to operator new.
1648 if (getDebugInfo())
1649 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1650 getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1651 E->getExprLoc());
1653 // If this was a call to a global replaceable allocation function that does
1654 // not take an alignment argument, the allocator is known to produce
1655 // storage that's suitably aligned for any object that fits, up to a known
1656 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1657 CharUnits allocationAlign = allocAlign;
1658 if (!E->passAlignment() &&
1659 allocator->isReplaceableGlobalAllocationFunction()) {
1660 unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>(
1661 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1662 allocationAlign = std::max(
1663 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1666 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1669 // Emit a null check on the allocation result if the allocation
1670 // function is allowed to return null (because it has a non-throwing
1671 // exception spec or is the reserved placement new) and we have an
1672 // interesting initializer will be running sanitizers on the initialization.
1673 bool nullCheck = E->shouldNullCheckAllocation() &&
1674 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1675 sanitizePerformTypeCheck());
1677 llvm::BasicBlock *nullCheckBB = nullptr;
1678 llvm::BasicBlock *contBB = nullptr;
1680 // The null-check means that the initializer is conditionally
1681 // evaluated.
1682 ConditionalEvaluation conditional(*this);
1684 if (nullCheck) {
1685 conditional.begin(*this);
1687 nullCheckBB = Builder.GetInsertBlock();
1688 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1689 contBB = createBasicBlock("new.cont");
1691 llvm::Value *isNull =
1692 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1693 Builder.CreateCondBr(isNull, contBB, notNullBB);
1694 EmitBlock(notNullBB);
1697 // If there's an operator delete, enter a cleanup to call it if an
1698 // exception is thrown.
1699 EHScopeStack::stable_iterator operatorDeleteCleanup;
1700 llvm::Instruction *cleanupDominator = nullptr;
1701 if (E->getOperatorDelete() &&
1702 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1703 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1704 allocatorArgs);
1705 operatorDeleteCleanup = EHStack.stable_begin();
1706 cleanupDominator = Builder.CreateUnreachable();
1709 assert((allocSize == allocSizeWithoutCookie) ==
1710 CalculateCookiePadding(*this, E).isZero());
1711 if (allocSize != allocSizeWithoutCookie) {
1712 assert(E->isArray());
1713 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1714 numElements,
1715 E, allocType);
1718 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1719 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1721 // Passing pointer through launder.invariant.group to avoid propagation of
1722 // vptrs information which may be included in previous type.
1723 // To not break LTO with different optimizations levels, we do it regardless
1724 // of optimization level.
1725 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1726 allocator->isReservedGlobalPlacementOperator())
1727 result = Builder.CreateLaunderInvariantGroup(result);
1729 // Emit sanitizer checks for pointer value now, so that in the case of an
1730 // array it was checked only once and not at each constructor call. We may
1731 // have already checked that the pointer is non-null.
1732 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1733 // we'll null check the wrong pointer here.
1734 SanitizerSet SkippedChecks;
1735 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1736 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1737 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1738 result.getPointer(), allocType, result.getAlignment(),
1739 SkippedChecks, numElements);
1741 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1742 allocSizeWithoutCookie);
1743 llvm::Value *resultPtr = result.getPointer();
1744 if (E->isArray()) {
1745 // NewPtr is a pointer to the base element type. If we're
1746 // allocating an array of arrays, we'll need to cast back to the
1747 // array pointer type.
1748 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1749 if (resultPtr->getType() != resultType)
1750 resultPtr = Builder.CreateBitCast(resultPtr, resultType);
1753 // Deactivate the 'operator delete' cleanup if we finished
1754 // initialization.
1755 if (operatorDeleteCleanup.isValid()) {
1756 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1757 cleanupDominator->eraseFromParent();
1760 if (nullCheck) {
1761 conditional.end(*this);
1763 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1764 EmitBlock(contBB);
1766 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1767 PHI->addIncoming(resultPtr, notNullBB);
1768 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1769 nullCheckBB);
1771 resultPtr = PHI;
1774 return resultPtr;
1777 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1778 llvm::Value *Ptr, QualType DeleteTy,
1779 llvm::Value *NumElements,
1780 CharUnits CookieSize) {
1781 assert((!NumElements && CookieSize.isZero()) ||
1782 DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1784 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1785 CallArgList DeleteArgs;
1787 auto Params = getUsualDeleteParams(DeleteFD);
1788 auto ParamTypeIt = DeleteFTy->param_type_begin();
1790 // Pass the pointer itself.
1791 QualType ArgTy = *ParamTypeIt++;
1792 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1793 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1795 // Pass the std::destroying_delete tag if present.
1796 llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1797 if (Params.DestroyingDelete) {
1798 QualType DDTag = *ParamTypeIt++;
1799 llvm::Type *Ty = getTypes().ConvertType(DDTag);
1800 CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1801 DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1802 DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1803 DeleteArgs.add(
1804 RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag);
1807 // Pass the size if the delete function has a size_t parameter.
1808 if (Params.Size) {
1809 QualType SizeType = *ParamTypeIt++;
1810 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1811 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1812 DeleteTypeSize.getQuantity());
1814 // For array new, multiply by the number of elements.
1815 if (NumElements)
1816 Size = Builder.CreateMul(Size, NumElements);
1818 // If there is a cookie, add the cookie size.
1819 if (!CookieSize.isZero())
1820 Size = Builder.CreateAdd(
1821 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1823 DeleteArgs.add(RValue::get(Size), SizeType);
1826 // Pass the alignment if the delete function has an align_val_t parameter.
1827 if (Params.Alignment) {
1828 QualType AlignValType = *ParamTypeIt++;
1829 CharUnits DeleteTypeAlign =
1830 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1831 DeleteTy, true /* NeedsPreferredAlignment */));
1832 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1833 DeleteTypeAlign.getQuantity());
1834 DeleteArgs.add(RValue::get(Align), AlignValType);
1837 assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1838 "unknown parameter to usual delete function");
1840 // Emit the call to delete.
1841 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1843 // If call argument lowering didn't use the destroying_delete_t alloca,
1844 // remove it again.
1845 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1846 DestroyingDeleteTag->eraseFromParent();
1849 namespace {
1850 /// Calls the given 'operator delete' on a single object.
1851 struct CallObjectDelete final : EHScopeStack::Cleanup {
1852 llvm::Value *Ptr;
1853 const FunctionDecl *OperatorDelete;
1854 QualType ElementType;
1856 CallObjectDelete(llvm::Value *Ptr,
1857 const FunctionDecl *OperatorDelete,
1858 QualType ElementType)
1859 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1861 void Emit(CodeGenFunction &CGF, Flags flags) override {
1862 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1867 void
1868 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1869 llvm::Value *CompletePtr,
1870 QualType ElementType) {
1871 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1872 OperatorDelete, ElementType);
1875 /// Emit the code for deleting a single object with a destroying operator
1876 /// delete. If the element type has a non-virtual destructor, Ptr has already
1877 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1878 /// Ptr points to an object of the static type.
1879 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1880 const CXXDeleteExpr *DE, Address Ptr,
1881 QualType ElementType) {
1882 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1883 if (Dtor && Dtor->isVirtual())
1884 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1885 Dtor);
1886 else
1887 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1890 /// Emit the code for deleting a single object.
1891 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1892 /// if not.
1893 static bool EmitObjectDelete(CodeGenFunction &CGF,
1894 const CXXDeleteExpr *DE,
1895 Address Ptr,
1896 QualType ElementType,
1897 llvm::BasicBlock *UnconditionalDeleteBlock) {
1898 // C++11 [expr.delete]p3:
1899 // If the static type of the object to be deleted is different from its
1900 // dynamic type, the static type shall be a base class of the dynamic type
1901 // of the object to be deleted and the static type shall have a virtual
1902 // destructor or the behavior is undefined.
1903 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1904 DE->getExprLoc(), Ptr.getPointer(),
1905 ElementType);
1907 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1908 assert(!OperatorDelete->isDestroyingOperatorDelete());
1910 // Find the destructor for the type, if applicable. If the
1911 // destructor is virtual, we'll just emit the vcall and return.
1912 const CXXDestructorDecl *Dtor = nullptr;
1913 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1914 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1915 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1916 Dtor = RD->getDestructor();
1918 if (Dtor->isVirtual()) {
1919 bool UseVirtualCall = true;
1920 const Expr *Base = DE->getArgument();
1921 if (auto *DevirtualizedDtor =
1922 dyn_cast_or_null<const CXXDestructorDecl>(
1923 Dtor->getDevirtualizedMethod(
1924 Base, CGF.CGM.getLangOpts().AppleKext))) {
1925 UseVirtualCall = false;
1926 const CXXRecordDecl *DevirtualizedClass =
1927 DevirtualizedDtor->getParent();
1928 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1929 // Devirtualized to the class of the base type (the type of the
1930 // whole expression).
1931 Dtor = DevirtualizedDtor;
1932 } else {
1933 // Devirtualized to some other type. Would need to cast the this
1934 // pointer to that type but we don't have support for that yet, so
1935 // do a virtual call. FIXME: handle the case where it is
1936 // devirtualized to the derived type (the type of the inner
1937 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1938 UseVirtualCall = true;
1941 if (UseVirtualCall) {
1942 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1943 Dtor);
1944 return false;
1950 // Make sure that we call delete even if the dtor throws.
1951 // This doesn't have to a conditional cleanup because we're going
1952 // to pop it off in a second.
1953 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1954 Ptr.getPointer(),
1955 OperatorDelete, ElementType);
1957 if (Dtor)
1958 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1959 /*ForVirtualBase=*/false,
1960 /*Delegating=*/false,
1961 Ptr, ElementType);
1962 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1963 switch (Lifetime) {
1964 case Qualifiers::OCL_None:
1965 case Qualifiers::OCL_ExplicitNone:
1966 case Qualifiers::OCL_Autoreleasing:
1967 break;
1969 case Qualifiers::OCL_Strong:
1970 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1971 break;
1973 case Qualifiers::OCL_Weak:
1974 CGF.EmitARCDestroyWeak(Ptr);
1975 break;
1979 // When optimizing for size, call 'operator delete' unconditionally.
1980 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
1981 CGF.EmitBlock(UnconditionalDeleteBlock);
1982 CGF.PopCleanupBlock();
1983 return true;
1986 CGF.PopCleanupBlock();
1987 return false;
1990 namespace {
1991 /// Calls the given 'operator delete' on an array of objects.
1992 struct CallArrayDelete final : EHScopeStack::Cleanup {
1993 llvm::Value *Ptr;
1994 const FunctionDecl *OperatorDelete;
1995 llvm::Value *NumElements;
1996 QualType ElementType;
1997 CharUnits CookieSize;
1999 CallArrayDelete(llvm::Value *Ptr,
2000 const FunctionDecl *OperatorDelete,
2001 llvm::Value *NumElements,
2002 QualType ElementType,
2003 CharUnits CookieSize)
2004 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2005 ElementType(ElementType), CookieSize(CookieSize) {}
2007 void Emit(CodeGenFunction &CGF, Flags flags) override {
2008 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2009 CookieSize);
2014 /// Emit the code for deleting an array of objects.
2015 static void EmitArrayDelete(CodeGenFunction &CGF,
2016 const CXXDeleteExpr *E,
2017 Address deletedPtr,
2018 QualType elementType) {
2019 llvm::Value *numElements = nullptr;
2020 llvm::Value *allocatedPtr = nullptr;
2021 CharUnits cookieSize;
2022 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2023 numElements, allocatedPtr, cookieSize);
2025 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2027 // Make sure that we call delete even if one of the dtors throws.
2028 const FunctionDecl *operatorDelete = E->getOperatorDelete();
2029 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2030 allocatedPtr, operatorDelete,
2031 numElements, elementType,
2032 cookieSize);
2034 // Destroy the elements.
2035 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2036 assert(numElements && "no element count for a type with a destructor!");
2038 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2039 CharUnits elementAlign =
2040 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2042 llvm::Value *arrayBegin = deletedPtr.getPointer();
2043 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2044 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2046 // Note that it is legal to allocate a zero-length array, and we
2047 // can never fold the check away because the length should always
2048 // come from a cookie.
2049 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2050 CGF.getDestroyer(dtorKind),
2051 /*checkZeroLength*/ true,
2052 CGF.needsEHCleanup(dtorKind));
2055 // Pop the cleanup block.
2056 CGF.PopCleanupBlock();
2059 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2060 const Expr *Arg = E->getArgument();
2061 Address Ptr = EmitPointerWithAlignment(Arg);
2063 // Null check the pointer.
2065 // We could avoid this null check if we can determine that the object
2066 // destruction is trivial and doesn't require an array cookie; we can
2067 // unconditionally perform the operator delete call in that case. For now, we
2068 // assume that deleted pointers are null rarely enough that it's better to
2069 // keep the branch. This might be worth revisiting for a -O0 code size win.
2070 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2071 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2073 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2075 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2076 EmitBlock(DeleteNotNull);
2077 Ptr.setKnownNonNull();
2079 QualType DeleteTy = E->getDestroyedType();
2081 // A destroying operator delete overrides the entire operation of the
2082 // delete expression.
2083 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2084 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2085 EmitBlock(DeleteEnd);
2086 return;
2089 // We might be deleting a pointer to array. If so, GEP down to the
2090 // first non-array element.
2091 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2092 if (DeleteTy->isConstantArrayType()) {
2093 llvm::Value *Zero = Builder.getInt32(0);
2094 SmallVector<llvm::Value*,8> GEP;
2096 GEP.push_back(Zero); // point at the outermost array
2098 // For each layer of array type we're pointing at:
2099 while (const ConstantArrayType *Arr
2100 = getContext().getAsConstantArrayType(DeleteTy)) {
2101 // 1. Unpeel the array type.
2102 DeleteTy = Arr->getElementType();
2104 // 2. GEP to the first element of the array.
2105 GEP.push_back(Zero);
2108 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
2109 Ptr.getPointer(), GEP, "del.first"),
2110 ConvertTypeForMem(DeleteTy), Ptr.getAlignment(),
2111 Ptr.isKnownNonNull());
2114 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2116 if (E->isArrayForm()) {
2117 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2118 EmitBlock(DeleteEnd);
2119 } else {
2120 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2121 EmitBlock(DeleteEnd);
2125 static bool isGLValueFromPointerDeref(const Expr *E) {
2126 E = E->IgnoreParens();
2128 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2129 if (!CE->getSubExpr()->isGLValue())
2130 return false;
2131 return isGLValueFromPointerDeref(CE->getSubExpr());
2134 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2135 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2137 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2138 if (BO->getOpcode() == BO_Comma)
2139 return isGLValueFromPointerDeref(BO->getRHS());
2141 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2142 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2143 isGLValueFromPointerDeref(ACO->getFalseExpr());
2145 // C++11 [expr.sub]p1:
2146 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2147 if (isa<ArraySubscriptExpr>(E))
2148 return true;
2150 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2151 if (UO->getOpcode() == UO_Deref)
2152 return true;
2154 return false;
2157 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2158 llvm::Type *StdTypeInfoPtrTy) {
2159 // Get the vtable pointer.
2160 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2162 QualType SrcRecordTy = E->getType();
2164 // C++ [class.cdtor]p4:
2165 // If the operand of typeid refers to the object under construction or
2166 // destruction and the static type of the operand is neither the constructor
2167 // or destructor’s class nor one of its bases, the behavior is undefined.
2168 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2169 ThisPtr.getPointer(), SrcRecordTy);
2171 // C++ [expr.typeid]p2:
2172 // If the glvalue expression is obtained by applying the unary * operator to
2173 // a pointer and the pointer is a null pointer value, the typeid expression
2174 // throws the std::bad_typeid exception.
2176 // However, this paragraph's intent is not clear. We choose a very generous
2177 // interpretation which implores us to consider comma operators, conditional
2178 // operators, parentheses and other such constructs.
2179 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2180 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2181 llvm::BasicBlock *BadTypeidBlock =
2182 CGF.createBasicBlock("typeid.bad_typeid");
2183 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2185 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2186 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2188 CGF.EmitBlock(BadTypeidBlock);
2189 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2190 CGF.EmitBlock(EndBlock);
2193 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2194 StdTypeInfoPtrTy);
2197 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2198 llvm::Type *StdTypeInfoPtrTy =
2199 ConvertType(E->getType())->getPointerTo();
2201 if (E->isTypeOperand()) {
2202 llvm::Constant *TypeInfo =
2203 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2204 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2207 // C++ [expr.typeid]p2:
2208 // When typeid is applied to a glvalue expression whose type is a
2209 // polymorphic class type, the result refers to a std::type_info object
2210 // representing the type of the most derived object (that is, the dynamic
2211 // type) to which the glvalue refers.
2212 // If the operand is already most derived object, no need to look up vtable.
2213 if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2214 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2215 StdTypeInfoPtrTy);
2217 QualType OperandTy = E->getExprOperand()->getType();
2218 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2219 StdTypeInfoPtrTy);
2222 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2223 QualType DestTy) {
2224 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2225 if (DestTy->isPointerType())
2226 return llvm::Constant::getNullValue(DestLTy);
2228 /// C++ [expr.dynamic.cast]p9:
2229 /// A failed cast to reference type throws std::bad_cast
2230 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2231 return nullptr;
2233 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2234 return llvm::UndefValue::get(DestLTy);
2237 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2238 const CXXDynamicCastExpr *DCE) {
2239 CGM.EmitExplicitCastExprType(DCE, this);
2240 QualType DestTy = DCE->getTypeAsWritten();
2242 QualType SrcTy = DCE->getSubExpr()->getType();
2244 // C++ [expr.dynamic.cast]p7:
2245 // If T is "pointer to cv void," then the result is a pointer to the most
2246 // derived object pointed to by v.
2247 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2249 bool isDynamicCastToVoid;
2250 QualType SrcRecordTy;
2251 QualType DestRecordTy;
2252 if (DestPTy) {
2253 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2254 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2255 DestRecordTy = DestPTy->getPointeeType();
2256 } else {
2257 isDynamicCastToVoid = false;
2258 SrcRecordTy = SrcTy;
2259 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2262 // C++ [class.cdtor]p5:
2263 // If the operand of the dynamic_cast refers to the object under
2264 // construction or destruction and the static type of the operand is not a
2265 // pointer to or object of the constructor or destructor’s own class or one
2266 // of its bases, the dynamic_cast results in undefined behavior.
2267 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2268 SrcRecordTy);
2270 if (DCE->isAlwaysNull())
2271 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2272 return T;
2274 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2276 // C++ [expr.dynamic.cast]p4:
2277 // If the value of v is a null pointer value in the pointer case, the result
2278 // is the null pointer value of type T.
2279 bool ShouldNullCheckSrcValue =
2280 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2281 SrcRecordTy);
2283 llvm::BasicBlock *CastNull = nullptr;
2284 llvm::BasicBlock *CastNotNull = nullptr;
2285 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2287 if (ShouldNullCheckSrcValue) {
2288 CastNull = createBasicBlock("dynamic_cast.null");
2289 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2291 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2292 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2293 EmitBlock(CastNotNull);
2296 llvm::Value *Value;
2297 if (isDynamicCastToVoid) {
2298 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2299 DestTy);
2300 } else {
2301 assert(DestRecordTy->isRecordType() &&
2302 "destination type must be a record type!");
2303 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2304 DestTy, DestRecordTy, CastEnd);
2305 CastNotNull = Builder.GetInsertBlock();
2308 if (ShouldNullCheckSrcValue) {
2309 EmitBranch(CastEnd);
2311 EmitBlock(CastNull);
2312 EmitBranch(CastEnd);
2315 EmitBlock(CastEnd);
2317 if (ShouldNullCheckSrcValue) {
2318 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2319 PHI->addIncoming(Value, CastNotNull);
2320 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2322 Value = PHI;
2325 return Value;